. .. De-forte-puissance, 96 4.1.1 Mesure de la réponse temporelle à une agression MFP, Réponse du circuit sous test aux impulsions

. , 100 4.2.3 Analyse de la destruction d'un point de vue temporel

. .. Analyse-de-défaillance,

. .. Conclusion,

, Chapitre 5

, Réduction de puissance de l'agression et effets non-destructifs

. , 118 5.1 Influence de la largeur d'impulsion sur le seuil de susceptibilité, p.118

. .. Phénomène-de-dégradation,

. .. Conclusion,

. Bibliographie,

S. Curtis, Electronic Warfare in the Information Age. Artech House, vol.8, p.11, 1999.

C. E. Baum, From the electromagnetic pulse to high-power electromagnetics, Proceedings of the IEEE, vol.80, issue.6, p.9, 1992.
DOI : 10.1109/5.149443

B. Christophe, C. Maurice, D. Omar, and J. Bernard, Mécanisme de l'évolution des champs électromagnétiques dans un simulateur de grandes dimensions. projet d'un simulateur semi-rhombique, Annales des Télécommunications, vol.41, issue.7, pp.381-391

C. François, Compatibilité électromagnétique (CEM), p.10, 2010.

E. M. Walling, High Power Microwaves Strategic and Operational Implications for Warfare, vol.12, p.18, 2000.
DOI : 10.21236/ada425472

URL : http://www.dtic.mil/dtic/tr/fulltext/u2/a425472.pdf

B. James, J. A. Swegle, and S. Edl, High Power Microwaves-Third Edition, vol.13, p.18, 2016.

G. Maxime, D. Tristan, D. Genevieve, and H. Patrick, EMC susceptibility analysis of an op-amp based circuit, 2016 International Symposium on Electromagnetic Compatibility-EMC EUROPE, vol.14, p.64, 2016.

P. Clovis, Caractérisation de la susceptibilité électromagnétique des étages d'entrée de composants électroniques, vol.14, p.17, 2015.

T. Dubois, J. J. Laurin, J. Raoult, and S. Jarrix, Effect of low and high power continuous wave electromagnetic interference on a microwave oscillator system : From VCO to PLL to QPSK receiver, IEEE Transactions on Electromagnetic Compatibility, vol.56, issue.2, p.65, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00938977

D. Tristan, Etude de l'effet d'ondes électromagnétiques sur le fonctionnement de circuits électroniques-Mise en place d'une méthode de test des systèmes, vol.14, p.65, 2009.

. Bibliographie,

M. Camp, H. Garbe, and D. Nitsch, Influence of the technology on the destruction effects of semiconductors by impact of EMP and UWB pulses, Electromagnetic Compatibility, vol.1, p.14, 2002.

K. Carlo, A doctrine for the use of electromagnetic pulse bombs, p.14, 1993.

E. Savage, J. Gilbert, and W. Radasky, The early-time (e1) high-altitude electromagnetic pulse (hemp) and its impact on the u.s. power grid, p.14, 2010.

, WASHINGTON POST : More attacks, mounting casualties, p.14, 2007.

, DOD : Dod programs-mine resistant ambush protected (MRAP) all terrain vehicle (MATV), p.15, 2010.

, FRONTLINE PERSPECTIVE : Radio-controlled, passive infrared-initiated ieds, p.15, 2018.

J. A. Dayton, Risk of Using Past to Predict Future : A Case Study of Jamming RCIEDS, Naval Postgraduate School, p.15, 2009.

K. Wilgucki, R. Urban, G. Baranowski, P. Gradzki, and P. Skarzynski, Selected aspects of effective RCIED jamming, 2012 Military Communications and Information Systems Conference (MCC), pp.1-5

R. Kevin, Army to test microwave weapon at nm tech. Online

D. James, Meet raytheon's drone-destroying microwave-energy weapon, p.15, 2016.

K. Nitin, S. Udaybir, K. Anil, and A. , SINHA : Design of 95 GHz, 100 kW gyrotron for Active Denial System application, vol.99, p.23, 2014.

R. Tyler, Are high-powered microwave close-in weapon systems destined for us navy ships, p.15, 2018.

F. Sabath, What can be learned from documented Intentional Electromagnetic Interference (IEMI) attacks ?, General Assembly and Scientific Symposium, p.16, 2011.
DOI : 10.1109/ursigass.2011.6050718

S. Van-de-beek and F. Leferink, Vulnerability of remote keyless-entry systems against pulsed electromagnetic interference and possible improvements, IEEE Transactions on Electromagnetic Compatibility, vol.58, issue.4, p.16, 2016.

C. Kasmi and J. Lopes-esteves, IEMI Threats for Information Security : Remote Command Injection on Modern Smartphones, vol.57, p.16, 2015.
DOI : 10.1109/temc.2015.2463089

R. L. Gardner, Electromagnetic terrorism : A real danger, Electromagnetic compatibility. International symposium, p.16, 1998.

W. A. Radasky, C. E. Baum, and M. W. Wik, Introduction to the special issue on highpower electromagnetics (HPEM) and intentional electromagnetic interference (IEMI), IEEE Transactions On Electromagnetic Compatibility, vol.46, issue.3, p.16, 2004.
DOI : 10.1109/temc.2004.831899

G. E. Moore, Cramming more components onto integrated circuits, Proceedings of the IEEE, vol.86, issue.11, p.16, 1998.
DOI : 10.1109/jproc.1998.658762

K. Suhas, Fundamental limits to moore's law, p.16, 2015.

M. Ramdani, E. Sicard, A. Boyer, S. Ben, D. et al., The Electromagnetic Compatibility of Integrated Circuits-Past, Present, and Future. IEEE Transactions on Electromagnetic Compatibility, vol.51, p.17, 2009.

F. Sabath and H. Garbe, Assessing the likelihood of various intentional electromagnetic environments the initial step of an IEMI risk analysis, 2015 IEEE International Symposium on, p.17, 2015.

G. Lugrin, N. Mora, S. Sliman, F. Rachidi, M. Rubinstein et al., Overview of IEMI conducted and radiated sources : Characteristics and trends, 2013 International Symposium on, pp.24-28, 2013.

B. Mats, N. Barbro, and L. Karl, Is hpm a threat against the civil society ?, 2002.

F. Sabath and H. Garbe, Risk potential of radiated HPEM environments, IEEE International Symposium on, vol.18, p.20, 2009.

E. Savage and W. Radasky, Overview of the threat of IEMI (intentional electromagnetic interference), 2012 IEEE International Symposium on, p.17, 2012.

W. A. Radasky, Protection of commercial installations from the high-frequency electromagnetic threats of HEMP and IEMI using IEC standards, Electromagnetic Compatibility (APEMC), 2010.

, Asia-Pacific Symposium on, p.17, 2010.

S. Van-de, B. , J. Dawson, L. Dawson, I. Flintoft et al., The european BIBLIOGRAPHIE project structures : Challenges and results, 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), pp.1095-1100, 2015.

, USDHS : The Threat of Radio Frequency Weapons to Critical Infrastructures Facilties, p.17, 2005.

J. Delsing, J. Ekman, J. Johansson, S. Sundberg, M. Backstrom et al., Susceptibility of sensor networks to intentional electromagnetic interference, 17\textsuperscriptth International Zurich Symposium on, p.17, 2006.

W. A. Radasky, The threat of intentional interference (IEMI) to wired and wireless systems, 17\textsuperscriptth International Zurich Symposium on, p.18, 2006.

M. Mleczko, D. Hamann, and H. Garbe, Analysis of iemi induced distortion on wireless digital data transmission links, 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp.1-4, 2015.

S. Van-de, B. , M. Stojilovic, N. Mora, M. Rubinstein et al., Protection strategy against iemi for wireless communication infrastructures, 2016 International Symposium on Electromagnetic Compatibility-EMC EUROPE, vol.17, p.103, 2016.

C. Mao and F. Canavero, System-Level Vulnerability Assessment for EME : From Fault Tree Analysis to Bayesian Networks ;Part I : Methodology Framework, IEEE Transactions on Electromagnetic Compatibility, vol.58, issue.1, p.17, 2016.

C. Mao, F. G. Canavero, Z. Cui, and D. Sun, System-Level Vulnerability Assessment for EME : From Fault Tree Analysis to Bayesian Networks ;Part II : Illustration to Microcontroller System, IEEE Transactions on Electromagnetic Compatibility, vol.58, issue.1, p.17, 2016.

B. Bruno and . Hamed, Contribution à l'analyse de la susceptibilité des composants électroniques à des perturbations transitoires : Caractérisation et modélisation des éléments de protection, p.17, 2010.

T. Hicham, M. Recordon, M. Rubinstein, N. Stojilovic, G. Mora et al., A comparator-based technique for identification of intentional electromagnetic interference attacks, Etude de la susceptibilité des cartes des circuits imprimés face aux agressions électromagnétiques de Fortes Puissances, p.18, 2008.

D. V. Giri and F. M. , TESCHE : Classification of intentional electromagnetic environments (IEME), IEEE Transactions on Electromagnetic Compatibility, vol.46, issue.3, p.26, 2004.

, IEC : 61000-2-13-electromagnetic compatibility (emc)-part 2-13 environment-high power electromagnetic (hpem) environments, p.18, 2005.

M. Read, R. L. Ives, T. Bui, G. Collins, B. Chase et al., A 100 kW 1.3 GHz phase locked magnetron for accelerators, 2018 IEEE International Vacuum Electronics Conference (IVEC), pp.249-250, 2018.

C. Motta, D. Lopes, and J. Takahashi, Development of a 2450 MHz, 50 kW CW klystron, IEEE International Vacuum Electronics Conference (IVEC), p.19, 2018.

A. Gurinovich, V. Baryshevsky, D. Baryshevsky, S. Agafonov, A. Borisevich et al., Electrically driven wideband sources for equipment vulnerability tests, 2013 European Microwave Conference, vol.19, p.68, 2013.

, ITU : High-power electromagnetic immunity guide for telecommuncation systems, vol.19, p.20, 2009.

C. D. Taylor and D. V. Giri, High-power Microwave Systems and Effects, vol.22, p.27, 1994.

S. T. Pai and Z. Qi, Introduction to High Power Pulse Technology, vol.22, p.27, 1995.

P. Laurent, R. Marc, A. De, F. Romain, P. René et al., Feed signal influence and potential performance of a compact radiation source based on a helical antenna, Journal of Electromagnetic Analysis and Applications, vol.7, issue.23, pp.199-208, 2015.

Z. Jiande, G. E. Xingjun, Z. Jun, H. E. Juntao, F. Yuwei et al., Research progresses on cherenkov and transit-time high-power microwave sources at nudt. Matter and Radiation at Extremes, vol.1, p.68, 2016.

. Bibliographie,

R. Vézinet, F. Lassalle, S. Tortel, J. C. Diot, A. Morell et al.,

, IEEE International Power Modulator and High Voltage Conference (IPMHVC), vol.23, p.68, 2016.

A. Nathalie, , 1992.

D. Shi, B. -. Liang, Q. , H. , W. Wei et al., A novel relativistic magnetron with circularly polarized te11 coaxial waveguide mode, Journal of Physics D : Applied Physics, vol.49, issue.23, p.465104, 2016.

L. Christopher, P. Serita, M. I. Fuks, J. Buchenauer, J. W. Mcconaha et al., Experimental demonstration of a high-efficiency relativistic magnetron with diffraction output with spherical cathode endcap, IEEE Transactions on Plasma Science, vol.45, issue.2, p.27, 2017.

B. Levush, T. Antonsen, A. Bromborsky, W. R. Lou, and Y. Carmel, Relativistic backwardwave oscillator : Theory and experiment. Physics of Fluids : Plasma Physics, vol.4, p.2293, 1992.

G. E. Xingjun, L. I. Mingzhu, H. E. Juntao, Z. Jun, and Z. Danni, A relativistic backward-wave oscillator with frequency-selectable accross x and ku-bands, Physics of Plasmas, vol.24, issue.23, p.33120, 2017.

S. T. Pantelides, L. Tsetseris, M. J. Beck, S. N. Rashkeev, G. Hadjisavvas et al., SCHRIMP : Performance, reliability, radiation effects, and aging issues in microelectronics-from atomic-scale physics to engineering-level modeling, Proceedings of the European Solid State Device Research Conference, pp.48-55, 1929.

F. Lafon, F. De, D. , L. Caves, M. Ramdani et al., Influence of aging and environment conditions on EMC performances of electronic equipment. influence of passive vs active components, 2010.

B. Li, A. Boyer, S. Bendhia, and C. Lemoine, Ageing effect on electromagnetic susceptibility of a phase locked loop, Microelectronics Reliability, vol.50, pp.1304-1308, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00669515

M. Tlig, J. B. Hadj, S. , and M. A. Belaid, Power RF n-ldmos ageing effect on conducted BIBLIOGRAPHIE electromagnetic interferences, 10th International Multi-Conferences on Systems, Signals Devices 2013 (SSD13), pp.1-5, 2013.

J. F. Dawson, I. D. Flintoft, A. P. Duffy, A. C. Marvin, and M. P. Robinson, Effect of high temperature ageing on electromagnetic emissions from a PIC microcontroller, 2014 International Symposium on Electromagnetic Compatibility, pp.1139-1143, 2014.

H. Huang, A. Boyer, and S. B. , DHIA : Analysis and modeling of passive device degradation models for an electromagnetic emission robustness study of a buck DC-DC converter, Electromagnetic Compatibility (EMC), pp.1304-1309, 2015.

H. Huang, A. Boyer, S. Ben, and . Dhia, VRIGNON : Prediction of aging impact on electromagnetic susceptibility of an operational amplifier, 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), p.29, 2015.

B. Ioan, Architecture de récepteurs radiofréquences dédiés au traitement bibande simultané, Micro et nanotechnologies/Microélectronique, INSA de Lyon, p.33, 2010.

J. Meel, Spread spectrum (ss), p.39, 1999.

J. Bao-yen and T. , Fundamentals of Global Positioning System Receiver : A Software Approach, Chapter Five, p.39, 2000.

D. Nitsch, M. Camp, F. Sabath, J. L. Ter-haseborg, and H. Garbe, Susceptibility of some electronic equipment to HPEM threats, IEEE Transactions on Electromagnetic Compatibility, vol.46, issue.3, p.40, 2004.

D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart et al., Two-dimensional electron gas m.e.s.f.e.t. structure, vol.16, pp.667-668

M. Takashi, H. Satoshi, F. Toshio, and N. Kazuo, A new field-effect transistor with selectively doped GaAs/n-al x ga 1-x as heterojunctions, Japanese Journal of Applied Physics, vol.19, issue.5

P. Dimitris, MESFET : What's best and why, GaAs MANTECH International Conference on Compound Semiconductor Manufacturing Technology, p.42, 1999.

O. Pajona, Transistors HEMT Métamorphiques sur substrat GaAs pour applications de télécommunications à trés haut débit : Mesures statiques et dynamiques pour Intégration des effets parasites dans des modèles, p.42, 2006.

H. Q. Tserng, B. Kim, P. Saunier, H. D. Shih, and M. A. Khatibzadeh, Millimeter-wave power transistors and circuits. Microwave Journal, vol.32, p.43, 1989.

P. M. Smith, P. C. Chao, L. F. Lester, R. P. Smith, B. R. Lee et al., DUH : InGaAs pseudomorphic HEMTs for millimeter wave power applications, IEEE MTT-S International Microwave Symposium Digest, vol.2, p.43, 1988.

S. Nathalie, Développement d'une méthodologie et des techniques d'analyse associées permettant l'évaluation de la qualité et de la fiabilité des transistors à haute mobilité électronique, vol.43, p.139, 1996.

N. Ismail, Etude des limites de fonctionnement des transistors hyperfréquences, p.43, 2006.

M. Oleg and M. Michael, Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors, Superlattices and Microstructures, vol.34, p.43, 2003.

A. Divay, M. Masmoudi, O. Latry, C. Duperrier, and F. Temcamani, An athermal measurement technique for long traps characterization in GaN HEMT transistors, Microelectronics Reliability, vol.55, pp.1703-1707, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01341768

O. Axelsson, N. Billström, N. Rorsman, and M. Thorsell, Impact of trapping effects on the recovery time of GaN based low noise amplifiers, IEEE Microwave and Wireless Components Letters, vol.26, issue.1, pp.31-33, 2016.

P. Clément, Caractérisation et modélisation des pièges par des mesures de dispersion basse-fréquence dans les technologies HEMT InAln/GaN pour l'amplification de puissance en gamme millimétrique, 2016.

C. Julien, Investigation of fast and slow charge trapping mechanisms of GaN/AlGaN HEMTs through pulsed I-V measurements and the associated new trap model, IMS Conference, p.43, 2018.

R. Matthias, B. Reza, D. Ralf, H. Klaus, W. Joachim et al., Analysis of the survivability of GaN low-noise amplifiers, IEEE Transactions on Microwave Theory and Techniques, vol.55, p.43, 2007.

S. Colangeli, A. Bentini, W. Ciccognani, E. Limiti, and A. Nanni, GaN-based robust lownoise amplifiers, IEEE Transactions on Electron Devices, vol.60, issue.10, pp.3238-3248, 2013.
DOI : 10.1109/ted.2013.2265718

URL : https://doi.org/10.1109/ted.2013.2265718

L. Zhou, Z. San, L. Lin, and W. Y. Yin, Electro-thermal-stress interaction of GaN HEMT breakdown induced by high power microwave pulses, 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), vol.01, p.43, 2016.

A. Suarez, Check the stability : Stability analysis methods for microwave circuits, IEEE Microwave Magazine, vol.16, issue.5, p.52, 2015.
DOI : 10.1109/mmm.2015.2410951

URL : https://repositorio.unican.es/xmlui/bitstream/10902/10114/1/ChecktheStability.pdf

J. Rollett, Stability and power-gain invariants of linear twoports, IRE Transactions on Circuit Theory, vol.9, issue.1, pp.29-32
DOI : 10.1109/tct.1962.1086854

L. Chusseau, Cours paramètres S-Antennes, vol.52, 2005.

M. L. Edwards and J. , SINSKY : A new criterion for linear 2-port stability using a single geometrically derived parameter, IEEE Transactions on Microwave Theory and Techniques, vol.40, issue.12, p.54

A. Platzker, W. Struble, and K. T. , HETZLER : Instabilities diagnosis and the role of k in microwave circuits, IEEE MTT-S International Microwave Symposium Digest, vol.3, pp.1185-1188, 1955.

W. Struble and A. Platzker, A rigorous yet simple method for determining stability of linear n-port networks [and mmic application, 15th Annual GaAs IC Symposium, pp.251-254, 1955.

. C. Steve and . Cripps, RF Power Amplifier for Wireless Communications, p.56, 2006.

A. Alaeldine, L. Bouchelouk, R. Perdriau, and M. Ramdani, Analysis of the propagation of electromagnetic disturbances inside integrated circuits using direct power injection and near-field scanning, IEEE International Symposium on, p.64, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01271859

F. Franco, Integrated Circuit Susceptibility to Conducted RF Interference, p.64, 2000.

J. Shepherd, C. Marot, B. Vrignon, and S. Ben-dhia, Near-field scan-State of the art and standardisation, Electromagnetic Compatibility (APEMC), p.65, 2012.

A. Boyer, S. Ben, D. , and E. Sicard, Characterization of the Electromagnetic Susceptibility of Integrated Circuits using a Near Field Scan. Electronic Letters, vol.43, p.65, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00669747

. Bibliographie,

T. Dubois, S. Jarrix, P. Annick, P. Nouvel, D. Gasquet et al., AZAIS : Near-Field Electromagnetic Characterization and Perturbation of Logic Circuits, IEEE Transactions on Instrumentation and Measurement, vol.57, issue.11, pp.2398-2404, 2008.

A. Boyer, B. Vrignon, and M. Cavarroc, Modeling Magnetic Near-Field Injection at Silicon Die Level, IEEE Transactions On Electromagnetic Compatibility, issue.99, p.65, 2015.
DOI : 10.1109/temc.2015.2486041

URL : https://hal.archives-ouvertes.fr/hal-01225324

D. Deschrijver, F. Vanhee, D. Pissoort, and T. Dhaene, Automated Near-Field Scanning Algorithm for the EMC Analysis of Electronic Devices, IEEE Transactions on Electromagnetic Compatibility, vol.54, issue.3, p.65, 2012.

F. Sabath, M. Backstrom, B. Nordstrom, D. Serafin, A. Kaiser et al., Overview of four european high-power microwave narrow-band test facilities, IEEE Transactions on Electromagnetic Compatibility, vol.46, issue.3, p.66, 2004.

T. Léo, Calcul et Conception des Dispositifs en Ondes Centimétriques et

, Millimétriques-Tome 1-Circuits Passifs. Cepadues Editions, p.76, 1988.

F. Sonnemann and J. Bohl, Susceptibility and vulnerability of semiconductor components and circuits against hpm, p.103, 2008.

M. G. Backstrom and K. G. , LOVSTRAND : Susceptibility of electronic systems to highpower microwaves : summary of test experience, IEEE Transactions on Electromagnetic Compatibility, vol.46, issue.3, p.126, 2004.

C. Dong, X. U. Liming, Z. Bisheng, and M. A. Hongge, Research on the effect of high power microwave on low noise amplifier and limiter based on the injection method, J. Electromagnetic Analysis & Applications, vol.2, p.103, 2010.

O. Hiraku, H. Hideyuki, and H. Kazushige, Analysis of breakdown characteristics in source field-plate AlGaN/GaN HEMTs, vol.13, p.111, 2016.

D. James and M. , Design and Fabrication of AlGaN/GaN HEMTs with high breakdown voltages, p.111, 2014.

M. Farahiyah, P. Norfarariyanti, A. Manaf, H. , S. Fadzli-abd et al., Design, fabrication and characterization of a Schottky diode on an AlGaAs/GaAs HEMT structure for on-chip RF power detection, Superlattices and Microstructures, vol.47, issue.2, p.113, 2010.

. Bibliographie,

M. Rzin, A. Curutchet, N. Labat, N. Malbert, L. Brunel et al., Schottky gate of algan/gan hemts : Investigation with dc and low frequency noise measurements after 7000 hours htol test, 2015 International Conference on Noise and Fluctuations (ICNF), p.113, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01163601

P. Moens, C. Liu, A. Banerjee, P. Vanmeerbeek, P. Coppens et al.,

. Gan-on, Si power devices using in-situ SiN as a Gate Dielectric. Proceedings of the 26th International Symposium on Power Semiconductor Devices & IC's, p.113, 2014.

L. Jong-won, A. Ho-kyu, J. I. Hong-gu, C. Woo-jin, J. Mun et al., Fabrication and characteristics of 0.12 µm AlGaAs/InGaAs/GaAs pseudomorphic HEMT using a silicon nitride assisted process, Semiconductor Science and Technology, vol.19, p.114, 2004.

D. Wang, K. E. Wei, T. Yuan, and W. Liu, High performance AlGaN/GaN HEMTs with 2.4 m source-drain spacing, Journal of Semiconductors, vol.31, issue.3, 2010.

R. Mehdi, R. Jean-marc, G. Bruno, M. Laurence, M. Magali et al., Impact of gate drain spacing on low-frequency noise performance of in situ sin passivated inalgan/gan mishemts, 2017.

H. C. Chiu, C. W. Yang, H. C. Wang, F. H. Huang, H. L. Kao et al., Characteristics of algan/gan hemts with various field-plate and gate-to-drain extensions, IEEE Transactions on Electron Devices, vol.60, issue.11, pp.3877-3882, 2013.

B. J. Baliga, R. Ehle, J. R. Shealy, and W. Garwacki, Breakdown characteristics of gallium arsenide, IEEE Electron Device Letters, vol.11, p.115, 1981.

Y. , C. Chang-chun, L. Yang, Y. Yin-tang, and X. Xiao-wen, Simulation and experimental study of high power microwave damage effect on algaas/ingaas pseudomorphic high electron mobility transistor, Chinese Physics B, vol.24, p.126, 2015.

C. S. Putnam, M. H. Somerville, J. A. Del, A. , P. C. Chao et al., Temperature dependence of breakdown voltage in inalas/InGaAs HEMTs : theory and experiments, BIBLIOGRAPHIE Conference Proceedings. 1997 International Conference on Indium Phosphide and Related Materials, p.115, 1997.

V. M. Robbins, S. C. Smith, and G. E. Stillman, Impact ionization in alxga1-xas for x=0, vol.52, p.115, 1988.

R. Menozzi, Off-state breakdown of GaAs phemts : review and new data. IEEE Transactions on Device and Materials Reliability, vol.4, p.115, 2004.

D. C. Wunsch and R. R. , BELL : Determination of Threshold Failure Levels of Semiconductor Diodes and Transistors Due to Pulse Voltages, vol.125, p.142, 1968.

H. Kinoshita, M. Akiyama, T. Ishida, S. Nishi, Y. Sano et al., Analysis of electron trapping location in gated and ungated inverted-structure HEMT's, IEEE Electron Device Letters, vol.6, issue.9, p.139, 1985.

N. C. Halder and K. Genareau, Near-surface and bulk deep trap states in AlxGa1-xAs/GaAs. Applied Physics, pp.81-85, 2005.

A. Olomo, Nonlinear GaAs phemt model with trapping effect for small signal and dynamic large signal design, 2016 11 th European Microwave Integrated Circuits Conference (EuMIC), pp.345-348, 2016.

G. Meneghesso, A. Paccagnella, Y. Haddab, C. Canali, and E. Zanoni, Evidence of interace trap creation by hot-electrons in AlGaAs/GaAs high electron mobility transistors, Applied Physics Letters, vol.69, issue.10, pp.1411-1413, 1996.

G. Meneghesso, C. Canali, P. Cova, E. De, E. Bortoli et al., Trapped charge modulation : a new cause of instability in AlGaAs/InGaAs pseudomorphic HEMT's, IEEE Electron Device Letters, vol.17, issue.5, pp.232-234, 1996.

W. Kruppa and J. B. , BOOS : Examination of the kink effect in inalas/InGaAs/InP HEMTs using sinusoidal and transient excitation, IEEE Transactions on Electron Devices, vol.42, issue.10, pp.1717-1723, 1995.

J. L. Choi, K. J. , and L. , Effects of hot-electron stress on electrical performances in

, AlGaAs/InGaAs pseudomorphic high electron transistors, Journal of Electronic Materials, vol.30, issue.7, pp.885-890, 2001.

Y. Chan and D. Pavlidis, Trap Studies in GaInP/GaAs and AlGaAs/GaAs HEMT's by Means of Low-Frequency Noise and Transconductance Dispersion Characterizations, In IEEE Trans. on Electron Devices, vol.41, 1994.

. Bibliographie,

C. Canali, F. Magistrali, A. Paccagnella, M. Sangalli, C. Tedesco et al., Traprelated effects in AlGaAs/GaAs HEMTs. IEE-Circuits, Devices and Systems, vol.138, p.139, 1991.

K. Rambabu, A. Eng-choon, T. , K. Khee-meng, C. et al., Estimation of antenna effect on ultra-wideband pulse shape in transmission and reception, IEEE Transactions on Electromagnetic Compatibility, vol.51, pp.604-610, 2009.

A. Dean, S. Frickey-:-conversions-between, Z. , Y. , A. et al., parameters which are Valid for Complex Source and Load Impedances, IEEE Transactions on Microwave Theory and Techniques, vol.42, pp.205-211, 1994.

R. A. Minasian, Simplified GaAs M.E.S.F.E.T. Model to 10 GHz. Electronic Letters, vol.13, pp.549-551, 1977.

G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, A new method for determining the FET small-signal equivalent circuit, IEEE Transactions on Microwave Theory and Techniques, vol.36, issue.7, pp.1151-1159

F. De-coulon, Théorie et traitement des signaux. Traité d'électricité, d'électronique et d'électrotechnique, Dunod, 1984.

, Bibliographie Personnelle

M. Girard, T. Dubois, G. Duchamp, and P. Hoffmann, Analyse de la susceptibilité d'un montage à base d'AOP, comparaison des résultats entre modes conduit et rayonné

, 18ème colloque international et exposition sur la compatibilité électromagnétique (CEM 2016), 2016.

G. Maxime, D. Tristan, D. Genevieve, and H. Patrick, EMC susceptibility analysis of an Op-Amp based circuit combining different technique, International Symposium on Electromagnetic Compatibility-EMC EUROPE-Wroclaw, vol.14, p.64, 2016.

G. Maxime, D. Tristan, D. Geneviève, and H. Patrick, Effets du stress électromagnétique sur un transistor p-HEMT GaAs. Assemblée générale du GDR Ondes, 2017.

M. Girard, T. Dubois, P. Hoffmann, and G. Duchamp, Effects of HPEM Stress on GaAs LowNoise Amplifier from Circuit to Component Scale. European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01884917

M. Girard, T. Dubois, G. Duchamp, and P. Hoffmann, Effects of HPEM Stress on GaAs LowNoise Amplifier from Circuit to Component Scale. Microelectronics Reliability, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01884917

M. Girard, T. Dubois, G. Duchamp, and P. Hoffmann, Investigating HPEM effects on GaAs p-HEMT low-noise amplifier. AMEREM 2018, vol.31, p.139, 2018.

, HEMP High Altitude Elecromagnetic Pulse, issue.7

, HEMT High Electron Mobility Transistor. 1, 40, vol.41, p.111

, HPEM High Power Microwaves, vol.7, p.27

, ICP1 Input Compression Point (1 dB), vol.39, p.54

, IEC International Electrotechnical Comission. ix, vol.17, p.18

, IED Improvised Explosive Device, vol.12

, IEM Impulsion électromagnétique. 6-8, vol.12, p.66

, IEMI Intentionnal Electromagnetic Interference. 1, vol.14, p.15

, IEMN Impulsion électromagnétique d'origine nucléaire, vol.6, p.12

L. Low-noise, , vol.51, pp.139-141

, MESFET Metal Semiconductor Field Effect Transistor, vol.39, p.40

. Mfp-micro-ondes-de-forte-puissance, , vol.10, p.139

, MMIC Monolithic Microwave Integrated Circuit, vol.38, p.42

, MODFET Modulation Doped Field Effect Transistor, p.40

, MRAP Mine Resistant Ambush Protected, vol.12

, NDF Normalized Determinant Function, vol.53

, NEMP Nuclear Electromagnetic Pulse, issue.7

P. A. Power-amplifier, , vol.34, p.67

, pHEMT pseudomorphic High Electron Mobility Transistor. 41, vol.42, p.140

, PLL Phase Locked Loop

, PSK Phase Shift Keying, vol.36

, RDS Radio Data System, p.31

. Rf-radio-fréquence, , vol.1, p.76

. Rms-root-mean and . Square, , p.67

. Sf6-hexafluorure-de-soufre, , p.25

, SiGe Silicium Germanium (Silicon Germanium), p.41

, SNR Rapport signal-à-bruit. 1, 35, vol.36