M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C alloys, Philos. Mag, vol.24, pp.81-106, 1971.

M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C. Alloys : II. Simplified Treatment, Philos. Mag, vol.24, pp.107-122, 1971.

T. Schuler, M. Nastar, ;. , N. , and O. ). , Transport properties of dilute ?-Fe(X) solid solutions, Phys. Rev. B, vol.93, p.224101, 2016.

H. Mehrer, Diffusion in Solids. Fundamentals, Methods, Materials, DiffusionControlled Processes, 2007.

J. R. Silvia and R. B. Mclellan, Diffusion of carbon and nitrogen in B.C.C. iron, Mater. Sci. Eng, vol.26, issue.76, pp.90229-90238, 1976.

A. C. Damask and G. J. Dienes, Point defects in metals, 1963.

M. Weller, , vol.2, 2001.

M. Weller, The Snoek relaxation in bcc metals-From steel wire to meteorites, Mater. Sci. Eng. A, vol.442, pp.21-30, 2006.

C. A. Wert, Diffusion coefficient of C in ?-iron, Phys. Rev. B, vol.79, pp.601-605, 1950.

G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids, vol.3, pp.121-127, 1957.

A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys, vol.322, pp.549-560, 1905.

M. and V. Smoluchowski, Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen, Ann. Phys, vol.326, pp.756-780, 1906.

H. Mehrer, Diffusion in intermetallics, Mater. Trans. JIM, vol.37, pp.1259-1280, 1996.

G. E. Murch and A. S. Nowick, Diffusion in Crystalline Solids, 1984.

C. G. Homan, Diffusion of carbon in ?-Fe, Acta Metall, vol.12, pp.1071-1079, 1964.

S. V. Zemskiy and B. P. Lyakhin, Influence of hydrogen on the diffusion of carbon in Chromium, Fiz. Met. Metalloved, vol.23, pp.913-929, 1967.

R. A. Perkins and R. A. Padgett, Oxygen diffusion in niobium and Nb-Zr alloys, Acta Metall, vol.25, pp.1221-1230, 1977.

H. Landolt and R. Bornstein, Diffusion in solid metals and alloys, 1990.

S. Choudhury, L. Barnard, J. D. Tucker, T. R. Allen, B. D. Wirth et al., Ab-initio based modeling of diffusion in dilute bcc Fe-Ni and Fe-Cr alloys and implications for radiation induced segregation, J. Nucl. Mater, vol.411, pp.1-14, 2011.

B. C. Zhou, S. L. Shang, Y. Wang, and Z. K. Liu, Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study, Acta Mater, vol.103, pp.573-586, 2016.

R. E. Howard and J. R. Manning, Kinetics of solute-enhanced diffusion in dilute facecentered-cubic alloys, Phys. Rev, vol.154, pp.561-568, 1967.

K. E. Blazek, The effect of a substitutional solute element on the diffusivity of an interstitial solute element in a dilute ternary alloy, Trans. Jpn. Inst. Met, vol.19, pp.253-258, 1978.

M. Koiwa, Trapping effect in diffusion of interstitial impurity atoms in bcc lattices, Acta Metall, vol.22, p.1268, 1974.

R. B. Mclellan, Thermodynamics and diffusion behavior of interstitial solute atoms in non-perfect solvent crystals, Acta Metall, vol.27, pp.1655-1663, 1979.

R. A. Oriani, The diffusion and trapping of hydrogen in steels, Acta Metall, vol.18, pp.147-157, 1970.

T. P. Hennessey and J. E. , A new model for interstitital diffusion in bcc alloys with traps or repulsive sites, High Temp, pp.229-239, 2001.

T. Schuler, M. Nastar, ;. , N. , and O. ). , Transport properties of dilute ?-Fe(X) solid solutions, Phys. Rev. B, vol.93, p.224101, 2016.

S. Garruchet and M. Perez, Modelling the carbon snoek peak in ferrite: coupling molecular dynamics and kinetic monte-carlo simulations, Comput. Mater. Sci, vol.43, pp.286-292, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01540123

M. Bouhafs and B. Dubois, Influence of the Carbon Content on the Internal Friction of Iron-17% Chromium Alloys, Intern. Frict. Ultrason. Attenuation Solids, pp.343-348, 1979.

M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C alloys, Philos. Mag, vol.24, pp.81-106, 1971.

M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C. Alloys : II. Simplified Treatment, Philos. Mag, vol.24, pp.107-122, 1971.

N. Sandberg, K. O. Henriksson, and J. Wallenius, Carbon impurity dissolution and migration in bcc Fe-Cr: First-principles calculations, Phys. Rev. B, vol.78, p.94110, 2008.

M. S. Blanter, I. S. Golovin, H. Neuhäuser, and H. R. , Sinning, Handbook on internal friction in metallic materials

J. L. Snoek, Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron, Physica, vol.8, issue.41, pp.90517-90524, 1941.

O. .. ,

H. Carlson, C. V. Indrawirawan, O. Owen, and . Buck, Internal Friction Study of Substitutional-Interstitial Interaction in Niobium-Vanadium Alloys, Metall. Trans. A, vol.18, pp.1415-1420, 1987.

H. Indrawirawan, O. Buck, and O. N. Carlson, Substitutional-interstitial solute interactions in niobium-vanadium-oxygen alloys, Phys. Status Solidi A, vol.104, pp.443-451, 1987.

G. Haneczok and M. Weller, Analysis of Internal Friction spectra by Snoek-type relaxations, J. Common Met, vol.159, pp.269-276, 1990.

A. S. Nowick and B. S. Berry, Anelastic relaxation in crystalline solids, 1972.

A. S. Nowick and W. R. Heller, Anelasticity and Stress-induced Ordering of Point Defects in Crystals, Adv. Phys, vol.12, pp.251-298, 1963.

R. D. Batist, Internal Friction of structural defects in crystalline solids, 1972.

T. I. Kê, Experimental evidence of the viscous behavior of grain boundaries in metals, Phys. Rev, vol.71, pp.533-546, 1947.

R. Abbaschian, L. Abbaschian, and R. E. Reed-hill, Physical Metallurgy Principles, Fourth

G. Cannelli, R. Cantelli, and F. Cordero, Statistical model for the trapping of interstitials by substitutional (interstitial) atoms in solids, Phys. Rev. B, vol.32, pp.3573-3579, 1985.

L. Yu, F. Yin, and D. Ping, Natural mechanism of the broadened Snoek relaxation profile in ternary body-centered-cubic alloys, Phys. Rev. B, vol.75, p.174105, 2007.

R. Chang, Mechanical relaxation associated with paired point defects in cubic lattices of Oh point group symmetry, J. Phys. Chem. Solids, vol.25, pp.1081-1090, 1964.

M. S. Blanter, Influence of Interatomic Interaction on Internal Friction Spectrum in Nb-V-O Alloys (Computer Simulation), Phys. Status Solidi A, vol.133, pp.317-323

C. S. Becquart, J. M. Raulot, G. Bencteux, C. Domain, M. Perez et al., Atomistic modeling of an Fe system with a small concentration of C, Comput. Mater. Sci, vol.40, pp.119-129, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01540099

O. Senninger, E. Martinez, F. Soisson, M. Nastar, and Y. Bréchet, Atomistic simulations of the decomposition kinetics in Fe-Cr alloys: Influence of magnetism, Acta Mater, vol.73, pp.97-106, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114762

E. Martinez, O. Senninger, C. C. Fu, and F. Soisson, Decomposition kinetics of Fe-Cr solid solutions during thermal aging, Phys. Rev. B, vol.86, p.224109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01308823

F. Soisson and C. C. Fu, Cu-precipitation kinetics in ??Fe from atomistic simulations: Vacancy-trapping effects and Cu-cluster mobility, Phys. Rev. B, vol.76, p.214102, 2007.

E. Vincent, C. S. Becquart, C. Pareige, P. Pareige, and C. Domain, Precipitation of the FeCu system: A critical review of atomic kinetic Monte Carlo simulations, J. Nucl. Mater, vol.373, pp.387-401, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01828295

E. Vincent, C. S. Becquart, and C. Domain, Solute interaction with point defects in ? Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach, J. Nucl. Mater, vol.351, pp.88-99, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01828332

S. Schmauder and P. Binkele, Atomistic computer simulation of the formation of Cuprecipitates in steels, Comput. Mater. Sci, vol.24, pp.42-53, 2002.

H. Saitoh, N. Yoshinaga, and K. Ushioda, Influence of substitutional atoms on the Snoek peak of carbon in b.c.c. iron, Acta Mater, vol.52, pp.1255-1261, 2004.

F. Giustino, Materials modelling using density functional theory: properties and predictions, 2014.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, p.11169, 1996.

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, vol.47, 1993.

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, vol.45, p.13244, 1992.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, p.3865, 1996.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B, vol.59, p.1758, 1999.

C. S. Becquart and F. Soisson, Monte Carlo Simulations of Precipitation Under Irradiation, Handb. Mech. Mater, pp.1-29, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02167794

A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comput. Phys, vol.17, pp.10-18, 1975.

O. Senninger, F. Soisson, E. Martinez, M. Nastar, C. C. Fu et al., Modeling radiation induced segregation in iron-chromium alloys, Acta Mater, vol.103, pp.1-11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381879

A. D. Leclaire, Diffusion tables for C, N, and O in metals, Diffus. Solid Met. Alloys, issue.2, pp.473-485, 1990.

P. L. Gruzin, S. V. Zemskiy, and I. B. Rodina, Met Met. Pure Met, vol.4, p.243, 1963.

S. V. Zemskiy and M. N. Spasskiy, Carbon diffusion in Chromium, Fiz. Met. Metalloved, vol.21, pp.129-131, 1966.

E. V. Borisov, P. L. Gruzin, and S. V. Zemskiy, Zzashch Pokrytiya Met, vol.2, pp.104-109, 1968.

L. Zhu, H. Wang, Q. M. Hu, G. J. Ackland, and R. Yang, Trapping of interstitial defects: filling the gap between the experimental measurements and DFT calculations, J. Phys. Condens. Matter, vol.25, p.435402, 2013.

P. Liu, W. Xing, X. Cheng, D. Li, Y. Li et al., Effects of dilute substitutional solutes on interstitial carbon in ?-Fe: Interactions and associated carbon diffusion from first-principles calculations, Phys. Rev. B, vol.90, p.24103, 2014.

I. S. Golovin, M. S. Blanter, and R. Schaller, Snoek Relaxation in Fe-Cr Alloys and Interstitial-Substitutional Interaction, Phys. Status Solidi A, vol.160, pp.49-60, 1997.

C. Wert and J. Marx, A new method for determining the heat of activation for relaxation processes, Acta Metall, vol.1, issue.53, pp.90047-90056, 1953.

K. E. Blazek and J. R. Cost, Carbon Diffusivity in Iron-Chromium Alloys, vol.17, pp.630-636, 1976.

M. A. Matosyan and V. M. Golikov, Effect of prior cold plastic deformation on diffusion of Carbon in alloys with iron base, Fiz. Met. Metalloved, vol.25, pp.377-379, 1968.

C. R. Ward and G. M. Leak, Mobilita di piccole aggiunte di elementi interstiziali in leghe ferrose, Metall. Ital, vol.62, pp.302-306, 1970.

M. Koiwa, Trapping effect in diffusion of interstitial impurity atoms in bcc lattices, Acta Metall, vol.22, p.1268, 1974.

H. Landolt and R. Bornstein, Diffusion in solid metals and alloys, 1990.

P. Liu, W. Xing, X. Cheng, D. Li, Y. Li et al., Effects of dilute substitutional solutes on interstitial carbon in ?-Fe: Interactions and associated carbon diffusion from first-principles calculations, Phys. Rev. B, vol.90, p.24103, 2014.

H. Numakura, Solute-Solute Interaction in ? IRON: The Status QUO, Arch. Metall. Mater, vol.60, pp.2061-2068, 2015.

M. J. Konstantinovic, W. Van-renterghem, M. Matijasevic, B. Minov, M. Lambrecht et al., Mechanical and microstructural properties of neutron irradiated Fe-Cr-C alloys, Phys. Status Solidi A, vol.213, pp.2988-2994, 2016.

H. Saitoh, N. Yoshinaga, and K. Ushioda, Influence of substitutional atoms on the Snoek peak of carbon in b.c.c. iron, Acta Mater, vol.52, pp.1255-1261, 2004.

M. A. Krishtal and V. I. Baranova, Temperature Dependence of the vacancy concentration in iron-chromium and iron-molybdenum, Fiz. Met. Metalloved, vol.16, pp.626-628

M. Bouhafs and B. Dubois, Influence of the Carbon Content on the Internal Friction of Iron-17% Chromium Alloys, Intern. Frict. Ultrason. Attenuation Solids, pp.343-348, 1979.

I. S. Golovin, M. S. Blanter, and R. Schaller, Snoek Relaxation in Fe-Cr Alloys and Interstitial-Substitutional Interaction, Phys. Status Solidi A, vol.160, pp.49-60, 1997.

M. A. Krishtal and V. I. Baranova, Damping peaks in alloyed ferrite, Fiz. Met. Metalloved, vol.18, pp.464-467, 1964.

J. L. Snoek, Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron, Physica, vol.8, issue.41, pp.90517-90524, 1941.

S. Garruchet and M. Perez, Modelling the carbon snoek peak in ferrite: coupling molecular dynamics and kinetic monte-carlo simulations, Comput. Mater. Sci, vol.43, pp.286-292, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01540123

C. Wert and J. Marx, A new method for determining the heat of activation for relaxation processes, Acta Metall, vol.1, issue.53, pp.90047-90056, 1953.

N. Sandberg, K. O. Henriksson, and J. Wallenius, Carbon impurity dissolution and migration in bcc Fe-Cr: First-principles calculations, Phys. Rev. B, vol.78, p.94110, 2008.

M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C alloys, Philos. Mag, vol.24, pp.81-106, 1971.

M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C. Alloys : II. Simplified Treatment, Philos. Mag, vol.24, pp.107-122, 1971.

R. Chang, Mechanical relaxation associated with paired point defects in cubic lattices of Oh point group symmetry, J. Phys. Chem. Solids, vol.25, pp.1081-1090, 1964.

A. S. Nowick and B. S. Berry, Anelastic relaxation in crystalline solids, 1972.

D. F. Hasson and R. J. Arsenault, Substitutional-interstitial interactions in bcc alloys, Treatise Mater. Sci. Technol. Mater. Sci. Ser

M. P. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, vol.40, p.3616, 1989.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, vol.13, p.5188, 1976.

H. Jónsson, G. Mills, K. W. Jacobsen-;-b, G. Berne, D. F. Cicotti et al., Nudged elastic band method for finding minimum energy paths of transitions, Class. Quantum Dyn. Condens. Phase Simul, pp.385-404, 1998.

M. Souissi, Y. Chen, M. H. Sluiter, and H. Numakura, Ab initio characterization of B, C, N, and O in bcc iron: Solution and migration energies and elastic strain fields, Comput. Mater. Sci, vol.124, pp.249-258, 2016.

D. E. Jiang and E. A. Carter, Carbon dissolution and diffusion in ferrite and austenite from first principles, Phys. Rev. B, vol.67, p.214103, 2003.

C. C. Fu, M. Y. Lavrentiev, R. Soulairol, S. L. Dudarev, and D. Nguyen-manh, Low-and high-temperature magnetism of Cr and Fe nanoclusters in iron-chromium alloys, Phys. Rev. B, vol.91, p.94430, 2015.

C. Wert and C. Zener, Interstitial Atomic Diffusion Coefficients, Phys. Rev, vol.76, pp.1169-1175, 1949.

A. E. Lord and D. N. Beshers, The mechanical damping of Iron from Room temperature to 400C at 7 megacycles/sec, Acta Metall, vol.14, pp.90018-90024, 1966.

J. R. Silvia and R. B. Mclellan, Diffusion of carbon and nitrogen in B.C.C. iron, Mater. Sci. Eng, vol.26, issue.76, pp.90229-90238, 1976.

C. S. Becquart, J. M. Raulot, G. Bencteux, C. Domain, M. Perez et al., Atomistic modeling of an Fe system with a small concentration of C, Comput. Mater. Sci, vol.40, pp.119-129, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00168918

S. V. Zemskiy and B. P. Lyakhin, Influence of hydrogen on the diffusion of carbon in Chromium, Fiz. Met. Metalloved, vol.23, pp.913-929, 1967.

S. V. Zemskiy and M. N. Spasskiy, Carbon diffusion in Chromium, Fiz. Met. Metalloved, vol.21, pp.129-131, 1966.

P. L. Gruzin, S. V. Zemskiy, and I. B. Rodina, Met Met. Pure Met, vol.4, p.243, 1963.

E. V. Borisov, P. L. Gruzin, and S. V. Zemskiy, Zzashch Pokrytiya Met, vol.2, pp.104-109, 1968.

C. S. Becquart and F. Soisson, Monte Carlo Simulations of Precipitation Under Irradiation, Handb. Mech. Mater, pp.1-29, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02167794

O. .. ,

H. Carlson, C. V. Indrawirawan, O. Owen, and . Buck, Internal Friction Study of Substitutional-Interstitial Interaction in Niobium-Vanadium Alloys, Metall. Trans. A, vol.18, pp.1415-1420, 1987.

H. Indrawirawan, O. Buck, and O. N. Carlson, Substitutional-interstitial solute interactions in niobium-vanadium-oxygen alloys, Phys. Status Solidi A, vol.104, pp.443-451, 1987.

R. Herschberg, C. C. Fu, M. Nastar, and F. Soisson, Atomistic modelling of the diffusion of C in Fe-Cr alloys, Acta Mater, vol.165, pp.638-653, 2019.

E. Clouet, S. Garruchet, H. Nguyen, M. Perez, and C. Becquart, Dislocation interaction with C in ?-Fe: A comparison between atomic simulations and elasticity theory, Acta Mater, vol.56, pp.3450-3460, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00433947

T. Schuler, M. Nastar, ;. , N. , and O. ). , Transport properties of dilute ?-Fe(X) solid solutions, Phys. Rev. B, vol.93, p.224101, 2016.

E. Martinez, P. R. Monasterio, and J. Marian, Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems, J. Comput. Phys, vol.230, pp.1359-1369, 2011.

E. Martinez, J. Marian, M. H. Kalos, and J. M. Perlado, Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems, J. Comput. Phys, vol.227, pp.3804-3823, 2008.

I. S. Golovin, M. S. Blanter, and R. Schaller, Snoek Relaxation in Fe-Cr Alloys and Interstitial-Substitutional Interaction, Physica Status Solidi (A), vol.160, pp.49-60, 1997.
DOI : 10.1002/1521-396x(199703)160:1<49::aid-pssa49>3.0.co;2-p

O. , .. N. Carlson, H. Indrawirawan, C. V. Owen, and O. Buck, Internal Friction Study of Substitutional-Interstitial Interaction in Niobium-Vanadium Alloys, METALLURGICAL TRANSACTIONS A, vol.18, pp.1415-1420, 1987.

H. Indrawirawan, O. Buck, and O. N. Carlson, Substitutional-interstitial solute interactions in niobium-vanadium-oxygen alloys, Physica Status Solidi (A), vol.104, pp.443-451, 1987.
DOI : 10.1002/pssa.2211040133

M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C alloys, Philosophical Magazine, vol.24, pp.81-106, 1971.

M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C. Alloys : II. Simplified Treatment, Philosophical Magazine, vol.24, pp.107-122, 1971.

G. B. Fedorov, G. V. Fetisov, N. A. Skakun, O. N. Khar&apos;kov, A. G. Arakelov et al., Investigation of Oxygen diffusion in Niobium by means of the isotope O18, Fizika Metallov i Metallovedenie, vol.38, pp.361-365, 1974.

M. D. Tseng, H. Indrawirawan, and O. N. Carlson, Effect of vanadium on oxygen diffusivity in niobium, Journal of the Less-Common Metals, vol.136, pp.90006-90009, 1987.

M. Weller, G. Y. Li, J. X. Zhang, T. S. Ke, and J. Diehl, Accurate determination of activation enthalpies associated with the stress-induced migration of Oxygen or Nitrogen in Tantalum and Niobium, Acta Metallurgical, vol.29, pp.1047-1054, 1981.

R. W. Powers and V. Doyle, Diffusion of Interstitial Solutes in the Group V Transition Metals, Journal of Applied Physics, vol.30, pp.514-524, 1959.

M. Weller, J. Diehl, G. Hörz, R. Mann, and K. Schulze, Internal friction studies of the oxygen Snoek relaxation in group-Va transition metals, Le Journal de Physique Colloques, vol.46, pp.47-50, 1985.
URL : https://hal.archives-ouvertes.fr/jpa-00225299

M. Weller, G. Haneczok, and J. Diehl, Internal Friction Studies on Oxygen-Oxygen Interaction in Niobium. I. Experimental Results and Application of Previous Interpretations, Physica Status Solidi (B), vol.172, pp.145-159, 1992.

H. Indrawirawan, L. J. Brasche, C. V. Owen, D. K. Rehbein, O. N. Carlson et al., Internal friction studies of the effect of hydrogen on the oxygen Snoek peaks in V and Nb, Journal of Physics and Chemistry of Solids, vol.48, pp.535-539, 1987.

M. S. Ahmad and Z. Szkopiak, Snoek relaxation peaks in solid solutions of niobium, Journal of Physics and Chemistry of Solids, vol.31, pp.1799-1804, 1970.

G. Haneczok, M. Weller, and J. Diehl, Internal Friction Studies on Oxygen-Oxygen Interaction in Niobium. II. Application of Long-Range Interaction Models, Physica Status Solidi (B), vol.172, pp.557-572, 1992.
DOI : 10.1002/pssb.2221720207

Z. C. Szkopiak and J. T. Smith, The internal friction of Nb-1 at.% substitutional alloys, Journal of Physics D: Applied Physics, vol.8, pp.1273-1284

O. Buck, H. Indrawirawan, and O. N. Carlson, Study of the Hydrogen Internal Friction Peak in Nb-10 At. Pct V in the Presence of Oxygen, Metallurgical Transactions A, vol.20, pp.1215-1219, 1989.

N. P. Kushnareva and S. E. Snejko, Internal friction and substitutional-interstitial interaction in niobium-based alloys, Journal of Alloys and Compounds, vol.211, pp.75-79, 1994.
DOI : 10.1016/0925-8388(94)90451-0

N. P. Kushnareva, S. E. Snejko, and P. Yarosh, Internal friction in Nb-V-O alloys, Acta Metallurgica et Materialia, vol.43, issue.95, p.120, 1995.
DOI : 10.1016/0956-7151(95)00120-k

M. S. Blanter, Influence of Interatomic Interaction on Internal Friction Spectrum in Nb-V-O Alloys (Computer Simulation), Physica Status Solidi (A), vol.133, pp.317-323

L. Zhu, H. Wang, Q. M. Hu, G. J. Ackland, and R. Yang, Trapping of interstitial defects: filling the gap between the experimental measurements and DFT calculations, Journal of Physics: Condensed Matter, vol.25, p.435402, 2013.

A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems, Journal of Computational Physics, vol.17, pp.10-18, 1975.

R. A. Oriani, The diffusion and trapping of hydrogen in steels, Acta Metallurgica, vol.18, pp.147-157, 1970.

R. Li, P. Zhang, X. Li, C. Zhang, and J. Zhao, First-principles study of the behavior of O, N and C impurities in vanadium solids, Journal of Nuclear Materials, vol.435, pp.71-76, 2013.

B. Heulin, Internal friction study of multiple relaxation phenomena in Nb-O with high oxygen content, Le Journal de Physique Colloques, vol.46, pp.10-51, 1985.

N. Sandberg, K. O. Henriksson, and J. Wallenius, Carbon impurity dissolution and migration in bcc Fe-Cr: First-principles calculations, Physical Review B, vol.78, p.94110, 2008.

H. Mehrer, Diffusion in Solids. Fundamentals, Methods, Materials, DiffusionControlled Processes, 2007.

, Chapter 3: Internal Friction of dilute Nb-V-O alloys

R. M. Fisher, E. J. Dulis, and K. G. Carroll, Identification of the precipitate accompanying 885 F embrittlement in chromium steels, Transactions of the Metallurgical Society of AIME, vol.197, pp.690-695, 1953.

C. Pareige, V. Kuksenko, and P. Pareige, Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe-Cr alloys-Comparison to neutron irradiation, Journal of Nuclear Materials, vol.456, pp.471-476, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02061876

F. Soisson and T. Jourdan, Radiation-accelerated precipitation in Fe-Cr alloys, Acta Materialia, vol.103, pp.870-881, 2016.

C. Barouh, T. Schuler, C. C. Fu, and M. Nastar, Interaction between vacancies and interstitial solutes (C, N, and O) in ?-Fe: From electronic structure to thermodynamics, Physical Review B, vol.90, p.54112, 2014.

T. Jourdan, C. C. Fu, L. Joly, J. L. Bocquet, M. J. Caturla et al., Direct simulation of resistivity recovery experiments in carbon-doped ?-iron, Physica Scripta, p.14049, 2011.

P. Liu, W. Xing, X. Cheng, D. Li, Y. Li et al., Effects of dilute substitutional solutes on interstitial carbon in ?-Fe: Interactions and associated carbon diffusion from first-principles calculations, Physical Review B, vol.90, p.24103, 2014.

S. Takaki, J. Fuss, H. Kuglers, U. Dedek, and H. Schultz, The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation, Radiation Effects, vol.79, pp.87-122, 1983.

O. Senninger, F. Soisson, E. Martinez, M. Nastar, C. C. Fu et al., Modeling radiation induced segregation in iron-chromium alloys, Acta Materialia, vol.103, pp.1-11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01381879

F. Soisson, E. Meslin, and O. Tissot, Atomistic modeling of ?' precipitation in Fe-Cr alloys under charged particles and neutron irradiations: Effects of ballistic mixing and sink densities, Journal of Nuclear Materials, vol.508, pp.583-594, 2018.

P. Yvon and F. Carré, Structural materials challenges for advanced reactor systems, Journal of Nuclear Materials, vol.385, pp.217-222, 2009.

K. L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, Journal of Nuclear Materials, vol.383, pp.189-195, 2008.

S. J. Zinkle and J. T. Busby, Structural materials for fission & fusion energy, Materials Today, vol.12, pp.12-19, 2009.

G. Bonny, D. Terentyev, and L. Malerba, New contribution to the thermodynamics of FeCr alloys as base for ferritic steels, Journal of Phase Equilibria and Diffusion, vol.31, pp.439-444, 2010.

O. Senninger, Ségrégation et précipitation dans les alliages Fer-Chrome hors et sous irradiation, 2014.

O. Senninger, E. Martinez, F. Soisson, M. Nastar, and Y. Bréchet, Atomistic simulations of the decomposition kinetics in Fe-Cr alloys: Influence of magnetism, Acta Materialia, vol.73, pp.97-106, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114762

M. Levesque, E. Martinez, C. C. Fu, M. Nastar, and F. Soisson, Simple concentrationdependent pair interaction model for large-scale simulations of Fe-Cr alloys, Physical Review B, vol.84, p.184205, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01308824

E. Martinez, O. Senninger, C. C. Fu, and F. Soisson, Decomposition kinetics of Fe-Cr solid solutions during thermal aging, Physical Review B, vol.86, p.224109, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01308823

V. Kuksenko, C. Pareige, and P. Pareige, Cr precipitation in neutron irradiated industrial purity Fe-Cr model alloys, Journal of Nuclear Materials, vol.432, pp.160-165, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02107314

M. Bachav, G. R. Odette, and E. A. Marquis, Alpha' precipitation in neutron-irradiated FeCr alloys, Scripta Materialia, vol.74, pp.48-51, 2014.

O. Tissot, C. Pareige, E. Meslin, B. Decamps, and J. Henry, Kinetics of ?? precipitation in an electron-irradiated Fe15Cr alloy, Scripta Materialia, vol.122, pp.31-35, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01389570

O. Tissot, C. Pareige, E. Meslin, B. Decamps, and J. Henry, Influence of injected interstitials on ?? precipitation in Fe-Cr alloys under self-ion irradiation, Materials Research Letters, vol.5, pp.117-123, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01921664

O. Tissot, Effets de l'irradiation sur la démixtion du Cr dans les alliages FeCr, 2016.

S. Novy, P. Pareige, and C. Pareige, Atomic scale analysis and phase separation understanding in a thermally aged Fe-20 at.%Cr alloy, Journal of Nuclear Materials, vol.384, pp.96-102, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02107437

P. Olsson, C. Domain, and J. Wallenius, Ab initio study of Cr interactions with point defects in bcc Fe, Physical Review B, vol.75, p.14110, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01828323

L. Malerba, G. Bonny, D. Terentyev, E. E. Zhurkin, M. Hou et al., Microchemical effects in irradiated Fe-Cr alloys as revealed by atomistic simulation, Journal of Nuclear Materials, vol.442, pp.489-498, 2013.

T. Jourdan, G. Bencteux, and G. Adjanor, Efficient simulation of kinetics of radiation induced defects: A cluster dynamics approach, Journal of Nuclear Materials, vol.444, pp.298-313, 2014.

R. Sizmann, The effect of radiation upon diffusion in metals, Journal of Nuclear Materials, vol.69, pp.386-412, 1978.

E. Martinez, J. Marian, M. H. Kalos, and J. M. Perlado, Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems, Journal of Computational Physics, vol.227, pp.3804-3823, 2008.

E. Martinez, P. R. Monasterio, and J. Marian, Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems, Journal of Computational Physics, vol.230, pp.1359-1369, 2011.

. Références,

K. E. Blazek and J. R. Cost, Carbon Diffusivity in Iron-Chromium Alloys, vol.17, pp.630-636, 1976.

M. A. Matosyan and V. M. Golikov, Effect of prior cold plastic deformation on diffusion of Carbon in alloys with iron base, Fizika Metallov i Metallovedenie, vol.25, pp.377-379, 1968.

C. R. Ward and G. M. Leak, Mobilita di piccole aggiunte di elementi interstiziali in leghe ferrose, Metallurgical Italiana, vol.62, pp.302-306, 1970.

P. Liu, W. Xing, X. Cheng, D. Li, Y. Li et al., Effects of dilute substitutional solutes on interstitial carbon in ?-Fe: Interactions and associated carbon diffusion from first-principles calculations, Physical Review B, vol.90, p.24103, 2014.

H. Numakura, Solute-Solute Interaction in ? IRON: The Status QUO, Archives of Metallurgy and Materials, vol.60, pp.2061-2068, 2015.

M. J. Konstantinovic, W. Van-renterghem, M. Matijasevic, B. Minov, M. Lambrecht et al., Mechanical and microstructural properties of neutron irradiated Fe-Cr-C alloys, Physica Status Solidi (A), vol.213, pp.2988-2994, 2016.

H. Saitoh, N. Yoshinaga, and K. Ushioda, Influence of substitutional atoms on the Snoek peak of carbon in b.c.c. iron, Acta Materialia, vol.52, pp.1255-1261, 2004.

D. F. Hasson and R. J. Arsenault, Substitutional-interstitial interactions in bcc alloys, Treatise on Materials Science and Technology: Materials Science Series

M. A. Krishtal and V. I. Baranova, Temperature Dependence of the vacancy concentration in iron-chromium and iron-molybdenum, Fizika Metallov i Metallovedenie, vol.16, pp.626-628

M. Bouhafs and B. Dubois, Influence of the Carbon Content on the Internal Friction of Iron-17% Chromium Alloys, in: Internal Friction and Ultrasonic Attenuation in Solids, pp.343-348, 1979.

I. S. Golovin, M. S. Blanter, and R. Schaller, Snoek Relaxation in Fe-Cr Alloys and Interstitial-Substitutional Interaction, Physica Status Solidi (A), vol.160, pp.49-60, 1997.

O. .. ,

H. Carlson, C. V. Indrawirawan, O. Owen, and . Buck, Internal Friction Study of Substitutional-Interstitial Interaction in Niobium-Vanadium Alloys, METALLURGICAL TRANSACTIONS A, vol.18, pp.1415-1420, 1987.

M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C alloys, Philosophical Magazine, vol.24, pp.81-106, 1971.

M. Koiwa, Theory of the Snoek Effect in Ternary B.C.C. Alloys : II. Simplified Treatment, Philosophical Magazine, vol.24, pp.107-122, 1971.

C. Barouh, T. Schuler, C. C. Fu, and M. Nastar, Interaction between vacancies and interstitial solutes (C, N, and O) in ?-Fe: From electronic structure to thermodynamics, Physical Review B, vol.90, p.54112, 2014.

T. Jourdan, C. C. Fu, L. Joly, J. L. Bocquet, M. J. Caturla et al., Direct simulation of resistivity recovery experiments in carbon-doped ?-iron, Physica Scripta, p.14049, 2011.