K. F. Mak, Atomically Thin MoS 2 : A New Direct-Gap Semiconductor, Physical Review Letters, vol.105, p.136805, 2010.

H. Zeng, Valley polarization in MoS 2 monolayers by optical pumping, Nature Nanotechnology, vol.7, issue.8, pp.1748-3395, 2012.

B. Radisavljevic, Single-layer MoS 2 transistors, Nature Nanotechnology, vol.6, pp.1748-3387, 2011.

X. Wang, Response of MoS 2 nanosheet field effect transistor under different gas environments and its long wavelength photoresponse characteristics, Journal of Alloys and Compounds, vol.615, pp.989-993, 2014.

A. Allain, Electrical contacts to two-dimensional semiconductors, Nature Materials, vol.14, pp.1476-1122, 2015.

I. Popov, G. Seifert, and D. Tomanek, Designing Electrical Contacts to MoS 2 Monolayers: A Computational Study, Physical Review Letters, vol.108, pp.31-9007, 2012.

J. Chen, Control of Schottky Barriers in Single Layer MoS 2 Transistors with Ferromagnetic Contacts, Nano Letters, vol.13, issue.7, pp.1530-6984, 2013.

A. Dankert, High-Performance Molybdenum Disulfide Field-Effect Transistors with Spin Tunnel Contacts, ACS Nano, vol.8, issue.1, pp.1936-0851, 2014.

K. Dolui, Efficient spin injection and giant magnetoresistance in Fe / MoS 2 / Fe junctions, Physical Review B, vol.90, issue.4, 2014.

Q. Chen, Uniformly Wetting Deposition of Co Atoms on MoS 2 Monolayer: A Promising Two-Dimensional Robust Half-Metallic Ferromagnet, ACS Applied Materials & Interfaces, vol.6, pp.1944-8244, 2014.

. Wei-sun-leong, Low Resistance Metal Contacts to MoS 2 Devices with Nickel-Etched-Graphene Electrodes, ACS Nano, vol.9, issue.1, pp.1936-0851, 2015.

M. Y. Yin, First principles prediction on the interfaces of Fe/MoS 2 , Co/MoS 2 and FeO 4 /MoS 2, Computational Materials Science, vol.99, pp.326-335, 2015.

A. Fert and H. Jaffres, Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor, Physical Review B, vol.64, 2001.

R. O. Jones, Density Functional Theory: Past, present, ... future?, In: ? k Scientific Highlight Of The Month, vol.124, 2014.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, 1964.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, pp.1133-1138, 1965.

B. Ulf-von and L. Hedin, A local exchange-correlation potential for the spin polarized case: I". eng, Journal of Physics C: Solid State Physics, vol.5, pp.1629-1642, 1972.

A. K. Rajagopal and J. Callaway, Inhomogeneous Electron Gas". In: Physical Review B, vol.7, issue.5, pp.1912-1919, 1973.

P. John, Y. Perdew, and . Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.45, issue.23, pp.13244-13249, 1992.

,

D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters, vol.45, pp.566-569, 1980.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, pp.1079-7114, 1996.

G. K. Madsen, D. Kvasnicka, P. Blaha, K. Schware, and J. Luitz, WIEN2k, an augmented plane wave+local orbitals program for calculating crystal properties, 2001.

P. E. Blochl, O. Jepsen, and O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Physical Review B, vol.49, issue.23, pp.163-1829, 1994.

C. P. Poole, Chapter 2-Properties of the normal metallic state, Handbook of Superconductivity, pp.29-41, 2000.

W. Qing-hua, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology, vol.7, issue.11, pp.1748-3387, 2012.

S. Datta and B. Das, Electronic analog of the electroâ??optic modulator, Applied Physics Letters, vol.56, pp.3-6951, 1990.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.6, issue.3, pp.1476-1122, 2007.

A. S. Mayorov, Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature, Nano Letters, vol.11, issue.6, pp.2396-2399, 2011.

V. Podzorov, High-mobility field-effect transistors based on transition metal dichalcogenides, Applied Physics Letters, vol.84, pp.3-6951, 2004.

A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, pp.28-0836, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01986052

I. Song, C. Park, and H. C. Choi, Synthesis and properties of molybdenum disulphide: From bulk to atomic layers, ResearchGate 5, vol.10, pp.2046-2069, 2014.

Y. Zhan, Large-Area Vapor-Phase Growth and Characterization of MoS 2 Atomic Layers on a SiO 2 Substrate, p.16136810, 2012.

/. Doi,

R. Kappera, Phase-engineered low-resistance contacts for ultrathin MoS 2 transistors, Nature Materials, vol.13, pp.1476-1122, 2014.

K. S. Novoselov, 2D materials and van der Waals heterostructures, Science 353, vol.6298, 2016.

, Umit Ozgur Hadis Morkoc Natalia Izyumskaya

O. D. Denis and A. Vitaliy, Two-dimensional MoS 2 as a new material for electronic devices, p.Tubitak, 2014.

R. F. Per-joensen, S. Frindt, and . Roy-morrison, Single-layer MoS 2, Materials Research Bulletin, vol.21, pp.25-5408, 1986.

A. Kumar, P. K. Ahluwalia, ;. Mo, W. , and S. , Te) from ab-initio theory: new direct band gap semiconductors, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2, vol.85, pp.1434-6028, 2012.

Y. Cheng, Z. Zhu, and U. Schwingenschlogl, Role of interlayer coupling in ultra thin MoS 2, RSC Advances, vol.2, pp.2046-2069, 2012.

S. Ahmad and S. Mukherjee, A Comparative Study of Electronic Properties of Bulk MoS 2 and Its Monolayer Using DFT Technique: Application of Mechanical Strain on MoS 2 Monolayer, p.52, 2014.

C. Ataca, Mechanical and Electronic Properties of MoS 2 Nanoribbons and Their Defects, The Journal of Physical Chemistry C, vol.115, pp.3934-3941, 2011.

S. Lebegue and O. Eriksson, Electronic structure of two-dimensional crystals from ab initio theory, Physical Review B, vol.79, 2009.

A. Kuc, N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Physical Review B, vol.83, p.245213, 2011.

Y. Ding, First principles study of structural, vibrational and electronic properties of graphene-like MX2, Te) monolayers". In: Physica B: Condensed Matter, vol.406, issue.11, p.9214526, 2011.

E. S. Kadantsev and P. Hawrylak, Electronic structure of a single MoS 2 monolayer, Solid State Communications, vol.152, pp.909-913, 2012.

L. Mattheiss, Energy Bands for 2H-NbSe2 and 2H-MoS extrm2, Physical Review Letters, vol.30, pp.784-787, 1973.

A. Splendiani, Emerging Photoluminescence in Monolayer MoS 2, Nano Letters, vol.10, pp.1530-6984, 2010.

Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlogl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Physical Review B, vol.84, pp.1098-0121, 2011.

D. Xiao, Coupled Spin and Valley Physics in Monolayers of MoS 2 and Other Group-VI Dichalcogenides, Physical Review Letters, vol.108, p.196802, 2012.

S. Ross and A. Sussman, Surface Oxidation of Molybdenum Disulfide, The Journal of Physical Chemistry, vol.59, pp.889-892, 1955.

,

K. S. Novoselov, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences, pp.10451-10453, 2005.

,

Y. Yoon, K. Ganapathi, and S. Salahuddin, How Good Can Monolayer MoS 2 Transistors Be?, In: Nano Letters, vol.11, issue.9, pp.1530-6992, 2011.

W. Liu, Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe 2 Field Effect Transistors, Nano Letters, vol.13, issue.5, pp.1530-6984, 2013.

D. V. Shtansky, Structure and tribological properties of WSe x , WSe x /TiN, WSe x /TiCN and WSe x /TiSiN coatings, Surface and Coatings Technology 183, vol.2, pp.328-336, 2004.

A. Kormanyos, Corrigendum: k.p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Materials, vol.2, p.49501, 2015.

W. Zhao, Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2, ACS Nano, vol.7, issue.1, pp.1936-0851, 2013.

N. D. Boscher, C. J. Carmalt, and I. P. Parkin, Atmospheric pressure chemical vapor deposition of WSe 2 thin films on glass-highly hydrophobic sticky surfaces, J. Mater. Chem, vol.16, issue.1, pp.1364-5501, 2006.

F. Cadiz, Excitonic Linewidth Approaching the Homogeneous Limit in MoS 2-Based van der Waals Heterostructures, Physical Review X, vol.7, issue.2, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02053910

W. Kautek, The Role of Carrier Diffusion and Indirect Optical Transitions in the Photoelectrochemical Behavior of Layer Type d-Band Semiconductors, Journal of The Electrochemical Society, vol.127, p.2471, 1980.

K. K. Kam and B. A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides, The Journal of Physical Chemistry, vol.86, pp.22-3654, 1982.

K. Kam, C. Chang, and D. Lynch, Fundamental absorption edges and indirect band gaps in W 1-x Mo x Se 2 (Oâ?¡xâ?¡1), In: Journal of Physics C: Solid State Physics, vol.17, pp.4031-4040, 1984.

. Th and . Finteis, Occupied and unoccupied electronic band structure of WSe 2, Physical Review B, vol.55, pp.1095-3795, 1997.

B. Yates, M. J. Overy, and O. Pirgon, The anisotropic thermal expansion of boron nitride: I. experimental results and their analysis, Philosophical Magazine, vol.32, pp.31-8086, 1975.

M. Bokdam, Schottky barriers at hexagonal boron nitride/metal interfaces: A first-principles study, Physical Review B, vol.90, p.85415, 2014.

Y. Kubota, Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure, Science 317, vol.5840, pp.1095-9203, 2007.

K. Watanabe, T. Taniguchi, and H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nature Materials, vol.3, issue.6, pp.1476-1122, 2004.

M. Xu, Graphene-Like Two-Dimensional Materials, Chemical Reviews, vol.113, pp.3766-3798, 2013.

G. Cassabois, P. Valvin, and B. Gil, Hexagonal boron nitride is an indirect bandgap semiconductor, Nature Photonics, vol.10, pp.1749-4893, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01261847

C. R. Dean, Boron nitride substrates for high-quality graphene electronics, Nature Nanotechnology, vol.5, pp.1748-3395, 2010.

L. Lu-hua and Y. Chen, Atomically Thin Boron Nitride: Unique Properties and Applications, Advanced Functional Materials, vol.26, pp.2594-2608, 2016.

/. Doi,

V. Sergey, . Faleev, S. P. Stuart, O. N. Parkin, and . Mryasov, Brillouin zone spin filtering mechanism of enhanced tunneling magnetoresistance and correlation effects in a Co ( 0001 ) / h-BN / Co ( 0001 ) magnetic tunnel junction, Physical Review B, vol.92, issue.23, 2015.

R. R. Nair, Fine Structure Constant Defines Visual Transparency of Graphene, Science, vol.320, pp.36-8075, 2008.

S. Bae, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, vol.5, pp.1748-3395, 2010.

,

F. Bonaccorso, Graphene photonics and optoelectronics, Nature Photonics, vol.4, pp.1749-4885, 2010.

X. Wang, L. Zhi, and K. Mã?llen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells, Nano Letters, vol.8, issue.1, pp.1530-6992, 2008.

M. N. Baibich, Giant Magnetoresistance of Fe(001)/Cr(001) Magnetic Superlattices, Physical Review Letters, vol.61, pp.31-9007, 1988.

G. Binasch, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Physical Review B, vol.39, issue.7, pp.163-1829, 1989.

T. Berend and . Jonker, Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact, Nature Physics, vol.3, pp.1745-2473, 2007.

Y. Zhou, Electrical spin injection and transport in germanium, In: Physical Review B, vol.84, 2011.

R. Fiederling, Injection and detection of a spin-polarized current in a light-emitting diode, Nature, vol.402, 1999.

A. T. Hanbicki, Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor, In: Applied Physics Letters, vol.80, pp.3-6951, 2002.

,

X. Jiang, Highly Spin-Polarized Room-Temperature Tunnel Injector for Semiconductor Spintronics using MgO(100), Physical Review Letters, vol.94, pp.1079-7114, 2005.

K. F. Mak, Control of valley polarization in monolayer MoS 2 by optical helicity, Nature Nanotechnology, vol.7, issue.8, pp.1748-3387, 2012.

G. Sallen, Robust optical emission polarization in MoS 2 monolayers through selective valley excitation, Physical Review B, vol.86, 2012.

Y. Ye, Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide". In: Nature Nanotechnology advance online publication, 2016.

. Oriol-lopez-sanchez, Valley Polarization by Spin Injection in a LightEmitting van der Waals Heterojunction, Nano Letters, vol.16, issue.9, pp.5792-5797, 2016.

S. Liang, Electrical spin injection and detection in molybdenum disulfide multilayer channel, Nature Communications, vol.8, pp.2041-1723, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01654269

W. Chen, Tuning the Electronic and Chemical Properties of Monolayer MoS 2 Adsorbed on Transition Metal Substrates, Nano Letters, vol.13, pp.1530-6984, 2013.

J. Kang, Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors, Physical Review X, vol.4, issue.3, 2014.

R. S. Sundaram, Electroluminescence in Single Layer MoS 2, Nano Letters, vol.13, pp.1416-1421, 2013.

O. Lopez-sanchez, Ultrasensitive photodetectors based on monolayer MoS 2, Nature Nanotechnology, vol.8, issue.7, pp.1748-3395, 2013.
DOI : 10.1038/nnano.2013.100

URL : https://infoscience.epfl.ch/record/183895/files/Nature Nano (2013) Lopez-Sanchez - SI Ultrasensitive photodetectors based on monolayer MoS2.pdf

H. Fang, High-Performance Single Layered WSe 2 p-FETs with Chemically Doped Contacts, Nano Letters, vol.12, issue.7, pp.1530-6984, 2012.

H. Chuang, High Mobility WSe 2 p-and n-Type Field-Effect Transistors Contacted by Highly Doped Graphene for Low-Resistance Contacts, Nano Letters, vol.14, issue.6, pp.3594-3601, 2014.

H. Mathieu and H. Fanet, Physique des semiconducteurs et des composants electroniques: cours et exercices corriges, p.708366755, 2009.

B. Sapoval and C. Hermann, Physics of semiconductors. eng, 1995.

R. T. Tung, The physics and chemistry of the Schottky barrier height, In: Applied Physics Reviews, vol.1, issue.1, 2014.

A. M. Cowley and S. M. Sze, Surface States and Barrier Height of MetalSemiconductor Systems, Journal of Applied Physics, vol.36, issue.10, pp.21-8979, 1965.

T. Garandel, MoS 2 interface and its possible use for electrical spin injection in a single MoS 2 layer, Physical Review B, vol.95, pp.2469-9969, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01744818

E. Nowack, D. Schwarzenbach, and T. Hahn, Charge densities in CoS 2 and NiS 2 (pyrite structure), Acta Crystallographica Section B Structural Science, vol.47, pp.650-659, 1991.

X. Rui, H. Tan, and Q. Yan, Nanostructured metal sulfides for energy storage, Nanoscale 6, vol.17, pp.2040-3372, 2014.

S. Mukherjee and S. Gopalakhrisnan, Phononic band structure of honeycomb lattice with defects, using spectrally formulated finite element method, 2015.

H. Zhong, Interfacial Properties of Monolayer and Bilayer MoS 2 Contacts with Metals: Beyond the Energy Band Calculations, Scientific Reports, vol.6, 2016.

L. Hedin, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, Physical Review, vol.139, 1965.

I. I. Mazin, How to Define and Calculate the Degree of Spin Polarization in Ferromagnets, Physical Review Letters, vol.83, pp.1079-7114, 1999.

M. Arai, Visualization of Charge Density

G. Schmidt, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Physical Review B, vol.62, pp.163-1829, 2000.

,

M. Ghorbani-asl, A Single-Material Logical Junction Based on 2D

, Advanced Materials, vol.2, pp.853-856, 2016.

J. S. Ross, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions, Nature Nanotechnology, vol.9, pp.1748-3387, 2014.

R. P. Agarwala and A. P. Sinha, Crystal structure of nickel selenideNi 3 Se 2 ". de, Zeitschrift fr anorganische und allgemeine Chemie 289.14 (Feb. 1957), pp.203-206

Y. C. Cheng, Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers, EPL (Europhysics Letters), vol.102, issue.5, pp.1286-4854, 2013.

G. Liu, Three-band tight-binding model for monolayers of groupVIB transition metal dichalcogenides, Physical Review B, vol.88, 2013.

A. Kormanyos, Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer Transition Metal Dichalcogenides, Physical Review X, vol.4, issue.1, 2014.

K. Kosmider, J. W. Gonzalez, and J. Fernandez-rossier, Large spin splitting in the conduction band of transition metal dichalcogenide monolayers, Physical Review B, vol.88, 2013.

R. Laskowski, P. Blaha, and K. Schwarz, Bonding of hexagonal BN to transition metal surfaces: An ab initio density-functional theory study, Physical Review B, vol.78, 2008.

Z. Huang, Band structure engineering of monolayer MoS 2 on hBN: first-principles calculations, Journal of Physics D: Applied Physics, vol.47, pp.22-3727, 2014.