Skip to Main content Skip to Navigation

Development of a Cyclic Indentation Method for the Characterisation of Material Gradients in Polymers and Polymer Composites Due to Thermal Aging

Abstract : The market of organic matrix composite (OMC) materials for the realisation of “cold” (-55°C < T < RT) structural parts is going towards saturation and aircraft manufacturers foresee the employment of 3D reinforced OMC in “warm” (50°C < T < 300°C) aircraft structural parts (nacelles, turbo-engines). These environmental conditions may lead to degradation phenomena over long time. The action of environment and the complexity of the material microstructure may lead to the development of material property gradients. At high temperature, the organic polymer matrix may exhibit complex time-dependent behaviour. Therefore, there is a need to develop an experimental technique able to characterise the material behaviour at local scale and to capture material gradients and time-dependent behaviour. The present work proposes the development of a cyclic instrumented indentation test to tackle all these issues. Instrumented indentation is a popular testing technique: its basic version, appropriate for elasto-plastic materials, includes the realisation of a single loading/unloading test, the measurement of the material hardness through the analysis of the indentation print, and the analysis of the unloading curve based on the assumption of elastic unloading behaviour to obtain the indentation modulus. This analysis is inappropriate for materials exhibiting time-dependent behaviour, which leads to the need of a new method optimized for polymer materials.Several indentation methods are available for polymer materials (indentation creep, nanoDMA), but are limited to some specific loadings. The instrumented indentation cyclic test proposed in this work tries to emphasize the whole complexity of the polymer behaviour, is inspired by macroscopic cyclic tests and is analysed similarly. The technique is first set up and developed by testing a HDPE thermoplastic polymer, for which the response to macroscopic cyclic tension and shear loading isknown. By following, at different frequencies, the evolution with time (with cycles) of the principal indicators of the cyclic behaviour – that is, the indentation modulus, the hysteresis loop area and the indentation depth accumulation - it is possible to highlight the time-dependent response of the material and to perform a proper – though qualitative - comparison with the macroscopic behaviour. The cyclic indentation protocol is then employed to study the material gradients in a thermoset PR520epoxy resin subjected to thermal aging at 150°C under air at atmospheric pressure (up to 1000h), 2 barO2 (for 400h) and N2. It is shown that the evolution with cycles of the indentation modulus and the cyclic creep is not affected by thermal aging. However, their absolute values vary from the surface to the core of polymer indicating the presence of gradients. The hysteresis of the first cycle is different through the gradient: from the second cycle, however, the hysteresis is similar for all aging conditions and distances from the exposed surface. Moreover, the time-dependent behaviour stays unchanged. Results from samples aged under 2 bar O2 and 2 bar N2 allow to conclude that the aging kinetics is not related to pure thermo-oxidation phenomena. The cyclic indentation method is finally applied to characterise the behaviour of PR520 epoxy matrix within a 3D interlock textile composite, in its virgin state and thermally aged at 150°C under air at atmospheric pressure (up to 1000h). The polymer inlarge matrix pockets between the fibrous reinforcements is studied in this work, so the constrainingeffect coming from the reinforcement is negligible. The study of the composite in virgin state revealsthat the behaviour of polymer matrix close to the external surface is different from that located ininternal zones of the composite and from the neat polymer. The comparison between the thermallyaged neat polymer and matrix in internal zones of the composite shows that the environment-inducedproperty gradients are similar.
Document type :
Complete list of metadata

Cited literature [156 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, February 19, 2019 - 11:35:23 AM
Last modification on : Wednesday, November 3, 2021 - 6:36:24 AM
Long-term archiving on: : Monday, May 20, 2019 - 3:21:10 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02024619, version 1



Marina Pecora. Development of a Cyclic Indentation Method for the Characterisation of Material Gradients in Polymers and Polymer Composites Due to Thermal Aging. Other. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique - Poitiers, 2018. English. ⟨NNT : 2018ESMA0011⟩. ⟨tel-02024619⟩



Record views


Files downloads