R. , How to Prevent Pressure Oscillations in Multicomponent Flow Calculations : A Quasi Conservative Approach, Journal of Computational Physics, vol.125, p.25, 1996.

T. Altazin, Numerical investigation of BB-AMR scheme using entropy production as refinement criterion, International Journal of Computational Fluid Dynamics, vol.30, p.21, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330654

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, p.59, 1999.
DOI : 10.1007/s002110050401

P. Angot and J. Caltagirone, New Graphical and Computational Architecture Concept for Numerical Simulation of Supercomputers, CERFACS, p.58, 1990.

E. Arquis and J. Caltagirone, Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide-milieu poreux : applicationa la convection naturelle, CR Acad. Sci. Paris II, vol.299, p.58, 1984.

T. Barberon, Modélisation mathématique et numérique de la cavitation dans les écoulements multiphasiques compressibles, p.13, 2002.

T. Barberon, P. Helluy, and S. Rouy, Practical computation of axisymmetrical multifluid flows, International Journal of Finite, vol.1, p.36, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00139598

G. Barras, Interaction fluide-structure : Application aux explosions sous-marines en champ proche, p.13, 2012.

M. J. Berger and P. Colella, Local Adaptive Mesh Refinement for Shock Hydrodynamics, Journal of Computational Physics, p.22, 1988.
DOI : 10.1016/0021-9991(89)90035-1

URL : https://zenodo.org/record/1253914/files/article.pdf

R. P. Beyer and R. J. Leveque, Analysis of a one-dimensional model for the immersed boundary method, SIAM Journal on Numerical Analysis, vol.29, p.57, 1992.

B. Biausser, S. Grilli, and P. Fraunié, Numerical simulations of three-dimensional wave breaking by coupling of a VOF method anda boundary element method. The Thirteenth International Offshore and Polar Engineering Conference, International Society of Offshore et Polar Engineers, p.11, 2003.

B. Biausser, Suivi d'interface tridimensionnel : application au déferlement, 2003.

B. Biausser, 3D two phase flows numerical simulations by SL-VOF method, International Journal for numerical methods in uids, vol.45, p.11, 2004.
DOI : 10.1002/fld.708

N. Booij, R. Ris, and L. H. Holthuijsen, A third-generation wave model for coastal regions : 1. Model description and validation, Journal of geophysical research : Oceans, vol.104, p.19, 1999.

I. Borazjani, L. Ge, and F. Sotiropoulos, Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. en, Journal of Computational Physics, vol.227, p.97, 2008.
DOI : 10.1016/j.jcp.2008.04.028

URL : http://europepmc.org/articles/pmc2963478?pdf=render

J. Brackbill, D. Kothe, and C. Zemach, A continuum method for modeling surface tension. en, Journal of Computational Physics, vol.100, p.12, 1992.
DOI : 10.1016/0021-9991(92)90240-y

A. L. Braun and A. M. Awruch, Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation, Computers & Structures, vol.87, issue.10, p.106, 2009.
DOI : 10.1016/j.compstruc.2009.02.002

A. Calderer, S. Kang, and F. Sotiropoulos, Level set immersed boundary method for coupled simulation of air/water interaction with complex floating structures, Journal of Computational Physics, vol.277, p.114, 2014.

J. Caltagirone and S. Vincent, Tensorial penalisation method for solving NavierStokes equations, Comptes Rendus de l' Academie des Sciences Series IIB Mechanics, vol.329, p.59, 2001.

G. Carbou and P. Fabrie, Boundary layer for a penalization method for viscous incompressible flow, Advances in Differential equations, vol.8, p.59, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00295077

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp, vol.22, p.81, 1968.

J. Coirier and C. Nadot-martin, Mécanique des milieux continus-4e édition : Cours et exercices corrigés. Dunod, p.67, 2013.

M. Coquerelle and G. Cottet, A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. en, Journal of Computational Physics, vol.227, p.123, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297673

M. Coquerelle, Calcul d'interaction fluide-structure par méthode de vortex et application en synthèse d'images, vol.98, p.97, 2008.

J. Croisille, Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces, vol.6, p.22, 1990.

B. J. Daly, Numerical study of the effect of surface tension on interface instability, The Physics of Fluids, vol.12, issue.7, pp.1340-1354, 1969.

S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, Journal of Computational Physics, vol.229, p.123, 2010.

E. Dombre, Simulation of floating structure dynamics in waves by implicit coupling of a fully non-linear potential flow model and a rigid body motion approach. en, Journal of Ocean Engineering and Marine Energy, vol.1, issue.1, p.116, 2015.

R. Dressler, Comparison of theories and experiments for the hydraulic dam-break wave, Int. Ass. Sci. Hydrol. Publi, vol.38, p.46, 1954.

T. Engels, FluSI : A novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization, p.59, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489047

T. Engels, Numerical simulation of fluid-structure interaction with the volume penalization method. en, Journal of Computational Physics, vol.281, p.59, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01299253

T. Engels, Two-dimensional simulation of the fluttering instability using a pseudospectral method with volume penalization, Computers & Structures, vol.122, p.59, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01299992

M. Ersoy, F. Golay, and L. Yushchenko, Adaptive scheme based on entropy production : robustness through severe test cases for hyperbolic conservation laws, vol.22, p.21, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00918773

E. A. Fadlun, Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, Journal of Computational Physics, vol.161, p.61, 2000.

R. P. Fedkiw-et-x.-d and . Liu, The Ghost Fluid Method for Viscous Flows, p.101, 1998.

F. Feito, J. C. Torres, and A. Urena, Orientation, simplicity, and inclusion test for planar polygons, Computer and Graphics, vol.19, p.93, 1995.

F. R. Feito and J. C. Torres, Inclusion test for general polyhedra, Computers & Graphics, vol.21, p.91, 1997.

C. A. Felippa, K. C. Park, and C. Farhat, Partitioned analysis of coupled mechanical systems, Computer methods in applied mechanics and engineering, vol.190, p.54, 2001.

M. B. Friess, A second order anti-diffusive Lagrange-remap scheme for twocomponent flows, ESAIM : Proceedings. T. 32, p.38, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00708605

S. F. Frisken and R. N. Perry, Simple and efficient traversal methods for quadtrees and octrees, Journal of Graphics Tools, vol.7, issue.3, p.21, 2002.

T. Gallouët, J. Hérard, and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Computers & Fluids, vol.32, p.10, 2003.

J. Gerbeau and B. Perthame, Derivation of Viscous Saint-Venant System for Laminar Shallow Water ; Numerical Validation, p.10, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00072549

A. Gilmanov, F. Sotiropoulos, and E. Balaras, A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids, Journal of Computational Physics, vol.191, p.64, 2003.
DOI : 10.1016/s0021-9991(03)00321-8

A. Gilmanov and F. Sotiropoulos, A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies, Journal of Computational Physics, vol.207, p.64, 2005.
DOI : 10.1016/j.jcp.2005.01.020

R. Glowinski, T. Pan, and J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.112, issue.1-4, p.63, 1994.
DOI : 10.1016/0045-7825(94)90022-1

R. Glowinski, A distributed Lagrange multiplier fictitious domain method for the simulation of flow around moving rigid bodies : application to particulate flow, vol.64, p.73, 2000.

R. Glowinski, A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies : Application to Bibliographie Particulate Flow. en, Journal of Computational Physics, vol.169, p.63, 2001.

G. Godinaud, Une technique nouvelle d'antidiffusion dynamique, Comptes Rendus de l' Académie des Sciences-Series I-Mathematics, vol.333, p.38, 2001.
DOI : 10.1016/s0764-4442(01)02138-3

F. Golay, Numerical entropy production and error indicator for compressible flows, Comptes Rendus Mécanique, vol.337, p.22, 2009.
DOI : 10.1016/j.crme.2009.04.004

URL : https://hal.archives-ouvertes.fr/hal-00979068

F. Golay and P. Helluy, Numerical schemes for low Mach wave breaking, International Journal of Computational Fluid Dynamics, vol.21, pp.69-86, 2007.
DOI : 10.1080/10618560701343382

URL : https://hal.archives-ouvertes.fr/hal-00139634

F. Golay, Block-based adaptive mesh refinement scheme using numerical density of entropy production for three-dimensional two-fluid flows, International Journal of Computational Fluid Dynamics, vol.29, p.21, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226163

D. Goldstein, R. Handler, and L. Sirovich, Modeling a no-slip flow boundary with an external force field, Journal of Computational Physics, vol.105, p.58, 1993.
DOI : 10.1006/jcph.1993.1081

S. Grilli, Fully nonlinear potential flow models used for long wave runup prediction, p.11, 1997.

S. Grilli and I. Svendsen, Corner problems and global accuracy in the boundary element solution of nonlinear wave flows, Engineering Analysis with Boundary Elements, vol.7, p.11, 1990.

S. T. Grilli, P. Guyenne, and F. Dias, A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom, International Journal for Numerical Methods in Fluids, vol.35, p.11, 2001.
DOI : 10.1002/1097-0363(20010415)35:7<829::aid-fld115>3.0.co;2-2

S. T. Grilli, J. Skourup, and I. A. Svendsen, An efficient boundary element method for nonlinear water waves, Engineering Analysis with Boundary Elements, vol.6, p.11, 1989.
DOI : 10.1016/0955-7997(89)90005-2

S. T. Grilli and R. Subramanya, Numerical modeling of wave breaking induced by fixed or moving boundaries, Computational Mechanics, vol.17, p.11, 1996.

S. Guignard, Solitary wave breaking on sloping beaches : 2-D two phase flow numerical simulation by SL-VOF method, European Journal of Mechanics-B/Fluids, vol.20, p.11, 2001.
DOI : 10.1016/s0997-7546(00)01104-3

S. Guignard, Computation of shoaling and breaking waves in nearshore areas by the coupling of BEM and VOF methods. The Ninth International Offshore and Polar Engineering Conference, International Society of Offshore et Polar Engineers, p.11, 1999.

H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit, Computers & uids, vol.28, pp.63-86, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01534938

S. Haeri and J. Shrimpton, On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows, International Journal of Multiphase Flow, vol.40, p.102, 2012.

E. Haines, Point in polygon strategies, Graphics gems IV, vol.994, p.91, 1994.
DOI : 10.1016/b978-0-12-336156-1.50013-6

F. H. Harlow and J. E. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible flow of fluid with free surface. The physics of uids, 1965.

A. Harten, Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of computational physics, vol.71, p.10, 1987.
DOI : 10.1007/978-3-642-60543-7_12

P. Helluy, Simulation numérique des écoulements multiphasiques : de la théorie aux applications-Habilitation à diriger des recherches, p.116, 2005.

C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, vol.39, issue.7, pp.201-225, 1981.

D. Holmes and S. Connell, Solution of the 2D Navier-Stokes equations on unstructured adaptive grids. 9th Computational Fluid Dynamics Conference, p.36, 1989.

G. Hou, J. Wang, and A. Layton, Numerical Methods for Fluid-Structure Interaction A Review. en. Communications in Computational Physics, vol.12, p.54, 2012.

J. Hovnanian, Méthode de frontières immergées pour la mécanique des fluides. Application à la simulation de la nage, p.62, 2012.

S. Huang, Q. Li, and S. Xu, Numerical evaluation of wind effects on a tall steel building by CFD. en, Journal of Constructional Steel Research, vol.63, p.110, 2007.

S. It, Study of the transient heave oscillation of a floating cylinder, p.115, 1977.

J. Labert, Simulation numérique d'écoulements turbulents en rotation, confinement et forcage à l'aide d'une méthode de pénalisation, p.59, 2012.

B. Kadoch, A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles. en, Journal of Computational Physics, vol.231, p.59, 2012.
DOI : 10.1016/j.jcp.2012.01.036

URL : https://hal.archives-ouvertes.fr/hal-01032208

G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on scientii c Computing, vol.20, p.43, 1998.

K. Khadra, Fictitious domain approach for numerical modelling of Navier-Stokes equations. en, Int. J. Numer. Meth. Fluids, vol.34, p.58, 2000.
DOI : 10.1002/1097-0363(20001230)34:8<651::aid-fld61>3.0.co;2-d

S. Kim, A Multi-Dimensional Linear Reconstruction Scheme for Arbitrary Unstructured Mesh, 16th AIAA Computational Fluid Dynamics Conference, p.37, 2003.
DOI : 10.2514/6.2003-3990

M. Kirkpatrick, S. Armfield, and J. Kent, A representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid, Journal of Computational Physics, vol.184, p.64, 2003.

S. Kokh and F. Lagoutière, An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model. en, Journal of Computational Physics, vol.229, p.38, 2010.

S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d'interface.pdf. Anglais, vol.40, p.38, 2001.

M. Lai and C. S. Peskin, An Immersed Boundary Method with Formal SecondOrder Accuracy and Reduced Numerical Viscosity, Journal of Computational Physics, vol.160, p.57, 2000.
DOI : 10.1006/jcph.2000.6483

URL : http://jupiter.math.nctu.edu.tw/~mclai/papers/Lai_1.pdf

D. V. Le, An immersed interface method for solving viscous incompressible ows involving rigid and exible boundaries, p.62, 2005.
DOI : 10.1016/j.jcp.2006.05.004

B. P. Leonard, The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Computer methods in applied mechanics and engineering, vol.88, p.9, 1991.
DOI : 10.1016/0045-7825(91)90232-u

X. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, Journal of computational physics, vol.115, p.10, 1994.
DOI : 10.1006/jcph.1994.1187

L. Lobovský, Experimental investigation of dynamic pressure loads during dam break. en, Journal of Fluids and Structures, vol.48, p.45, 2014.

P. Lubin, Fully three-dimensional direct numerical simulation of a plunging breaker, Comptes Rendus Mecanique, vol.331, p.12, 2003.
DOI : 10.1016/s1631-0721(03)00108-6

URL : https://hal.archives-ouvertes.fr/hal-00294098

J. Martin and W. Moyce, Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philosophical Transactions of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.244, p.46, 1952.
URL : https://hal.archives-ouvertes.fr/hal-00518739

W. H. Melbourne, Comparison of measurements on the CAARC standard tall building model in simulated model wind flows, Journal of Wind Engineering and Industrial Aerodynamics, vol.6, issue.1-2, p.106, 1980.

C. Michler, A monolithic approach to fluid-structure interaction, en. Computers & Fluids, vol.33, p.54, 2004.
DOI : 10.1016/j.compfluid.2003.06.006

URL : https://hal.archives-ouvertes.fr/hal-00450614

R. Mittal and G. Iaccarino, Immersed boundary methods. en, Annual Review of Fluid Mechanics, vol.37, p.54, 2005.

R. , A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, Journal of computational physics, vol.227, p.64, 2008.

J. Mohd-yusof, Combined immersed boundaries. B-Splines Methods for Simulations of Flow in Complex Geometries, CTR Annual Research Briefs, vol.64, p.61, 1997.

T. Möller and B. Trumbore, Fast, minimum storage ray/triangle intersection, ACM SIGGRAPH 2005 Courses, p.96, 2005.

J. J. Monaghan, Simulating free surface flows with SPH, Journal of computational physics, vol.110, p.12, 1994.
DOI : 10.1006/jcph.1994.1034

J. J. Monaghan, Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, vol.30, p.12, 1992.

F. Morency and H. Beaugendre, Further validations of penalization and VIC based methods for aeronautic application, 6th. European Conference on Computational Fluid Dynamics (ECFD VI), p.110, 2014.

S. Muzaferija, A two-fluid Navier-Stokes solver to simulate water entry, Proceedings of the 22nd symposium on naval hydrodynamics, p.9, 1998.

W. F. Noh and P. Woodward, SLIC (simple line interface calculation), Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, pp.330-340, 1976.
DOI : 10.1007/3-540-08004-x_336

. Bibliographie,

C. J. Ogayar, R. J. Segura, and F. R. Feito, Point in solid strategies. en, Computers & Graphics, vol.29, p.91, 2005.
DOI : 10.1016/j.cag.2005.05.012

S. Osher and R. P. Fedkiw, Level Set Methods : An Overview and Some Recent Results, Journal of Computational Physics, vol.169, p.10, 2001.
DOI : 10.1006/jcph.2000.6636

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed, Rapp. tech, issue.9, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://dml.cz/bitstream/handle/10338.dmlcz/144762/ActaOlom_54-2015-2_3.pdf

N. A. Patankar, A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.26, p.75, 2000.

N. A. Patankar, A fast computation technique for the direct numerical simulation of rigid particulate ows, Rapp. tech, vol.64, p.63, 2001.

B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo, vol.38, p.10, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00922664

C. S. Peskin, Flow patterns around heart valves : a digital computer method for solving the equations of motion, vol.64, p.57, 1972.

C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of computational physics, vol.25, p.57, 1977.

C. S. Peskin, The immersed boundary method. en, Acta Numerica, vol.11, p.57, 2002.

K. Pons and M. Ersoy, Adaptive mesh refinement method. Part 1 : Automatic thresholding based on a distribution function, p.23, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330680

K. Pons, Adaptive mesh refinement method, p.23, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330680

S. Popinet, Gerris : a tree-based adaptive solver for the incompressible Euler equations in complex geometries, Journal of Computational Physics, vol.190, p.21, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01445436

E. G. Puckett, A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction, Proceedings of the Fourth International Symposium on Computational Fluid Dynamics, pp.933-938, 1991.

G. Puppo, Numerical entropy production for central schemes, SIAM Journal on Scientii c Computing, vol.25, p.22, 2004.

G. Puppo, Numerical entropy production on shocks and smooth transitions, Journal of scientii c computing, vol.17, p.22, 2002.

. Randrianarivelo, Etude numérique des interactions fluide-solide, Université Bordeaux, vol.1, p.59, 2005.

T. N. Randrianarivelo, Numerical modelling of solid particle motion using a new penalty method. International journal for numerical methods in uids 47, p.59, 2005.

J. Ritz and J. Caltagirone, A numerical continuous model for the hydrodynamics of fluid particle systems, International Journal for Numerical Methods in Fluids, vol.30, p.59, 1999.

S. Rouy, Modélisation mathématique et numérique d'écoulements diphasiques compressibles. Application au cas industriel d'un générateur de gaz, p.13, 2001.

E. M. Saiki and S. Biringen, Numerical Simulation of a Cylinder in Uniform Flow : Application of a Virtual Boundary Method, Journal of Computational Physics, vol.123, p.57, 1996.

A. N. Sambe, Développement d'un modèle de simulation 3D d'impact de vagues en zones côtières et offshores, vol.38, p.4, 2011.

A. Sarthou, Méthodes de domaines fictifs d'ordre élevé pour les équations elliptiques et de Navier-Stokes. Application au couplage fluide-structure, p.97, 2009.

K. Schneider, Numerical simulation of the transient flow behaviour in chemical reactors using a penalisation method, en. Computers & Fluids, vol.34, p.59, 2005.

K. Schneider, Numerical simulation of flows past flat plates using volume penalization, en. Computational and Applied Mathematics, vol.33, p.59, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01500522

N. Sharma and N. A. Patankar, A fast computation technique for the direct numerical simulation of rigid particulate flows. en, Journal of Computational Physics, vol.205, p.63, 2005.

K. Shyue, An Eulerian Interface-Sharpening Algorithm for Compressible Gas Dynamics. en. Modeling, Simulation and Optimization of Complex Processes-HPSC 2012. Sous la dir, vol.40, p.39, 2014.
DOI : 10.1007/978-3-319-09063-4_18

K. K. So, X. Y. Hu, and N. A. Adams, Anti-diffusion Method for Interface Steepening in Two-phase Incompressible Flow, J. Comput. Phys, vol.230, p.38, 2011.
DOI : 10.1016/j.jcp.2011.03.011

K. So, X. Hu, and N. Adams, Anti-diffusion interface sharpening technique for twophase compressible flow simulations. en, Journal of Computational Physics, vol.231, p.38, 2012.
DOI : 10.1007/978-3-642-25685-1_10

D. Sun and W. Tao, A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows, International Journal of Heat and Mass Transfer, vol.53, p.10, 2010.

M. Sussman and E. G. Puckett, A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows, Journal of Computational Physics, vol.162, p.10, 2000.

S. Tanguy, Développement d'une méthode de suivi d'interface. Applications aux écoulements diphasiques, p.98, 2004.

H. L. Tolman, User manual and system documentation of WAVEWATCH III TM version 3.14. Technical note, MMAB Contribution, vol.276, p.19, 2009.

E. F. Toro, Riemann solvers and numerical methods for uid dynamics : a practical introduction, p.24, 2009.
DOI : 10.1007/978-3-662-03915-1

Y. Tseng and J. H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, Journal of Computational Physics, vol.192, p.64, 2003.

E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, Journal of computational physics, vol.72, p.18, 1987.
DOI : 10.1016/0021-9991(87)90084-2

O. Ubbink and R. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes, Journal of Computational Physics, vol.153, p.9, 1999.
DOI : 10.1006/jcph.1999.6276

H. Udaykumar, R. Mittal, and P. Rampunggoon, Interface tracking finite volume method for complex solid-fluid interactions on fixed meshes, International Journal for Numerical Methods in Biomedical Engineering, vol.18, p.62, 2002.
DOI : 10.1002/cnm.468

H. Udaykumar, R. Mittal, and W. Shyy, Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids, Journal of computational physics, vol.153, p.62, 1999.

H. Udaykumar, A sharp interface Cartesian grid method for simulating flows with complex moving boundaries, Journal of Computational Physics, vol.174, p.62, 2001.
DOI : 10.1006/jcph.2001.6916

M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, Journal of Computational Physics, vol.209, p.61, 2005.

S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of computational physics, vol.100, issue.7, pp.25-37, 1992.
DOI : 10.1016/0021-9991(92)90294-9

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/30059/1/0000428.pdf

B. Van-leer, Towards the ultimate conservative difference scheme. V. A secondorder sequel to Godunov's method, Journal of computational Physics, vol.32, p.36, 1979.

R. Verzicco, LES in complex geometries using boundary body forces. Center for Turbulence Research Proceedings of the Summer Program, vol.64, p.61, 1998.

P. Vigneaux, Méthodes Level Set pour des problèmes d'interface en microfluidique, p.98, 2007.

S. Vincent, Local penalty methods for flows interacting with moving solids at high Reynolds numbers, Computers & Fluids, vol.36, issue.5, p.60, 2007.
DOI : 10.1016/j.compfluid.2006.04.006

T. Waclawczyk and T. Koronowicz, Modeling of the wave breaking with CICSAM and HRIC high resolution schemes, ECCOMAS CFD, p.9, 2006.

Z. Wang, J. Fan, and K. Luo, Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles, International Journal of Multiphase Flow, vol.34, issue.3, p.64, 2008.
DOI : 10.1016/j.ijmultiphaseflow.2007.10.004

H. Weller, Derivation, modelling and solution of the conditionally averaged twophase flow equations, Nabla Ltd, p.9, 2002.

T. Ye, An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, Journal of computational physics, vol.156, p.62, 1999.
DOI : 10.1006/jcph.1999.6356

X. D. Zhang, J. Trépanier, and R. Camarero, A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws, Computer methods in applied mechanics and engineering, vol.185, p.22, 2000.
DOI : 10.1016/s0045-7825(99)00099-7