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Abstract

At this age of technologically advanced world, the electronic devices are getting more and
more densely packed with micro-electronic elements of nano-scale dimension. As a result
the heat dissipation produced in these microelectronic-circuits is also increasing immensely,
causing a huge amount of energy loss without any use. The thermoelectric effects come
into play here as one can use this wasted heat to produce some useful work with the help
of thermoelectric conversion. In order to achieve such a heat engine with a reasonably
high efficiency, one needs to understand its thermal behavior at the basic level. Therefore,
the study of thermal transport and thermoelectric effect in nano-structures has significant
importance both from scientific and application point of view.

In this thesis we present the experimental studies of thermal and thermoelectric transport
in different kinds of single-electron devices, where the electronic flow can be controlled at
the single electron level.

First, we demonstrate the measurement of gate-controlled heat transport in a Single-
Electron Transistor (SET ), acting as a heat switch between two heat reservoirs. The measure-
ment of temperature of the leads of the SET allows us to determine its thermal conductance
with the help of a steady state heat-balance among all possible paths of heat flow. The
comparison of thermal conductance of the SET with its electrical conductance indicates a
strong violation of the Wiedemann-Franz (WF) law away from the charge degeneracy.

Second, we extend the study of thermal transport in single-electron devices to the quantum
limit, where in addition to the Coulomb interactions the quantum effects are also need to
be taken into account, and therefore the individual discrete electronic levels take part in the
transport process. We discuss the heat-balance between two heat reservoirs, coupled through
a single Quantum-Dot (QD) level, and the dissipation of the tunneling electrons on the leads.
This produces Coulomb-diamond shapes in the electronic-temperature map of the ‘source’
lead, as a function of bias and gate voltage.

Third, we present the measurement of thermoelectric transport in a single QD junc-
tion, starting from the weak coupling regime to the strong coupling-Kondo regime. The
experiments introduces a new way of measuring thermovoltage realizing a close to perfect
open-circuit condition. The thermopower in a weakly coupled QD shows an expected ‘e’
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periodic behavior with the gate-induced charge, while it shows a distinct ‘2e’ periodic feature
in the presence of Kondo spin-correlation. The temperature dependence study of the Kondo-
correlated thermopower reveals the fact that the Kondo-resonance is not always pinned to
the Fermi level of the leads but it can be slightly off, in agreement with the theoretical
predictions.

This study opens the door for accessing a single QD junction to operate it as a QD-heat
engine, where the thermodynamic properties of the device are governed by the laws of
quantum thermodynamics.



Résumé

Aujourd’hui, nos appareils électroniques sont de plus en plus densément composés de com-
posants nanoélectroniques. En conséquence, la dissipation de chaleur produite dans ces
circuits augmente également énormément, provoquant une déperdition d’énergie consid-
érable, en pure perte. Les effets thermoélectriques entrent en jeu ici car ils permettent
d’utiliser cette chaleur perdue pour produire un travail utile. Par conséquent, l’étude du trans-
port thermique et de l’effet thermoélectrique dans les nanostructures revêt une importance
significative du point de vue scientifique et technologique.

Dans cette thèse, nous présentons nos études expérimentales du transport thermique et
thermoélectrique dans différents types de dispositifs à un seul électron, où le flux électronique
peut être contrôlé au niveau de l’électron unique.

Tout d’abord, nous montrons la mesure du transport de chaleur contrôlé par la grille dans
un transistor à un seul électron (SET), agissant comme un commutateur thermique entre
deux réservoirs. Nous déterminons la conductance thermique à l’aide d’un bilan thermique
en régime permanent prenant en compte les différents chemins du flux de chaleur. La
comparaison de la conductance thermique du SET avec sa conductance électrique indique
une forte violation de la loi de Wiedemann-Franz.

Deuxièmement, nous étendons l’étude du transport thermique dans les dispositifs à un
seul électron dans le régime de boîte quantique, où, outre les interactions de Coulomb, il faut
également prendre en compte les différents niveaux électroniques discrets. Nous discutons
du bilan thermique entre deux réservoirs de chaleur couplés par un seul niveau de point
quantique, et de la dissipation des électrons tunnel dans les contacts. Cela produit des formes
de diamant de Coulomb dans la carte de température électronique de la source, en fonction
de la polarisation et de la tension de grille.

Enfin, nous présentons la mesure du transport thermoélectrique dans une jonction à
boîte quantique unique, du régime de couplage faible au régime de couplage fort Kondo.
Nos expériences introduisent une nouvelle façon de mesurer le pouvoir thermoélectrique en
réalisant une condition de circuit ouvert quasi-parfaite. Le pouvoir thermoélectrique dans
une boîte faiblement couplée montre le comportement e-périodique avec la charge induite
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par la grille, alors qu’il montre une période distincte de 2e en présence de corrélation Kondo.
L’étude de la dépendance thermique révèle que la résonance de Kondo n’est pas toujours au
niveau de Fermi, mais qu’elle peut être légèrement décalée, en accord avec les prédictions
théoriques.

Cette étude ouvre la porte à l’étude de transistors à une boîte quantique unique dont les
propriétés thermodynamiques sont régies par les lois de thermodynamique quantique.
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Introduction

Energy harvesting and its conservation is a very important issue now a days, since the natural
resources of energies are limited and going towards the end of its limit. One possible way to
overcome this crisis of energy could be by converting the wasted heat into some useful form
by the means of thermoelectric effects, so that it can be further used in some other purpose.

When two heat reservoirs at different temperatures are coupled to each other, a potential
difference is generated between them. This is well known as the Seebeck effect. As a result,
a flow of current is generated from the cold reservoir to the hot one, while at the same time
there is flow of heat from the hot reservoir to the cold one. A heat engine that operates
between the two reservoirs can reverse the direction of current thereby converting the heat
into some useful work. The figure of merit, a measure for the efficiency of an engine can be
defined by the ratio of the two quantities, 1) the power generated by the electrons against
the thermally originated bias, which depends on the electrical conductance, the Seebeck
coefficient or the thermopower and the temperature difference, 2) the direct heat conduction
between the reservoirs, which depends on the thermal conductance of the system and the
temperature difference. In order to improve the efficiency of an engine one therefore needs
to increase the electrical conductance and thermopower, while at the same time reduce the
thermal conductance of the system.

In bulk materials, the electric and thermal conductances are related to each other by
the Wiedemann-Franz (WF) law. This essentially states that the transport electrons carry a
charge ‘e’ and heat of the order of kBT , where kB is the Boltzmann constant, making the ratio
of the two conductances per unit temperature, a constant L0, the universal Lorenz number.
Therefore, in bulk materials one can not increase the electrical conductance independent
of the thermal conductance. The thermopower results from the asymmetry in the spectral
density of the system near Fermi-energy. In bulk materials, having a constant density of
states near the Fermi energy, one can not expect to get a large thermopower. Therefore, an
engine with bulk thermoelectric materials shows very low efficiency.

However, if one can modify the system between the two reservoirs, such that it possesses
an energy dependent spectral density, it is possible to manipulate both the conductance ratio



2 Introduction

and the thermopower and hence the efficiency of an engine. Thermoelectric materials at the
nano-dimensions can meet these requirements [1–5].

A single-Electron Transistor (SET ) is consists of a small metallic island connected to the
leads through tunnel barriers and kept under the influence of a gate electric field [6]. With
the reduction of the dimensions of the island, electron interactions gain capital importance,
leading to Coulomb blockade in the transport processes. This results in a charging energy
that requires to charge the island with an extra electron. It defines the temperature and bias
thresholds below which single-electron physics appears. In the regime where charge transport
is governed by unscreened Coulomb interactions, the question of the associated heat flow has
been addressed by several theoretical studies [7–14]. The Wiedemann-Franz law is expected
to hold in an SET only at the charge degeneracy points in the limit of small transparency,
where the effective transport channel is free from interactions, and is violated otherwise.
Therefore, in such systems one can vary the ratio of the two conductances beyond the WF
law predicted value. Since an SET can be used as an element of the microelectronic circuits,
the study of heat flow through it and its management is very important [15].

A Quantum-Dot (QD) junction is a kind of SET where the ‘island’ dimensions are
reduced down to the size of only few atoms, therefore in addition to the Coulomb interactions
the quantum effects are also become important in the transport processes. As a result of the
quantum confinement the energy spectrum of the ‘island’ splits into several discrete electronic
levels. The spectral function of the QD consists of several resonant peaks corresponding
to the discrete energy levels, with a width (determined by the tunneling rate of electrons)
much smaller than kBT and hence it can feature a strong asymmetry around the Fermi energy.
Therefore, a QD could be a perfect candidate to be deployed as an engine between the two
reservoirs. Due to the strong asymmetry in the spectral density near Fermi energy one can
get a large thermopower signal. The resonant levels of the QD can also act as an energy
filters for the low-energy transfer process in order to reduce the unfiltered direct heat flow
[16]. By manipulating its resonant energy levels one can achieve a very high efficiency close
to the thermodynamic limits. However, experimentally such an efficient QD heat engine is
not fully realized yet, due to the experimental difficulties in combining the charge and heat
transport measurements [17].

In this thesis we have considered the study of the thermal and thermoelectric transport in
an SET and a QD junctions. The prediction of the violation of WF law in an SET is tested
by measuring the heat flow through it. A strong signal of the thermopower, measured in QD
junctions hints the crucial information about the spectral density of the device, including the
exact position of the Kondo resonance in the case of a Kondo correlated QD.

The thesis is organized in the following way:
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Chapter 1: introduces a brief theoretical description of the charge and heat transport in
an SET and a QD junction. Here we consider both first order sequential tunneling and the
second order co-tunneling processes. The effect of Quantum correlation on the electrical and
thermoelectric transport properties of a QD junction are also considered.
Chapter 2: gives the experimental techniques for the fabrication of SET and the QD junc-
tions studied in this thesis, including the crucial steps like electromigration, gold nanoparticle
depostion etc.
Chapter 3: gives a general discussion on local thermometry and refrigeration integrated to
mesoscopic devices. Here we describe two types of mesoscopic-local thermometers based
on, Superconductor-Normal metal tunnel junctions, the NIS tunnel junction thermometer,
and Superconductor-Normal metal-Superconductor transparent junctions, the proximity
Josephson junction SNS thermometer.
Chapter 4: describes the experimental results on the measurement of thermal conductance
of an SET . It includes the heat-flow measurements through the SET and its operation as a
heat-switch. A strong violation of the WF law away from the charge degeneracy is observed.
Chapter 5: describes the experimental results on the measurements of thermal balance and
thermoelectric effects in QD devices in different coupling regimes. It includes, first, a general
charge conductance characterization of a QD made of evaporated Au nanoparticles, then an
experiment of heat-balance between two heat reservoirs through a single QD level. After
that we describe the thermopower measurements in a weakly coupled QD junction and at the
last but not the least the thermopower measurements in a Kondo spin-correlated QD junction
and its temperature dependence.





Chapter 1

Quantum Transport: Charge and Heat

The transport of heat is associated with the transport of charge carriers. In a bulk metallic
structure, in the absence of interactions, carriers, the electrons, carry a charge e and heat of
the order of kBT , where kB is the Boltzmann constant and T is the equilibrium temperature
of the electronic distribution. In mesoscopic quantum devices the presence of interactions
(between the electrons) however can modify the picture a lot. Interactions can introduce an
energy filtering in the process of transport. As a result, although the carriers carry the same
amount of charge e, they can carry more (or less) heat than what one would naively expect.

We frame the chapter in a way to consider the charge and heat transport, for a Single-
Electron transistor (SET ) and a Quantum-Dot (QD) junction in parallel. In the first section
(Sec.1.1) we consider the charge transport through such devices while thermal and thermo-
electric transport are discussed in the second section (Sec.1.2).

1.1 Charge Transport in Quantum Devices

In this section we consider the transport of charges though devices where electrons are
subject to strong electronic interactions. We start with the basic discussion of tunneling of
electrons through a single tunnel barrier (Sec. 1.1.1). We then consider the charge transport
though a small metallic island, connected to the rest of the world by only tunnel barriers,
and the effect of Coulomb-interaction (Sec. 1.1.2). In addition to Coulomb interaction,
we will consider the quantum effects as we reduce the size of the island, in a QD junction
(Sec. 1.1.3). Second order processes of charge transport, like co-tunneling, will then be
considered for both semi-classical metallic island and quantum-Dot (Sec. 1.1.4). The effect
of spin-correlation in the charge transport will be discussed in the last part of this section
(Sec. 1.1.5).
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1.1.1 Tunneling of Electrons through a single barrier

Let us first consider the simple case of a tunnel junction, where two electronic reservoirs are
connected through a tunnel barrier. The electrons in the reservoir are non-interacting and can
be considered as free electrons. The free electrons in the metallic reservoir obey Fermi-Dirac
statistics. The distribution of electrons with energy E (w.r.t the Fermi energy EF) and at a
well defined temperature T is given by

f (E) =
1

1+ eE/kBT
. (1.1)

Here the Fermi energy EF is taken as a reference for all energy measurements, i.e. EF = 0.
The Hamiltonian of the system can be written as follows,

Ĥ = Ĥ1 + Ĥ2 + Ĥ12 (1.2)

where Ĥ1 and Ĥ2 are the free electron Hamiltonian of the two reservoirs 1 and 2, respectively
and are given by Ĥ1 = ∑k εka†

kak and Ĥ2 = ∑q εqc†
qcq. The tunneling between them is

presented by the interacting Hamiltonian Ĥ12 = ∑k,q

(
τk,qa†

kcq + τ∗k,qakc†
q

)
, where εk and εq

are the energy of the conduction electrons of the two reservoirs. The Fermi-Dirac distribution
in the two reservoirs give ⟨a†

kak⟩= f1(εk) and ⟨c†
qcq⟩= f2(εq).

Using Fermi’s golden rule, the tunneling rate of electrons from the reservoir 1 to 2 with
an energy cost ∆E for each tunneling can be written as

Γ1→2(∆E) =
2π

h̄ ∑
k,q

|τk,q|2⟨a†
kakc†

qcq⟩δ (εq − εk +∆E), (1.3)

where δ (x) is the Dirac delta function,
∫

∞

−∞
δ (x)dx = 1. The summations can be converted

into integrals using the general formalism, ∑k =
∫

D1(εk)dεk and ∑q =
∫

D2(εq)dεq, where
D1(εk) and D2(εq) are the density of states of the two reservoirs respectively. With the
approximation |τk,q|2 = |τ|2 = constant, the tunneling rate can be written as

Γ1→2(∆E)≈ 1
e2RT

∫
dεn1(ε) f1(ε)n2(ε −∆E)[1− f2(ε −∆E)], (1.4)

where ni(ε) = Di(ε)/Di(0) is the normalized density of states (DOS) of the two reservoirs,
where i = {1,2}. The tunnel resistance is defined as, RT = h̄/(2πe2|τ|2D1(0)D2(0)).

For the case of a NIN tunnel junction, both of the reservoirs are normal metallic. The
DOS of the normal metal near the Fermi level can be considered as constant, therefore we
can use n1 = n2 = 1. With an equal temperatures for the two normal metals, T1 = T2, the
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tunnel rate can be simplified as,

Γ1→2(∆E) =− 1
e2RT

∆E
1− e∆E/kBT

, (1.5)

using the identity for the Fermi-Dirac integral,
∫

∞

−∞
dy f (y) [1− f (y+ x)] = x(1−e−x/kBT )−1.

Since each electron carries a charge −e, the tunnel current from reservoir 1 to 2 is

I1→2 =−I2→1 =
1

eRT

∆E
1− e∆E/kBT

. (1.6)

If one of the normal metal reservoirs is replaced by a superconducting reservoir, forming
a NIS junction, the tunnel rates include an extra contribution from the energy dependent
density of states of the superconductor near the Fermi level. The tunnel rates of charge
transport in a NIS tunnel junction is considered in Chapter 3 (Sec. 3.1).

1.1.2 Charge transport in an SET

We now consider the transport of charges in a Single-Electron transistor (SET), where a
small metallic island is kept isolated from the rest of the world. The island is coupled to
two electronic reservoirs via tunnel barriers, called the source and drain of the transistor.
Apart from this two tunnel coupled reservoirs, the island is capacitively coupled to another
electrode, called the gate. The gate induces electrostatic charges on the island and as a result
can control its electrostatic energy. One can consider this system as a set of two single tunnel
junctions, except from the fact that the energy cost for tunneling (∆E) of electrons includes
an extra contribution arising from the strong Coulomb interaction. The circuit diagram of an
SET is shown in Fig. 1.1, where the island has n excess electrons i.e. the SET is in the nth
charge state. The tunnel rates of electrons to (from) the island are indicated by the superscript
+(−). The subscript indicates the involved tunnel junction and the island respectively. The
electronic distribution in the leads and the island are considered to be of Fermi-Dirac form
fi(ε) = 1/(e(ε/kBTi)+1) and fI(ε) = 1/(e(ε/kBTI)+1), respectively, where Ti ≡ T1,T2 and TI

are the equilibrium electronic temperature of the leads and the island.
Using the formalism of tunnel rates in a single tunnel junction (Eq. 1.4) we can write the

tunnel rates in the SET as follows [18, 6],

Γ
+
i,n =

1
e2RT,i

∫
dεni(ε) fi(ε)[1− fI(ε −∆E+

i,n)] (1.7)
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Fig. 1.1: Circuit diagram of an SET Circuit diagram of an SET in the nth charge state, indicating
the tunnel rates and heat current. Heat current will be discussed in Sec. 1.2.3. Subscripts in the tunnel
rates and heat currents, i and n indicates the corresponding leads and the island respectively, where i
can take two values, i = {1,2}. The superscripts + or − indicate the tunneling to the island and from
the island respectively.

and
Γ
−
i,n =

1
e2RT,i

∫
dεni(ε −∆E−

i,n) fI(ε)[1− fi(ε −∆E−
i,n)], (1.8)

where the energy cost of tunneling to (from) the island is given by,

∆E±
i,n =±2Ec(n−ng ±1/2)± eVb,i, (1.9)

with the gate induced charge ng = CgVg/e and the charging energy Ec = e2/2C, where
C =C1 +C2 +Cg is the sum of the capacitances of the island to the three leads, the source,
drain and gate respectively. Vb,i = kiVb is the fraction of the total applied voltage Vb across the
junction i and ki = C̃/Ci < 1, where C̃ =C1C2/(C1 +C2) is the equivalent series capacitance
of the two junctions. For a symmetric SET , k1 = k2 = 1/2. For the sake of generality, the
density of states of the SET leads ni(ε) are taken to be energy dependent, while the DOS of
the island is taken as constant and hence nI = 1.
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The four tunneling processes for electrons from (to) the leads to (from) the island are
possible only when the related energy cost given by Eq. 1.9, ∆E±

i,n . 0. These four conditions
of tunneling define an area in the ng −Vb plane, where the transport of charge is blocked.
Such diamond shaped blockade regions are well known as the Coulomb-diamonds, as shown
in Fig. 1.2 (a). Within each diamond, the SET island remains in a stable charge state, n.
Intersection of the two diamonds corresponding to two charge states is known as the charge
degeneracy point, where the island can be in both of the charge states. The extent of such
diamonds along the Vg axis and the corresponding half-extent of the diamonds along the Vb

axis can be found to be 2Ec/e.

Fig. 1.2: Stability diagram of an SET (left) The sketch of the charge stability diagram for an
SET . Diamond shaped regions have a stable charge and are known as the Coulomb diamonds. Charge
transport is blocked in this region. The meeting points of the two stable charge diamonds are called
the charge degeneracy points, where the charging energy is zero. Outside the Coulomb blockade
region, the charge transport is not blocked by Coulomb interactions. The extents of the diamonds
give an estimate of the charging energy. (right) Calculated current through an SET [Eq. (1.12)] as a
function of bias Vb and gate-induced charge ng.

The rate of change of the occupation probability p(n) is given by the master equation for
the SET tunnel rates,

ṗ(n) = p(n+1)
(

Γ
−
1,n+1 +Γ

−
2,n+1

)
+ p(n−1)

(
Γ
+
1,n−1 +Γ

+
2,n−1

)
−p(n)

(
Γ
+
1,n +Γ

+
2,n +Γ

−
1,n +Γ

−
2,n

)
.

(1.10)
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At the steady state, ṗ(n) = 0. The probability p(n) can be obtained from the detailed
balance equation as

p(n) =
p(n+1)

(
Γ
−
1,n+1 +Γ

−
2,n+1

)
(

Γ
+
1,n +Γ

+
2,n

) , (1.11)

with the condition that ∑
∞
n=−∞ p(n) = 1. The tunnel current can be obtained from the

occupation probability p(n) and the tunnel rates as follows,

I ≡ I1 =−I2 =−e
∞

∑
n=−∞

p(n)
(

Γ
+
i,n −Γ

−
i,n

)
; i = {1,2}. (1.12)

The calculated average tunnel current through the SET is plotted in Fig. 1.2 (right), as
function of the applied bias voltage Vb and the gate induced charge ng. The white colored
regions of zero current, form the Coulomb-diamonds, where the transport is blocked.

1.1.3 Charge transport in a QD

We now consider the effects of quantum confinement in addition to the Coulomb interaction
for the charge transport in a Quantum-Dot (QD) junction. According to the De Broglie’s
wave-particle duality theory, every particle has a wave nature with a wavelength determined
by the linear momentum of the particle, called the De Broglie wavelength, λd = h/P, where
h is the Plank’s constant and P is the linear momentum of the particle. In a bulk metal the
electrons are free to move around throughout the metal. They are free from the interaction
with the atoms, as well as from the interaction with the other electrons. The motion of the
electrons can be satisfactorily described by the linear combination of the plane waves, having
a wavelength of the order of few nano-meters, which is much smaller than the size of the
metallic structure itself and hence a classical theory can explain the motion of the electrons in
such a system. If the dimensions of the system are comparable to the wavelength of electrons,
the free electrons in the structure behave like particles trapped in a box, whose motion is
described by the theory of quantum mechanics. The solutions of Schrödinger equation for the
motion of a particle are standing waves confined in the potential well. The energy associated
with each wave function is discontinuous and unequally spaced. Therefore, the continuous
energy spectrum of the free electrons splits into few discrete energy levels, i.e. the electrons
are not allowed to have an arbitrary value of energy, but only certain discrete ones.

The electrostatic behavior of the electrons in the QD can be explained by the constant-
interaction model [19, 20]. It considers that the QD-island can only be occupied by an integer
number of electrons, implying that the total charge of the island is Q = −Ne, N being an
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integer. Therefore at equilibrium an effective potential difference arises between the QD
and the external reservoirs. The total charge in the island is then governed by the external
potentials as

Q = ∑
i

Ci(φ(Q)−Vext,i), (1.13)

where Ci and Vext,i are the corresponding capacitance and the external voltage applied to
the reservoirs. The total capacitance of the QD to the reservoir is C = ∑iCi. The effective
electrostatic potential of the QD at equilibrium can thus be written as

φ(Q) =
Q
C
+φext , (1.14)

where the potential due to the external reservoirs is φext = ∑i
Ci
C Vext,i. Therefore, the electro-

static energy of the QD with N electrons is,

Eel(N)≡
∫ −Ne

0
φ(Q)dQ =

(Ne)2

2C
−Neφext . (1.15)

Due to the discretization of the energy levels, apart from the electrostatic energy, the total
energy of the N electron QD also includes the sum of the distribution of the electrons in the
single particle levels, therefore the total energy of the QD is,

Etotal(N) = ∑
p

ε
p +Eel(N). (1.16)

The chemical potential of the QD w.r.t the Fermi-energy of the reservoir is defined as the
energy required to add an extra electron to the (N +1)th energy level εN+1,

µ(N) = Etotal(N +1)−Etotal(N) = εN+1 − eφext +(N +1/2)
e2

C
. (1.17)

This is the total energy cost for tunneling of an electron. Note that, with some simplification
of the above equation, one can find that the energy cost for tunneling in a QD has an extra
term, compared to the case of ’metallic island’ SET (Eq. 1.9), which comes from the energy
of the particular level εN+1. This arises due to the finite level spacing δE > kBT .

The energy diagram of a N −QD−N junction is shown in Fig. 1.3. The electrons in the
normal metal reservoir are considered to be free described by the Fermi-Dirac distribution.
The QD is presented by a set of discrete energy levels with a finite level spacing δE. In the
sequential tunneling regime, tunnel coupling of the left and right reservoirs to the QD, Γl

and Γr, respectively are considered to be very small compared to both temperature and the
electronic level spacing δE, i.e. h(Γl +Γr)<< kBT , δE.
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Fig. 1.3: Energy diagram of a QD junction The energy diagram of a N −QD−N junction,
where a QD is coupled to two metallic reservoirs via tunnel barriers with the tunneling rates Γl and Γr

for the left and right barrier respectively. A relative bias Vb is applied between the two reservoirs. The
QD is represented by the discrete energy levels. The chemical potential of the QD is shown here. The
energy difference between the two levels is Eadd = 2Ec +δE. In the particular situation shown here,
the conduction is maximum since the QD level is situated at the middle of the bias-window eVb.

Transport of charges in a QD junction with the application of a voltage bias Vb between
the two reservoirs, at a given gate voltage is possible when the applied bias can provide the
required energy-cost for tunneling. In the sequential tunneling regime, the tunneling of the
electrons can be considered as elastic. The conservation of energy for the tunneling of an
electron from the left reservoir with energy E i,l to the pth level of the QD requires that,

ε
i,l = ε

p − eφext +(N +
1
2
)
e2

C
+ηeVb, (1.18)

where ηVb is the voltage drop over the left tunnel barrier. The reverse elastic tunneling from
the pth state of the QD to the left reservoir with energy E f ,l sets the following condition,

ε
f ,l = ε

p − eφext +(N − 1
2
)
e2

C
+ηeVb. (1.19)

For the tunneling through the right tunnel barrier with a voltage drop (1−η)Vb, two other
similar conditions need to be met.
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The tunnel current through the left tunnel barrier can be written as

I =−e∑
p

∑
ni

Γ
l
pP({ni}){δnp,0 f (E i,l)−δnp,1[1− f (E f ,l)]} (1.20)

where P({ni}) is the occupation probability of the QD to be found in the state ni, for a
non-degenerate state ni = 0,1. The steady state condition of rate equation for the occupation
probability gives a set of detailed balance equations. One needs to solve them to calculate
the tunnel current exactly. A linear-response theory to solve the detailed balance equation
has been given by Beenakker [21], an extension of a classical theory by Kulik et al. [22], by
considering that the equilibrium distribution of the electrons in the QD levels is governed by
the Gibbs distribution. Following the review [21], the tunnel current and the conductance
GQD = (I/Vb) |Vb→0 can be calculated analytically. For h̄Γ << kBT << δE, the conductance
of the N −QD−N junction at a finite temperature can be written as,

GQD =
e2

4kBT
ΓlΓr

Γl +Γr cosh−2
(

∆min

2kBT

)
, (1.21)

where ∆min = µ (Nmin) (Eq. 1.17) is the minimum energy gap to add an electron to the QD,
Nmin is defined such that the probability P(N) is negligible for all other non-integer states,
i.e., N ̸= Nmin and N ̸= (Nmin −1).

The charge transport though the QD junction is possible with the application of a voltage
bias Vg on the gate, with a constant bias on the reservoirs. The electrostatic potential by
the gate induced charges Qext =CgVg = eng can reduce the total energy gap for tunneling
(Eq. 1.17) and hence transport becomes possible. A peak in conductance is observed when
the total energy cost of tunneling becomes zero, i.e. µ(N) = 0 for some integer N = Nmin.
Therefore, we can write from Eq. (1.17) with µ = 0

eφext = εN+1 +

(
N +

1
2

)
e2

C
. (1.22)

Substituting φext ≡ Qext/C = CgVg/C = αVg, where α = Cg/C is the gate coupling factor,
we can rewrite the above equation as

eαVg = εN+1 +

(
N +

1
2

)
e2

C
. (1.23)

Therefore, the conductance of the QD junction oscillates with the gate voltage Vg and obtains
its maximum whenever the above condition (Eq. (1.23)) is satisfied. In each period the
number of electrons in the QD is changing by one. The periodicity of the oscillations can be
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Fig. 1.4: Conductance of a QD junction Line-shape for the conductance of a QD junction at
different temperatures based on Eq. 1.21. G0 is the maximum conductance given by the prefactor in
the same formula, depending on the tunnel rates.

obtained from Eq. (1.23) as,

Eadd = eα∆Vg = δE +2Ec, (1.24)

where δE is the level-spacing. The calculated conductance for a QD junction based on
Eq. (1.21) is shown in Fig. 1.4. A schematic of the stability diagram of the QD junction
conductance in the Vg −Vb plane is shown in Fig. 1.5.

Coulomb-diamond analysis

Analysis of the stability diagram of the conductance is very useful for characterizing the QD
junction, in order to extract different relevant parameters, including the charging energy of
the dot Ec, the capacitances of the dot to the leads Cs, Cd and the asymmetry between them,
the gate coupling factor α , the level spacing of the quantized energy levels δE etc. [23, 24].

If we first consider the ground state of the quantized electronic levels in the dot, the
current-voltage characteristics of the QD junction consist of sharp steps whenever the chemi-
cal potential of the dot aligns with the chemical potential of the leads and constant current
plateaus when the dot’s chemical potential lies in between. The sharp steps give rise to
peaks in conductance at a constant gate voltage. The positive and negative slopes of the
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Fig. 1.5: Stability diagram of a QD junction Schematic of charge stability diagram for a
QD junction. The diamond shaped regions have a stable charge and are well known as Coulomb
diamonds. Charge transport is blocked in this region. The meeting point of the two charge diamonds
is called the charge degeneracy point with vanishing charging energy. The line structures outside the
Coulomb-blockade region are corresponding to different levels of the QD.

Coulomb diamonds edges correspond to a particular combination of bias voltage (Vb) and
gate voltage (Vg) on the Vb −Vg plane (Fig. 1.5), for which dot’s chemical potential aligns
to that of the source and drain respectively. These situations are determined by the energy
conservation relations (one such equation is given by Eq. (1.18)) for the tunneling in or out
of the dot through the tunnel barriers. Solving the energy conservation relations, we find that
the positive and negative edges of the Coulomb diamonds (Fig. 1.5) are characterized by the
following two linear equations respectively,

Vb = βVg + k,

Vb =−β
′Vg + k.

(1.25)

The positive slope of the diamond is β =Cg/(Cd +Cg), while negative slope is β ′ =Cg/Cs,
where Cs,Cd,Cg being the capacitance between the dot and source, drain and the gate
respectively. The total capacitance of the dot with the environment is C =Cs +Cd +Cg. The
constant k in Eq. (1.25) represents the potential of the dot in the absence of any external
voltage. The slopes of a diamond therefore characterize a specific QD. As we will see in the
experiment (Sec. 2.2.4) that the deposition of nano-particles is a stochastic process and there
can be more than one particle coupled to the leads at different gate voltages, the slopes of
the diamond can help us to easily identify a particular nano-particle, with periodic diamonds
corresponding to the same nano-particles.
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The slopes of the diamond edges provide information about the asymmetry in the capaci-
tive coupling of the dot to source and drain. This is given by,

Cd

Cs
= β

′(
1
β
−1). (1.26)

The gate coupling factor α , also known as the lever-arm, is defined as the effective change
in the chemical potential of the dot per unit voltage applied on the gate, α = ∆µ

∆Vg
. It can be

directly obtained from the two slopes of the diamond edges as,

α =
Cg

C
=

1
( 1

β
+ 1

β ′ )
(1.27)

The charging energy of the dot is determined by the extents of the Coulomb diamonds along
the both axis. We have seen that the conductance peaks are observed when the applied
gate voltage satisfies the condition of Eq. (1.23), which leads to a period of oscillation
Eadd = (2Ec + δE). If we consider the zero bias line along the ng axis, the addition of
an extra electron into the next closest ground state of the dot is only possible when the
applied voltage on the gate can provide the required additional energy Eadd. Therefore, the
horizontal extent of the diamond in Fig. 1.5 is given by ∆Vg = Eadd/αe. In a similar manner,
if we consider a constant gate voltage at the middle of the Coulomb diamond, the Coulomb
blockade is lifted when the applied bias voltage can provide the required energy Eadd and the
extent of the diamond along the bias axis (Fig. 1.5) is ∆Vb = Eadd/e. Therefore the extents
of the Coulomb diamonds can easily give an estimate of the addition energy Eadd.

The conductance map of the QD can also be used as a spectroscopic tool to observe the
quantization of the energy and to get a direct estimate of the spacing between two electronic
levels. The ground-state of a particular level of the QD gives rise to the highly conductive
Coulomb edge when it aligns with the chemical potential of the leads. If we further increase
the bias voltage (w.r.t drain), at some value of the bias voltage, the chemical potential of the
source become equal to the chemical potential of the first excited state of the dot. In this
situation, the bias-window (eVb in Fig. 1.3) holds both the ground state and the first excited
state of the QD level and therefore two channels are available for the transport through the
same charge state. A sharp step in current and a peak in the conductance is thus expected.
This is shown as highly conductive line-structures running parallel to the Coulomb edges in
Fig. 1.5. Every highly conductive line for the excited state intersects with the Coulomb-edge
of its own ground state. Therefore the level spacing can be obtained from the value of Vb at
which the line intersects with the Coulomb edge, measured from the zero bias line given by,
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δE = (eδVb/2), where δVb is the bias voltage at which the line intersects with the Coulomb
edge.

Another important parameter of the QD is the tunneling rate of electrons from the leads
to the QD. This can be directly obtained from the steps in the current across the QD as
a function of Vb. The height of the steps for negative and positive bias voltage give the
asymmetry in the tunnel coupling of the dot to the leads. The tunneling rates from source Γl

and from drain Γr to the dot are given by [25],

I+ = 2|e| ΓlΓr(
2Γr +Γl

)
I− =−2|e| ΓlΓr(

Γr +2Γl
) (1.28)

where I+ and I− are the steps in the IQD −Vb characteristics for positive and negative bias
respectively.

1.1.4 Higher order transport: co-tunneling

Till now we have considered the charge transport only by first-order tunneling events through
the metallic-island SET or the QD. The latter is suppressed exponentially with temperature,
inside the Coulomb blockaded region (can be seen from Eq. (1.21) for QD). At low enough
temperature, higher order tunneling events can become the dominant process of charge
transport inside the Coulomb-diamonds. This is commonly known as co-tunneling processes
since they involve the simultaneous tunneling of multiple electrons [26]. Although the
total energy in the process is conserved, these tunneling events may leave the electronic
distribution of the island in an excited state, depending on which the co-tunneling events are
classified as elastic and in-elastic. The co-tunneling process is called in-elastic when at the
end of the tunneling process the electronic distribution in the island remains in an excited
state. Otherwise if the virtual process occurs through the ground-state and the electronic
distribution of the island remain in its ground-state, it is called elastic co-tunneling.

In a metallic-island SET , co-tunneling occurs through many levels [28–30]. The process
is present for a strong coupling between the island and the leads. Off-resonance and at low
temperature the onset of co-tunneling is determined by the condition, ∆N >> kBT , where
∆N is the charging energy gap given by Eq. (1.9).

In a QD junction, when tunnel the couplings of the QD with the leads are very strong,
so that the tunneling conductance is comparable to the quantum of conductance 2e2/h,
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Fig. 1.6: Conductance map of a QD in the presence of co-tunneling for four charge states
(Adapted from De Franceschi et al. [27]) Co-tunneling is present inside the Coulomb diamonds. For
the odd diamonds (N = 1, 3), co-tunneling processes are fully elastic, while for the even diamonds (N
= 2, 4), co-tunneling is elastic only for a bias eVb . ±δE, shown by the dotted line. The inelastic
co-tunneling sets in for a bias |eVb|& δE.

the second-order tunneling of electrons becomes non-negligible. As a result a non-zero
conductance is observed inside the Coulomb diamonds.
The elastic co-tunneling occurs near zero bias, where the virtual tunneling of one electron
from the ground state E(N) of the QD to the low-energy reservoir, leads to the tunneling of
another electron from the high energy reservoir to the ground state of the QD, leaving the
QD in its ground state. This virtual two-electron process transfers an electron from the left to
the right reservoir.
In the case of inelastic co-tunneling, an electron tunnels to the excited state E∗(N) of the
QD from the high-energy reservoir, followed by the virtual tunneling of an electron from
the ground state E(N) to the low-energy reservoir. As a result, the electronic distribution of
the QD is left in the excited state, with an extra energy of |E(N)−E∗(N)|= δE. This extra
energy is supplied by the external bias eVb. Therefore, the onset of the inelastic co-tunneling
inside the Coulomb diamond is set by the external bias |eVb|& δE.
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The co-tunneling transport in a vertical QD embedded in an InGaAs layer has been
measured by De Franceschi et al. [27]. Fig. 1.6 shows the conductance map of the QD
junction for four charge states. The strong tunnel coupling of the island with the leads
allows the co-tunneling to set-in inside the Coulomb diamonds, producing a non-vanishing
conductance. For the odd Coulomb-diamonds, the transport processes are solely governed by
elastic co-tunneling, since the addition energy, Eadd ≡ Ec < δE. But for the even diamonds
Eadd ≡ Ec +∆(N)> δE and hence a co-existence of both elastic and inelastic co-tunneling
is found. For low bias, transport is dominated by elastic co-tunneling, while inelastic
co-tunneling sets in for |eVb|& δE.

1.1.5 Spin correlation: Kondo effect

In a metal, the resistivity at high temperature is related to the interaction of electrons with both
electrons and phonons, but as one goes to the low temperature limit, the phonon contribution
reduces as T 5 and below the Debye temperature the resistivity is only due to electron-electron
interaction and it is expected to saturate. But instead of saturation, for an impure-Au an
increase of the resistivity at low temperature was observed, exhibiting a minimum in the
resistance versus temperature curve [31]. The same effect was also evidenced in the low
temperature resistivity measurement of alloys with specific amount of magnetic impurity [32].
This was first explained by J. Kondo [33], taking into account an anti-ferromagnetic coupling
between the spin of the impurity in the metal and the conduction electrons. He predicted a
logarithmic increase of the resistivity at low temperature, which eventually diverges with
temperature. But this logarithmic divergence of the resistivity is unphysical. This problem
was solved by Wilson by introducing the renormalization group (RG) theory [34]. According
to this theory, below a characteristic temperature, known as the Kondo temperature TK,
the anti-ferromagnetic impurity forms a singlet with the conduction electrons. For T > TK

the impurity spin interacts with only few electrons, but for T < TK due to the presence of
Kondo-correlation it is fully screened by the delocalized electrons forming Kondo spin-cloud.
The full screening of the impurity spin increases the scattering cross-section and hence
the resistivity increases. The situation is illustrated in Fig. 1.7(a). Later the numerical
renormalization group (NRG) was introduced by Costi et al. to obtain the full temperature
dependence of the transport coefficients [35, 36].

In the previous section, we have discussed the higher order co-tunneling transport through
the QD junction, but till now we have not considered the spin of electrons. However, co-
tunneling with the spin-conserved transport of electrons can give rise to very interesting
features in the transport properties, known as Kondo effect. This effect arises in a metallic-
island-SET or in a QD when the doubly degenerate state of the island is occupied by a single
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Fig. 1.7: Kondo spin-cloud and the emerging density of states (a) Schematic representation
of the unpaired spin of the impurity in the metal surrounded by the delocalized spin of the conduction
electrons. Above a characteristic temperature TK, the impurity spin is surrounded by only few spins,
but below TK, the impurity spin is fully screened by the delocalized spin, forming a cloud of spin
known as Kondo cloud. (b) Energy diagram of the QD in the presence of Kondo correlation at a
temperature T < TK. The formation of Kondo cloud opens up a new channel of transport through the
tunnel barrier, as a result a new density of states for the electrons emerges near Fermi level.

electron, restricted by the finite charging energy, exhibiting a non-zero spin and hence acting
as a magnetic impurity in the system. The Kondo effect in an SET tunnel junction structure
has been studied for around two decades after the first observation in a lithographically
defined SET on 2DEG system [37].

In the case of a metallic-island-SET or a QD, the Kondo effect however enhances the
conductance rather than the resistance [38, 39], because, the transport process here is the
tunneling of electrons and the tunnel current is proportional to the available density of states.
The formation of the Kondo-cloud below TK (Fig. 1.7(a)) emerges a peak in the density of
states near Fermi energy, which opens up a new channel of transport within the energy range
of kBTK around the Fermi energy. This is know as the Kondo-resonance, as shown in Fig.
1.7(b).

The transport in the Kondo regime can be described by the Anderson model for magnetic
impurities in metal [40]. The Hamiltonian of the QD system is then given by,

H = ∑
k,σ

εkc†
kσ

ckσ +∑
σ

εnd†
σ dσ +Ud†

↑d↑d†
↓d↓+∑

k,σ

(
νkd†

σ ckσ +ν
∗
k c†

kσ
dσ

)
, (1.29)

where the first term describes the kinetic energy of the free electrons in the reservoirs, the
second term represents the energy of the localized electron εn in the spin-degenerate level,
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the third term includes the interactions for the localized electrons in terms of the charging
energy U to add the second electron in the same level, while the last term represents the spin
conserving tunneling events between the reservoir and the QD levels with strength νk.

The final term in the Hamiltonian for the interaction between the conduction electrons
and the QD can be written in terms of the Kondo-Hamiltonian with a antiferromagnetic
coupling J as [33, 41, 42]

Hint = Jscond.SQD, (1.30)

where SQD is the net spin of the QD and scond is the spin operator for the conduction electrons.
The binding energy of the Kondo spin-singlet is expressed by the Kondo temperature,

which can be written in terms of the experimental parameters of a QD device as,

TK =

√
ΓU
2

exp
(

πεn(εn +U)

ΓU

)
, (1.31)

where εn is the energy of the QD state measured from the Fermi energy and Γ is the tunneling
rate of electrons. This dependence of TK is valid for εn < 0 and εn +U > 0, but as one tunes
the QD level towards the degeneracy such that εn → 0 and εn+U → 0, the above dependence
of TK breaks down. This is the mixed valence regime, where the charge fluctuation on the
resonant level becomes important.

The temperature dependence of the conductance at the Kondo-resonance is expressed by
the empirical formula [43]

G(T ) = G0

(
T ′2

K
T 2 +T ′2

K

)s

, (1.32)

where T ′
K = TK/

√
21/s −1, G0 is the zero temperature limit of the Kondo-conductance,

s = 0.22 for spin-1/2 Kondo-effect. The Kondo temperature TK is defined from the above
formula as the characteristic temperature at which the conductance dropped to the half of its
zero temperature limit G0, i.e. G(TK) = G0/2 [35, 43].

Spectral density of a Kondo-correlated QD

The spectral densities of the QD junction were obtained by Costi et al. [35] from the
numerical solution of the Anderson model. The spectral density of the QD depends mainly
on three parameters, the charging energy gap U , the tunnel coupling Γ and the level position
εn. Depending on the position of the QD levels, the spectral density of the QD for a strong
coupling regime U/πΓ >> 1 is categorized into symmetric and asymmetric cases.
For an example lets consider U/πΓ = 4, then in the symmetric case, εn/Γ ≡−U/2Γ =−2π ,
i.e. for a gate voltage corresponding to the middle of the Coulomb valley. The QD levels
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Fig. 1.8: Spectral function of a Kondo-correlated QD (Adapted from Costi et al. [35]) (a)
spectral function of a Kondo-correlated QD at T = 0, for symmetric level position, εn/Γ =−2π and
for three asymmetric level positions εn/Γ =−4,−3,−2, where Kondo resonance still persists. Inset
shows that Kondo resonance is pinned to the Fermi level (ω = 0) for the symmetric case, while for
asymmetric case Kondo-resonance is shifted slightly above Fermi energy with increasing asymmetry.
(b) Spectral function at T = 0, for a more asymmetric case where QD is in the mixed valence and
empty orbital regime. Here the Kondo resonance is overcome by the Coulomb-peak.

are situated symmetrically on both sides of Fermi-energy EF = 0 at ±U/2. In the low
temperature limit, T << TK, the spectral density in this case shows a Kondo-resonance of
width kBTK, situated exactly at the Fermi-energy, along with the two resonance peaks at
±U/2 having a width Γ, as shown in Fig. 1.9(a). The calculated spectral function is shown
in Fig. 1.8 (a) with εn/Γ =−2π [35].
For a gate voltage slightly off from the middle of the Coulomb-valley, the QD levels are
asymmetrically placed around the Fermi energy at εn > −U/2 and (εn +U), this is the
asymmetric case. In this case, if the energy of the QD level, measured from the Fermi energy,
is greater than Γ, i.e. −εn/Γ > 1 (for the QD level below the Fermi-energy, εn < 0), the
Kondo-resonance is shifted slightly above the Fermi-energy, due to the influence of the
closest quantum level. The spectral density for the asymmetric case is shown in Fig. 1.9(b).
The calculated curves in this regime for εn/Γ =−2,−3,−4 are shown in Fig. 1.8 (a) [35].
On further change of the gate voltage from the mid-valley position, the QD level is brought
closer to the Fermi-energy. For −εn/Γ < 1 (for the QD level below the Fermi-energy, εn < 0),
i.e. when the QD level is within Γ from the Fermi energy, the charge fluctuations start to
appear and the Kondo resonance vanishes with the appearance of the Coulomb peak; this
is considered as the mixed valence regime. For εn/Γ > 0, the QD is considered to be in the
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Fig. 1.9: Spectral density of a Kondo-correlated QD junction Spectral density of a Kondo-
correlated QD at T = 0, in the strong coupling regime with U/πΓ = 4 for two cases, (a) Symmetric
case, with εn/Γ =−U/2Γ =−2π , where the QD levels are situated symmetrically at ±U/2 w.r.t the
Fermi energy EF = 0 and the Kondo resonance is situated exactly at EF = 0. (b) for the asymmetric
case, with an asymmetry in the QD level position εn >−U/2 and εn <−Γ, the Kondo resonance is
shifted slightly above the Fermi-level within the energy window of kBTK.

empty orbital regime in this model [35]. In the mixed valence and empty orbital regime, the
spectral density has two peaks, one at εn with a width Γ and another much broader peak at
εn +U . The spectral density for a QD in this regime is shown in Fig. 1.8(b) [35].

1.2 Thermal and Thermoelectric Transport in Quantum
Devices

In this section we discuss the thermal and thermoelectric transport in SET and QD junc-
tions. The interaction between charge and heat transport is discussed by introducing the
thermoelectric coefficients (Sec. 1.2.1). A pure thermal transport is considered for an SET
in sequential and co-tunneling regimes (Sec. 1.2.3). Then we consider the thermal and
thermoelectric transport in a QD junction and the effect of co-tunneling on thermoelectric
transport (Sec. 1.2.4). The thermoelectric behavior of a Kondo spin-correlated QD junction
is considered in the last part of this section (Sec. 1.2.5). In the end a qualitative comparison
for the thermopower of a QD junction in different regimes is presented (Sec. 1.2.6).
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1.2.1 Combined charge and heat transport: thermoelectricity

The transport of electrons in a conductor simultaneously carries both charge and heat currents.
Therefore, the latter can not be considered as independent processes. The transport equations
for these two irreversible processes near-equilibrium are in general described by the Onsager
transport equations of generalized fluxes Ji and their conjugate forces X j as [44, 45]

Ji = ∑
j

Li jX j (1.33)

where Li j are the transport coefficients. The diagonal elements of the transport coefficient
matrix, i.e. i = j, link the fluxes to their fundamental forces, while the off-diagonal terms
with i ̸= j represent the generation of the fluxes due to the indirect forces. The Onsager
reciprocal relation relates the off-diagonal terms, indicating that, in linear response regime,

Li j = L ji. (1.34)

To use the above transport equations in thermoelectric transport, one needs to identify the
proper fluxes and the corresponding forces. In thermoelectric transport, the particle current
induces the fluxes of electric current J and heat Q, the corresponding forces can be identified
from the equivalent transport equations of particle and energy currents [45, 46] as 1

eT ∇µ and
∇( 1

T ), where µ is the chemical potential. Considering a parallel flow of electric current Ie

and heat current Iq along the x-axis with a voltage difference ∆V = ∆µ/e and a temperature
difference ∆T , the transport equations can be written in the matrix form as,(

Ie

Iq

)
=

(
L11 L12

L21 L22

)(
∆V/T
∆T/T 2

)
, (1.35)

where the matrix on the left hand side of the equation indicates the scalar form of the
thermodynamic fluxes and the right hand column matrix represents the thermodynamic
forces involved in the thermoelectric transport. The elements of the square matrix on the right
side gives the transport coefficients, which can be expressed in terms of the experimentally
measurable variables.

The electrical conductance G is defined as the charge current per unit voltage difference
for an isothermal system,

G =

(
Ie

∆V

)
∆T=0

=
L11

T
. (1.36)
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The thermal conductance κ is defined as the heat current per unit temperature gradient
for zero charge current,

κ =

(
Iq

∆T

)
Ie=0

=
1

T 2

(
L22 −

L12L21

L11

)
. (1.37)

The first off-diagonal element, L12 comes from the Seebeck effect, the generation of
an electrical potential difference due to a temperature gradient between the two ends of a
conductor. The thermopower or the Seebeck coefficient S is defined as the opposite of the
generated potential difference per unit temperature gradient,

S =−∆V
∆T

=
1
T

L12

L11
. (1.38)

In equilibrium, the electrical energy required to transfer an electron from the hot side to the
cold side compensates the thermal energy. Therefore, the thermopower S is essentially the
measure of entropy flux per transported charge.

The other off-diagonal term L21is related to the generation of a temperature gradient
between two ends of a conductor due to the applied potential difference, known as Peltier
effect. The Peltier coefficient is defined as,

Π =
L21

L11
=−⟨ε⟩

e
. (1.39)

The Onsager reciprocal relation then gives the relation between Π and S as, Π = ST .
The Wiedemann-Franz law relates the electrical conductance to the thermal conductance.

It dictates that for any metal the thermal conductance κ is proportional to its electrical
conductance G and the absolute temperature T [47, 48],

κ = L0GT, (1.40)

where L0 = π2k2
B/3e2 is the Lorenz number. This law is valid for most of the systems

where one can safely assume that both charge and heat transport undergo the same scattering
mechanism. However, a strong deviation from this law is expected for a system where the
scattering mechanisms for charge and heat are affected by interactions, for example in a VO2

nano-wires near a metal-insulator transition [49].
The Mott’s law relates the thermopower S to the energy dependent electrical conductivity

G as [50, 47],

S =−eL0T
[

∂ ln(G(E))
∂E

]
E=EF

, (1.41)
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which is valid for classical systems with EF >> kBT . The sign and magnitude of ther-
mopower then depends on the density of states of the system near Fermi energy. Bulk
materials with strongly varying density of states near Fermi energy exhibit large thermopower
and they are considered as good thermoelectric materials.

1.2.2 A heat engine

We introduce here the general ideas of a heat engine and the relevant quantities. A thermo-
electric system operates as an engine converting heat into electrical work (the opposite one
is a refrigerator), which can be used for extracting some useful work. The efficiency of the
engine for converting heat into work is defined by the ratio of the power generated by the
engine Pout to the heat input Hin from the hot reservoir,

η =
Pout

Hin
. (1.42)

Since one cannot generate work directly from a heat reservoir, an engine works between two
reservoirs kept at two different temperatures.

According to the second law of thermodynamics, all natural processes are irreversible
and hence the maximum achievable efficiency η of a realistic engine is always less than the
efficiency ηc of a reversible Carnot engine operating between a hot reservoir at temperature
Th and a cold reservoir at a temperature Tc [46],

ηc =

(
1− Tc

Th

)
. (1.43)

Therefore the maximum efficiency ηc < 1.
Since a reversible process is always carried out quasi-statically, the Carnot engine in

principle takes an infinite time to complete a cycle, with no change in entropy. The output
power of the Carnot engine therefore is zero and it is not very useful for practical purpose.
Instead, a common practice is to optimize the efficiency of the engine at maximum power.
Therefore a more realistic limit for the efficiency of a heat engine is given by Curzon-Ahlborn
efficiency ηCA [51],

ηCA =

(
1−
√

Tc

Th

)
. (1.44)
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The efficiency of an engine can also be expressed in terms of a dimensionless quantity, called
the figure of merit, ZT, defined as

ZT =
L12L21

L11L22 −L12L21
=

GS2T
κ

, (1.45)

using the relations between the transport coefficients and the experimentally measurable
variables, Eq. (1.36)-(1.38). The thermal conductance κ = κe+κph contains the contribution
from both electrons and phonons. The coefficient ZT can be interpreted as the ratio of the
rate of work done by the engine (G∆V 2) and the direct heat flow through the system (κ∆T ).
The efficiency η can be written in the form of the ZT factor and the maximum efficiency ηc

in the following way [1],

η = ηc

√
ZT +1−1√
ZT +1+1

. (1.46)

So that for a high efficiency one needs to achieve a high ZT factor. The goal for any heat
engine is to improve the ZT factor. This can be done by improving the power factor Q = GS2,
while at the same time reducing κ . But in reality these two are interrelated (Eq. (1.40)),
hence the main challenge for an efficient thermoelectric engine is to separate the heat and
charge transport channels and to reduce the phonon contribution of thermal conductance.
There is no theoretical limit on ZT factor, it is infinite for a Carnot engine. An engine with
ZT ∼ 1 is considered to be highly efficient. To the date, ZT = 2.5 is the record maximum
value of the ZT factor, obtained in SnSe crystals [52].

1.2.3 Thermal transport in SET

Before going to the heat transport in an SET , let us first consider the heat flow in a single
tunnel junction. Extending the theory in Sec. 1.1.1 for charge tunneling in a single tunnel
junction between two electronic reservoirs labeled by 1 and 2, the average heat current by
tunneling can be determined from the tunnel rates. The average rate of heat generated in
the reservoir 1 for the tunneling from 1 to 2 is given by the average energy carried by each
electron with tunnel rate Γ1→2 as,

Q̇1
1→2(∆E)≈ 1

e2RT

∫
dεεn1(ε)n2(ε −∆E) f1(ε)[1− f2(ε −∆E)], (1.47)

and similarly for the backward tunneling from 2 to 1 with tunnel rate Γ2→1, the average rate
of heat generated in reservoir 1 is,

Q̇1
2→1(∆E)≈ 1

e2RT

∫
dεεn1(ε)n2(ε −∆E) f2(ε −∆E)[1− f1(ε)]. (1.48)
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Note that there is an extra energy term in the Eq. (1.47) and (1.48) compared to the tunnel
rate equations in Eq. (1.4), coming from the energy of the electron tunneling in or out from
the reservoir. The total heat generated in the reservoir 1 is

Q̇1 =
(
Q̇1

1→2 − Q̇1
2→1
)
. (1.49)

For an SET , the rates of heat flow in and out, Q̇±
i,n for the leads 1, 2 and Q̇I±

i,n for the island I,
in the forward (+) and backward (-) tunneling processes are indicated in Fig. 1.1. Following
the similar formalism as in a single tunnel junction, these heat fluxes in the SET leads and
the island can be determined from the corresponding tunnel rates Γ

±
i,n, described in Sec. 1.1.2.

The heat fluxes in and out of the SET island are respectively given by,

Q̇I+
i,n =

1
e2RT,i

∫
dε

(
ε −∆E+

i,n)
)

ni(ε) fi(ε)[1− fI(ε −∆E+
i,n)], (1.50)

and
Q̇I−

i,n =
1

e2RT,i

∫
dεεni(ε −∆E−

i,n) fI(ε)[1− fi(ε −∆E−
i,n)], (1.51)

where ∆E±
i,n is the energy cost of tunneling given by Eq. (1.9). These two heat flow equations

represent the average heat produced and evacuated from the island by the tunneling of
electrons from the ith lead respectively. In the same manner, the heat power produced or
evacuated in the SET leads are given by,

Q̇+
i,n =

1
e2RT,i

∫
dεεni(ε) fi(ε)[1− fI(ε −δE+

i,n)], (1.52)

and

Q̇−
i,n =

1
e2RT,i

∫
dε

(
ε −δE+

i,n)
)

ni(ε −δE−
i,n) fI(ε)[1− fi(ε −δE−

i,n)]. (1.53)

The net power extracted from the island due to all single charge tunneling processes in the
junction i is given by,

Q̇I
i =

∞

∑
n=−∞

p(n)
(

Q̇I−
i,n − Q̇I+

i,n

)
, (1.54)

and similarly, the heating power injected into the lead i is,

Q̇i =
∞

∑
n=−∞

p(n)
(

Q̇−
i,n − Q̇+

i,n

)
. (1.55)

In the absence of net electric current though the SET , Q̇i = Q̇I
i .
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Thermoelectric coefficients for SET

Similar to the electrical conductance of an SET , the thermal conductances is also gate voltage
dependent. The ratio between the two conductances gives the Lorentz ratio, L/L0, where
L0 is the Lorenz number. According to Wiedemann-Franz law, the Lorenz ratio is 1. For
the transport in an SET , scattering of the electrons is energy dependent due to the strong
Coulomb interaction and as a result the Lorenz ratio becomes gate voltage dependent. The
thermoelectric coefficients for an SET have been calculated by Kubala et al. [13] using a
perturbation expansion of the spectral density in the tunnel conductance of the system.

Fig. 1.10: gate voltage and temperature dependence of Lorentz ratio for an SET (Adapted
from Kubala et al. [13]) (a) Calculated Lorentz ratio for an SET as function of gate voltage at different
fixed temperature (b) Temperature dependence of the Lorentz ratio for different gate positions. The
tunnel coupling is taken as α0 = Rq/RT = 0.01, where Rq = h/4π2e2, RT is the tunnel resistance.

In the sequential tunneling regime, i.e. for the charging energy, Ec > kBT and kBT >>∆N ,
the Lorentz ratio is given by,

L
L0

= 1+
∆2

N

4π2k2
BT 2 , (1.56)

where ∆N = Ec[1+ 2(N − ng)] is the charging energy gap for the Nth charge state, which
can be controlled by an external gate voltage. From Eq. (1.56) we can see that, for half
integer values of the gate induced charge ng =CgVg, the charging energy gap ∆N vanishes
and L = L0. Therefore for the charge degeneracy points (half integer value of ng), where
the transport involves only two charge states, the electron scattering mechanism remains
unaffected and as a result the Wiedemann-Franz law is satisfied. But as we move away from
the charge degeneracy point, the Lorenz ratio increases quadratically with ∆N and becomes
maximum at the charge off-degeneracy point (integer value of ng). This is because, away
from the degeneracy point, the presence of a finite charging energy gap ∆N allows only those
electrons which have enough energy to cross the charging energy barrier and therefore a
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successfully tunneled electron carries an extra energy compared to what it is expected to
carry in the absence of charging energy. This increases the Lorentz ratio away from charge
degeneracy point, causing a violation of the Wiedemann-Franz law. The evolution of the
Lorenz ratio with the gate induced charge in this regime is shown in Fig. 1.10(a), indicated
by a dashed line for kBT = Ec/10.

In the high temperature regime, kBT >> Ec, the Coulomb oscillations are washed out.
The gate voltage dependence of Lorenz ratio is shown in Fig. 1.10(a) by a dotted line for a
temperature kBT = Ec/2. The Lorenz ratio in this regime is only slightly grater than 1.

Fig. 1.10(b) shows the temperature dependence of the Lorenz ratio for different gate
positions. The curves again confirm that the Lorenz ratio is slightly above 1 for high
temperature regime (kBT >> Ec) and increases to a certain maximum value, depending on
the gate position, for a temperature kBT < Ec.

Sequential transport is suppressed exponentially with lowering the temperature, as one
goes away from the degeneracy. In the low temperature regime, kBT << ∆N , at off degen-
eracy, higher order co-tunneling processes become the dominant transport process. This
involves multi-electron processes via virtual tunneling (see Sec. 1.1.4). In this regime, the
scattering is weakly dependent on energy and as a result the Lorenz ratio decreases and
reaches a constant value

L
L0

=
9
5
. (1.57)

The evolution of the Lorenz ratio with gate voltage in this regime is shown in Fig. 1.10 by
the solid line for kBT = Ec/40.

1.2.4 Thermoelectric transport in QD

The discussion in Sec. 1.2.1 indicates that a good thermoelectric material needs a strongly
varying spectral function near Fermi energy. The discreteness in the energy spectrum of
a QD can provide a strongly asymmetric spectral density around the Fermi energy of the
system and hence can produce a strong thermoelectric signal. The electrical conductance of
a QD junction was already discussed in Sec. 1.1.3, here we will discuss the thermopower in
a QD junction.

Thermopower of a QD

Apart from the electrical conductance (G), the thermopower can be used as a spectroscopic
tool in a QD junction which can give an information about the average energy transfer by the
transport electrons, to which electrical conductance has no access.
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The electric current produced in a QD junction, in the presence of a voltage bias ∆V
and a thermal gradient ∆T across it, is contributed by electric and thermal origin and can be
written by Eq. (1.35) as

I = G
∆V
T

+GT
∆T
T 2 , (1.58)

where GT ≡ L12, the thermoelectric coefficient that describes the current response to temper-
ature difference. In Chapter 5 we will see that, the measurement of this thermocurrent gives
a direct measurement of the thermopower S of the QD. This was defined above (Sec 1.2.1)
as the voltage gradient generated per unit temperature gradient for zero current response. It
can be understood as the external voltage bias that is required in order to compensate the
thermally originated voltage (called thermovoltage VTh) per unit temperature bias ∆T , for a
zero current response. Therefore the thermopower can be written from Eq. (1.58) with the
condition I = 0 as,

S =−
[

∆V
∆T

]
I=0

=
1
T

GT

G
=−⟨ε⟩

eT
, (1.59)

where GT/G is the Peltier coefficient Π of the device. The last term in the above equation
follows from Eq. (1.39) and ⟨ε⟩ is the average energy carried by the electrons.

The thermopower for a QD in the linear response regime considering h̄(Γl +Γr)<< kBT
has been presented by Beenakker et al. [7], both in the classical-limit with kBT >> δE and
in the low temperature quantum-limit with kBT << δE, where δE is the level spacing of the
QD. It is also assumed for simplicity that the tunneling rates are energy independent. The
resulting thermopower from this theory, in the classical-limit is given by,

Sseq
cl =−∆min

2eT
, (1.60)

where ∆min = µ(Nmin) is the minimum energy to add an extra electron to the QD as defined
by Eq. (1.17). The thermopower in this regime can be interpreted in terms of the average
energy carried by the electrons, using Eq. (1.59). According to Eq. (1.60), in the zero
temperature limit, the thermopower S has a sawtooth line-shape around zero as a function of
the energy of the QD, tuned by the gate voltage. The period of sawtooth oscillation is the
same as the Coulomb oscillations in electrical conductance. The behavior of the thermopower
oscillation is shown in Fig. 1.11. One can notice that S crosses zero twice in a same period,
once abruptly at the middle of the Coulomb valley (charge off-degeneracy) and a second
time smoothly at the charge degeneracy point, aligned with the Coulomb peak of electrical
conductance. This can be understood from a simple picture of sequential charge tunneling.
First, at the charge degeneracy point, the level of the dot is aligned with the Fermi energy of
the leads and the spectral density of the QD possesses a symmetry around the Fermi level of
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Fig. 1.11: Thermopower of a QD in the sequential tunneling classical limit The evolution of
thermopower of a QD junction with gate voltage (ng =CgVg), according to the linear response theory
by Beenakker et al. [7] for zero temperature limit. At finite temperature the sharp sawtooth signal
smears out. The Coulomb peaks of electrical conductance G are also shown for comparison. The
thermopower is zero at each charge degeneracy point. Thermopower jumps abruptly at the center of
Coulomb valley.

the leads. As a result the thermopower becomes zero due to electron-hole symmetry. Second,
at the middle of the Coulomb valley i.e. at the charge off degeneracy point, two consecutive
levels of the QD are situated above (the (N +1)th state) and below (the Nth state) the Fermi
energy of the two leads at an equal distance of Ec. This situation also possesses a symmetry
around the Fermi energy and hence the thermopower is zero again. But if one tunes the gate
slightly away from the center of Coulomb-valley, the symmetry is broken and one of the
contribution (either electron or hole) dominates with an average energy Ec/2. Therefore,
being slightly off from the center of Coulomb-valley on either side causes a maximum of the
thermopower at T = 0, Smax =±Ec/2eT =± e

4CT , using Eq. (1.60). As we go away from
the center of the Coulomb-valley, the thermopower increases linearly with the energy of the
dot, with a slope 1/2eT . It crosses zero at degeneracy and continues to increase until the
middle of the next Coulomb-valley before falling back to zero at the charge off degeneracy
point. Therefore, at T = 0, the peak-peak amplitude of this oscillation is equal to Ec/kBT in
units of kB/e and the period of the oscillation is 2Ec. However, the sharp sawtooth signal
becomes rounded at finite temperature [53, 54].

In the quantum-limit, kBT << δE, the general picture is basically the same but the
discreteness of the energy spectrum of the QD introduces more fine-structure in the sawtooth
line shape of the thermopower. The thermopower in this regime is given by [7],
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Fig. 1.12: Thermopower of a QD in the sequential tunneling quantum limit (Adapted from
Beenakker et al. [7]) The evolution of thermopower of a QD junction with the energy, in the quantum
limit δE >> kBT , according to the linear response theory by Beenakker et al. [7]. The thermopower
has two periods of oscillation; longer period is (2Ec +δE) and the shorter one is δE.

Sseq
q =− 1

eT

[
−δE

2
Int
(

∆min

δE

)
+∆min

]
. (1.61)

According to the above equation, the thermopower oscillates with the energy of the QD with
two different periods. The long-period of the oscillations is due to the changes in the number
of electrons in the ground state of the QD, with a period of (2Ec +δE), equal to the period
of Coulomb oscillation in electrical conductance. The shorter period of oscillations is due to
the excited state of the QD, with a periodicity δE, equal to the energy spacing between the
ground and excited states.

Effect of co-tunneling on the thermopower of QD

Although the linear response theory of thermopower of a QD [7] predicted a peak-peak
amplitude of the thermopower oscillation to be Ec/kBT in units of kB/e, the observed
amplitude of thermopower oscillations in later experiments was found to be much smaller
than that, with a modified line-shape [55–57]. This new line-shape of the thermopower is
explained by the co-tunneling theory of thermopower by Turek and Matveev [9]. At very low
temperatures and away from the charge degeneracy point, co-tunneling processes become
dominant over sequential tunneling. This crossover temperature from the sequential tunneling
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to co-tunneling is determined as,

Tc w
Ec

ln[e2/h̄(Gl +Gr)]
, (1.62)

where Gl,Gr are the conductance of the left and right tunnel barrier. Therefore, for a
temperature T < Tc, the contribution of co-tunneling to the thermopower becomes dominant.
The co-tunneling contribution of the thermopower at a gate voltage away from the charge

Fig. 1.13: Co-tunneling thermopower of a QD The evolution of thermopower of a QD junction
with gate voltage (ng =CgVg/e), including the co-tunneling contribution of thermopower, according
to the co-tunneling theory by Turek et al. [9]. Coulomb peaks of electrical conductance G are also
shown for comparison. The slope of the new sawtooth is opposite to linear response line-shape of
Fig. 1.11. The abrupt part of the thermopower signal is now aligned with the Coulomb-peaks of
conductance. Thermopower become vanishingly small in the co-tunneling regime.

degeneracy point, considering ∆min >> kBT , is given by [9]

Sco =−4π2

5
T
e

(
1

∆min
+

1
∆min −2Ec

)
. (1.63)

The above expression of thermopower is valid for the energy of the dot above the crossover
energy (where co-tunneling dominates), otherwise it diverges as ∆min → 0 near charge
degeneracy. The crossover energy is given by,

∆c w
kBT

e
ln
[

e2

h̄(Gl +Gr)

]
. (1.64)

In the weak coupling limit Gl,Gr ≪ e2/h̄, the crossover energy ∆c > kBT , i.e. the crossover
from the sequential to co-tunneling regime occurs at an energy larger than the thermal width
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of the conductance peak (typically within 10kBT ) where the conductance is much smaller
than its peak value.

Therefore, to get the full picture of the thermopower of a QD at very low temperature,
one needs to consider sequential tunneling contribution of thermopower for a gate voltage
ng <Cg∆c/αe and the co-tunneling contribution for ng >Cg∆c/αe. This crossover energy
then determines the maximum of the thermopower oscillation using Eq. (1.59) as,

Sco
max ∼

1
e

ln
[

e2

h̄(Gl +Gr)

]
. (1.65)

The behavior of the resulting line-shape of the thermopower is shown in Fig. 1.13. One
can notice that the most abrupt part of the thermopower signal is now situated at the charge
degeneracy points. Below the crossover energy, where sequential tunneling dominates, ther-
mopower increases linearly with a slope 1/eT . Co-tunneling processes above the crossover
energy suppress the thermopower and make it vanishingly small in the blockade region.

1.2.5 Spin-correlated thermoelectric transport in QD junction

The electrical conductance and the spectral density of a QD in the Kondo spin-correlated
regime is discussed in Sec. 1.1.5. In this section we will discuss the thermopower signal of a
QD junction in the presence of Kondo-correlation and its temperature dependence. Solving
the Anderson model for a QD with strong correlation in the framework of NRG method, the
line shape of the thermopower and its temperature dependence was presented by Costi et al.
[35, 36].

The thermopower is determined by the first moment of the spectral function A(ω , T) at
the Fermi energy as [35],

S(T ) =−
π2k2

B
3e

T
1

A(0,T )

(
∂A
∂ω

)
ω=0

. (1.66)

The line-shape for the Kondo-correlated thermopower as a function of dimensionless gate
voltage Vg −Vg,0, at two temperatures, below and above the Kondo temperature are shown in
Fig. 1.14 (a), where Vg,0 corresponds to the middle of the Coulomb valley.

From the discussion of the spectral density of a Kondo-correlated QD in Sec. 1.1.5, we
found that in the low temperature limit T << TK, the Kondo-resonance is pinned to the
Fermi level for a symmetric levels’ position with respect to the Fermi-energy. As a result,
the spectral function possesses a symmetry with respect to the Fermi level (Fig. 1.9 (a) with
εn =−U/2). This is the situation for Vg −Vg,0 = 0 in Fig. 1.14 (a), i.e. at the middle of the
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Fig. 1.14: Thermopower of a Kondo-correlated QD with gate voltage and temperature (a)
Gate voltage dependence of the thermopower of a Kondo-correlated QD for two different temperatures
below and above the Kondo temperature TK. The thermopower shows a 2e periodic behavior. In the
gate voltage regime where Kondo-resonance persists, shown by the dashed lines, the thermopower
shows an opposite sign between the two curves. (Adapted from [58]). (b) Temperature dependence
of the thermopower of a Kondo-correlated QD for different level positions in the Kondo regime.
(Adapted from [35]).

Coulomb valley. Therefore the first moments of the spectral function below and above the
Fermi energy cancel each other and hence the thermopower of the QD is zero. This is seen
in Fig. 1.14 (a) at Vg −Vg,0 = 0.

In the same temperature limit (T << TK), for a gate voltage slightly off from the Coulomb
valley i.e. for Vg −Vg,0 > 0, an asymmetry is introduced on the levels’ position with respect
to the Fermi energy. We have seen in Sec. 1.1.5 that in this asymmetric Kondo-regime, the
Kondo resonance is shifted slightly above the Fermi energy (Fig. 1.9 (b) with εn >−U/2)
and the effective slope of the spectral function becomes positive. Therefore, according to Eq.
(1.66) the thermopower holds a negative sign. This is seen in Fig. 1.14 (a) at 0<Vg−Vg,0 < 2
for the blue-solid curve.
On further increase of the gate voltage, one gets closer to the degeneracy point where the
QD enters in the mixed-valance regime. From the discussion in Sec. 1.1.5 we have seen that
in this regime the Kondo resonance is overcome by the Coulomb peak. Still, the resonance
peak in the spectral density lies above the Fermi energy and possesses a strong asymmetry.
As a result the thermopower shows a maximum negative value in this regime, as seen in Fig.
1.14 (a) at Vg −Vg,0 ≈ 2.5 for the blue-solid curve. For Vg −Vg,0 > 4 the thermopower falls
back to zero.
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With the particle-hole symmetry, the thermopower for the negative gate voltages Vg −
Vg,0 < 0 can be obtained using S(−Vg) = −S(Vg). In this way one gets the full blue-solid
curve in Fig. 1.14 (a) for T = 0.01Γ < TK.

When one further extends the gate voltage into the evenly occupied diamond (e.g. Vg −
Vg,0 > 8, not shown in Fig. 1.14 (a)), the thermopower remains zero until the next degeneracy
point (due to the non-existence of the Kondo-resonance in the even diamond), where it again
shows a maximum but with an opposite sign compared the one at Vg −Vg,0 ≈ 2.5. Therefore,
the thermopower signal in a Kondo-correlated QD possesses a period of 2e (in the unit of
gate induced charge ng), two times the period of the thermopower in the sequential and
co-tunneling regimes.

Temperature dependence of thermopower in Kondo regime

The temperature dependence of the spectral density of a Kondo-correlated QD causes a
temperature dependent thermopower in the Kondo-regime.

As discussed above, for T << TK, the Kondo-resonance in the asymmetric-Kondo regime
(i.e. 0 < Vg −Vg,0 < 2 in Fig. 1.14 (a)) is situated slightly above Fermi energy. As a
consequence one obtains a negative thermopower, blue-solid curve in Fig. 1.14 (a).

Due to the strong temperature dependence of the Kondo-correlation, the Kondo-resonance
starts to smear out with the increase of temperature. As a result, in the same regime
(i.e. 0 < Vg −Vg,0 < 2), the slope of the spectral function reduces when the temperature
increases and so the thermopower. The Kondo resonance vanishes almost completely above a
temperature T ≈ 10TK and the spectral weight is shifted towards the nearest level. Therefore,
at the same gate voltage (0 < Vg −Vg,0 < 2), the slope of the spectral function becomes
negative and as a consequence the thermopower becomes positive. This can be seen in
Fig. 1.14 (a) for the red-dashed curve for T = 0.1Γ, having a positive thermopower at
0 <Vg −Vg,0 < 2.

Hence, the thermopower in the asymmetric Kondo-regime (0 <Vg −Vg,0 < 2) shows a
clear sign change between the two curves, below (blue-solid curve at T = 0.01Γ) and above
(red-dashed curve at T = 0.1Γ) the Kondo temperature [58].

However, for the gate voltage Vg −Vg,0 > 2.5, where the QD is in the mixed-valance
regime, the resonance peak in the spectral density above the Fermi level does not disappear
with increasing temperature, but rather it is broadened at a temperature T > Γ. Therefore
the thermopower does not change sign in this regime. This is seen in Fig. 1.14 (a) with a
same sign for both of the curve. The thermopower in this regime shows a large signal at high
temperature due to the broadening of the resonance peak with increasing temperature.
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The temperature dependence of the thermopower in the asymmetric-Kondo regime for
different level of asymmetry in QD-level position is shown in Fig. 1.14 (b).
Therefore, this characteristic sign change of the thermopower in the Kondo regime can be
considered as a “smoking-gun”signature of Kondo-effect in a QD system.

1.2.6 Qualitative comparison of Thermopower in different tunneling
regimes

Here we compare the evolution of the thermopower signal with the position of gate for the

Fig. 1.15: Gate voltage dependence of thermopower of a QD in different tunneling regimes
Qualitative comparison of the thermopower of a QD in three different regimes described in the
previous sections. In the sequential tunneling regime (green-dashed), the sawtooth line-shape of the
thermopower is presented according to theory of Beenakker et al. [7], with a periodicity of electron
charge e. In the co-tunneling regime (magenta-dashed), the periodicity of the thermopower remains
same, e, but the line-shape is modified, according to co-tunneling theory by Turek et al. [9]. In
the presence of Kondo spin-correlation (red and blue) however the periodicity of the thermopower
changes to 2e, with a same sign corresponding to the even or odd sector, according to the theory by
Costi et al. [58].

three different tunneling regimes as discussed in the previous sections.
In the sequential-tunneling regime, the thermopower shows a sawtooth behavior [7],

jumping abruptly at the off-degeneracy between the maximum amplitude of ±Ec/kBT . In
between the two off-degeneracy points, it increases linearly with the slope 1/eT , crossing
zero at the charge degeneracy. The periodicity of this sawtooth oscillation is equal to electron
charge e on the ng axis as shown in Fig. 1.15 (Green-dashed line).

In the co-tunneling regime, the sawtooth shape of the thermopower signal is modified by
the co-tunneling processes[9]. The combined line-shape of the thermopower signal in this
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regime is shown in Fig. 1.15 (magenta-dashed line). Close to the degeneracy, thermopower
increases linearly with the slope 1/eT , crossing through zero at the degeneracy. While
away from the degeneracy, where co-tunneling becomes the dominant transport process, the
thermopower decreases with the distance from the degeneracy point and becomes zero again
at off-degeneracy. The periodicity of the resulting thermopower signal is e, the same as in
the sequential tunneling regime.

In the Kondo-correlated regime, however, the thermopower signal is fully modified by the
presence of Kondo-correlation [58]. At very low temperature (T < TK), a finite thermopower
is observed in the oddly occupied Coulomb diamonds, due to the existence of the Kondo-
resonance. The resulting line-shape of the thermopower in this regime is shown in Fig. 1.15
(blue). The thermopower changes sign between two consecutive charge-degeneracy points.
The periodicity of the thermopower signal is 2e, twice the periodicity in the sequential and
co-tunneling regimes. Interestingly, with the increase of temperature (T > T1 ∼ TK), the
thermopower in this regime changes sign w.r.t the low temperature curve, recovering the 1e
periodicity. The resulting thermopower signal is shown in Fig. 1.15 (red).

Therefore, like the electrical conductance G, the thermopower S can also be used a
spectroscopic tool to understand transport mechanisms in QD junctions.





Chapter 2

Fabrication

In this chapter we will discuss the fabrication processes of the samples used for the two
main types of experiment described in this thesis. We first considered the fabrication of
a Single-Electron Transistor (SET ), integrated with on chip local thermometer and heater
(and cooler) for the measurements of thermal-conductance of an SET (Chapter 4). In the
following section we describe the fabrication of a single-Quantum-Dot junction with local
heater and thermometer, for the experiments of thermal and thermoelectric transport in a
QD junction (Chapter 5). We have frequently used the well known ‘Laser lithography’ and
‘Electro-beam lithography’ techniques, the details of the technique can be found elsewhere
[59–61].

2.1 Fabrication of NININ Single-Electron Transistor

The fabrication of device for the measurement of thermal conductance of a Single Electron
Transistor consists of several steps, including, ground plane fabrication, metallic mask coating
and the fabrication of the metallic SET with integrated Normal-Insulator-Superconductor
(NIS) probes. The first two steps are required for the improvement of the measurement and
reliably making the smallest structures on the substrate. All these steps are described below
in detail.

2.1.1 Ground Plane

In an ideal Normal-Insulator-Superconductor (NIS) tunnel junction, the tunnelling current
below the sub-gap ∆ is expected to be zero at very low temperature, due to the presence of
strong BCS energy gap in the superconductor. But in real experiments one routinely observe
significant amount of leakage current deep inside the BCS gap [62–64]. This sub-gap current
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reduces the performance of an NIS junction as a cooler or thermometer. In an experiment
with high quality opaque tunnel junctions, Pekola et al. [65] showed that this sub-gap current
appears mainly due to the photon assisted tunnelling rates of quasi-particles. To reduce this
leakage current and improve the performance of an NIS junction, one has to filter out the
rf noise coming from the electro-magnetic environment. One way to do this is to equip the
dilution refrigerator with a measurement setup having sufficiently long lossy cables at the
cold stage. Another way is to modify the sample fabrication in a way that the junction leads
are capacitively coupled to the ‘ground’ of the measurement system, which can bypass the rf
noise depending on the capacitance value. The dilution refrigerator that we have used in the
experiment is equipped with approximately 1 m long Thermocoax (R) cable between the 1 K
pot and the mixing chamber stages for each transport line. To improve the situation further,
we introduce a metallic ground plane underneath the sample, which is capacitively coupled
with the NIS junction leads.

Making the ground plane is the first step of our SET sample fabrication. We start with a
single side polished 4" Si <100> wafer with 300 nm thermal oxide on it. The wafer is coated
with an approximately 300 nm thick layer of a positive-tone e-beam resist (Allresist AR-P
6200) and then exposed the pattern of the ground plane by e-beam. After developing the
exposed area, we deposit 2 nm of Ti, 30 nm of Au and again 2 nm of Ti respectively at 0°
angle with respect to the source, in an e-beam evaporator. The purpose of the first Ti layer
is to increase the adhesion of Au tom with the Si substrate while the final layer of Ti helps
sticking the Al2O3 layer which will be deposited next. After lift off of the unnecessary metal
by a suitable remover (Allresist AR 600-71), the wafer is coated with an approximately 50
nm thick layer of insulating Al2O3, grown by Atomic Layer Deposition (ALD) (see ALD
Process). An SEM image of the full device on top a ground plane (white contrast) is shown
in Fig. 2.1.

ALD Process

Atomic layer deposition (ALD) is a modern technique of depositing a thin layer of oxide
in a controlled manner. The advantage of this technique is not only to deposit an arbitrary
thickness of oxide, but also to be able to deposit a wide variety of oxides. The oxide produced
by ALD is impurity less over a large area of surface. This is a multi-cycle process depending
on the required thickness of the desired oxide. Each cycle of ALD consists of four steps,
producing a roughly 1nm thick layer of oxide (depending on the precursor, for some precursor
the relation between number of cycle and thickness is not linear). Fig. 2.2 shows the steps
of the ALD process for the deposition of Al2O3. To begin with, the chamber of the ALD
deposition system and different parts of it are set with a fixed temperature. A continuous
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Fig. 2.1: Ground plane under the SET device Full device with a ground plane, the white
contrast square region is the ground plane, all the leads are on top of the ground plane which gives a
good high frequency noise filtering. The SET junction and the NIS probes are situated at the center of
the ground plane.

flow of dry N2 into the chamber of typically 5 sscm is also set in the beginning. When the
temperatures of different parts are stabilized to their respective value, the first precursor (e.g.
Tri-Methyl Aluminum (T MA) for Al2O3) is injected in the ALD chamber, we then wait for
few seconds (typically 5-15 Sec depending on the particular recipe) so that the self-limiting
substitution reaction of the precursor with the substrate can complete and the products can
be purged out with the flow of N2 gas. After that we inject the 2nd precursor, usually H2O.
Waiting for 5-10 sec completes the reaction and the program purges out the products from
the chamber. In this way we deposit a single atomic layer of oxide (e.g. Al2O3) on top of the
structures. We repeat the same cycle to achieve the desired amount of thickness.

2.1.2 Ge Metallic Mask

For the electron-beam lithography with simple design, soft resists like PMMA, PMMA-MAA
are often used for defining the structures on the substrate. But if the design is complicated
and contains many closely spaced small structures, making such pattern is difficult with a
soft resist, as there is a high chance that the mask may collapse after the development. The
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Fig. 2.2: Steps of a single ALD cycle (Adapted from Oxford instruments) Schematic diagram
of the steps of a single layer of Al2O3 deposition on top a substrate using ALD technique. First, the
precursor of Al2O3 TMA is injected in to the chamber, after the completion of the reaction the product
is removed from the chamber with the purge of dry N2, next the precursor H2O is injected and in the
same way products are purged out of the chamber and in this way a single layer of AL2O3 is deposited
on top of the substrate. A single cycle produces approximately 1 nm thick AL2O3 layer, N cycles are
repeated to get a N nm thick layer of Al2O3

free standing top resist is not stiff enough to hang without support. To avoid such resist
collapse, we have used a metallic mask technique. Here we take the full wafer with ground
plane already made on it and spin-coat it with an approximately 400 nm thick e-beam resist,
namely P(MMA-MAA) copolymer (11% in ethyl lactate). Then we deposit a 22 nm thick
germanium (Ge) layer inside an e-beam evaporator. This Ge layer will be used to form the
metallic mask in the following step of lithography.

2.1.3 SET and NIS probes

Lithography

This is the final lithography step of the fabrication process. In this step we define the smallest
structures of the device such as the NIN tunnel junctions, Source, Drain and Gate of the SET
and the NIS probes of the thermometer or cooler. We first spin coat the previously processed
wafer, containing the ground plane and Ge layer deposited on it, with a e-beam resist PMMA
2 %. After that we expose the pattern on that wafer by e-beam.

Development

The development process is very delicate step, we develop the exposed sample in the
following way:
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Table 2.1: Fabrication steps for SET device

# Step description Process Comments

1 Ground plane

Resist coating Allresist AR-P 6200
E-beam exposure 100 kV, 180 nA, 350 uC/cm2

Development MIBK+IPA 1:3
Metalization Ti(3 nm)/Au (30 nm)/Ti(3 nm) at 0°
Lift off Allresist AR 600-71 1 hour
ALD Al2O3 50 nm

2 Metallic Mask
Resist coating P(MMA-MAA) 11 % 400 nm
Ge evaporation 22 nm at 0°

3
SET and NIS

probes

Resist coating PMMA 2 % 50 nm
patterning 100 kV, 1 nA, 1000 uC/cm2

Development MIBK+IPA 1:3, 1 min
CF4 etching 100 sccm 40 mTorr, 40 W, 2 min 10 s
Development MIBK+IPA 1:3, 1 min
Oxygen
anisotropic

50 sccm, 30 mTorr, 40 W, 10 min

Oxygen isotropic 50 sccm, 225 mTorr, 40 W, 50 min
Metalization1 Cu (30 nm) @ 0°
Metalization2 Al (20nm) @ 38°
Oxidation 1-2 mbar 60- 90 s
Metalization3 Cu (30) @ −25°
Liftoff Acetone 30 min
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1. wet development of top resist: develop the top e-beam resist PMMA 2 % by rinsing it
in MIBK/IPA for 30 sec followed by a rinse in a IPA bath for another 30 sec.

2. Reactive Ion Etching (RIE) of Ge: after the wet development of the top layer PMMA,
the Ge metal underneath is etched away by anisotropic RIE with CF4 at 40 mTorr
pressure and 40W power. In this way the pattern is now transferred to Ge layer.

3. Wet development of lower resist: after removing the Ge layer from the exposed area,
we develop the lower thick layer of the copolymer resist by same way as in step 1.
During the process of optimization, we learned that this is quite important step as it
helps removing the lower layer resist and making the undercut wider already before
oxygen plasma cleaning.

4. Oxygen plasma cleaning: the top thin layer of PMMA 2% and the developed area
under Ge layer is cleaned by anisotropic RIE with oxygen at 30 mTorr, 40 W. Followed
last by a more isotropic oxygen etching at 225 mTorr, 40 W. Now, as the top thin layer
of PMMA is removed, the full mask is made of Ge only with a large undercut. The
thickness of the top layer and limit of evaporation angle depends only on the Ge layer
thickness. Metallic Ge is stiff enough to hang without support from bottom, in this
way we create a large undercut without deforming the mask. This mask is now ready
for metalization.

Metalization

To deposit metal on the mask, we load the sample into a multi-crucible e-beam evaporator
equipped with tiltable sample stage, so that we can deposit more than one metal at different
angle in the same vacuum cycle. The metal is deposited in the following steps:

1. First a 30 nm of Cu is deposited at 0° angle w.r.t the source. This initial Cu forms
the SET drain lead (Green) as well as the main part of the source electrode (Red), as
shown in Fig. 2.3.

2. Immediately after, we evaporate a 20 nm of Al. For this evaporation the sample holder
is now rotated to an angle of 38°, resulting in an effectively 15 nm thick, downward
shifted Al copy of the pattern. The Al layer forms the two, sub 200 nm long dots (Red
dot on left and green dot on the right of Fig.2.3 (b) ), connected to the source and drain
Cu regions with transparent metal-to-metal contacts and at the same time the clean
contacted lead from the end of Source electrode (shown in purple color in Fig. 2.3 (a)).
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Fig. 2.3: SEM image of the SET device (a) Colored SEM image of the SET with different
elements of the device shown in different color: the Source is shown in red, Clean-contacted Al lead
at the end of source in purple, four tunnel-contacted Al leads in cyan, the Island in yellow, the Drain
in Green and the Gate is shown in orange color. (b) Zoomed in view of the SET, showing two Al dots
connected to the island via tunnel contact(in red and green on the left and right of the island), while on
the opposite side they are connected to big metallic Cu strips, in order to destroy the SC of the Al dots

3. To form the AlOx tunnel barrier for the SET and NIS probe tunnel juctions, the Al layer
is subjected to in-situ static oxidation immediately after the deposition is completed.
This is accomplished by injecting typically 1 - 2 mbar of oxygen into the deposition
chamber for the duration of 60- 90 s.

4. To complete the fabrication, a second 30 nm layer of Cu is evaporated with the sample
now tilted 25° in the opposite direction compared to preceding Al deposition. This
upward-shifted copy of the mask pattern forms the SET island (Yellow in Fig. 2.3 (b))
as well as the N electrode of the NIS probes.

We lift-off the unnecessary metals by Acetone. As a result of three-angle evaporation through
the mask, three projections of the complete mask pattern will be formed on the substrate. The
irrelevant shadow copies of the various structures are shown uncolored in gray (Fig. 2.3).
All the steps of the SET device fabrication are listed in the Table. 2.1

2.2 Fabrication of Single QD device

2.2.1 Gate and Contact pads

The fabrication of single QD device start with the metallic gate. In different mesoscopic
experiments the gate can be implemented in different configurations depending on the sample
requirements, including, side gates used for an SET, back and top gates used for gating
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on nano-wire quantum dots, plunger gates used in a 2DEG QDs etc. The coupling of the
island to the gate depends on the distance between them and on the relative permittivity
of the dielectric medium in between them, therefore to have a good coupling we need
very small distance (< 10 nm) between gate and island and a dielectric medium having
relative permittivity > 1. In our device, we choose to use a metallic back gate, because this
configuration of the gate allows us to have a distance between the gate and the island (Gold
Nano-particles in our case) in the range of 5-8 nm. We use a metallic oxide as a dielectric
medium to ensure good capacitive coupling between gate and island. Another advantage of
using a back gate is that it can be easily adapted with the electro-migration (EM) process (a
technique for controlled breaking a metallic constriction in order to create a nm-size gap, sec.
2.2.3).

In our design, the Gate is a 3 mm long and 200 µm wide rectangular structure (Fig. 2.4
(a)), with two micro-bonding pads at the two end. We have places for three devices on top of
this gate, so that the same gate can be shared by three devices. The gate is made long and
wide in purpose, the reason behind this particular design is that, first, we can gain one extra
cryostat line by combining the gates of three devices and second, the overlap of contact leads
of the device with the gate can give an efficient on-chip filtering against the r f noise. The
contact-pads are 200x200 µm square structures (Fig. 2.4 (b)) connected with a leads near
the gate. The smallest part of the QD device will be connected to the contact pads at the last
step of fabrication. The contact-pads are used for micro-bonding the device with the cryostat
sample holder pads.

The gates and contact-pads are usually very large area structures, therefore to save
machine time, we first pattern them on a full wafer using laser lithography.

Laser Lithography Process

Usually one uses a single layer resist for such lithography, but in order to have a high quality
gate without any defect, we use a bilayer laser lithography technique, developed at Institut
Néel [66], as follows.

First we take a single side polished 2 inch Si <100> wafer with 500 nm of thermal oxide
grown on it and bake it at 200° C for 4 mins. After pre-baking the wafer, we coat it with a
first layer of photo-resist LOR3A followed by baking at 200° C for 2 mins, then we coat it
with another photo-resist S1805 and bake it at 115° C for 1 min. Then the gate is patterned
on the substrate by laser lithography. The exposed part is developed by rinsing the wafer
in a bath of MF26 for 1 min followed by a bath of DI water for 1 min. This finishes the
mask of the gate and makes it ready for metallization, an optical image of the gate mask after
development is shown in Fig. 2.4(a).
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Fig. 2.4: Optical image of the Gate and contact pad mask for QD device (a) Gate mask
after development of the first Laser-lithography exposure, additional marks and the numbers are
for alignment in the next step; (b) Leads mask after development of the second Laser-lithography
exposure, the Gates are already metalized here

To evaporate metal on the mask of the gate, we load the full wafer inside a e-beam
evaporator and evaporate as a stack of 3 nm of Titanium (Ti), 30 nm of Gold (Au) and
another 3 nm of Ti at 0° angle and at a very slow rate of 0.2 Å/ s. The first layer of Ti is
used to increase the adhesion of the Si substrate with Au atoms so that it sticks well on the Si
substrate, while the final layer of Ti helps sticking the oxide layer which will be grown on
top of the gate electrode in the next step. The lift off of the unnecessary metal is done in two
steps, first the wafer is put into a bath of Acetone for 15 minutes (Acetone can immediately
dissolve the top layer of the resist S1805, but can not dissolve the bottom layer LOR3A), then
we transfer the wafer in a bath of hot remover PG (or NMP) for 1 hour at 80° C. We finish
the lift off process by rinsing the wafer with Acetone and IPA and then dry it with N2 gun.

Oxide Layer deposition

After finishing the lift off, the wafer is cleaned by Oxygen plasma using Reactive ion etching
(RIE) for 5 mins. We now want to deposit a thin layer of oxide on top of the metallic gate
structure. The oxide layer is deposited using Atomic Layer Deposition technique (ALD) (for
the process of ALD see the Sec. 2.1.1). One can achieve the oxide layer on top of a metallic
Aluminum (Al) gate by simply oxidizing the Al but we prefer ALD compared to normal
oxidation technique because the oxide deposited by ALD is very uniform over a large area
and is impurity less. This gives us a wide range for gate voltage applicability before reaching
breakdown voltage. The ALD also gives us a wide variety of metallic oxide (with very high
dielectric constant) to be deposited on the gate electrode. As the oxide is deposited layer by
layer, the thickness of ultimate oxide layer is controllable precisely.
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Table 2.2: ALD recipe for Al2O3 deposition

Fixed parameters steps Operation time(s)
Precursor: Tri-Methyl Aluminium (TMA) 1 TMA injection 0.015
Precursor temperature: Room temperature 2 Wait 120

Tee temperature: 90° C 3 H2O injection 0.015
Chamber temperature: 100° C 4 Wait 120
Bellow temperature: 150° C 5 go to step-1

We deposit about 8 nm of Al2O3 on top of the metallic gate structure. Usually the
thickness and quality of the oxide layer depends on different parameters of the ALD setup
including, the precursor quality, temperature of different parts of the system, waiting time in
between two steps, flow rate of dry N2 gas etc. One need to optimize these parameters to get
a good quality of oxide layer consistently. We use a standard recipe for the gate insulation,
developed at Institut Néel [66], as described in Table 2.2.

Contact-pads

To fabricate the Contact-pads, we use the previously discussed laser lithography (Sec. 2.2.1).
As the Contact-pads have to be perfectly aligned with the previously made gate, we use the
small square marks made at the same step of the gate for the alignment during the patterning
the contact pads. An optical image of the lead mask after development is shown in Fig. 2.4(b).
It is found that the developer MF26 (for the photo resists LOR3A, S18O5) is corrosive for the
metal oxide on top of the gate, so there should not be any overlap between contact leads and
the previously made gate (otherwise one has to use different resist and developer). Therefore
the alignment with the previous gate layer is very crucial. Sometimes it happened that, due
to a misalignment, the contact pad patterns are exposed partially on top of the gate and as
a result exposing the oxide layer on the gate to the chemicals. If this kind of misalignment
occurs one has to restart the process from the beginning without proceeding further. After
development, the mask of the contact-pad is metalized with Ti and Au respectively at 0°
angle, at a rate of 0.2 Å/ s. After finishing the lift off with Acetone and remover PG, the
wafer making process is completed.

At this stage the full 2 inch wafer contains about 100x100 arrays of gate and contact pads.
In the next step we will fabricate the smallest part of the device on top of the gates, using
electron-beam lithography.
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2.2.2 Constriction and SNS junctions

To fabricate the smallest part of the device having dimensions < 100 nm, we use high energy
(80 keV ) e-beam lithography. For this we spin-coat the wafer having gate and contact pads
on it, with a bi-layer e-beam resist PMMA-MAA 9% and PMMA 4%. The thickness of
the bottom resist is about 750 nm while the top layer has thickness of about 250 nm. The
purpose of the bi-layer resist technique is, first, to make the liftoff easier and second, to create
asymmetric undercuts on the mask [67], which enables us to make shadow evaporation for
creating clean contact SNS junctions without breaking the vacuum.

The design of the EM constriction and the SNS junctions are patterned on the resist. As
the structures need to be properly aligned on top of the gate, we use the markers made at the
step of the gate fabrication. During the course of the thesis, we iterate the sample design and
improve it accordingly. The final structure of the design is discussed here.

The exposed sample is developed with a solvent MIBK/IPA 1 : 3. An optical image of
the developed devices on top of the gate are shown in Fig. 2.5 (a), a zoomed view of a single
device is shown in Fig. 2.5 (b).

Fig. 2.5: Optical image of the e-beam lithography made mask after development (a) mask
of three devices on top of a same gate. Two bonding pads are at the two ends of the long gate (not
visible here), the mask has overlap with the leads with contact-pads made in the previous step (b)
Zoomed view of the middle part of the mask, the mask has a large overlap with the gate to ensure
good on-chip r f filtering. The rectangular section of this mask is shown in Fig. 2.6 (b) after liftoff.

Evaporation

After cleaning the developed sample by oxygen plasma we load the sample in an e-beam
evaporator and deposit metals in different steps as follows,
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1. First, we deposit a 11 nm of Platinum (Pt) at a large angle of −42° with respect to the
source. This creates a little ‘butterfly’ shaped constriction at the middle of the device
(yellow colored in Fig. 2.6 (b)). As this is deposited at such a high angle, the Pt copy
of the other parts of the device(source, drain and the Al leads) will be deposited on the
wall of the resist and washed way during lift off.

2. Then we rotate the sample holder and deposit 25 nm of Gold (Au) at an angle of −22°.
This creates a rectangular metallic island on the right of the constriction, which we call
the ‘Source’ of the device and a bulky lead on the left of the constriction, the ‘Drain’
of the device, shown in red in Fig. 2.6 (b).

3. At the same angle we deposit a 3 nm of Titanium (Ti). This acts as a protective
layer for Au, to avoid intermixing of Au and Al [68–70]. This technique improves the
lifetime of the device.

4. Then we rotate the sample holder in the opposite direction and deposit a 80 nm thick
Aluminum (Al) at an angle of 20° w.r.t the source. This creates the four Al leads
(shown in light-blue color in Fig. 2.6), which are connected to the ‘Source’ via clean
contact making four S−N junctions.

Fig. 2.6: SEM image of the full device (a) Angled SEM image of the mask after metal evapora-
tion and before liftoff. This part of the mask is completely hanging with the help of support from the
sides, three layers of metal produced by the three angle evaporations are visible through the mask.
(b) Rectangular section indicated in Fig. 2.5 (b) is shown here as a false colored SEM image after
liftoff, showing different metals with colors: the Au made Source and Drain are shown in red, the Pt
constriction in yellow and the four Al leads in light-blue. Unwanted shadows are not colored.

An SEM image of the evaporated sample before liftoff is shown in (Fig. 2.6 (a)).
The metal is then lifted off by a solvent N-Methyl-2-pyrrolidone (NMP) at 80° C and

afterwards rinsed by Acetone, IPA and Ethanol to clean it properly and at last blow dry by
nitrogen. An SEM image of the full device after liftoff is shown in the Fig. 2.6 (b). One can
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see the ‘Butterfly’ shaped Pt constriction at the center of the device, which is connected to a
rectangular shaped ‘Source’ on the left and a bulky drain on the right. The purpose of making
the constriction out of Pt in a separate angle is to avoid any proximity superconductivity that
may induced by the leftmost Al lead, on the constriction after we break it by electromigration.
The Al leads are placed in such a way that they do not touch the ‘normal-metallic’ Au shadow
of its own, before a length of about 6 µm. This is to avoid any inverse proximity effect on
the Al leads.

This finishes the nano-fabrication the QD device. The lithographically made constriction
will then be broken by electromigration technique, to create a nano-gap between source
and drain. Subsequently, the Au nano-particles (NP) will be grafted inside the nano-gap to
complete the QD transistor fabrication.

2.2.3 Electromigration

Electromigration (EM) is a process of creating a nano-meter sized spacing within a conductor.
Under the influence of an electric field, electrons in a conductor are moving according to the
direction of the applied electric field, during this movement they violently collide with the
atoms. A transfer of momentum from the electrons to the atoms occurs due to the in-elastic
collisions, causing a movement of the atoms and eventually breaking the metallic wire. The
EM force can be identified as a combination of two terms, (1) the ‘direct’ force, proportional
to the external electric field and (2) the ‘electron-wind’ force due to the momentum transfer
from the electrons.

This process is already known for a long time as one of the major failure mode of
microelectronic circuitry [71], but this failure mode was exploited for the first time to
intentionally break a metallic gold nano-wire, in a controllable and self limiting way, by Park
et al. [72]. In this first work, they current-biased a 15-20 nm thick metallic gold nanowire
while measuring the voltage drop across it. After the completion of EM, they found that
most of the devices have a measurable tunnel resistance, ranging from few kΩ to few tens of
GΩ, indicating that a gap of about 1 nm is created in the nanowire.

This brilliant application of EM opens up a channel to create a single molecule transistor
and probe the transport properties through a single electronic nano-object [73–76]. Later, the
technique was improved, by introducing an active feedback method by Strachana et al. [77]
and a four-probe method to avoid the series contact-resistance [78].

In this thesis, we electromigrate the lithographically-made constriction either before
(outside the cryostat) or after (in-situ) the deposition of gold nano-particles (NP). As Pt does
not oxidize significantly at an ambient condition, one can electromigrate the lithographically
made Pt constriction at room temperature, without having a risk of increase in tunnel
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Fig. 2.7: IV curve of a typical EM A typical IV curve for an EM process. The resistance of
the constriction before EM is measured to be RBEM = 141 Ω. The EM process stops as soon as the
measured conductance of the junction drops below a preset value.

resistance before low temperature investigation. Therefore we can deposit the NP after
breaking the constriction and finally put the ready made ‘QD Transistor’ inside the cryostat
for further measurements. The second way is to first deposit the NPs on the as made, unbroken
constriction and put the whole sample with NPs inside the cryostat and electromigrate the
constriction at liquid Helium temperature (4K), under high vacuum.

We found that the first method, produces sample with very weak coupling between source
and drain, while the second method gives us strongly-coupled QD transistor. One possible
explanation of this effect could be due to the contraction of the Pt atoms after the formation
of EM gap at room temperature, which can continues to increase the size of the nano-gap as
time goes on, while at low temperature this process becomes negligible.

For the EM of the constriction we apply a voltage bias across the constriction and
simultaneously measure the current flowing through it. For an in-situ EM we apply the
voltage bias from a fast measurement equipment ‘Adwin Pro II’ (a 16 bit data acquisition
system with internal processors) and simultaneously measure the current flowing through
it. Therefore, the conductance of the device is monitored by a fast feedback algorithm
(developed by ‘Nanospin’ group in Institut Néel), with the Adwin Pro II and sets the bias
back to zero as soon as the conductance drops below a preset value. The time to ramp down
the bias to zero is about 10 µs, which is small enough to avoid any further EM.
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Fig. 2.8: SEM image of the EM junctions (a-c) SEM images of successful EM junctions,
electromigrated in ambient condition and at room temperature; (e-f) SEM of the EM junctions
electromigrated in-situ at 4K

EM outside the cryostat, were done at a probe station, in the same manner by voltage
biasing the constriction. In this case, the conductance of the device was monitored by a
Keithley 2000 multimeter. A typical IV curve for the EM process is shown in Fig. 2.7.

One advantage of doing EM at the probe station is that, there is no extra series resistance,
except the contact resistance between the probes and the sample pads, of about 30 Ω.
Therefore, most of the voltage drop is on the constriction and EM triggers at relatively low
bias (typically below 0.4 V). This ensures less overheating and hence less chance of fusion
of the leads. On the other hand, for an in-situ EM, we can not avoid the line resistance
of the cryostat, of about 170 Ω each. Therefore, the EM takes place at a bias voltage > 1
V. Nevertheless, to avoid any significant over heating during EM process, we design the
constriction in a way that it has a smallest cross section area. This allows us to reduce
the current at which EM is triggered and hence the dissipated power. This requires the
constrictions to be made as thin as possible. As we make the constriction in a separate angle,
it is possible for us to make it thinner than 12 nm.

Fig. 2.8 shows the SEM images of few successful electromigrated junction. Top panel
(a-c), shows the EM junctions created at the probe station at an ambient condition, while
lower panel (d-f) shows the EM junctions made inside the cryostat.
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2.2.4 Gold Nano-particle deposition

This is the last step of the QD device fabrication, where we trap a single NP between the
source and drain, which serves as the ‘Island’ of our QD transistor. As mentioned before, the
NPs can be deposited after or before the formation of nano-gap by EM.

We have used four different methods for depositing the NPs on the sample, given by,

1. Drop-casting

2. Self-assembling

3. Di-electrophoresis trapping

4. sub-monolayer evaporation of Au

Here we describe all the methods separately.

Drop-casting:

This is one of the simplest method of NP deposition, here we put a drop of commercially
available 5 nm Au−NP (from ‘Nanocomposix’) dispersed in Toluene and immediately dry
out the dispersion solution by blowing dry N2 on top of the sample. In this way, some of the
NPs settle down on the substrate, while most of them are blown away with the dispersion
solution. We repeat this process for 10−15 times. The immediate blowing of the solution
restricts the NPs to agglomerate with each other. The resulting density of the particles is very
little as most of the NPs are lost in the process. Fig. 2.9 shows an SEM image of two such
samples with 5 nm Au−NP deposited on it by this method. From the study of the process,
we found that the yield of this method for a successful grafting of NP at the EM junction is
about 3%.

Self-assembling of Au-NP:

Self-assembled layer of gold nano-particles on top of the Si substrate can be obtained by
functionalizing the Si substrate with Salines terminated with aminopropyltriethoxysilane
(APTES) [66, 79]. We have used 12 nm Au−NPs dispersed in a citrate solution for the
silanization process. Fig. 2.10 shows the SEM image of the samples with NPs deposited on
it by self-assembling method. The density of particles on the sample can be made higher
than the drop-cast method, but we found that the citric acid in the dispersion medium reacts
with the Al and destroys the sample (as can be seen in Fig. 2.10 (c, d), indicated by red arrow
heads). Therefore, we did not use this method at all to deposit the NPs.
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Fig. 2.9: NPs deposited by drop-cast method SEM image for the distribution of 5 nm Au−NPs
deposited on top of the electromigrated junction, deposited by the drop cast method. The yield of this
method for a successful QD device is about 3%.

Di-electrophoresis trapping:

In this method we trap the NPs within the EM created nano-gap between the source and
drain, with the application of an electric field [80–85]. When an AC electric field is applied
on the solution of Au−NP, an electric-dipole is induced on the NPs. According to the laws
of electrodynamics, the dipoles feel an attractive electrostatic force when they are subject
to a non-uniform electric field, called the di-electrophoresis (DEP) force. Therefore, the
Au−NPs are attracted towards the place on the sample, where the field is most non-uniform
and hence most strong DEP force. In this way, one can move the particles towards the EM
junction by creating a non-uniform electric field around it.

We first electromigrate the constriction at room temperature to create a 5−10 nm gap
between the source and drain. The EM broken junction is then wired according to the DEP
setup, as shown in Fig. 2.11 (top), where an AC signal is applied to one end of the junction,
while the other end is grounded through a 465 Ω series resistor. The voltage drop across
the resistor is monitored during the process, by a Lock-In amplifier and an oscilloscope in
parallel.

We have used a colloidal NP solution with three different diameters. For trapping the
particles, we first put a drop of the NP solution on the sample and immediately turn on a
sinusoidal signal of amplitude 1 V and frequency 100 KHz. The full process of trapping
takes about less than a minute. Initially, when there is not particle bridging the gap, measured
voltage drop across the resistor is zero (ignoring the leakage current through the liquid of the
NP solution) and after about few seconds to one minute a sudden jump in the voltage drop
is recorded in the voltage measurement. This indicates the bridging of the nano-gap by the
particles. After observing such a jump in the measured voltage we turn off the AC signal
immediately and dry out the remaining solution by N2.
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Fig. 2.10: NPs deposited by self-assembling method SEM image of of the sample with 12 nm
Au−NPs deposited on top of the electromigrated junctions by self-assembling method. The process
required the NPs dispersed in a citrate medium, but citric acid is found to be corrosive for the Al. This
introduces defects at the junction of Al and Au in the device, as indicated by the red arrow-heads.

The DEP force, that determines the efficiency of the trapping process, depends on the
radius of the particle, the effective dielectric constant of the medium and the frequency and
amplitude of the AC signal. During the course of the thesis we have performed the DEP
trapping on the Au−NP of three different sizes, 5, 12 and 50 nm.

DEP with 5 nm NPs: For the case of DEP trapping with a 5 nm NPs, the DEP force
on the particles is found to be very little to attract them towards the junction. This could
be improved with the application of higher frequency AC signal, but we did not have the
possibilities to go beyond 100 KHz (as we have used the internal signal of a Lock-in amplifier
with a maximum frequency of 100 KHz). The SEM images of some samples, after finishing
the DEP process with a 5 nm NP solution, are shown in the Fig. 2.11, which indicates that
the trapping of the 5 nm particles were not possible. Almost all the sample shows either an
agglomeration of the particles due to multiple try of DEP on the same sample or a failure of
the trapping process.

DEP with 12 nm NPs: With the increase of the particle size to about 12 nm, we found a
moderate increase of DEP force and hence the trapping efficiency. The SEM images of few
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Fig. 2.11: Deposition of 5 nm GNPs by DEP method (Top) Circuit diagram for DEP process.
An AC bias is applied across the electromigrated junction, with a drop of NP solution on it. The
voltage drop is measured across an external series resister (465 Ω) using a Lock-in (LI) amplifier and
an oscilloscope (OS) in parallel. (Bottom) SEM images of the some samples with 5nm Au−NPs
deposited by DEP method. Instead of trapping, in most of the cases we found the agglomeration of
the NPs at the side of the Au structures.

samples after finishing the DEP trapping with 12 nm NPs are shown in Fig. 2.12, where one
can notice that the trapping of individual NP is possible. In some cases, the agglomeration of
the particles are also found. For some other batches, a fusion of the NPs is observed, forming
a weak Au nano-wire bridging the gap.

DEP with 50 nm NPs: We have also performed the DEP trapping with a NP of diameter
of 50 nm. The DEP force is found to be substantially strong in this case. Fig. 2.13 shows the
SEM images of few of the samples with 50 nm NP trapped by DEP process. The images
indicate the successful trapping of individual NP between the source and drain. In some
cases we found the gathering of the particles near the EM junction, while in some other
images indicate a fusion of the individual particles forming a nano Au-island. This could be
due to the delay in turning off the electric field after the trapping occurred.

One drawback of the DEP process is that the electromigrate the constriction needs to be
done already before NP deposition, in an ambient condition. Therefore, this method is not
adequate, if one has to create the nano-gap in− situ.
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Fig. 2.12: Deposition of 12 nm GNPs by DEP method SEM images of few samples with 12
nm Au−NPs deposited by the DEP method. For 12 nm Au−NPs the trapping of NP is possible in
some cases, in some other cases agglomeration and fusion of several particles is observed.

Sub-mono layer evaporation of Au:

Another method of NP deposition that we have performed is the evaporation of a small
amount of Au on top of the sample inside an e-beam evaporator. This creates a sub-mono
layer of Au in the form of small droplets on the substrate [86, 87]. We have used this method
of Au−NP deposition for the case of both before and after the creation of EM gap.

For a deposition of Au−NP after EM, we first break the constriction outside the cryostat,
in an ambient condition. Then clean the electromigrated sample with Acetone, IPA and
ethanol and afterwards with the oxygen plasma for 5 sec. This cleaning step is necessary
particularly to clean the EM junction area before NP evaporation. Then we load the sample
inside an e-beam evaporator and deposit about 1-2 nm of Au on the sample at an evaporation
rate of 0.02-0.04 nm/sec. Instead of forming a continuous metallic Au thin film, individual
Au atoms are evaporated and settled down on the substrate, forming a layer of self-assembled
nano-particles. The size of the particles are not very well controlled, this depends on the
parameters including, the rate of evaporation, final thickness of the metal etc. After that, we
test the tunnel resistance of the junctions in a probe station. If the resistance of the junction is
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Fig. 2.13: Deposition of 50 nm GNPs by DEP method SEM images of the EM junctions with
50 nm NPs deposited by DEP method. For 50 nm NPs the trapping force is sufficiently high and
as a result NPs gathered near the EM junction. Clearly the size of the particles is much higher than
the EM gap, therefore few NPs ends up at the side of the gap. In some cases the fusing of the NPs,
forming a Au-nanobridge is observed.

found below 10 MΩ, we consider that as a successful device and select that kind of devices
for further low temperature measurements.

If we evaporate the NPs before the formation of EM gap, we directly load the sample
inside an e-beam evaporator after finishing the lift off and cleaning by oxygen plasma, and
evaporate in the same way about 1-2 nm of Au. In this case, the EM is done inside the
cryostat at 4 K.

SEM images of few samples are shown in Fig. 2.14. Form the images, one can notice
that the density of particle is very high. The distribution of the particle-size is found to be
in range of 5−10 nm. These particles are small enough to serve our requirement for a QD,
with a sufficiently high charging energy and electronic-level spacing.

Selection of the most efficient method

As evident from the SEM image of a sample (Fig. 2.6), we have many probes connected to
the source of the QD-transistor in order to accomplish the thermal transport measurement
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Fig. 2.14: Evaporation of Au NPs SEM images of few samples with Au−NPs deposited on top
of the EM junctions by the evaporation of few nm of Au in an e-beam evaporator. The density of the
particle is very high, with a distribution of particle size between 5-8 nm.

through the QD. We need at least 8 separate cryostat lines to connect a single device, therefore
with a 27-line cryostat one can cool-down maximum 3 devices only in a single run. Given the
stochastic nature of the NP deposition, this is very small number in order to get a successful
QD device. This technical constraint demands us to find a NP deposition recipe with very
high yield. All the four processes of NP deposition discussed above has some pros and cons,
so we have to select the best one with highest yield.

From study of the deposition process we found that, the yield for getting a successful
device using drop cast method is only about 3 %, Which is very small compared to our
requirement.

In the self assembly method, the citric acid in the solution is found to be corrosive for the
aluminum. We often observed either a complete removal of the Al or a damage of the device
at the interface between Au and Al (Fig. 2.10 (c, d)).

The DEP trapping of NP does not work reasonably well for 5 and 12 nm particles, while
it works very well for a NP with 50 nm diameter, but a NP with a 50 nm diameter is very
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Table 2.3: Fabrication steps for single QD devices

# Step description Process Comments

1
Back-gate and

contact pads

Resist coating Photo resist: LOR3A, S1805
Laser exposure 50 mJ/cm2

Development MF26/DI water
Metalization Ti(3 nm)/Au (30 nm)/Ti(3 nm) at 0°
Lift off Remover PG at 90°C
ALD Al2O3 8 nm

Contact pads
pattern by Laser-litho, evaporation Ti(3
nm)/Au(30 nm)/Ti(3 nm) at 0°

3
Constriction and

SNS junctions

Resist coating P(MMA/MAA) 9%/ PMMA 4% 50 nm
E-beam exposure 100 kV, 1 nA, 1000 µC/cm2

Development MIBK+IPA 1:3, 1 min
Wet cleaning IPA, dry N2
Dry cleaning O2 plasma, 10 W , 15 s
Evaporation-1 Pt (11 nm) @ −42°
Evaporation-2 Au+Ti(25 nm+3 nm) @ −25°
Evaporation-3 Al(80 nm) @ 20°
Liftoff NMP @90° C 30 min

cleaning
Acetone/IPA/Ethanol, O2 plasma 10 W
10s

4 Electromigration
ambient condition probe station, small line resistance

in-situ
Adwin Pro-II, high line resistance of
cryostat

4 GNP deposition

Drop-cast ∼ 3 % yield
Self-assembling
(APTES)

good concentration but damages device

Di-
electroPhoresis
(DEP)

worked only for 50 nm Au−NP

Sub-monolayer
Au evaporation

>70 % yield, 5−10 nm distribution



64 Fabrication

close to the dimensions of an SET island. Therefore we can not use these particle as a QD,
as the charging energy of a 50 nm particle is expected to be very small (close to a typical
SET of few 100 µeV) and a single electronic-levels are not accessible due to unresolvable
level spacing.

The sub-mono layer evaporation of Au method is very random in terms of particle size,
but the density of particle is very high. As a result we get an yield more than 70 % for a
successful device, both in the case of after EM and before EM. The size of particles produced
in this method are small enough to serve as a QD.

The measurements with QD devices described in this thesis, are made with ‘Sub-mono
layer Au evaporation’ method. Initially, the evaporations are done after the formation of EM
gap out side the cryostat, in an ambient condition. This gives rise to some successful QD
device, but with very weak tunnel coupling between the QD and leads. We improved the
tunnel coupling by performing the EM inside the cryostat, after the NP evaporation.



Chapter 3

Local Thermometry and Refrigeration

Free electrons in metal, obeying Fermi-Dirac statistics, can be defined at a finite electronic
temperature (Te). This can be measured directly by measuring any physical quantity that
depends on temperature. In an experiment with mesoscopic devices, the choice of the elec-
tronic thermometer is determined by its application and how well it fits with the environment
of the device. Most of the commonly used thermometers in a mesoscopic experiment are
secondary thermometer, i.e. one has to calibrate it against a known temperature. The mostly
used electronic thermometers are Normal-Insulator-Superconductor (NIS) tunnel junctions
and Coulomb-Blockade thermometer. In the course of this thesis we have used the NIS
thermometry for the measurement of thermal conductance of an SET and a new thermometry
technique with an SNS proximity junction is developed for the measurement of heat flow in
a QD junctions. The principle of these two thermometers will be discussed in this chapter.

3.1 NIS tunnel junction thermometry

A tunnel junction between a normal metal (N) and a superconductor (S) is one of the mostly
used thermometer in mesoscopic heat transport experiments. We make such junctions by
creating a tunnel barrier of Aluminum oxide (AlOx) between Aluminum (Al) and Copper
(Cu). An SEM image of such a NIS junction with the thermometry circuit is shown in Fig.
3.2 (b).

The energy diagram of a NIS tunnel junction at a finite bias VNIS is shown in Fig. 3.1.
The distribution function of the normal-metal N at a finite temperature (governed by the
Fermi distribution) on the left is plotted with respect to energy on the vertical axis. The
insulating layer in the middle is shown as a potential barrier, while the density of states
(DOS) of the superconductor with an energy gap of 2∆ around the Fermi energy is shown
on the right. At equilibrium, in the absence of any external bias, the Fermi level of the
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normal metal is aligned to the Fermi level of the superconductor i.e. to the middle of the
superconducting gap of the superconductor. As the Cooper pairs can not exist in normal
metal, no flow of current is possible. Conduction is possible only through the tunneling of
the quasi-particles, which is forbidden by the strong superconducting (SC) gap ∆. Therefore,
in order to have conduction of quasi-particles through the tunnel barrier, one has to lower
(raise) the chemical potential of the superconductor (normal-metal), by applying a relative
voltage bias across the junction (Fig. 3.1). The conduction is unblocked when the bias
voltage exceeds the superconducting gap, ∆. At a bias voltage VNIS & ∆/e, the quasi-particles
can tunnel across the barrier, producing a quasi-particle current across the tunnel junction.
The tunneling rate ΓNIS of quasi-particles in a NIS tunnel junction can be obtained from the

-eVNIS

 E

EF = 0

2Δ

N I S

Energy

Fig. 3.1: Energy diagram of a NIS junction DOS of the Normal metal (N) and the Supercon-
ductor (S) are plotted along the horizontal axis with respect to the energy on the vertical axis. Fermi
energy of the normal metal is taken as the reference. A bias voltage VNIS on the S with respect to N
lowers its chemical potential by eVNIS. Only the excited quasiparticles with energy E ≈ kBTN above
the Fermi level can tunnel across the barrier

Eq. (1.4). For a normal-metal, the density of states near the Fermi energy can be taken as a
constant. Therefore, we can use the normalized density of states of the two reservoirs in Eq.
(1.4) as, n1 = nN = 1 and n2 = nS, where nN,nS are the normalized density of states of the
normal metal and the superconductor respectively. The average tunnel current INIS though
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the junction can be written after some simplifications as

INIS =
1

2eRT,NIS

∫
∞

−∞

dEnS(E) [ fN(E − eVNIS)− fN(E + eVNIS)] , (3.1)

where RT,NIS is the tunnel resistance of the junction. The normalized DOS of superconductor
is given by

nS(E) = Re

(
|E + iγ|√

(E + iγ)2 −∆2

)
, (3.2)

γ being the Dynes broadening parameter of the superconducting gap and

fN(E) =
1

exp(1+ E
kBTN

)
(3.3)

is the Fermi distribution function of the Normal metal, at a temperature TN.
The tunneling current at a bias below the sub-gap ∆ is expected to be exponentially

suppressed with decreasing temperature due to the presence of strong BCS gap. Yet, a small
sub-gap leakage current is routinely observed in experiments [62, 88, 63, 64, 89, 90]. This is
often attributed to the Dynes parameter (Eq. (3.2)), incorporating the effect of finite lifetime
of the quasi-particles into the BCS DOS [91, 92], which can be ascribed to the photon-assisted
quasi-particle tunneling [65]. The leakage sub-gap current can also attributed to higher order
tunneling of the Cooper pairs via Andreev reflection [93–96], by which a Cooper pair in S
enters into N splitting into two electrons of opposite spin and momenta or vice versa.

In Fig. 3.1 it is shown that the DOS of the normal metal at a finite temperature TN is
smeared around the Fermi energy, of the order of kBTN, where kB is the Boltzmann constant.
Therefore, at a bias VNIS ≈ ∆/e, the onset of the tunnel current depends on the level of
smearing of the DOS and hence on the temperature of the normal-metal. It can also be seen
from Eq. (3.1) that the tunnel current depends only on the distribution function fN(E) of
the normal metal. This is valid as long as the superconducting gap can be assumed to be a
constant, equal to its zero-temperature value. Therefore, measuring the voltage drop across
the NIS junction with a constant current bias of INIS = Ith, one can directly measure the
distribution function fN(E) of the normal metal and hence its equilibrium temperature TN

using Eq. (3.3) [62, 97–99].
Fig. 3.2 (a) shows the calculated I −V curves of a NIS junction at different bath

temperature Tb, equal to the temperature of the normal metal TN, using the Eq. (3.1). The
parameters used in the calculation are from a regular NIS junction (shown in Fig. 3.2 (b))
with a constant SC gap ∆ = 208 µeV , a tunnel resistance RT,NIS = 13 kΩ and a Dynes
broadening parameter γ = 8×10−4∆. The IV curves are smeared out with the increasing
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temperature, due to the smearing of the distribution of the normal metal. If we take a cut of
the IV curves at a fixed current INIS = Ith, different onset voltage can be found for different
curves corresponding to a particular electronic temperature of the normal metal. Thus, the
measured voltage at a constant current INIS = Ith can directly give the equilibrium electronic
temperature of the normal metal.

Fig. 3.2: Calculated NIS IV characteristics (a) Tunnelling current of a NIS junction with
respect to the applied voltage bias at different bath temperatures Tb ranging from kBTb = 0.02∆ to
0.19∆, ∆ being the superconducting gap of Al of 208 µeV (b) SEM image of a typical NIS junction
with the thermometry circuit, a constant bias current Ith is chosen from the IV characteristics shown
on the left, where the measured voltage is most sensitive to the temperature

Although the NIS junctions are very convenient to use as an on chip thermometer to
measure the local electronic temperature, the characteristics of the junctions are not always
very consistent and depend on the fabrication parameters. This implies that, it can not be used
as primary thermometer and has to be always calibrated with respect to a known temperature.
In the experiment described in Chapter 4, we calibrate the NIS thermometer with respect
to our known cryostat temperature. Calibration is done at equilibrium, so that the cryostat
temperature (equal to the phonon temperature) can be attributed to the electronic temperature
of the normal metal. We biased the junction with a constant current, bias current set point
is chosen to be low enough such that the voltage drop across the junction is well below ∆

(so that the thermometer probe can not cool the normal metal, discussed in the following
sec. 3.2). The voltage drop across the junction is measured with respect to known bath
temperature, the measurement circuit being shown in Fig. 3.2 (b). Therefore, converting the
measured voltage with the aid of the calibration curve gives us the electronic temperature of
the normal metal. A typical calibration curve is shown in Fig. 3.3.
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Fig. 3.3: NIS thermometer calibration Measured voltage across a NIS junction as a function of
the bath temperature Tb gives the calibration of the thermometer. A saturation of the measured voltage
is found at a bath temperature below 100 mK, this puts a limit on the sensitivity of the thermometer at
low temperature.

3.2 NIS tunnel junction refrigerator

Apart from thermometry, a NIS tunnel junction can also be used as a mesoscopic solid-state
refrigerator, which can cool down the electrons in the normal part of the junction with respect
to their environment temperature. This can be achieved by voltage biasing the tunnel junction
with a voltage VNIS . ∆/e [62, 97]. When a NIS junction is biased with a voltage just below
the sub-gap ∆, the high energy electrons in the N above the Fermi energy can tunnel into the
S across the barrier, while electrons near the Fermi level can not tunnel due to the strong
energy filter imposed by the SC gap ∆. In the other way, when the voltage bias is applied on
the S, the quasi-particles with relatively low energy below the the sub-gap ∆ can only tunnel
into the N. Due to this energy filtering by the SC gap, heat is evacuated from the normal
metal, as a result the electronic temperature of the normal metal goes below the environment
and an electronic refrigeration is possible.

The heat current from the N to S, Q̇NIS can be written in the same manner as the tunnel
current using Eq. (1.47)-(1.49) as:

Q̇NIS =
1

e2RT,NIS

∫
∞

−∞

dEnS(E)(E − eVNIS) [ fN(E − eVNIS)− fS(E)] , (3.4)
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which is deposited to the S in addition with the Joule dissipation due to the quasi-particle
tunneling, INISVNIS. The calculated cooling power Q̇NIS for a NIS tunnel junction with respect

Fig. 3.4: Calculated NIS cooling power and electronic temperature of the normal-metal (a)
Cooling power of a NIS junction with respect to the applied voltage bias at different bath temperature
Tb, ranging from kBTb = 0.02∆ to 0.19∆, where ∆ is the SC gap of Al taken to be 208 µeV and
temperature independent. Positive cooling power indicates cooling of the nomal-metal while negative
corresponds to heating due to Joule dissipation, the optimal cooling power is obtained at a cooler bias
VNIS . ∆/e. (b) Electronic temperature of the normal-part of the NIS tunnel junction as a function of
the cooler bias and at different bath temperature Tb ranging from kBTb = 0.02∆ to 0.19∆, obtained
from the heat balance between cooling power of the NIS junction and the e− ph coupling power at the
corresponding bath temperature. At low bath temperature, the calculated electron temperature is found
to be above the bath, which can be due to the extra parasitic noise coming from the electromagnetic
environment. This overheating can also be attributed to the andreev current mostly significant for a
less opaque tunnel junction [96]

to the applied voltage bias at different temperatures Tb = TN = TS (up to a temperature where
we can assume ∆ to be temperature independent) is shown in Fig. 3.4 (a). A positive value
of Q̇NIS indicates the extraction of heat from the normal metal and hence cooling of the
same. As it can be seen from the plots, the cooling power Q̇NIS has a nonlinear dependence
with the voltage bias VNIS. It has a maximum and positive value at a bias VNIS . ∆/e for
all the temperatures. Above this bias, it produces the usual Joule heating due to the quasi-
particle current, which gives rise to a large negative value of Q̇NIS. In the low temperature
limit, TN ≤ TS ≤ ∆/kB where we can assume ∆ as a constant, the optimal bias at which the
cooling power maximizes, can be approximated as VNIS,opt ≈ (∆−0.66kBTN)/e, whereas
the corresponding optimal cooling power is given by [100],

Q̇NIS,opt =
∆2

e2RT,NIS

[
0.59

(
kBTN

∆

)3/2

−
√

2πkBTS

∆
exp
(

−∆

kBTS

)]
. (3.5)
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The efficiency of extracting heat from the normal metal by the NIS refrigerator is defined
by the ratio of its cooling power Q̇NIS to the total applied power, Ptotal = INIS(VNIS)VNIS. It is
expressed by the coefficient of performance (η) as,

η =
Q̇NIS

Ptotal
=

Q̇NIS(VNIS)

INIS(VNIS)VNIS
(3.6)

Similar to the optimal cooling power in the low temperature limit, the optimal efficiency
a NIS refrigerator at a voltage bias VNIS ≈ ∆/e in the low temperature limit can be written as
[100],

ηopt ≈ 0.7
TN

Tc
; (3.7)

where the SC gap ∆ is taken to be constant, ∆ = 1.764kBTc and Tc is the critical temperature
of the superconductor.

In quasi-equilibrium condition, i.e., when the mean electronic escape time from the
normal metal is longer than the e− e interaction time [101–103], the effective electronic
temperature of the normal metal is determined by the heat balance between the incoming
cooling power Q̇NIS from the NIS tunnel junction and the outgoing heat current (power) due
to the relaxation of the electrons with phonons coupled to the bath temperature, given by
the e− ph coupling power Q̇e−ph = ΣV

(
T 5

N −T 5
b

)
[62]. The heat balance equation in the

steady-state then reads,
Q̇NIS −ΣV

(
T 5

N −T 5
b

)
= 0 (3.8)

where Σ is a material dependent constant and V is the volume of the normal metal coupled
to the bath via e− ph coupling. Often in low-temperature experiments, a parasitic noise
coming from the electromagnetic environment can heat up the normal-metal not allowing it
to thermalize to the bath temperature, which is more significant towards the low temperatures.
In that case, a constant parasitic power P0 is accounted within the term Q̇NIS in the heat
balance equation (Eq. (3.8)).

Fig. 3.4 (b) shows the calculated electronic temperature versus the applied voltage
bias, solving the heat balance equation (Eq. (3.8)) for a normal metal island made of Cu
with the material dependent constant Σ = 2.6× 109 Wm−3K−5 [62] and with a volume
V = 1.5×10−20 m3. As it is expected, the maximum temperature reduction of the normal
metal from the bath temperature is obtained for a voltage bias VNIS ≈ ∆/e and an overheating
above the bath temperature is obtained at higher bias voltages.
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3.3 SNS proximity junction thermometry

When a superconducting metal is placed in close proximity of a normal metal via clean
(direct) contact, the superconducting pair amplitude can penetrate into the normal metal over
a length of LT =

√
h̄D/2πkBT , known as the thermal coherence length, where, D = υFle/3

is the electronic diffusion constant, le,υF being the electronic mean free path and the Fermi
velocity of the normal metal, respectively. This phenomenon is well known as proximity
effect [104–112]. This induces a weak superconducting gap in the spectrum of the normal
metal. In an SNS junction where a normal (N) metal is placed between two superconductor
(S) in transparent contact, the density of states in the normal metal is modified and a mini
gap is induced in it [113–118]. As a result a supercurrent can flow though the SNS junction
[119–121].

Fig. 3.5: SNS IV characteristics (a) SEM image of an SNS junction with the circuit for ther-
mometry (b) A typical IV characteristics of an SNS junction for forward and backward sweep. Sweep
direction of the current is indicated by the arrows. The current in the forward sweep at which the
junction switches to the resistive state is indicated as critical current Ic and the current in the backward
sweep at which the junction switches back to superconducting state is indicated as retrapping current
Ir. In this specific junction, Ir < Ic showing that the junction is hysteretic. The overheating of the N
due to Joule dissipation in the resistive state is found to be the origin of the hysteresis [122]

3.3.1 Andreev transport in SNS junction

The transport of supercurrent in an SNS junction is governed by multiple Andreev reflection
[123–126]. The full process of supercurrent transport through an SNS junction is depicted
in the drawing of Fig. 3.6. This can be explained in the following way. Let us consider
an electron in the normal metal with an energy, E < ∆, with respect to the Fermi level,
impinges on the right NS interface of the junction and is reflected back a phase-coherent
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hole of same energy but with an opposite momentum vector. As a result a Cooper pair
of electrons of opposite spin is created in the right superconductor. The phase coherent
hole travels through the normal metal and impinges again at the left NS interface and
reflected as a phase-coherent electron into the normal metal. As a result it annihilates
a Cooper pair in the left superconductor. In this way one Cooper pair in the left S is
transported to the right S through the normal metal in the middle via a phase-coherent
multiple Andreev reflection. This process continues in a cycle producing a phase coherent
state, called Andreev bound state [127, 108, 120]. These states carries the supercurrent in
SNS junction [128, 129, 124, 120, 121].

Fig. 3.6: Supercurrent transport in an SNS junction by multiple Andreev reflection An
electron in the normal metal with an energy E < ∆, with respect to the Fermi energy and with spin up
reflected from the right NS interface as a hole of enegy −E and spin down, which is again reflected
from the left interface as an electron with enrgy E and spin up, producing a phase-coherent Andreev
bound state. As a result a Cooper pair from the left superconductor is transported to the right one
causing a flow of supercurrent in SNS junction

3.3.2 Hysteresis in a Proximity SNS junction

Fig. 3.5 (a) shows the SEM image of a typical SNS junction used for the measurements in
this thesis, with the biasing circuitry to characterize it. The SNS junction is current biased
with a constant current ISNS and the voltage drop across it VSNS is measured. A typical IV
characteristics of the junction for forward and reverse sweep is shown in Fig. 3.5 (b). One
can notice that, in this specific junction, the current at which the junction switches from the
superconducting (SC) state to the resistive state and vice versa, are not the same for forward
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and reverse sweep. This indicates that the junction has a hysteretic behaviour. The switching
current in the forward sweep where the junction switch from SC state to resistive state is
called the critical current (Ic), while the switching current in the reverse sweep where the
junction recovers the SC state is called the retrapping current (Ir) of the junction. The origin
of hysteresis in an SNS junction was a long standing issue until last decade [130–134], and is
now well understood to have thermal origin [122]. According to the Resistively Capacitively
Shunted Junction (RCSJ) model [135, 136] of Josephson junction, the hysteresis can appear
due to the capacitance of the junction. But in a proximity SNS junction the geometrical
capacitance of the junction is negligible, meaning the behaviour is over-damped. Still, one
regularly sees the existence of significant hysteresis of the critical current in a proximity SNS
junction (Fig. 3.5 (b)). With the aid of additional NIS probes, Courtois et al. [122] measured
the temperature of the normal metal of an SNS junction and found that the electrons in the
N gets overheated once it switches to the resistive state. It does not go to the equilibrium
temperature of the system (i.e. to the superconducting state) until the bias current is reduced
below the retrapping current Ir < Ic and hence the junction shows a hysteresis.

3.3.3 Critical current of SNS junction

The proximity effect induces the superconducting correlation in the normal metal of SNS
junction producing a supercurrent carried by the phase-coherent Andreev bound states. The
critical current of the junction falls exponentially with the length of N-metal in the SNS
junction, Ic ∝ exp(−L/LT). In experiments, the length of the junction L is larger than
the mean free path le of electrons and smaller than the electronic phase-coherence length
lφ , le < L < lφ , so the transport is considered to be diffusive and phase-coherent. The
energy scale that is relevant in the study of proximity SNS junction is the Thouless energy
εth = h̄D/L2 [108, 106]. The Thouless energy describes the electronic diffusion process in
the normal metal, εth/h̄ gives the rate at which the electrons diffuse across the sample, which
is relevant specially for the non-equilibrium supercurrent transport [137–139]. When the
length of the junction is larger than the superconducting coherence length ξ0 =

√
h̄D/∆ of

the superconductor, where ∆ is the superconducting gap, which is equivalent to ∆ >> εth,
the junction is considered to be in the long-junction limit [105, 134]. Here we will consider
the long-junction limit only.

Temperature dependence of Ic

Temperature dependence of the critical current in an SNS junction has been studied for long
time within the Ginzburg-Landau theory [140], but the predicted behavior is correct only
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close to Tc. Later for a diffusive SNS microbridge the temperature dependence was well
described by Likharev with the quasiclassical Usadel equations [110, 109, 141, 142]. A
more general study of the Josephson effect in diffusive SNS junction was described with the
approach of quasiclassical Green’s function in imaginary time [104, 129, 105].

This temperature dependent feature of the SNS junction can be used for thermometry in
order to measure the local electronic temperature of the normal metal. The critical current of
an SNS junction is a monotonous function of temperature. In the high temperature limit, i.e.
kBTe >> εth, the critical current increases with the decrease of electronic temperature. At low
temperature a saturation appears when the temperature is smaller than the Thouless energy,
kBTe < εth. The critical current at absolute zero temperature is a constant value depending on
the Thouless energy of the junction.

In the high temperature limit (kBTe >> εth ≡ L >> LT), the critical current can be written
from the Usadel equation as [104, 105],

eRNIc = 64πkBTe

∞

∑
n=0

L
Lωn

∆2exp(−L/Lω)

[ωn +Ωn +
√

2(Ω2 +ωnΩn)]2
, (3.9)

where RN is the normal state resistance, ωn = (2n+ 1)πkBTe is the Matsubara frequency,
Ωn =

√
∆2 +ωn2 and Lωn =

√
h̄D/2ωn

At lower temperatures kBTe . εth calculation of Ic is much more difficult as it involves the
solution of the Usadel equation at all energies. At zero temperature the normalized critical
current is a constant [105]:

eRNIc = 10.82εth (3.10)

For a temperature kBTe > 5εth, sum in Eq. (3.9) is essentially contributed by the first
frequency term ω0 = πkBTe with Lω0 = LT. Therefore, the expression for the critical current
in the Eq. (3.9) can be approximated in the limit of ∆/εth → ∞ as,

eRNIc =
32

3+2
√

2
εth

(
L
LT

)3

e−L/LT (3.11)

3.3.4 Measurement of critical current

The critical current Ic of an SNS junction can be measured by simply measuring the switching
current of the junction in a single sweep of the biasing current, but the measurement of such
single event can be erroneous, as the switching of the junction is a stochastic process [134].
This can be explained by the fictitious particle in the RSJ model [128, 135, 136], trapped
inside a tilted oscillating potential board, where the slope of the potential board is governed
by critical current of the junction. For a small biasing current, the slope of the potential board
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is small enough to trap the particle into the oscillating potential barrier, implying the junction
to be in the SC state. As current increases the potential becomes more tilted and the escape
of the particle is possible at the critical current. The escape of the particle is a stochastic
process as the process can be triggered by thermal or quantum activation. Therefore, the
switching current has a certain probability distribution at certain temperature, depending on
the thermal or quantum noise. We measure the Ic of the SNS junction and calibrate it as a
thermometer with respect to bath temperature in two ways, DC single sweep measurement
and by AC statistics measurement of the switching current.

DC measurement of Ic

For the DC measurement of Ic we bias the SNS junction with a DC current and measure the
voltage drop across it. From the IV characteristic we extract the critical current Ic, defined
by the value of the current at which the measured voltage is at least larger than a threshold
voltage VTh above the noise level of the voltage measurement. Fig. 3.7 (a) shows the IV

Fig. 3.7: DC calibration of SNS thermometer (a) DC IV characteristics of an SNS junction at
different bath temperatures, the switching current Ic is indicated by the arrow, defined by the current
at which the voltage across the junction exceeds the threshold value VTh (b) The critical current Ic of
the junction at different bath temperature gives the calibration of the thermometer, here both the axes
are normalized, the solid line is the fit of the data with the theory of Eq. (3.9). We use the measured
normal-state resistance and the diffusion constant (D) as fixed parameter and the Thouless energy
(εth), interface transparency η as the free parameters. The fit gives an estimate of εth = 10 µeV and
the effective length of the normal metal (Leff) matching very well with the geometry of the junction
revealed by SEM images.

curves of a typical SNS junction (Fig. 3.5 (a)) at different bath temperature, a threshold
voltage VTh is defined at 0.2 µV (where the junction is already switched to normal state) for
extracting the critical current of the junction. The extracted critical current as a function of
the bath temperature is shown in Fig. 3.7 (b). This gives the calibration of the thermometer
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from the DC measurement. Both the axes are normalized with the Thouless energy. The solid
line shows the fit of the data with the Eq. (3.9). From the fit of Ic vs Tb data we extract the
parameters of the junction. The diffusion constant D = 76 cm2/s of the normal metal for this
particular junction is determined by the normal state resistance of the junction, which is used
in the fit to extract the Thouless energy εth ≃ 14 µeV. The effective length of the N-metal
Leff = 600 nm is very close to the estimate from SEM image. As the Thouless energy εth is
very small compared to the thermal energy kBTb, an unsaturated temperature dependence of
Ic is found for the range of temperature of 100-400 mK. A saturation is observed below 80
mK, where the Thouless energy is comparable to the kBTb. This saturation in Ic might also
come from heating of the normal metal by parasitic noise.

AC measurement of Ic

As the switching of the junction from the SC state to the resistive state is a stochastic process,
a statistical measurement is required to determine the critical current Ic correctly. This
requires thousands of measurements of the switching current at the fixed condition of the
junction environment, to get the distribution of switching currents. It is meaningless to
perform such a huge number of switching current measurement by DC single sweeps, as this
is time consuming and therefore it is difficult to keep the junction environment unchanged.
For this reason we developed a new way of measuring the statistics of the switching current,
by biasing the junction with an AC signal [143–145]. This method is used in the measurement
of temperatures described in Chapter 5. Fig. 3.8 shows the measurement scheme for AC
statistics measurement of the switching current with a triangular AC signal of frequency
300 Hz, amplitude 130 mV and with an offset + 10 mV. This AC voltage signal is used to
current bias the SNS junction through a 100 kΩ− 1 MΩ biasing resistor, much higher than
the junction resistance, thereby satisfying proper current biasing condition. Other than a
triangular wave form, we could also use a sinusoid and sawtooth signal for the statistics
measurement. The choice of adding offset to the signal is to remove unnecessary overheating
for the negative part of the oscillation period.

The switching current is recorded by an oscilloscope triggered just above the switching
of the junction. In this way 3000 measurements of switching currents are obtained in just 10
sec. A histogram of such measurements of switching current at a constant bath temperature
Tb =105 mK is shown in in Fig. 3.9. The envelope of the histogram is fitted with a Gaussian
(shown in solid line) in order to extract the average of the distribution, indicated by the red
arrow in Fig. 3.9. One can notice that the histogram shown in Fig. 3.9 has an asymmetric
nature, it has a longer tail towards the lower bias current. This kind of behavior of the
histograms are more pronounced at a very low temperatures below 100 mK. This could be
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Fig. 3.8: Switching current statistics measurement procedure Screen-shot of the oscilloscope
(LeCroy Waverunner LT224) used for the measurement of the switching current statistics. In channel-1
(shown in Yellow) we probe the input bias voltage (which is used for current biasing the SNS junction),
in this case it is a triangular signal of 300 Hz frequency, 130 mV amplitude and with an offset of
+10 mV. The measured voltage across the SNS junction is probed by the channel-2 (shown in Red)
after amplification. The measured voltage signal is zero until the input bias current is below the
critical current. A sudden jump of the measured voltage is attributed to the switch of the junction from
superconducting state to resistive state once the bias current exceeds the critical current. Above this
current an Ohmic behavior of the junction produces a linear decrease of measured voltage and finally
a sudden drop of the voltage to zero is again attributed to the reduction of the bias current below the
retrapping current when the junction comes back to the superconducting state. The oscilloscope is
triggered to a value just above the zero base line of the output voltage signal, when the junction is
already switched, indicated by the ‘red-arrow’ on the y-axis. In this way the the oscilloscope records
the value of the input bias voltage (and hence the bias current) at which the junction is switched for
each period.

understood as the effect of thermal noise, which can induce a switching for a low bias-current,
while for a bias-current above the average value of the distribution, the switching process
is more deterministic and will in any case occurs below the maximum value. We use the
average of the distribution [ISNS]avg or the most probable switching current [ISNS]Pmax as the
actual critical current of the junction.

The above mentioned procedure describes the measurement of the most probable critical
current of the SNS junction at a single bath temperature. We use this method to calibrate
the SNS junction thermometer with respect to the known bath temperature. The histograms
of 3000 measurements of switching current at different bath temperature, with a fit of the
envelope of each histogram with a Gaussian, is shown in Fig. 3.10. Form the histograms in
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Fig. 3.9: Histogram of switching current Histogram plot of the 3000 measurements of switch-
ing current of an SNS junction at a bath temperature of 105 mK. The full measurement takes only 10
sec. The solid line is the Gaussian fit of the histogram. The average of the distribution is indicated by
the red arrow, consider as the critical current of the junction.

Fig. 3.10, a clear trend can be found that, the height of the histogram is decreasing, while the
width is increasing with temperature. Indicating that the measurement is more deterministic
towards low temperature.

The extracted average switching current from each histograms at different bath tempera-
ture is plotted as a function of the bath temperature in Fig. 3.11 (left), while the standard
deviation of the histograms as a function of the bath temperature Tb is shown in Fig. 3.11
(right).

Temperature dependence of the width of the histogram

The distribution of the switching current of the junction has a certain width, given by the
thermal or quantum noise. At high temperature the width of the histogram is determined by
the thermal energy kBT , as the dominant contribution comes from the thermal activation. If
one extends the theory of SIS junction to SNS junction, the width of the histogram in this high
temperature regime can be found as, std[ISNS]/ISNS ≈ (kBT/εth)

2/3. At low temperature the
thermal energy is very small and most of the contribution to the distribution of switching
current comes from the quantum tunneling across the barrier. The quantum tunneling onset
temperature is defined as T ∗ = h̄ωp/2πkB, where ωp/2π is the plasma frequency of the
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Fig. 3.10: Histograms of switching current at different bath temperature Histograms of
the switching current of an SNS junction at several bath temperature, with a Gaussian fit for each
histogram. One can easily notice that the height and width of the histogram changes with temperature,
with a trend that the height drops with temperature, while the width increases. This is attributed to the
thermal noise present at higher temperature which helps the junction to switch and gives a broader
distribution.

quantum well. The onset temperature is of the order of εth/kB. Below this temperature the
critical current get saturated, with a dependence of T 4/5. From the plot of standard deviation
of histograms as a function of temperature (Fig. 3.11 (Right)), we can easily distinguish the
two regimes. The high temperature regime, where the standard deviation increases linearly
with temperature and low temperature regime, where it is saturated. A linear fit of the data
is also shown in Fig. 3.11 (right). The data in the high temperature regime fits better with
a T dependence, compared to a T 2/3 dependence. The saturation of standard deviation is
observed at a bath temperature Tb = 155 mK, while the estimate of T ∗ from the fitted value
of the εth ≃ 14 µeV gives a value T ∗ ≃ 164 mK. Therefore the observed onset temperature
matches well with the estimation.

3.3.5 Performance of an optimized SNS thermometer

Our final goal is to measure the heat-flow through a QD junction, which requires a very
sensitive thermometer at an operating temperature < 100 mK, in order to detect a little
change of electronic temperature. We optimized the sensitivity of the SNS thermometer
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Fig. 3.11: AC calibration of a SNS thermometer (a) The average of the distribution of the
switching current is plotted as a function of the bath temperature, the error-bar comes from the
standard deviation of the distribution. (b) The standard deviation for each of the distributions of the
switching current is plotted as function of the temperature. We can notice that this curve has two
regimes, the standard deviation drops with temperature when the bath temperature is sufficiently
high, while it gets saturated at lower bath temperature, indicating the onset of macroscopic quantum
tunneling

with several repetitions of the junction parameters including, length, thickness of the normal
metal and thereby reducing the Thouless energy of the junction. At the optimization stage,
the normal part of the SNS junctions and the electromigartion-constriction were made at
the same step of metal-evaporation. Therefore the thickness of the normal part of the SNS
junctions could not be varied independently. This restriction was lifted by adding a third
angle of evaporation.

Here, we analyze the sensitivity of an optimized thermometer integrated with a dummy
QD-device (SEM of the device is similar to Fig. 2.6 (b)). The constriction is broken by
electromigration but no nano-particles are deposited. Therefore, the device can be essentially
considered as a ∼ 5 µm long and ∼ 100 nm wide rectangular metallic Au-island, with a short
SNS junction for measuring its electronic temperature and a relatively longer SNS junction to
heat it up. In the steady state, the temperature of the island is determined by the heat balance
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Fig. 3.12: Real time trace of the temperature with the application of 100 aW power Temper-
ature of the normal metal source island measured as function of time. An increase of the temperature
of about 5 mK is observed with the application of 100 aW power to the source island. This increase
of the local electronic temperature of the source results form the heat balance between the input Joule
heating power of 100 aW and the heat relaxation to the phonon bath. Similarly the thermalization to
the bath temperature is observed with the withdrawal of heating. This measurement indicates that the
SNS thermometer is capable of measuring a heating by a very small heating power of the order of 100
aW .

between the input-heat from the heater Q̇H and the heat-leak through the phonons, i.e.,

Q̇H −ΣV
(

T 5
e −T 5

b

)
= 0, (3.12)

where Σ is a material dependent parameter and V is the volume of the island.
The SNS thermometer is calibrated against the known cryostat temperature (Fig. 3.11

(right)). No saturation is observed in the calibration (Ic vs T ) curve even at the base temper-
ature of ∼ 80 mK. From the calibration curve (Fig. 3.11 (right)) we obtain the sensitivity
of the thermometer to be dIc/dT = 1.5 µA/K. The average error in the measurement of Ic

is 5 nA, within 70 % confidence level. From this two values the noise in the temperature
measurement is found to be 200 µK/

√
Hz.

In order to know whether the thermometer can detect heating by a very small heating-
power, we performed an experiment to measure the temperature of the island in real time, at
a bath temperature Tb = 90 mK. We measure the temperature of the island by the statistical
measurement of 500 switching events of the SNS junction. From the histograms of the
switching current we obtain the average switching current Ic. The real time trace of the
electronic temperature of the island is shown in Fig. 3.12.
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Initially, the heater is turned off, we measure the equilibrium temperature Te ∼ 92.5 mK
as obtained from the calibration of the thermometer.

The heater is set to a constant current bias of 5 nA, driven by a 1.3 V isolated voltage
source with a 200 MΩ bias resister. This biasing current dissipates on the heater junction
of resistance RH ≈ 9 Ω (rough estimate from the four probe normal-state resistance of the
thermometer junction) and deposit a heating power of Q̇H ≈ 100 aW on the island. We
measure a decrease in Ic and hence an increase in the electronic temperature as soon as we
turned on the heater. The electronic temperature of the island can be extracted by solving the
heat balance equation (Eq. 3.12), using the sample parameters, Σ = 2.4×109 Wm−3K−5 for
Au, the volume of the island V = 2×10−20 m3 obtained from the SEM image. We found that
above observed temperature increase of ∆Te ∼ 3 mK (Fig. 3.12) matches with the estimation
with a heater junction resistance RH = 3.5 Ω, almost 3 times smaller than the rough estimate
of RH ≈ 9Ω (from the four probe normal-state resistance measurement of the thermometer
junction). This discrepancy with the estimated value of RH could be due to the parasitic heat
loss from the island, e.g. though the Al leads due to anti-proximity effect.

3.4 NIS vs SNS thermometry

Since we have used the two thermometry techniques based on NIS or SNS junctions in
the measurement of local electronic temperature, in this section we describe a comparison
between the two in terms of their performance and identify its pros and cons from the
experimental point of view. This is summarized in the Table 3.1.

1. Impedance: Very high impedance for NIS junction typically 10-50 kΩ; while SNS
junction has very low impedance typically 2-10 Ω;

2. Access resistance: NIS junctions are not suitable for conductance measurement due
to the high access resistance (con); while SNS junctions are perfect for conductance
measurements, e.g. an SNS thermometer can be integrated with a QD device due to a
negligible access resistance (pro);

3. Modification of DOS of sample: a NIS junction does not modify the DOS of the normal
metal whose temperature need to be measured (pro); but the SNS junction induces a
mini hard gap in the DOS of the normal metal (con);

4. Sensitivity: a NIS thermometer regularly saturates below 100 mK (con); while SNS
thermometer can be sensitive even below 100 mK (pro);
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Table 3.1: Comparison between NIS and SNS thermometry with Pros and Cons

Issues NIS SNS
Impedance high impedance low impedance

Access resistance high access resistance negligible access resistance
DOS modification Do not modify induces a mini hard gap

Sensitivity saturates below 100 mK sensitive below 100 mK
measurement difficulty simple single measurement longer statistical measurement

Dissipation Dissipates Dissipates above Ic
Lifetime no degradation depends on materials

Thermal insulation good only below 300 mK

5. Measurement difficulty: for NIS junction thermometer measurement of temperature is
simply done by a single measurement of voltage drop across the junction; while for
SNS junction thermometer a complicated and relatively long statistical measurement
of the critical current is required in order to measure the temperature correctly;

6. Dissipation: a NIS junction dissipates at the tunnel barrier (con) ; while the SNS
junction dissipates only above the critical current (pro);

7. Lifetime and consistency: NIS junctions are not degraded over time and the behaviour
is more consistent (pro); but for SNS junction depending on the choice of metal the
lifetime of the junction can be very short (con);

8. Thermal insulation: NIS junction has a good thermal insulation at all temperature
(pro); but SNS junction has effective thermal insulation only for a bath temperature
below 300 mK (con);



Chapter 4

Thermal Conductance of a
Single-Electron Transistor

In this chapter, we present a combined measurement of both heat and charge conductance
through a metallic Single-Electron Transistor (SET ). It is a small metallic ‘Island’ coupled
to two thermal reservoirs, called the ‘Source’ and ‘Drain’ of the transistor. The electrons in
the island are subject to a strong electron-electron interaction. Therefore, one needs to pay an
extra charging energy, in order to tunnel an extra electron into the island. The reservoirs are
treated as Fermi-sea of non-interacting electrons, obeying Fermi-Dirac statics. The energy
selective tunnelling of electrons from the reservoir to the island, hints the existence of rich
physics in the heat flow through these devices, which is being mostly unexplored yet, in spite
of good understanding of charge transport in these devices. Here we present a simple yet
challenging measurement to probe the heat flow though the SET . The device acts as a heat
switch depending on the applied gate potential. Pure heat and charge transport measurements
allow us to check the validity of the celebrated Wiedemann-Franz (WF) law. A strong
violation of the WF law is observed away from the degeneracy point. The observed deviation
agrees well with the theoretical expectation. Measured heat flow through the SET is found to
be strongly non-linear with squared temperature, deep inside the coulomb blockade region.

4.1 Device specifications

The thermal transport measurement in an SET requires the extraction of exact amount of heat
flow from one side to the other through the SET island. Heat is not necessarily conserved in
the circuit, as it can leak out via many paths, which are not easily measurable. Our approach
is to measure the quasi-equilibrium electronic temperature of both the leads of the SET . This
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gives us quantitative determination of the heat flow through the island by making a heat
balance out of all possible paths of heat flow.

For this, we made the devices with two types of design, ‘Symmetric’ and ‘asymmetric’
SET . In the symmetric design, we made both the source and drain of the SET out of a very
narrow and small volume metallic island, in order to thermally decouple both of the leads
from environment. We have thermometer and cooler/heater probes connected to both of them.
Therefore, one can heat/cool and measure the electronic temperature of both of the leads at
the same time. An SEM image of a symmetric SET is shown in Fig. 4.1.

Fig. 4.1: SEM image of a symmetric SET SET with symmetric Source and Drain. Four Al
probes are connected on both sides via tunnel barrier in order to measure and change the electronic
temperature.

During the measurements with the symmetric SET , we found that the heat balance of the
system is disturbed due to the cross-talk between the measurement setup for the temperature
measurement of both leads simultaneously, with the NIS thermometers. Therefore, we move
to the asymmetric design of the SET, where we measure the electronic temperature of the
source only, while electronic temperature of the drain is inferred from the bath temperature,
due to good coupling to the phonons. All the measurements presented in this chapter are
with asymmetric SET .
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In the asymmetric design, the drain of the SET is connected to a bulky electrode and
therefore is well thermalized to the bath temperature, while the source is again made narrow
and tiny, in order to decouple it from the environment. The island of the SET is made very
small in volume in order to be able to neglect the e-ph coupling in it. Fig. 4.2 (a) shows a
color SEM image of the full device while Fig. 4.2 (b) shows schematics with the same colors
for each element.
The source is thermally decoupled from the bath, in spite of the probes connected to it. This is
achieved by reducing its volume, which decreases the e-ph contribution to the heat leak from
it, and by connecting it through a clean contact to an Al lead. This superconducting Al lead
connected at the end of the source acts as a thermal mirror because of the superconducting
gap present in Al, on the other hand it allows us to perform the charge transport measurement.
Additionally, four superconducting Al leads are connected to the source via tunnel contacts,
which serve either as thermometer to measure the local electronic temperature of the source
or to heat up (cool down) the source electrons above (below) the bath temperature.
If we concentrate on the central part of the device (Fig. 4.2 (b)), we can see another beauty
of the design, that the Cu island (yellow) is connected to the source (red) and drain (green)
through two small pieces of Al strips(100 nm), which are oxidized before the deposition
of the Island. The two Al strips are in clean contact with huge metallic source and drain,
which renders them normal by inverse proximity effect, while they are in tunnel contact
with the island [146]. The advantage of making the tunnel junctions for the SET in this way
is that this is the easiest way of making very stable AlOx layer between two normal metal
structures. We can precisely control the thickness of the tunnel barrier by controlling the
time of oxidation and pressure of injected oxygen.

4.2 SET characterization

In order to understand the thermal transport through the SET, we need to first characterize
it by charge transport, to estimate the charging energy EC and the tunneling resistance RT.
Assuming symmetric junctions with identical resistances RT/2, a straightforward and reliable
way to obtain them is to make a fit to the measured minimum and maximum current ISET

at each bias voltage VSET with the orthodox theory. In this thesis we mainly consider two
samples with identical geometry, one with high tunnel resistance (Sample A) and another
with small tunnel resistance (Sample B) (see Table 4.1). Fig. 4.2 (d) shows the differential
conductance of Sample B, at 50 mK as a function of both the SET bias VSET and the average
number ng =CgVg/e of electrons induced electrostatically by the gate potential Vg on the
island. Here Cg is the capacitance between the gate and the island. Coulomb diamonds (in
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Fig. 4.2: A single electron transistor with heat and charge transport measurement set-up
(Adapted from Dutta et al. [103]) (a) False-colored SEM image of the full device. The circuit in
red indicates the charge transport set-up, while the black one stands for the heat transport set-up.
(b) Schematic of the device, with the different elements shown in colors. (c) Zoomed-in view of
the central part of the SET. (d) Differential conductance map of sample A SET at 50 mK against
drain-source voltage VSET and induced charge ng.

dark blue) are regions of zero current through the SET. Every diamond is centered around an
integer value of ng and defines a fixed charge state on the island.
At zero bias, the charge conductance is thus vanishing, except in the vicinity of the degeneracy
points at half-integer values of ng. At these points, two charge states have the same energy
and the conductance (for small barrier transparency) is half the high-temperature value,
which is related to the fact that only these two states are involved. The measured current ISET

at Tb = 72 mK, as a function of the applied bias Vg, at different gate voltage Vg (blue dots
along the vertical direction), enclosed by the calculated envelope curves corresponding to
ISET at ng = 0 and at ng = 1/2, are shown in Fig. 4.3 for sample B. From this procedure,
performed at several bath temperatures Tb, we estimate EC = 155 µeV and RT = 82 kΩ for
sample A, EC = 100 µeV and RT = 26 kΩ for sample B (see Table 4.1). The charge transport
causes some dissipation at the tunnel barriers, which produces extra Joule heat in the leads.
Therefore one should not consider a constant temperature (equal to the bath temperature)
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Table 4.1: SET parameters for two samples

Sample Total tunnel resistance (RT) Charging energy (EC)
A 164 kΩ 155 µeV
B 52 kΩ 100 µeV

in the calculation, for both of the leads. To estimate the parameters more accurately, we
consider the thermal balance in the source to extract its electronic temperature. This is again
used in the calculation of the SET parameters.
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Fig. 4.3: IV characteristics of an SET at different gate positions SET current for Sample B,
plotted for different values of the induced charge ng as a function of VSET, together with envelope
curves calculated at ng = 0 (green) and at ng = 1/2 (red).

4.3 NIS thermometer and cooler characterization

Apart from the SET parameters, we also need to characterize the NIS junctions that will be
used as thermometer or cooler/ heater, in order to study the heat transport through the SET .
We use one of the four NIS junctions as an electronic thermometer. For the calibration of the
thermometer, the NIS junction is biased with a constant current of few pA and the voltage
drop across the junction is measured as a function of the bath temperature [62, 99, 98].
The biasing current has to be small enough so that the voltage drop is much below the
superconducting gap of Al, in order to avoid any significant cooling. A typical calibration
curve is shown in Fig. 4.4.
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Fig. 4.4: Calibration of the NIS thermometer A typical calibration of a NIS thermometer with
respect to known bath temperature.

To estimate the cooling (heating) power of the cooler junction we need to characterize
the cooler (heater) junction. We do this by fitting the measured IV characteristics of the NIS
junction with theory (Eq. (3.1)). The fitting gives us the values of the normal state tunnel
resistance RT,NIS, low-temperature superconducting energy gap ∆, and the dimensionless
Dynes broadening parameter γ .

The low-temperature IV characteristic of the NIS cooler (heater) junction of sample B is
shown in Fig. 4.5, both on linear and logarithmic scale, together with the calculated INIS. For
this sample we obtain RT,NIS = 13.2 kΩ, ∆ = 208 µeV, and γ = 8×10−4. When compared
to effects caused by the overheating of the superconducting electrode, the exact value of γ or
other subgap features of the I–V curve do not play a significant role in modeling the cooling
power of the NIS junction at voltages VNIS close to ∆/e.

4.4 Heat transport measurement

In this experiment, our approach is to study the thermal balance in the source when it is
heated or cooled. In every thermal measurement, we ensured that no current is flowing
through the SET, so that pure heat transport can be considered. The thermal conductance of
the SET is inferred from the heat balance in the source, and then compared to the electrical
conductance measured in parallel.
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Fig. 4.5: IV characteristics of the NIS junction with theoretical fits Current–voltage charac-
teristic of one NIS junction of sample B on (left) linear and (right) logarithmic scale. Fits are shown
as full red lines.

We will consider here that the electron population of the source is in quasi-equilibrium at
a well-defined (electronic) temperature Te. This is justified as the mean electron escape time
from this element is longer than the estimated electron-electron interaction time [101]. By
heating or cooling electrons in the source, its electronic temperature Te can be different from
the temperature of the phonons thermalized at the bath temperature Tb.

We apply proper voltage bias to the NIS junction, to cool or heat the source electrons
with respect to phonons. The cooling and heating of the source electronic bath is illustrated
for sample B in Fig. 4.6 left. Here one NIS junction to the source is used for thermometry
while a second junction acts as a cooler used for cooling/heating. At a low cooler bias Vcool,
the electronic temperature Te is below the bath temperature Tb of 152 mK (indicated by a
horizontal dashed line in Fig. 4.6 left) so that cooling is achieved. The maximum temperature
reduction of about 50 mK is reached at a potential drop Vcool of about 190 µeV, close to
the gap ∆ for Al. A larger cooling is obtained when the gate potential is adjusted so that
electron transport through the SET is blocked (ng = 0) and so is thermal transport through it.
At higher bias of the cooler (Vcool > ∆), an electron overheating is obtained: Te > Tb. Again,
the electron temperature change (here an increase) is larger when the SET is blocked. The
electron temperature at a fixed cooler bias but as a function of the gate potential is displayed
in Fig. 4.6 right. Clear temperature oscillations are obtained, with an opposite sign for the
electron cooling and the over-heating regimes. This demonstrates the contribution of the
thermal conductance of the SET to heat transport.
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Fig. 4.6: Gate modulated heat transport (Adapted from Dutta et al. [103]) Left: Variation of
electronic temperature Te of sample B source with cooler bias voltage, at gate open (ng = 0.5) and
gate closed (ng = 0) states, at a bath temperature Tb of 152 mK. The full line is a fit of the gate-open
state data, see text. Right: Temperature modulation by the gate voltage expressed in terms of induced
charge ng in the heating regime (top) and in the cooling regime (bottom) at cooler bias points indicated
by the blue and red arrows in the left plot.

4.5 Analysis

In order to quantify the thermal conductance through the SET, we describe the thermal
balance in the source following a thermal model depicted in Fig. 1b. In this model, the
electron bath in the source receives the power Q̇cool from the cooler junction, with a positive
or negative sign corresponding to cooling or heating respectively. It can be obtained using
Eq. (1.47 ) and (1.48) [62]

Q̇cool =
1

e2Rcool

∫
∞

−∞

(E − eVcool)nS(E)[ fsource(E − eVcool)− fS(E)]dE − Q̇0, (4.1)

where Rcool is the tunnel junction resistance of the cooler, nS(E) is the (BCS) density of
states of the superconductor, fsource,S(E) is the thermal energy distribution function in the
source or the S lead of the cooler at respective temperatures Te and TS. The parasitic power
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Q̇0 takes into account imperfect thermalization of the electrical connections. The main
energy relaxation channel for the source electrons is the coupling to phonons, with a power
following,

Q̇e-ph = ΣV (T 5
e −T 5

ph), (4.2)

where Σ is characteristic of the material, V is the volume, and Tph is the phonon temperature
here assumed to be equal to the bath temperature [62]. Eventually, the SET transmits a power
Q̇SET to the source.

Here we assume that there is no heat loss in the island, i.e. whatever heat enters to
the island from the source goes to the drain. The volume of the island is so small that
the electron-phonon coupling is negligible here. We check this assumption separately, by
calculating the e-ph power loss out of the island. By considering the temperature of the island
to be the average of the temperature of two leads, we found that the e-ph coupling power
of the island is less than 5 % of the heat flow through the SET , Q̇SET and hence most of the
heat is transported through the SET without any further loss in the island.

4.5.1 Calibration of heat flow at a known gate position

In order to quantify all the relevant parameters for the thermal balance, we calibrate the heat
flow through the system at a known position of gate. This can be either the gate voltage
corresponding to the gate-close position ng = 0 or to the gate-open position ng = 0.5 , because
at these two position we can approximate the heat flow to be zero or to be governed by
Weidemann-Franz (WF) law, respectively. The approximation of zero heat flow through the
SET is only valid when the tunnel coupling of island to the lead is very weak, meaning there
are no co-tunnelling processes at the centre of the Coulomb-diamonds. In contrast, the other
assumption at the gate-open position is always valid.

The validity of the second assumption, that the heat flow at gate-open position is governed
by WF law can be checked with sample A. As the coupling in sample A is very weak, we
can assume here the heat flow to be zero at the gate-close position with a good approximation
and we found a perfect match of the heat flow at gate-open position with the WF value.
Therefore, we use the second assumption at gate-open position to calibrate the heat flow for
both samples A and B.

At the gate-open position ng = 0.5, the two charge states involved in electron transport
have the same electrostatic energy. Electron transport is thus (for small barrier transparency)
unaffected by electron interaction and the Wiedemann-Franz law is expected to be valid. The
power Q̇SET can thus be calculated from the measured differential conductance for charge
dI/dV at low bias using WF law (Eq. (1.40)). We use the following thermal balance for the
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source electrons,
Q̇SET − Q̇cool − Q̇e-ph = 0, (4.3)

in order to extract the cooling/heating power Q̇cool. Here the electron-phonon coupling power
Q̇e-ph is calculated using the actual volume V and a parameter value Σ = 2.8 nW µm−3 K−5,
close to the expected value for Cu [147]. The parasitic power Q̇0 is found to be 0.1 fW in
agreement with previous works [148].

The thermal balance model (Eq. (4.3)) is complicated by the deviation of Q̇cool from
the ideal value predicted by Eq. (4.1) when one assume TS ≡ Tb, i.e. the S electrode of the
NIS cooler junction being perfectly thermalized to the bath temperature. In reality the S
lead can be at an elevated temperature TS, compared to the bath temperature Tb due to the
injection of non-equilibrium quasiparticles at eVcool ≈ ∆ and improper evacuation of the
same. In experiments, this overheating of the superconducting lead can be avoided by adding
a quasiparticle trap [149–153], we do not have that possibility in our experiment. Still, at
each cooler bias Vcool and bath temperature Tb, we solve the thermal balance Eq. (4.3) at
gate-open position (ng = 0.5) using TS as a free parameter to fit the measured electronic
temperature Te of the source. In this way we found that at a bath temperature Tb ≈ 150 mK,
the superconductor temperature shows values TS ≈ (250−450) mK, cf. Fig. 4.7. The order
of magnitude of the TS appears realistic when compared to experiments in similar structures
[152].

There is another way of heat loss from the SET source, by the thermal conductance of the
superconducting lead connected to the source by clean contact. The thermal conductance of
a pure superconductor is exponentially suppressed by the superconducting gap, with respect
to its normal state thermal conductance. But when the superconductor is in proximity to a
normal metal, the inverse proximity effect induced in the superconductor over a length, of
the order of the superconducting coherence length (ξ0 = h̄D/2∆, Where D is the diffusion
constant of electrons), can cause some thermal conductivity inside the superconductor. It is
shown in experiment [154] that, the thermal conductance of the superconductor is negligible
if the length of the superconductor exceeds a ‘safe-length’ of about 6 µm before it touches
the normal metal and if the operating temperature is below 300 mK. These two conditions are
satisfied in our experiment, therefore, we can neglect this contribution in the thermal balance.
All our calculations are consistent for bath temperatures up to 300 mK where thermal leakage
through the superconducting lead of the source starts to contribute significantly.

Once the elevated TS has been extracted in the above manner, we can use it as well as the
measured Te, to extract Q̇SET from the heat balance. Notably, this procedure is independent
of the model for the SET heat flows – it rests only on the assumption that Q̇SET(ng = 0.5)
fulfills the Wiedemann-Franz law (Eq. (1.40)).
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Fig. 4.7: Temperature of the superconductor with NIS cooler bias Calculated value of the
NIS cooler superconductor temperature TS for sample B, used in the fit of Fig. 4.6 data.

4.5.2 Heat balance at arbitrary gate positions

The preceding analysis at the gate open state provides us with a full knowledge of the thermal
behavior of the source, including all physical parameters for electronic cooling and electron-
phonon coupling. We now assume that, whatever the gate potential is, the temperature of the
superconducting leads of the cooler varies with the cooler’s bias as determined above in the
gate open case. The measured values of the source electronic temperature Te(ng) are used to
calculate the heat flowing through the SET from Eq. (4.3) as,

Q̇SET = Q̇cool + Q̇e-ph, (4.4)

as a function of ng. Considering the limit of a small temperature difference, the SET heat
conductance is then calculated as,

κ =
Q̇SET

|Tb −Te|
. (4.5)

Figure 4.8 shows both the heat conductance κ and the charge conductance σ for samples A
and B, as a function of the gate potential. Both quantities were measured at the same bath
temperature. An SET bias of about 20 µV and an electron cooling by about 25 mK were used
for the charge and the heat transport measurements respectively. The charge conductance is
plotted in units of the low-bias gate-open conductance σ0. The heat conductance is plotted in
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Fig. 4.8: Comparison of charge and thermal conductance (Adapted from Dutta et al. [103])
Top: Thermal (blue dots) and charge (green dots) conductances of the SET at a bath temperature of 132
mK (left, sample A) and 152 mK (right, sample B) in units of the conductances in the gate-open state
κ0 and σ0. The thermal flow through the SET was calculated assuming that the Wiedemann-Franz law
is fulfilled at the gate-open state. The charge transport was measured at a bias of 22.4 µV (sample
A) and 19.2 µV (sample B). The heat transport data was acquired by cooling the source electronic
bath by 30 mK (sample A) and 22 mK (sample B) below the bath temperature. Bottom: Lorenz ratio
(purple dots) defined as L/L0 where L = κ/(σTm) for sample A (left) and sample B (right). The
error bars are related to the uncertainty in temperature measurement. The Wiedemann-Franz law sets
L = L0. The red line is the theoretical prediction based on Ref. [13].

units of the Wiedemann-Franz value in the gate-open state,

κ0 = σ0L0Tm. (4.6)

We use here the mean temperature,

Tm =
(Te +Tb)

2
, (4.7)
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so that a linear response is expected in the Wiedemann-Franz regime even for the case of a
significant temperature difference Te −Tb.

For both samples A and B, the charge and heat conductances oscillate with ng. In the
case of sample A (top left), the two conductances mostly overlap over the full gate potential
range. Close to the gate-closed state, the two conductances seem to deviate one from the
other but their absolute values are small. In contrast, sample B exhibits a clear deviation from
the Wiedemann-Franz law. At the gate closed state, the heat conductance clearly exceeds the
charge conductance multiplied by L0T .

4.5.3 Violation of Wiedemann-Franz law

In order to get more insight, let us now consider the Lorenz factor defined as L/L0 with

L =
κ

(σTm)
. (4.8)

The Wiedemann-Franz law sets a Lorenz factor equal to unity. In contrast, for sample B the
Lorenz factor (Fig. 3 bottom right) oscillates between 1 at gate-open state and about 4 at gate
closed state. Sample A shows essentially the same behaviour over the gate potential range
where it can be accurately determined whereas error bars are very large in the vicinity of the
gate-closed state due to vanishingly small conductances. This experimental result shows a
significant violation of the Wiedemann-Franz law in the SET .

We have performed the same analysis at several cooler bias points and found similar
behaviour observed in Fig. 4.8. The results in the heating regime shown in Fig. 4.9, where
the cooler bias is set to a value less than ∆, superconducting gap of Al. Here, the source
electronic bath is hotter than the bath temperature by 60 mK (Sample A) and 52 mK (Sample
B) and the charge transport measurements were taken at a bias of 22.4 µV (Sample A) and
19.2 µV (Sample B). It shows that the deviation of the heat flow from the Wiedemann-Franz
value holds for the full range of the cooler bias, both in the cooling and heating regimes. In
this case, the temperature difference is significant. It is then particularly important to use, in
the calculation of the Lorenz factor, the temperature Tm that is the mean between the cold
side (the bath temperature) and the hot side (the electron temperature).

The physical origin of the violation of the Wiedemann-Franz law resides in the energy
selectivity of electron transport through an SET. As a consequence of this, the population
of electrons flowing through the SET is non-thermal. For instance, at the gate-closed state,
only electrons with an energy (counted from the Fermi level) above the charging energy
EC contribute to the zero-bias SET conductance. These electrons obviously carry the same
(electron) charge but a higher energy. Thus the heat conductance does not decay due to
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Fig. 4.9: Comparison of charge and thermal conductance in the heating regime Top: Ther-
mal and electrical conductances of the SET for sample A (left) and sample B (right) at a bath
temperature of 132 mK (sample A) and 152 mK (sample B). The thermal flow through the SET was
calculated assuming that the Wiedemann-Franz law is fulfilled at gate-open state. The charge transport
measurement was done at a bias of 22.4 µV (sample A) and 19.2 µV (sample B). The heat transport
data was acquired by heating the source electronic bath by 60 mK (sample A) and 52 mK (sample B)
above the bath temperature. Bottom: Lorenz ratio defined as L/L0 where L = κ/(σTm) for sample A
(left) and sample B (right). The red line is the theoretical prediction.

interactions as much as the charge conductance does and the Lorenz number exceeds its
basic value L0. Electron co-tunneling can counter-balance this, as it involves electrons with
an energy close to the Fermi level. The cross-over to the co-tunneling regime shows up at the
gate-closed state as a maximum of the Lorenz factor at a temperature T ≈ 0.1EC/kB [13].

In order to calculate the Lorenz ratio we have used the existing theory from Kubala
et al.[13]. Fig. 4.8 and Fig. 4.9 bottom panel show as full lines the calculated Lorenz
factor in parallel with the experimental data for cooling and heating regime respectively.
The theoretical prediction and the experimental data matches very well for both of the
cases, within error bars. There are no free parameters in this comparison with theory.
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Fig. 4.10: comparison of Q̇SET and Q̇e-ph at different gate positions Dependence of the
electron-phonon coupling power Q̇e-ph and the power flow through the SET Q̇SET, on the gate
potential, related to the data of Fig. 4.6.

All the parameters are taken from the preceding analysis of charge and heat transport
measurement. The main relevant parameters here are kBT/EC ≈ 0.06 and 0.12 for sample A
and B respectively and the measured values of the SETs conductance.

For sample A in the cooling regime, theory predicts a relative minimum in the gate-closed
state, due to the presence of co-tunnelling process, which cannot be checked in the experiment
due to experimental uncertainties. The error bars account the uncertainty in the measurement
of temperature and the electrical conductance.

4.5.4 Non-linear heat flow

We have also compared the percentage of total heat flow via all possible heat relaxation
processes. The amount of heat flow by the two most dominant heat relaxation process, e-ph
coupling and thermal conductance of the SET as a function of the gate voltage, are shown in
Fig. 4.10. It is observed that the power flow through the SET can represent up to 30% of the
total power flow at 150 mK.

Further, we investigated the power law in an SET at different gate voltages. From the heat
balance in the source island, we extract the heat flow, Q̇SET flowing through the SET beyond
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Fig. 4.11: Non-linear heat flow through SET (Adapted from Dutta et al. [103]) Non-linear
heat flow through sample B SET at different gate states as a function of the difference of the squared
temperatures between the source and the bath (symbols) together with power-law fits (full lines). The
slopes are 1.00, 1.10 and 1.14 respectively at gate positions ng = 0.5, 0.3 and 0. Unit slope expected
for the linear regime of heat transport is shown as dotted grey lines.

the regime of small temperature differences. In the linear regime, the thermal conductance
κ is proportional to temperature, leading to the quadratic dependence of the power on the
source (Te) and drain (Tb) temperatures:

Q̇SET =
∫ Te

Tb

σ0LdT =
σ0L

2
(T 2

e −T 2
b ) = σ0L

Te +Tb

2
(Te −Tb) = σ0LTm(Te −Tb), (4.9)

where Tm is the average temperature of the leads.
Fig. 4.11 shows the measured heat flow through the SET as a function of the squared

temperature difference at different gate position, on a log-log plot. This includes data from
both heating and cooling regimes and compares experimental data (dots) to the above law.
In the gate-open case ng = 0.5, slope is 1 as assumed in the calibration, i.e. the heat flow is
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quadratic in temperature as expected from the Wiedemann-Franz law. If we go away from
the gate-open state, a larger slope is found, up to 1.14 at ng = 0, indicating that the heat
flow at these gate positions is non-linear. Further theoretical work is needed to compare this
observation to theoretical predictions.

4.6 Conclusions

In conclusion, we have measured a gate controlled heat flow through an SET , making it
a gate tunable heat switch. The celebrated Wiedemann-Franz law is strongly violated, as
soon as one moves away from the charge degeneracy point, turning on the strong e− e
interaction in the transport process. The heat-flow is found to be strongly nonlinear in the
Coulomb-blockade regions. Our experimental observation agrees very well with the theory.





Chapter 5

Thermal and Thermoelectric Transport
in a Quantum-Dot Junction

In this chapter we present the measurement of heat-flow and thermoelectric transport through
a Quantum-Dot (QD) junction. Several experiments were performed during the thesis with
different QD junctions, here we consider mainly three experiments with distinct results.

In the first part of the chapter (Sec. 5.1) we present a general characterization of the
Gold nano-particles (GNP) made out of evaporated Au. It gives a general idea about how we
extract different parameters of the QD, which is the starting point of every experiment with
QD junction.

In the second part we present the measurement of heat balance through a QD junction
in the presence of a finite bias and temperature gradient (Sec. 5.2). The QD acts as a
heat-valve between the hot source and cold drain reservoir, operated by the gate voltage. At
the gate-open state, whenever the heat flown out of the source exceeds the heat deposited by
the Joule-heating at finite bias, a drop of the electronic temperature of the source from its
equilibrium-gate-closed value is observed.

In the last part of this chapter we present two experiments for the thermoelectric transport
though a QD junction in two different tunneling regimes. First, with a weakly coupled dot
(Sec. 5.3) (with significant co-tunneling at the middle of the Coulomb diamonds) and second,
with a strongly coupled dot with Kondo spin-correlation (Sec. 5.4).

5.1 Characterization of evaporated gold nanoparticles

In the experiment described in chapter 4, we have considered a metallic-island, where the
electrons are subject to strong Coulomb interactions and as a consequence we have observed
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a charging energy gap in the energy spectrum, but the dimensions of the island are still
large enough compared to the wavelength of the electrons (typically <1 nm). Therefore the
transport of electron is not coherent, the energy spectrum can be considered continuous, with
a charging energy gap. Here in this chapter, we will consider an island whose dimensions are
reduced down to few nano-meters, such that it is comparable to the wavelength of electrons.
Then the electron transport is coherent. As a result, the continuous energy spectrum splits
into few discrete energy levels, with a finite level spacing.

Fig. 5.1: Charge transport circuit diagram SEM image of sample with the circuit diagram for
charge transport measurement. Any of the SN probes connected to the source can be used to bias the
QD junction and the current is measured from the drain

We create these QDs by the deposition of Gold nano-particles (GNP). This can be done
in several ways as described in Chapter 2 (Sec. 2.2.4). Here we choose the most reproducible
method of nano-particle deposition, where a small amount of Au (1-2 nm thickness with a
rate of about 0.02 nm/s) is evaporated, forming self-assembled nano-particles, which serve
as QDs. Placing the QD at the nano-gap between the source and drain lead, created by
electromigration, we fabricate a single QD transistor. A metallic plane underneath the hole
sample separated by an approximately 8 nm thick Al2O3 oxide layer is used as gate. In
addition, four superconducting Al leads are connected to the source via clean contact, which
can be used either to probe the QD, heat the source island or to measure the temperature of
the source island. For the details of fabrication refer to Chapter 2 (Sec. 2.2).

The circuit diagram for the electrical transport measurement is shown in Fig. 5.1, with
an SEM image of the sample. We apply a bias voltage Vb on the QD junction from the one
of the SN probes connected to the source and measure the current IQD from the drain, as a
function of the voltage applied on the gate, Vg. The conductance of the junction is measured
using a lock-in amplifier. A small AC modulation voltage of 10 µV , at frequency f of 77
Hz (not a multiple 50 to avoid 50 Hz noise) is applied on the QD junction, superimposed
with the DC bias voltage. The resulting AC current through the junction, locked at the same
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frequency f , is measured by a lock-in amplifier (Standford Research System, SR 830). In
this way we directly measure the differential conductance dIQD/dVb of the QD junction. The
lock-in measured stability diagram for the conductance of the QD junction is plotted in the
Vb−Vg plane, as shown in Fig. 5.2. The diamond shaped black region of zero conduction can

Fig. 5.2: long range stability diagram of the QD made of evaporated Au NP Conductance
map of the QD in the bias and gate voltage plane. The Coulomb diamonds are identified as the black
regions. Inside the conductive region some highly conductive bright lines can be observed, indicated
by the red arrow-heads. These lines are the indication of quantization of energy of the QD. The
extents of a diamond gives the amount of addition energy Eadd needed to put an extra electron into the
QD level.

be identified as the well known Coulomb diamonds, where the charge transport is blocked by
the charging energy gap of the dot. As a broad picture, the stability diagram of the QD is
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looking similar to that of the metallic island for the SET in chapter 2 (Fig. 4.2(d)), but if we
look carefully into it, one can identify high conductance line structures (indicated by the red
arrow heads) running in parallel to the edge of the Coulomb diamonds. These line structures
in the conductance map indicate that the transport of electrons involves discrete electronic
levels. This is the signature for energy quantization in the nano-particle.

Fig. 5.3: Resolved stability diagram of the QD made of evaporated Au NP Zoomed conduc-
tance map of the QD, showing that the electronic levels are very well separated and resolvable

From the analysis of the conductance map in Fig. 5.2 we can extract the parameters for
the QD device using the formalism described in Sec. 1.1.3. By looking at the two-slopes of
the diamonds we can see that the corresponding slopes are similar for each diamond, hence
within the gate voltage range (±1 V) shown in Fig. 5.2, we have probed the charge transport
through a single nano-particle only. The charge conductance for some gate voltage range
shows unstable behavior (for example the diamond at Vg = 0.5 V), this is probably due to the
electrostatic switches by the nearby nano-particles. The positive and negative slopes of the
diamonds are found to be (according to Eq. (1.25)) β = 0.169 and β ′ = 0.385 respectively.
These two slopes gives the estimation of the asymmetry in capacitance between source and
drain using Eq. (1.26) as, Cd/Cs = 1.88, which is reasonable for a QD junction depending on
the structure of the electromigration nano-gap between source and drain. The gate coupling
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Table 5.1: The parameters of the studied QD

Ec (meV) β β
′

α(%) Cd/Cs
18 0.169 0.385 11.7 1.88

factor or the lever-arm can be estimated using Eq. (1.27) as, α = 11.7%, matching well with
the QD devices with similar thickness of gate oxide layer [66]. The gate coupling factor in
these devices usually varies from 1% to 30%. From the extents of the Coulomb diamonds
along both axes (as indicated in Fig. 5.2), the charging energy of the QD can be found to
be Ec ≈ 18 meV, matching well with a nano-particle diameter of 8-10 nm, which is the
average dimension of evaporated nano-particles reveled by SEM images (Sec. 2.2.4). From
the estimation of the charging energy and the two slopes, the capacitances are found to be
Cg = 5.22× 10−19 F, Cd = 2.56× 10−18 F and Cs = 1.35× 10−18 F. All these parameters
are matching very well with the previously studied similar QD devices [66, 155].

The line-structures in the conductance map corresponding to the single QD levels are not
very clearly resolvable in Fig. 5.2 due to the coarse measurement. But these are clearly visible
in the zoomed and resolved conductance map shown in Fig. 5.3. From this conductance
map we can find the level-spacing between the QD levels. The level spacing between the
ground-state and the first excited-state is obtained directly from the map (see Sec. 1.1.3) as
δE ≈ 130 µeV , which is much larger than the thermal energy kBTe ≈ 8µeV at the operating
temperature Te = 80 mK, so that it is possible to resolve the QD levels. Different parameters
of the QD studied are listed in the Table. 5.1.

The above described experiment of charge transport through a QD junction made of
evaporated Au nano-particles gives a good example for characterization of a QD junction.

In the following sections, we will present the three main experiments with QD junctions,
where, in addition to the charge-transport we will also consider thermal originated transport.
As the parameters for the QD junctions varies from device to device, we have to characterize
the specific device at the beginning of each experiment by performing charge transport
though it. The extracted parameters from the charge transport will be useful for analyzing
the thermoelectric measurements.

5.2 Exp 1: A gate tunable quantum dot heat valve

In this section we will discuss about an experiment where a single-QD level is used as a heat
valve between two electronic reservoirs kept at different temperatures. By tuning the QD
level with the help of the applied gate voltage we manipulate the heat flow though the QD
junction. We measured the temperature of the source as a function of bias and gate voltage
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and found Coulomb-diamond shapes in the electronic temperature map. A low temperature
region (w.r.t gate-closed temperature) is observed in the temperature map at the gate-open and
zero bias condition, indicating the thermalization of the hot source through the QD level. At a
small but finite bias, the thermalization of the source through the QD level is compensated by
the Joule-heating produced by the tunneling of electrons and the temperature of the source is
found to be close to its equilibrium value. With the increase of bias, Joule-heating overrides
the thermalization through QD and a overheated region is found in the temperature map.

5.2.1 Device Preparation

The device fabrication processes are very similar to that in the previous section, with some
modifications in the design, that the constriction is made out of Pt deposited at a different
angle, in order to avoid proximity induced superconductivity on the source lead.

We prepared the full device with a narrow metallic Pt constriction, which is connected
on one side to a narrow metallic rectangular Au structure (the Source) and on the other side
to a bulky metallic Au lead (the Drain). The source side is integrated with its local SNS
thermometer and heater. All the structures are placed on top of a metallic back gate. After
that a 1-2nm of Au is evaporated on top of the as-made sample to deposit the Au NPs on the
unbroken sample and cooled-down in a highly filtered dilution refrigerator.

The lithographically made constriction is electromigrated at 4 K, under a high vacuum
of 10−7 mbar. The conductance peaks in the gate-traces, measured at 4 K gives us initial
indications for the presence of some nano-particles within the nano-gap between the source
and drain formed by EM. With this confirmation we proceed for further low-temperature
measurements.

5.2.2 Charge transport

To understand the characteristics of the QD junction we need to first study the charge transport
through it. We perform the charge transport measurement at the bath temperature of 70
mK. The conductance of the QD junction is measured by a lock-in amplifier. The map of
the conductance (converted into µS) in the Vb −Vg plane is shown in Fig. 5.4. The highly
conductive lines form the edges of Coulomb diamonds. Fine structures corresponding to the
single electronic levels inside the conductive part of the diamonds are not resolvable, yet a
drop of conductance within the two Coulomb edges gives a clear indication that the transport
involves a single electronic level of the QD.

Using the same method as described in Sec. 5.1, we can extract the parameters of the
QD junction. From the shape of the Coulomb diamonds one can notice that one edges is
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Fig. 5.4: Conductance map of the QD: Exp 1 Stability diagram of the QD from the charge
transport measurement. The QD coupling to the leads is strongly asymmetric. The single levels are
not resolved in this map due to the strong coupling.

brighter than the other, this tells us that the coupling of the NP to the leads are strongly
asymmetric. We can extract the effective tunneling rate, considering that the bottle-neck in
tunneling is situated at the weakly coupled lead and therefore the total tunnel rate Γ = Γl +Γr,
is given by that of the strongly coupled lead. It can be directly obtained from the width of
the conductance peak at the brighter Coulomb edge. The tunnel coupling is extracted as
h̄Γ ≈ 170 µeV ≡ 40GHz, indicating a strong coupling of the QD and the lead. This strong
coupling washed out the steps in the IQD −Vb characteristics and hence the fine structures in
the conductive part of the Coulomb diamonds. The lever-arm of the gate can be extracted
from the two slopes of the Coulomb diamonds (using Eq. (1.27)) as, α = 13 %. Given the
visible charge switches (probably due to nearby nanoparticles) and the striking similarities
of the consecutive conductive regions, we cannot exclude that these are replicas of a single
charge state. Assuming that they are real we find the charging energy of the QD to be Ec =

4 meV . Therefore, for this device, kBT < Γ < Ec and the single electronic level can not be
consider as a sharp-resonant peak but rather a broadened Lorentzian shaped peak of width Γ.

5.2.3 Thermal transport

The measurement of thermal transport in the QD junction needs a very precise and sensitive
thermometer, as one needs to measure a very small change in electronic temperature of
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the lead as a result of the heat flow through the QD. We use the local SNS thermometer
integrated with the source to measure its electronic temperature. We assume that the electronic
temperature of the drain is that of the cryostat, as the drain is very well coupled to the bath
temperature due to its large volume.

Fig. 5.5: Circuit diagram for thermal transport SEM image of sample with the circuit diagram
for thermal transport measurement. The longer SNS junction on the left used as heater of the Source
and the shorter SNS junction on the towards the end of the source used as thermometer.

Characterization of the SNS thermometer and heater

The circuit diagram for thermal transport measurement is shown in Fig. 5.5. The shorter SNS
junction (of length ≈ 700 nm) formed by the pair of Al leads towards the end of source is used
as the thermometer. The I −V characteristics of the SNS junction at the base temperature
Tb = 75 mK is shown in Fig. 5.6 (a). The forward and backward I −V traces show that the
SNS junction has very little hysteresis, because, with a very small switching current of Ic ≈
1.5 µA there is almost no overheating of the normal metal [122]. A statistics of the switching
current is measured by plotting the histograms of 3000 switching events. This is done by
biasing the SNS junction with an AC current and recording the switching by an oscilloscope,
as described in detail in Sec. 3.3.4. The average of the histograms gives the most probable
critical current of the junction. The thermometer is calibrated by measuring the average
switching current as a function of the known bath temperature of the cryostat. A calibration
curve of the thermometer is shown in Fig. 5.6 (b), including a fit with theory (Eq. (3.9)).
By fitting of the calibration curve (Ic vsTb) with theory (Eq. (3.9)), we get the estimate for
the parameters of the junction including the diffusion constant D = 49 cm2/s, the Thouless
energy εth = 13 µeV , comparable to kBTb at Tb = 100 mK. As result, a saturation of the
average critical current is observed below 80 mK (Sec. 3.3.3). The saturation at such a low
temperature may also be partly due to parasitic heating by noise.
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Fig. 5.6: Calibration of thermometer (a) A DC I −V characteristics of the SNS thermometer
at a bath temperature Tb = 75 mK. The critical current of the junction can be found to be ≈ 1.5 µA.
The forward (blue) and backward (red) traces shows that there is very little hysteresis. (b) Calibration
of the SNS thermometer against the known bath temperature with the statistical measurement of the
switching current of the junction. The calibration is done at an equilibrium condition of the source,
without any external heating and bias voltage on the gate. A saturation in the calibration curve is
found below 80 mK.

The relatively longer SNS junction (length > 3µm) on the source, closer to the con-
striction, has no super-current and hence it can be used as a heater governed by the Joule
dissipation on the source island. The resistance of the heater junction is inferred from the
normal state resistance of the thermometer junction (measured by four probe method) and
from the dimensions of the heater junction, to be RH = 30 Ω. The input heating power into
the source therefore can be estimated as, Q̇H = I2

HRH, where IH = (1.3/Rb) A is the heater
bias current from a 1.3 V battery with a variable biasing resistor Rb.

Pure thermal transport

For a pure thermal transport one should ensure that there is no DC current flowing through
the QD. For the measurement of pure thermal transport through the QD, we heat the source
with a constant heating power so that source temperature Te is higher than that of drain Tb and
measure the temperature of the source as a function of the gate voltage, while the drain side
remains floating. This ensures that in the steady state no flow of charge is possible and the
transport is governed by the thermal gradient only. Since the spectral density of the QD has a
highly broadened shape, one should expect a maximum heat-flow at the charge-degeneracy
point [156] and hence a maximum drop of source-temperature (Te) at the same gate voltage
setting. But, in the experiment we do not measure any drop of Te, rather we measured a rise
(compared to its equilibrium value) whenever the gate voltage passes through the charge
degeneracy value. One possible way to interpret this observation is the effect of noise. When
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the drain lead remains floating it catches noise from the electromagnetic environment, which
can act as an effective AC bias on the QD junction. Therefore, whenever we make the
junction conductive by setting the gate voltage to charge degeneracy value, a flow of charges
occurs between the source and drain. The Joule heating due to this current deposits some
heat power on the source and hence increases the temperature. Another possible explanation
could be that the drain is not purely floating, for example due to a small leakage to the gate,
which applies an effective bias between the drain and source. So we conclude that, a pure
heat transport measurement is not possible with this sample unless one gets rid of these
issues.

Fig. 5.7: Coulomb blockaded temperature map (a) Map of the source electronic temperature,
when it is heated by constant DC heating power Q̇H ≈ 6 fW (estimated from the DC heating current
and resistance of the heater junction), while the drain is assumed to at a bath temperature Tb = 80 mK.
A Coulomb blockade structure is observed in the electronic temperature. As a result of the heating,
source temperature is measured to be (Te)ng=0 ≈ 164mK in the Coulomb blockaded regions, where
there is almost no flow of heat through the QD. While, at the charge degeneracy one can observe a
range of the bias over which the cooling of the source is measured due to the opening of the heat
valve between the hot source and cold drain. Just above and below the zero bias, the heat produced
by the Joule dissipation at the barrier compensates the cooling and hence a temperature equal to
the gate-closed value is observed. At large bias, the Joule heating dominates and an overheating is
observed. (b) Few individual gate traces of the temperature around the zero bias.

Mixed charge and thermal transport

In order to solve the above problem we define the potential of the drain, by applying a small
bias. This fixes the potential of the leads to a definite value.

We measure the temperature of the source as a function of the applied bias and gate
voltage while the source side is heated by a constant DC heating power of Q̇H ≈ 6 fW
(estimated from the DC heater bias current and resistance of the heater junction) from an
isolated DC current source and the drain side is assumed to be at a bath temperature Tb = 80
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mK. The measured electronic temperature of the source is plotted in the Vb −Vg plane in Fig.
5.7 (a). The individual gate-traces of the electronic temperature of the source are shown in
Fig. 5.7 (b).

Fig. 5.8: Resolved temperature map (a) A better resolved map of the source electronic temper-
ature near zero bias, with the similar measurement condition as in Fig. 5.7. The cooling region at the
charge degeneracy point, over a certain range of bias above and below zero-bias, is clearly visible.
While at a finite but small bias the source temperature is measured to be equal to gate-closed value,
due to the balance of heat flow through the QD with the heat produced by the tunneling electrons. On
further increase of bias an over heated region is measured in the conductive part of the Coulomb-map.
(b) Few individual gate traces of the temperature around the zero bias.

To interpret this observation, let us first consider the zero bias line. At gate closed positions,
for example in the Fig. 5.7 (a), 0.33 V < Vg < 0.35 V , Vg <0.31 V or Vg >0.36 V , we
assume that there is no heat-flow though the QD. We measured a steady-state equilibrium
temperature of the source (Te)ng=0 = 164 mK. This temperature increase is determined by
the balance between heat-input by the heater and the heat-output by the e− ph relaxation. At
this zero-bias condition when we tune the gate voltage to degeneracy point, for example in
the Fig. 5.7 (a), Vg =0.32 V and 0.36 V , the flow of heat through the QD becomes possible
and the hot-source tends to thermalize to the cold-drain. Therefore we measured a drop of
the temperature to (Te)ng=0.5 = 159 mK < (Te)ng=0. This demonstrates a gate tunable heat
flow through the single-QD level at zero-bias.

However, at finite applied bias on the QD, a usual Joule-heating is produced upon
tunneling of electrons, this heating power is deposited (partly) on the source. Therefore, at
the gate-open, finite bias condition, there are both thermalization of the source by the heat
flow through the QD level and heating (w.r.t gate-closed temperature) by the Joule-power
upon tunneling of electrons. The heat-flow and hence the thermalization is determined by
the thermal conductance of the QD junction. So the heat flow is always constant at a fixed
temperature difference ∆T , but the Joule-heating by the current increases with the bias. At
a certain small but finite bias, the thermalization is compensated by the heating and we
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measured the temperature equal to the gate-closed value. This feature of the temperature
map is clearly visible in Fig. 5.8 (a), where the measurement conditions were similar to that
of Fig. 5.7. Further increase in bias produces more heating, in this high bias regime Joule
heating dominates over the thermalization and hence we found an overheated region with
very high temperature.

Therefore, as a broad picture, the temperature maps show Coulomb diamond features
with a low temperature region at charge degeneracy point around the zero bias, an overheated
region for the conducting part of the diamond and an equilibrium temperature region at the
middle of the diamonds where the transport is blocked by the charging energy gap. For a
weakly coupled dot (h̄Γ ≪ kBT ) one expect to see refrigeration in the Coulomb blockaded
area, due to the filtering of the high energy electrons by the charging energy gap [157, 158].
But here we do not see this effect probably due to the strong coupling of the QD with the
leads.

We analyze the map in the following way: for the zero bias line in the map, at the
gate-closed condition, we assume that there is no flow of heat through the QD i.e., Q̇QD = 0.
Therefore the input heat Q̇H from the heater makes a balance with the heat flown out via
e− ph coupling Q̇e−ph. Any parasitic heat loss Q̇0 (for example through the NS leads) is
included in Q̇H for simplicity. The steady state heat balance equation at the gate-closed state
is given by,

Q̇H − Q̇e−ph = 0. (5.1)

Solving the above heat balance equation with the use of measured steady state temperature
Te = 164 mK, and a bath temperature is at Tb = 80 mK, we get the relevant parameters of
the device such as the the e− ph coupling parameter Σ = 2.4×109 Wm−3K−5, close to the
expected value for Au [62] and the volume of the source island V = 2×10−20 m3.

At a finite bias and arbitrary gate position the heat-balance equation reads,

Q̇H − Q̇e−ph − Q̇QD + Q̇Joule = 0, (5.2)

where Q̇QD is the heat-flow through the QD and Q̇Joule is the Joule-heat power.
Solving the above equation, with a model for heat-flow in the limit of an SET [13] and

the previously obtained sample parameters, we can extract the electronic temperature of the
source. Fig. 5.9 shows such a map of the extracted electronic temperature. Strikingly, even
though the model considers an SET with parameters (such as charging energy Ec, tunnel
resistance RT) similar to that of the sample, it captures the broad picture of the temperature
map (Fig. 5.8(a)). But, it can not explain some of the detailed features, such as the edges of
the cooling region are not properly aligned to the heating region (see Fig. 5.8 (a), near Vb =
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0.02 mV ), therefore a temperature gradient inversion is observed in the individual gate traces,
for example near Vb = 20 µV in fig. 5.8 (b). A better analysis of this observation is ongoing.

Fig. 5.9: Simulated electronic temperature of the source The calculated temperature of the
source island of the QD junction solving the heat balance equation (Eq. (5.2)). The unknown sample
parameters are extracted by solving the gate closed heat balance equation (Eq. (5.1)). A model for
heat-flow in the SET limit is used [13].

Contrarily, solving the above heat balance equation (Eq. (5.2)), with the measured
electronic temperature Te and the sample parameters, one can extract the heat flow through
the QD at small bias and the heat dissipation by the tunneling electrons at very high bias.
The latter analysis is incomplete at the moment.

This experiment of heat transport provide us the way of measuring a heat flow in a QD
junction at finite bias. Such an experiment combined with charge transport can be useful for
demonstrating a QD heat engine and to measure its efficiency. The experiment can also give
a quantitative estimation of Joule dissipation due to the tunneling of electrons in an isolated
island. This produced probably the first Coulomb-blockaded electronic temperature map.

5.3 Exp 2: Thermoelectric transport in a weakly coupled
QD

Here we present the measurement of the thermopower of a weakly coupled QD junction
by measuring its thermo-electric current response. We also introduce, to the best of our
knowledge, a new method for measuring the thermovoltage.
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5.3.1 Device preparation

All the initial steps of device fabrication are same as described in the Sec. 5.2. The main
difference in the fabrication process compared to the previous is that the electromigration of
the constriction was done at room temperature in an ambient condition. After the formation
of a nano-gap between source and drain by the electromigration, 1-2 nm of Au is evaporated
on top of the electromigrated sample in order to graft a Au nano-particle within the EM gap
(for details of fabrication refer to Sec. 2.2).

As the EM and the NP evaporation were done before putting the sample into the cryostat,
we had a chance of choosing the good devices by measuring the tunnel resistance between
source and drain. For this particular device in this discussion, we found a drop of tunnel
resistance from about a few GΩ to 5 MΩ, before and after NP evaporation. This gives an
indication that some NPs are bridging the gap between the source and drain. We then cooled
down the sample in a dilution refrigerator for low temperature measurements.

5.3.2 Charge transport

Before going to the thermoelectric transport measurements, one needs to first characterize
the QD by measuring the I −V characteristics of the junction in the similar way as discussed
in Sec. 5.1. For the charge transport measurement, a voltage bias is applied from the source
side while the current through the QD junction is measured from drain, as a function of the
gate voltage. The conductance of the junction is measured using a Lock-In amplifier. The
circuit diagram is similar to the one shown in Fig. 5.1. The I −V characteristics of the QD
junction for a constant gate voltage corresponding to the charge degeneracy is shown in Fig.
5.10 (a) and a stability diagram for differential conductance of the QD junction is shown in
Fig. 5.10 (b). By analyzing the conductance map in a similar manner as described in Sec.
5.1, we can extract all the parameters of the QD.

The positive and negative slopes of the Coulomb diamond are obtained as β = 0.254,
β ′ = 0.448. The gate coupling factor is found to be α = 16.2 %, comparable to the device
with similar gate structure. The asymmetry in the capacitance of the dot to the source and
drain is Cd/Cs = 1.32, comparable to the QD device discussed in the previous section. For
this particular QD only one charge degeneracy point is observed within our accessible gate
voltage range, therefore an exact estimation of the charging energy Ec is not possible. The
lower limit of the charging energy is approximately given as Ec ≈ 200 meV. The three
capacitances are estimated as Cg = 6.5×10−20F , Cd = 1.9×10−19F , Cs = 1.45×10−19F ,
matching very well with similar devices. If carefully looked one can identify many line
structures inside the conductive region of the conductance map. Out of these, the faint
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Fig. 5.10: Conductance map of the QD: Exp 2 (a) Current-Voltage characteristics of the QD
junction along the yellow line shown in (b) at a fixed gate voltage Vg = 831.2 mV , the step height
for positive and negative currents allow us to estimate the two tunnel rates. (b) Stability diagram
for differential conductance of the QD junction. The differential conductance is calculated from the
measured IQD vs Vb curves at different gate voltages. Due to the very high charging energy Ec (>
200 meV ) of the QD, only one charge degeneracy point is observed at Vg ≈ 830 mV, separating two
charge states. The black contrast regions are the Coulomb blockaded area. The bright lines separate
the blockaded region from the conductive region forming the Coulomb diamond edges. Inside the
conductive region some bright lines (indicated by red arrow-head) are observed, these lines correspond
to the quantized single levels of the QD. Beside these lines some other regularly spaced line structures
can also be found in this conductive region, these could be attributed to the vibrational modes of the
QD

and very closely spaced structures could be attributed to the vibrational or other bosonic
modes present in the QD and the brighter line structures are identified as the single quantized
levels of the dot. Therefore, from the conductance map we can see that there are two lines
corresponding to the single electronic levels ending up at the Coulomb edge of the charge
state (N + 1) with a level spacing between the ground state and the first excited state of
δEN+1 = 2.55 meV . Similarly we can see two lines corresponding to the two electronic
levels ending up at the Coulomb edge of the charge state N. The level spacing between
ground and first excited state for this charge state is δEN = 1.34 meV.

The curve for IQD vs Vb can be used to determine the tunneling rates of electrons through
the two tunnel junctions using Eq. (1.28). The step in current for positive and negative
bias voltage are directly obtained from the curve as I+ = 2.61 pA and I− = 1.52 pA. The
tunneling rates for the two junctions are found to be [25], Γl = 10.1 MHz and Γr = 84.9
MHz. For this QD device h̄Γ ≪ kBT , it can be considered in the weak coupling regime.
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Table 5.2: Characterization parameters for the QD junction in Exp. 2

Emin
c (meV) β β

′
α(%) Cd/Cs Γl (MHz) Γr (MHz)

200 0.254 0.448 16.2 1.32 10.1 84.9

All the parameters obtained from the charge transport measurement are listed in Table
5.2

5.3.3 Thermoelectric transport

In the previous section we have measured the current though the QD junction in the presence
of a voltage bias, but the temperature of the source and drain leads were equal. Therefore the
generated current is purely due to the applied voltage bias. Here we consider the situation
when a finite temperature difference is applied across the QD in addition to the voltage bias.

We measure the current response in the QD junction as a function of bias and the
gate voltage, with a constant temperature gradient across it. The circuit diagram for this

Fig. 5.11: Thermoelectric transport circuit diagram SEM image of sample with the circuit
diagram for thermoelectric transport measurement. The longer SNS junction on the right side is used
as heater of the Source and another SN probe on the left side is used to bias the QD junction while the
current is measured from Drain.

measurement is shown in Fig. 5.11. The longer SNS junction (> 3µm) on the source island
is used as a heater, driven by an isolated DC current source (a 1.3 V battery with a variable
biasing resister RH). The small volume of the source island decouples it from the bath at
low temperature, therefore we can heat it up above the bath temperature. While the drain
is assumed to be well coupled to the bath due to its large volume. So the temperature of
drain is assumed to be always equal to the bath temperature. In this way we create a constant
temperature difference between the source and drain in the steady state. A voltage bias Vb is
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applied from another Al probe and the current is measured from drain side, as function of the
applied bias voltage and the gate voltage.

Fig. 5.12: Thermocurrent response of the QD (a) The map of the thermocurrent of the QD
junction as a function of bias voltage Vb and gate voltage Vg, measured at the base temperature
Tb ≈ 70 mK, with a constant heating power Q̇H ≈ 0.3 pW on the source (estimated from the DC
heating current and resistance of the heater junction). Interestingly, the positive current part of the
diamond enters into the negative bias region and same is true for the negative current part of the
Coulomb-diamond. (b) A line-cut of the thermocurrent map at a constant bias close to Vb = 0. The
black line is the fit of the data with the linear response theory, using the temperature of the leads as
free parameters. The temperature of the source and drain leads obtained from the fit are Ts = 235 mK
and Td = 143 mK. (c) The transport mechanism through the QD in the presence of a finite temperature
and voltage bias across it. With application of the gate voltage one can manipulate the position of the
QD level. Different positions of a single QD level are shown by the numbers. The shape of measured
thermocurrent can be explained by the position of the single level.

Fig. 5.12 (a) shows the map of the current in the Vg −Vb plane, measured at a bath
temperature Tb = 70 mK, with a constant heating current of IH ≈ 100 nA on the source. One
interesting feature of the current map to notice is that the apex of the positive current part
of the Coulomb diamond (red) is not aligned with the negative current part (blue) (unlike
a usual Coulomb-diamond, for example Fig. 5.10), rather they run in parallel for some
range of bias voltage, i.e. the measured current has both positive and negative sign for some
bias voltages. A line trace of the map at a constant bias voltage slightly below Vb = 0 V is
shown in Fig. 5.12 (b), the black line gives the fit of the data with a linear response theory,
using the temperature of the leads as free parameters (theoretical help from Paolo Erdman is
acknowledged). The temperature of the source and drain lead found from the fit are Ts = 235
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mK and Td = 143 mK. The fitted value of Ts matches very well with a rough estimate. But
we find a deviation of fitted value of Td from the bath temperature Tb. This could be due to
the thermal cross-talk between source and drain through the substrate phonons. This shows
that assuming Td not to be affected by the heating on source is probably not totally correct,
especially for very high heating power.

Fig. 5.12 (c) shows the mechanism of the transport with a single QD level. Let us
consider a finite bias between the hot-source and the cold-drain lead. With the application
of the gate voltage we can move the QD level reversibly along the energy axis. First at the
position 1, the level is far away from the Fermi-level of both of the leads, hence a zero current
is observed. When the level is at the position 2, the high energy electrons from the hot source
lead can tunnel and produce a negative current against the applied bias voltage (considering
the absolute value of the electronic charge), with a maximum in the same direction until the
level hits the Fermi-level of the cold-drain lead at position 3. With further increase of gate
voltage, the level enters within the bias-window (eVb) and a usual transport from drain to
source with a positive current starts to contribute. At the charge degeneracy point, indicated
by 4, the level is at the middle of the bias-window, the two currents compensate each other
and the net current becomes zero. With the particle-hole symmetry we can get the opposite
picture when the level goes below the bias window. For example at the position 5, the current
become maximum in the positive direction, due to the dominated flow of electrons from
clod-drain to the empty hole-states of the hot-source lead. With further increase in gate
voltage the level goes deep inside the Coulomb-diamond and the current become zero again,
e.g. at position 6.

The fitting of the thermocurrent data gives a good idea about the electronic temperature
of the two leads and can be used as an intrinsic thermometer. We can use this technique
to determine the temperature difference between the source and drain, independent of an
external thermometer.

Thermovoltage measurement Scheme

The thermovoltage is defined as the potential difference between the hot and cold reservoir, in
the absence of DC charge current, that arises due to the temperature gradient between them.
Therefore the measurement of thermovoltage of a QD junction requires the measurement of
open-circuit voltage of a high-impedance device.
This is experimentally challenging because:

• it is difficult to have the drain purely floating.
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• no voltmeter has infinite input impedance. Therefore it may shunt the thermovoltage
when the device impedance goes very high.

• the equilibration times to reach the true zero-current state at such high impedances can
be extremely long.

As a result one may never measures the full amplitude of the thermovoltage of the device.
Here we describe a, to the best of our knowledge, new way of measuring the thermovolt-

age in a high impedance junction. Our measurement protocol is the following, for each fixed
value of the gate voltage, we sweep the bias voltage and measure the full I(V ) characteristics
(Fig. 5.13). Therefrom, we can define −VTh as the bias voltage at which the current goes
through zero, realizing thus perfect open-circuit conditions. The line-shape of the extracted
thermovoltage is shown by black dots on the same figure.

Fig. 5.13: Thermovoltage of a QD junction determination of thermovoltage directly from the
measurement of the thermocurrent in a QD junction (Fig. 5.12). The negative-thermovoltage (−VTh)
is defined, at each gate position, as the applied bias voltage where the measured current is zero,
thereby achieving a perfect open-circuit condition. The black line shows the gate voltage dependent
line-shape of the thermovoltage in the QD junction.

5.3.4 Thermopower

The thermopower S, also known as the Seebeck Coefficient, is defined as the negative-
thermovoltage (−VTh) generated per unit temperature difference (∆T ),

S =−VTh

∆T
(5.3)
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Therefore, from the knowledge of the temperature gradient between the source and drain

Fig. 5.14: Gate voltage dependence of the thermopower Thermopower S of the QD junction
is plotted with the gate voltage, measured at a bath temperature Tb = 70 mK. It is extracted from the
thermovoltage data, normalized with the temperature difference ∆T = 92 mK between the source and
drain lead, determined by the fitting of thermocurrent data with linear response theory as described
before.

one can extract the thermopower of the QD junction, using the measured thermovoltage.
By fitting the measured thermocurrent data with linear response theory, we extracted the
temperature of the two sides and hence ∆T . Fig. 5.14 shows the plot of thermopower in the
QD junction as a function of the gate voltage.

According to Eq. (1.60) (Fig. 1.11) for a QD with an estimated charging energy Ec ≈ 200
meV, one should expect a huge thermopower signal, with an amplitude of > 1000 kB/e. But
in experiment we have measured an amplitude of Smax ∼ 4kB/e, this indicates that there
are co-tunneling involved in the transport. From the thermocurrent vs Vg curve (Fig. 5.12)
we obtain that the crossover from sequential to co-tunneling regime occurs at a cross-over
energy ∆c ≈ 4kBT , where the thermocurrent starts to reduce from its maximum value due to
the presence of co-tunneling processes. The expected maximum value of the thermopower in
the co-tunneling regime is (using the Eq. (1.59)) |Smax|= ∆c/eT = 4kB/e. Therefore, the
measured amplitude of the thermo-power signal matches very well with the expected value
in the co-tunneling regime.



5.4 Exp 3: Thermopower of a Kondo-correlated QD 123

5.4 Exp 3: Thermopower of a Kondo-correlated QD

In this section we will describe thermoelectric transport measurements in a Kondo correlated
QD junction. The thermopower of a weakly coupled QD in the sequential tunneling regime
exhibits a periodic sawtooth line-shape with a period of electronic charge e [7]. The effect
of co-tunneling reduces the amplitude of the thermopower as soon as one goes away from
the charge degeneracy, but the period sill remains e [9]. We found a distinct feature of the
thermovoltage of a Kondo-correlated QD that, in contrast to the sequential and co-tunneling
regime, the thermovoltage line-shape exhibits a 2e periodicity. Further, the signal changes
sign as the temperature is increased, in agreement with theory [58].

5.4.1 Charge transport

The conductance of the QD junction is measured as a function of the bias and gate voltage
using a Lock-in amplifier as described before. Fig. 5.15 (a) shows the map of the conductance
of the QD junction. We observed three charge states within the accessible gate voltage range
of ∼ ±5 V, which corresponds to a single QD coupled to the leads. One can notice the
conductance-ridge at zero bias for the alternating Coulomb-diamonds, this is the well known
signature for the charge conductance of a Kondo spin-correlated QD junction.

The Kondo-resonance in the conductance of a QD junction appears when the dot is oddly
occupied, so that it acts as a magnetic impurity in the system. Therefore from the position
of the Kondo-ridge in the conductance map we can identify the even and odd charge states
of the dot. The odd sectors of the Coulomb-blockade map are situated at Vg < −4 V and
Vg =−1.2 to 3.5 V , while the even sectors are at Vg =−3.8 to -1 V and Vg > 4 V . A better
resolved conductance map near Vg = -4 V is shown in Fig. 5.15 (b). The structure of the
Coulomb-diamond and the zero bias conductance-ridge is clearly visible in this map. The
conductance near charge-degeneracy point at Vg =3 V appears very unstable, this can be due
to the electrostatic-switches by the nearby particles.

In the gate voltage range Vg = 0.5 to 1 V , i.e., at the middle of the blockaded region of
the strongly coupled Kondo-dot, we observed a much weaker conductance response. We
attribute this to another QD, coupled to the leads in parallel. We refer this as the weakly
coupled dot.

Here we are interested in the thermoelectric-characterization of the Kondo-coupled dot,
therefore we can use the current response of weakly coupled dot as a tool for measuring the
temperature of the leads of the QD junction (in the absence of a reliable thermometer), as
described in the preceding section.
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Fig. 5.15: Conductance map of the Kondo-correlated QD (a) Conductance map plot of the
Kondo-correlated QD junction in the Vb −Vg plane. The odd sector of the diamond can be easily
identified from the position of the conductance ridge, as Vg <−4 V and Vg =−1.2 to 3.5 V . The even
sector of the diamonds are situated at Vg = −3.8 to -1 V and Vg > 4 V . The even and odd regions
are indicated by the cartoon of two opposite spin electron and a single electron, respectively. (b) A
resolved conductance map for the degeneracy point near Vg = -4 V .

The parameters of the Kondo-coupled QD are extracted from the conductance map. From
the two slopes of the diamond we get the capacitive asymmetry between the source and
drain Cd/Cs = 0.35, the gate coupling factor α < 1 % and the charging energy of the dot
U = 2Ec ≈ 58 meV . Such a small gate coupling factor compared to the previous experiments,
could be due to the screening effects of the strongly coupled lead to the QD. The relative
contrast in the conductance map of the two Coulomb-edges (Fig. 5.15 (b)) indicate a strong
asymmetry in the tunnel coupling of the QD to the leads. Therefore we can consider the
total tunnel rate Γ = Γl +Γr to be governed by the more strongly coupled lead. The tunnel
coupling Γ can be extracted from the width of the conductance peak at the Coulomb-edge
corresponding to the more strongly coupled lead. This is done by fitting the conductance
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peak with a Lorentzian function, the estimated value of total tunnel coupling is h̄Γ ≈ 2.6
meV , which is equivalent to a thermal energy at T ≈ 3 K.

Characterization of Kondo-effect: The Kondo spin-singlet between the unpaired electron
in the dot and the conduction electrons in the lead forms below the characteristic Kondo
temperature (TK) [33]. We characterize the Kondo effect in the QD junction in two different
ways, first, by measuring the Kondo-resonance peak as a function of temperature and second,
by measuring the splitting of the Kondo-resonance with the application of a magnetic
field [159]. The Kondo-resonance is very sensitive to the temperature, it decreases with

Fig. 5.16: Characterization of Kondo effect (a) The Kondo-conductance peak with temperature
at a fixed gate voltage Vg =−0.295 V , |∆Vg|= 0.575 V away from the nearest degeneracy point in
Fig. 5.15. Red curve is the fit of the data with the NRG theory given by Eq. (5.4), using TK and Γl/Γr

as fitting parameters and a constant finite-bias background conductance Gc = 0.004(2e2/h) (as seen
in (b)). The extracted Kondo temperature at this gate voltage is TK = 0.819 K. (b) Bias trace of the
conductance at different temperatures. Finite-bias conductance gives the value of Gc. (c) Splitting of
the Kondo-peak in the presence of a constant magnetic field B = 600 mT, (d) Map of the Kondo-peak
conductance with bias and magnetic field, Kondo-peak splits at a critical magnetic field and splitting
increases with magnetic field.

increasing temperature. The value of the conductance at the resonance-peak reduces with
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temperature. One can extract the Kondo-temperature by fitting the temperature dependence
of the conductance at the Kondo-resonance with the empirical formula given in Eq. (1.32)
based on the NRG theory [35]:

G(T ) = Gl

(
T 2

T 2
k

(
21/s −1

)
+1
)−s

+Gc (5.4)

where Gl =
2e2

h
4ΓlΓr

(Γl+Γr)2 is the saturated value of the Kondo-conductance peak in the low

temperature regime. In the case of a symmetric coupling of the QD to the leads Γl = Γr,
therefore Gl = 2e2/h = G0, the quantum of conductance. But for an asymmetric tunnel
coupling only a fraction of the G0 is achieved in the zero temperature limit, since the Kondo-
resonance develops only with the strongly coupled lead while other lead acts as a probe. Gc is
the background conductance at a finite bias due to the direct tunneling or conduction through
a highly resistive shunt across the QD junction. Here, s = 0.22 for spin-1/2 Kondo-effect.

The Kondo-temperature is defined as the temperature at which the Kondo-conductance
peak value is reduced to 50 % of the conductance peak at the lowest temperature [43]. Using
the above formula, G(Tk) = Gl/2+Gc. Fig. 5.16(a) shows the evolution of the Kondo-
conductance peak with temperature at a fixed gate voltage Vg = −0.295 V (on the scale
of Fig. 5.15). The red solid-curve shows the fitting of the data with Eq. (5.4), using TK

and Γl/Γr as the fitting parameters and a constant background conductance at finite bias,
Gc = 0.004(2e2/h). From the fitting we found an estimate for the Kondo temperature of the
QD junction at the same gate position as TK = 0.819 K and a tunnel coupling asymmetry
Γl/Γr = 0.002, indicating a strongly asymmetric coupling between the QD and the leads.

Another, but less precise way to determine the Kondo temperature is by perturbing the
Kondo state with the application of a magnetic field. When the applied magnetic field can
provide a sufficient Zeeman-splitting energy to split the electronic level, the degeneracy of
the level is lifted. The asymmetry between the two spin states start to suppress the Kondo-
correlation. As a result the Kondo-resonance peak splits with increasing magnetic field. A
large splitting of the Kondo peak at a fixed magnetic field B = 600 mT is shown in Fig. 5.16
(c). The splitting develops beyond a critical magnetic field Bc so that gµBBc = 0.5kBTK,
where µB is the Bohr magneton and g is the Landé g-factor (note that this scale TK differ
by a numerical prefactor from the Kondo scale determined above using the temperature
dependence of the zero-bias conductance). We measured the conductance of the QD junction
as a function of the bias and the magnetic field at a fixed gate voltage. The conductance of
the QD junction at a constant gate voltage, with varying magnetic field and bias is plotted
in Fig. 5.16 (d). The splitting of the Kondo resonance peak is resolved at a magnetic field
Bc ≈ 60mT . In addition, since splitting of the level is proportional to the applied bias at large



5.4 Exp 3: Thermopower of a Kondo-correlated QD 127

bias, it can be fitted with a linear equation, eVb = gµBB. The fitted red lines in Fig. 5.16 (d)
give an estimate of the Landé g-factor. g = 3.6, that is somewhat larger than what is usually
found in gold nanoparticles. Using the measured critical field that is necessary to split the
Kondo resonance, we deduce from this procedure an approximate estimate of the Kondo
temperature TK ≈ 300 mK, that is of the same magnitude but somewhat smaller than the
Kondo scale extracted from the temperature dependence.

5.4.2 Thermoelectric transport

We now move to the thermoelectric characterization of the Kondo-coupled QD. We have
performed thermoelectric experiments by providing three different constant heating power
to the source island, leading to three device temperatures, labeled Tlow < Tmid < Thigh. The
thermal experimental conditions of the three measurements (as shown in Fig. 5.19) are
summarized in Table 5.3.

Table 5.3: Heating conditions and bound estimates on the device temperatures for the measurements
in Fig. 5.19

Exp Tcryostat (K) Q̇H (nW) Tsource (K)
Tlow 0.075 0.001 ≤0.4
Tmid 0.075 2.7 ∼1.5
Thigh 4.2 2.7 ∼4.4

Estimate of the device temperatures

The related experimental source temperatures and thermal gradients under which the ther-
moelectric measurements have been carried out cannot be controlled independently in the
experiment, as they depend on the thermalization process of the device under the applied
heating. In particular, the temperatures of the source island, are not precisely known.

Here we nevertheless propose a realistic modeling of the thermal balances and the ensuing
values of the three above-discussed temperatures. The comparison of the amplitude of the
thermopower data to calculations, as discussed in the next section, can be used to estimate
the temperature gradients ∆T occurring in each of the three data sets. A comprehensive
thermal analysis common to all three temperatures is quite involved because the hierarchy
of the dominant heat transport mechanisms out of a nanodevice such as ours changes
dramatically in the 0.1 to 5 K range. The different channels entering the heat balance are
summarized in Fig. 5.17. In the steady state, the (experimentally known) heat load Q̇H to
the source is compensated by the heat flowing out, either mainly through the electron or the
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Fig. 5.17: Thermocurrent in the Kondo-correlated QD Schematics summarizing the thermal
balance of the source island. The heating power Q̇H is known and the heat flow Q̇QD across the quan-
tum dot junction is negligible. The two competing heat drain mechanisms are electronic conduction
(Q̇e−e)and by phonons. In the latter case, the thermal bottleneck can be either the electron-phonon
coupling (Q̇e−ph) or the boundary resistance between the source island and the substrate (Q̇ph−ph).

phonon channel. The electron heat channel involves electronic conduction through the four
aluminum leads (the heat conduction through the QD is negligible). At temperatures below
200 mK, this power Q̇e−e is exponentially suppressed owing to the superconducting gap in
Al, and becomes rapidly negligible. Yet, already above 300 mK, Q̇e−e starts dominating
the power exchanged by electron-phonon coupling Q̇e−ph and tends to a Wiedemann-Franz
type behavior Q̇e−e = (L0/2Rlead

N )× (T 2
source − T 2

bath). Here, one can assume to a good
approximation L0 = 2.4×10−8 WΩK2. Rlead

N represents the effective normal state resistance
of the leads up to some region which can be considered a thermal reservoir at Tbath. This
resistance is however difficult to quantify. In order to put some numbers, let us assume that
the 4 Al wires in parallel lead to an effective Rlead

N ≈ 10Ω.
The power exchanged via the phonon heat channel is generally modeled by Q̇e−ph =

ΣV
(
T 5

source −T 5
bath

)
, with the interaction volume V given by the geometrical volume of the

source island, and the electron-phonon interaction constant in gold Σ= 2.4×109 W.m−3.K−5.
This coupling increases extremely fast (∝ T 5) as temperature is increased, such that above a
few Kelvin, the electron and phonon temperatures are no longer distinct in a given experi-
mental volume. The bottleneck for the phononic heat drain is then rather at the boundary
between the phonons in the source and the substrate. This so-called Kapitza resistance,
associated to impedance mismatch of the respective phonon species, leads to a thermal power
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flow frequently modeled by Q̇ph−ph = κA
(
T 4

source −T 4
bath

)
, involving the interface area A

(geometrical surface imprint of the source island on the substrate) and the Kapitza coefficient
κ . This coefficient depends both on the materials involved and the interface quality; let us
take a value measured for the Cu-SiO2 interface, κ = 45 pWµm−2K4.

At the lowest experimental temperature Tlow, which we anticipate to be of about 300
mK from the qualitative comparison of the thermovoltage data with theory, Q̇e−ph is clearly
contributing significantly to the heat evacuation from the source. Nevertheless, Q̇e−e is
definitely also contributing but the extent of the latter is difficult to quantify: the electronic
thermal conductance of the superconducting leads allows thermal leaks into the aluminum
leads, from which heat is drained to the phonons. This can in some cases be described by
an effective e-ph interaction volume V ∗ > V . By keeping only the e-ph contribution in the
heat balance equation, one finds Tsource =460 mK. This is evidently an upper bound. With a
three times larger effective interaction volume due to the heat leakage to the leads, Tsource is
reduced to about 350 mK, which is consistent with the estimation of Tlow.

At the intermediate experimental temperature Tmid, which we anticipate to be of about 1
K from the qualitative comparison of the thermovoltage data with theory, superconductivity
in the aluminum must be weakened to the point that we can neglect it (superconductors are
only thermal insulators well below their Tc). In this temperature regime one finds Q̇e−ph

and Q̇e−e to be quite comparable assuming the above numerical estimates. We thus solve
Q̇H = Q̇e−e + Q̇e−ph, which leads to Tmid = 1.5 K.

The highest experimental temperature Thigh can be anticipated to be only slightly larger
than 4.2 K, both from the qualitative comparison of the thermovoltage data with theory and
because sizeable thermal gradients with respect to Tbath =4.2 K are now very difficult to
realize. At these temperatures, the interface resistance-limited phonon heat flow is the main
heat drain mechanism, we thus write Q̇H = Q̇ph−ph. As expected, this highly simplified
modeling leads to Thigh = 4.4 K, that is, 0.2 K above the bath temperature.

Thermovoltage

The thermovoltage of the QD junction, at these three different constant heating conditions,
are measured using the same method as described in the sec. 5.3.3. The measurement circuit
is same as shown in Fig. 5.11. Fig. 5.18 shows the plot of the measured thermocurrent
of the device as a function the applied bias and gate voltage, in the presence of a constant
temperature difference at the source temperature Tmid. One interesting feature of the current
map can be noticed in this plot that, unlike the thermocurrent of the weakly coupled QD in
Sec. 5.3.3 (Fig. 5.13), the positive current part of the Coulomb-diamond (red) enters inside
the negative bias region and pierces the negative current part into two. For the consecutive
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Fig. 5.18: Thermocurrent in the Kondo-correlated QD Current map for small applied biases
in the presence of a temperature gradient at intermediate temperature Tmid = 1.5 K. The black line
follows the points of vanishing current; it is thus equal to −VTh. The thermoresponse at about Vg = 0.7
V, associated with the second, weakly coupled quantum dot, is grayed out for better readability.

degeneracy points the opposite effect is found, i.e., negative current part of the Coulomb-
diamond pierces the positive current region. This feature qualitatively differs from the
line-shape of the thermovoltage signal of the weakly-coupled QD. The black dotted line
in Fig. 5.18 gives the zero-current line trace of the current map, which shows the gate-
voltage dependence of the negative-thermovoltage of the Kondo-correlated QD junction. As
discussed above, the gate voltage region, Vg = 0.5 to 1 V , associated to the weakly coupled
QD is grayed out for better readability of the Kondo-feature. The measured thermovoltage
changes sign completely between two consecutive degeneracy points, with a same sign for
every second degeneracy point. This results a 2e periodic thermovoltage signal, twice the
period of the thermovoltage in a weakly coupled QD.

Thermopower

The thermopower of the Kondo-coupled QD junction is obtained by normalizing the measured
thermovoltage with the applied temperature difference between the source and drain (Eq.
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(5.3)). The proximized SNS junction on the source could be in principle used to measure the
temperature of the lead, but it was not available for this device due to the loss of one micro-
bonding connection during cool-down. However, the proximity SNS junction thermometer
operates only at a temperature <1 K. Therefore in any case the SNS thermometer is not
useful in this experiment for high temperature measurements. We have used the above
estimated device temperature and the corresponding temperature difference to extract the
thermopower.

Temperature dependence of the Kondo-correlated thermopower

The 2e periodicity of the thermopower signal gives an indication for the presence of the
Kondo-resonance in the spectral-density for oddly occupied states of the dot and its asym-
metry around the Fermi-energy within the energy-range of kBT , but it can not give a clear
information whether the QD is in pure Kondo-regime or in the mixed-valance regime. An
almost similar behavior was observed in a QD in the mixed-valance regime [161]. Therefore,
a 2e periodic thermopower signal is not a foolproof evidence of Kondo effect in a QD. To
understand this better we have extended our study of thermopower in the Kondo-correlated
QD junction by measuring the distinct gate voltage dependent thermopower signal at dif-
ferent device temperatures. Fig. 5.19 shows the gate-evolution of the thermopower of the
Kondo-correlated QD at the above discussed three different device temperatures, Tlow =

300 mK (blue), Tmid = 1.5 K (orange) and Thigh = 4.4 K (red). The degeneracy point near
gate voltage Vg ≈ 3 V is not shown here, due to its unstable nature it is not possible to do a
quantitative analysis in this region. A comparison of the data with the theoretical calculation
based on Eq. (1.66) (performed by Theo Costi) is also presented.

One can easily identify a clear sign change of the thermopower between the three
temperatures, in the oddly occupied diamonds, e.g. at Vg = −0.5 V and Vg = −4.24 V ,
indicated by the arrow-heads, while in the even region there is no sign change. This is in
agreement with the theory curves, where it is shown segment wise, due to the limitation of
the single-orbital model.

The above observed sign change of the thermopower in the Kondo regime can be in-
terpreted in the following way: at very low temperature T ≪ TK, the Kondo resonance is
nicely developed and the Kondo-peak is situated slightly above the Fermi-energy (EF), as a
result the slope of the spectral function (within the energy-range kBT w.r.t EF) is negative and
hence the thermopower is positive (using Eq. (1.66)), e.g. for the device temperature Tlow.
Now, as one increases the temperature, e.g. to Tmid, the Kondo-peak starts to get reduced.
Therefore the slope of the spectral-function is also reduced and so the thermopower. At
very high temperature Thigh > h̄Γ/10kB, the Kondo resonance vanishes completely and the
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Fig. 5.19: Temperature dependence of the Kondo-correlated Thermopower (adapted from
Dutta et al. [160]) (a) Experimental thermopower S =−VTh/∆T at the three experimental device
temperatures Tlow = 300 mK = 0.01Γ (blue), Tmid = 1.5 K = 0.05Γ (orange), and Thigh = 4.4 K =
0.14Γ (red). The arrows highlight the level depths in the Kondo regime near which the thermopower
changes sign at a temperature T 1 ≈ Γ/(10kB). (b,c) Corresponding NRG calculation using experimen-
tal parameters U = 58 meV, Γ = 2.6 meV and for the same set of temperatures T/Γ (with the same
color code). The calculation assumes a single orbital level, predicting therefore correctly S = 0 in the
center of an oddly occupied Coulomb diamond (ε0 +U/2 = 0). For the sake of comparison with the
experimental data, the calculations at negative ε0+U/2 are placed to the right-hand panel. Neglecting
higher orbital levels in the NRG calculation does not allow to map the complete transition region in
the center of the even diamond so that the theoretical comparison is done using two disjointed panels.

spectral weight shifts towards the closest resonance level. As a result the slope of the spectral
function changes sign and hence the thermopower.
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Our observation thus confirms the theoretical predictions for the sign-change of ther-
mopower in the Kondo-regime [35, 58] and establishes that the Kondo-resonance peak is not
exactly situated at the Fermi energy, but it can be shifted by of the order of kBTK.

5.5 Conclusions

In conclusion, in this chapter about the experiments with QD junctions in different coupling
regime, we have presented the measurement of thermal balance and heat flow through a QD
junction. We introduced a new way of measuring thermovoltage, that is much more reliable
to achieve the open-circuit condition, the main requirement for thermovoltage measurement
by definition. The measurement of thermopower gives a good idea about the spectral function
of a QD junction, especially for the Kondo-correlated QD, which confirmed that the Kondo-
resonance in our system not always pinned to the Fermi-level but can be slightly off by the
presence of asymmetry in level position. Our measurement of thermopower of the Kondo-
correlated QD with temperature, confirms the theoretical prediction for the sign change of the
thermopower above a characteristics temperature T1 ≈ h̄Γ/10kB [58]. The physical meaning
of this energy scale T1 is not totally clear to us, neither it is to its author, Theo Costi (private
communication). Efforts for a more quantitative understanding are on the way.





Conclusions

In this thesis we have studied the thermal and thermoelectric transport in an isolated nano-
structure starting from a sub-micron metallic island down to few-atomic sized quantum dot.
The transport is strongly modified by the Coulomb-interactions and the quantum coherence.

The presence of Coulomb interactions in the isolated metallic island in an SET introduces
a charging energy gap in the transport processes. This charging energy gap acts as a filter
to admit only the high energy electrons which could pay the required charging energy.
Therefore, the successfully transported electrons carry a heat more than what one naively
expects in a normal situation. This causes a violation of the Wiedemann-Franz law as one go
away from the charge degeneracy point. As a consequence we measured a non-linear heat
flow through the SET in the Coulomb-blockade region.

We have presented the measurement of heat flow through a single QD level. This acts
as a heat valve between two heat reservoirs operated by the gate voltage. At zero bias on
the QD junction, we found the thermalizaion of the hot source to the drain by the heat-flow
through the QD level. The ‘zero-bias’ line of this experiment is essentially equivalent to the
experiment of thermal conductance measurement in an SET . Here we extended our study to
the finite bias regime for a QD junction. Indeed, at finite bias the source is overheated by
the Joule heating produced by the tunneling electrons. This experiment gives us a way to
measure the dissipation due to the tunneling of electron. The Joule heating compensates the
cooling of the source through the QD at a finite bias and we measured a temperature equal to
the steady state gate-closed value.

The measurement of thermopower requires the measurement of the thermovoltage in the
open-circuit condition. Experimentally achieving such a perfect open circuit condition is
very difficult due to the finite impedance of a voltmeter. We have presented a new way of
measuring the thermovoltage in a close to open-circuit condition, by measuring the current
through the highly resistive junction. The measurement of thermopower in the weakly
coupled QD junction matches very well with the previous theoretical and experimental
studies, that the signal exhibits an e periodicity in the gate-induced charge and the presence
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of significant co-tunneling reduces the amplitude of the thermopower signal in the Coulomb-
blockade region.

The thermoelectric transport is modified a lot in the presence of spin-correlation. The
spin-correlation between the oddly occupied electrons in the QD and the conduction electrons
gives rise to the Kondo-resonance peak in the density of states of the QD. The previous
studies of the Kondo-effect based on the measurement of electrical conductance could only
measure the amplitude of the Kondo-resonance but they could not give a precise position of
the Kondo-resonance peak. Therefore, one common concept exists that the Kondo-resonance
is always pinned to the Fermi level of the leads. We have presented the measurement of the
thermopower of Kondo correlated QD junction. The 2e periodic behavior of the measured
thermopower signal, compared to e period in a weakly coupled dot, already hints about the
position of the Kondo-resonance slightly off from the Fermi level. Our further study of
temperature dependence of the Kondo-correlated thermopower confirms it.

We have faced some difficulties in the thermal transport experiment with the QD junctions.
In this thesis we were not able to probe a pure thermal transport (i.e. transport processes
driven by thermal gradient only) through a single QD level. The difficulties appeared in
making the drain of QD junction fully floating. This could be due to a significant gate-leakage
on the drain side. The chances of gate-leakage can be feasible, as we placed the full device
on top of the gate, in order to achieve an on chip rf filtering. A small gate-leakage to the
drain due to it huge overlap with the gate may not be negligible. One could probably improve
this by redefining the gate so that it has very small overlap with the leads of the device.

There are few interesting experiments that can be done as an perspective of these studies,
such as:

The QD junction can be operated as a heat engin. Since the QD junctions integrated with
properly optimized SNS thermometer and heater are now easily accessible, one can use these
QD junction as a heat engine by combining the heat and charge transport measurements.
Due to the selective particle exchange between the two heat reservoirs through the resonant
level of the QD, the efficiency of the QD heat engine is expected to be very high, close to the
fundamental thermodynamic limits.

The QD junction can be used as a refrigerator. Choosing a proper coupling strength and
tuning of the QD level properly with respect to the Fermi level of the leads, one can use
it to filtered out the high energy electrons from one lead to the other, thereby achieving a
refrigeration of the same.
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