W. R. Grove and X. , On voltaic series and the combination of gases by platinum, Philos. Mag. Ser. 3, vol.14, pp.127-130, 1839.

M. , La pile à combustible-Structure-Fonctionnement-Applications, vol.304, 2007.

N. , Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen, Zeitschrift Für Elektrotechnik Und Elektrochemie, vol.6, pp.41-43, 1899.

E. Baur and H. Preis, Über Brennstoff-Ketten mit Festleitern, vol.43, pp.727-732, 1937.

H. Iwahara, H. Ucchida, and S. Tanaka, High temperature type proton conductor based on SrCeO3 and its application to solid electrolyte fuel cells, Solid State Ionics, vol.9, issue.10, pp.1021-1025, 1983.

A. Kalyakin, G. Fadeyev, A. Demin, E. Gorbova, A. Brouzgou et al., Application of Solid oxide protonconducting electrolytes for amperometric analysis of hydrogen in H 2 +N 2 +H 2 O gas mixtures, Electrochim. Acta, vol.141, pp.120-125, 2014.

H. Iwahara, Hydrogen pumps using proton-conducting ceramics and their applications, Solid State Ionics, vol.125, pp.271-278, 1999.

Z. Li, R. Liu, Y. Xie, S. Feng, and J. Wang, A novel method for preparation of doped Ba 3 Ca 1.18 Nb 1.82 O 9?? : Application to ammonia synthesis at atmospheric pressure, Solid State Ionics, vol.176, pp.1063-1066, 2005.

S. Uhm and Y. D. Kim, Electrochemical conversion of carbon dioxide in a solid oxide electrolysis cell, Curr. Appl. Phys, vol.14, pp.672-679, 2014.

G. Wu, K. Xie, Y. Wu, W. Yao, and J. Zhou, Electrochemical conversion of H 2 O/CO 2 to fuel in a proton-conducting solid oxide electrolyser, J. Power Sources, vol.232, pp.187-192, 2013.

M. A. Laguna-bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, J. Power Sources, vol.203, pp.4-16, 2012.

F. Jaouen, V. Goellner, M. Lefèvre, J. Herranz, E. Proietti et al., Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active FeNC catalysts, Electrochim. Acta, vol.87, pp.619-628, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00739122

H. Cho, E. Hur, D. Henkensmeier, G. Jeong, E. Cho et al., meta-PBI/methylated PBI-O-O blend membranes for acid doped HT PEMFC, Eur. Polym. J, vol.58, pp.135-143, 2014.

V. N. Nguyen, L. Blum, and R. Peters, Operational behavior and reforming kinetics over Ni/YSZ of a planar type prereformer for SOFC systems, Int. J. Hydrogen Energy, vol.39, pp.7131-7141, 2014.

G. Chiodelli and L. Malavasi, Electrochemical open circuit voltage (OCV) characterization of SOFC materials, Ionics (Kiel), vol.19, pp.1135-1144, 2013.

W. Lee, A. Nowick, and L. Boatner, Protonic conduction in acceptor-doped KTaO 3 crystals, Solid State Ionics, pp.989-993, 1986.

S. G. Kang and D. S. Sholl, First principles studies of proton conduction in KTaO3, J. Chem. Phys, vol.141, p.24707, 2014.

A. Y. Stroeva, V. P. Gorelov, A. V. Kuz'min, E. P. Antonova, and S. V. Plaksin, Phase composition and conductivity of La 1?x Sr x ScO 3 ?? (x = 0.01?0.20) under oxidative conditions, Russ. J. Electrochem, vol.48, pp.509-517, 2012.

J. Yin, X. Wang, J. Xu, H. Wang, F. Zhang et al., Ionic conduction in BaCe 0.85?x Zr x Er 0.15 O 3-? and its application to ammonia synthesis at atmospheric pressure, Solid State Ionics, vol.185, pp.6-10, 2011.

T. Hibino, A. Hashimoto, M. Suzuki, and M. Sano, A Solid Oxide Fuel Cell Using Y-Doped BaCeO 3 with Pd-Loaded FeO Anode and Ba 0.5 Pr 0.5 CoO 3 Cathode at Low Temperatures, J. Electrochem. Soc, vol.149, p.1503, 2002.

A. Kruth, G. C. Mather, J. R. Jurado, and J. T. Irvine, Anomalous variations of unit cell parameters with composition in proton conducting, ACeO 3-type perovskite solid solutions, Solid State Ionics, vol.176, pp.703-712, 2005.

F. Giannici, A. Longo, F. Deganella, A. Balerna, A. Arico et al., Local environment of Barium, Cerium and Yttrium in BaCe 1?x Y x O 3?? ceramic protonic conductors, Solid State Ionics, vol.178, pp.587-591, 2007.

H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, Protonic conduction in calcium, strontium and barium zirconates, vol.61, pp.65-69, 1993.

S. Yamanaka, M. Fujikane, T. Hamaguchi, H. Muta, T. Oyama et al., Thermophysical properties of BaZrO 3 and BaCeO 3, J. Alloys Compd, vol.359, pp.109-113, 2003.

M. Shirpour, G. Gregori, L. Houben, R. Merkle, and J. Maier, High spatially resolved cation concentration profile at the grain boundaries of Sc-doped BaZrO3, Solid State Ionics, vol.262, pp.860-864, 2014.

S. Wienstroer, Investigation of the influence of zirconium substitution on the properties of neodymiumdoped barium cerates, Solid State Ionics, pp.1113-1117, 1997.

K. H. Ryu and S. M. Haile, Chemical stability and proton conductivity of doped BaCeO 3-BaZrO 3 solid solutions, Solid State Ionics, vol.125, pp.355-367, 1999.

K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, Protonic conduction in Zr-substituted BaCeO, vol.3, pp.91-98, 2000.

C. Tu, R. R. Chien, V. H. Schmidt, S. C. Lee, and C. Huang, Temperature-dependent structures of protonconducting BaZr 0.8-x Ce x Y 0.2 O 2.9 ceramics by Raman scattering and x-ray diffraction, J. Phys. Condens. Matter, vol.24, p.155403, 2012.

R. Kannan, K. Singh, S. Gill, T. Fürstenhaupt, and V. Thangadurai, Chemically stable proton conducting doped BaCeO?-no more fear to SOFC wastes, Sci. Rep, vol.3, p.2138, 2013.

E. Fabbri, A. Depifanio, E. Dibartolomeo, S. Licoccia, and E. Traversa, Tailoring the chemical stability of BaCe 0.8?x Zr x Y 0.2 O 3?? protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs), Solid State Ionics, vol.179, pp.558-564, 2008.

K. H. Ryu and S. M. Haile, Chemical stability and proton conductivity of doped BaCeO 3-BaZrO 3 solid solutions, vol.125, pp.355-367, 1999.

A. Mitsui, Evaluation of the activation energy for proton conduction in perovskite-type oxides, Solid State Ionics, vol.22, pp.213-217, 1987.

W. Wang and A. V. Virkar, Ionic and electron-hole conduction in BaZr 0.93 Y 0.07 O 3?? by 4-probe dc measurements, J. Power Sources, vol.142, pp.1-9, 2005.

A. Azad and J. Irvine, Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce,Zr) 1?x Sc x O 3??, Solid State Ionics, vol.178, pp.635-640, 2007.

S. Ricote, N. Bonanos, A. Manerbino, and W. G. Coors, Conductivity study of dense BaCe x Zr 0.9?x Y 0.1 O 3?? prepared by solid state reactive sintering at 1500 °C, Int. J. Hydrogen Energy, vol.37, pp.7954-7961, 2012.

S. Ricote, N. Bonanos, M. C. Marco-de-lucas, and G. Caboche, Structural and conductivity study of the proton conductor BaCe 0.9?x Zr x Y 0.1 O 3?? at intermediate temperatures, J. Power Sources, vol.193, pp.189-193, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418829

Y. Guo, Y. Lin, R. Ran, and Z. Shao, Zirconium doping effect on the performance of proton-conducting BaZr y Ce 0.8?y Y 0.2 O 3?? (0.0?y?0.8) for fuel cell applications, J. Power Sources, vol.193, pp.400-407, 2009.

S. J. Zhan, X. F. Zhu, W. P. Wang, and W. S. Yang, Stability and Transport Conductivity of Perovskite Type BaZr x Ce 0.8x Nd 0, Adv. Mater. Res, issue.2 O 3-?, pp.404-407, 2012.

J. Lv, L. Wang, D. Lei, H. Guo, and R. V. Kumar, Sintering, chemical stability and electrical conductivity of the perovskite proton conductors BaCe 0, J. Alloys Compd, vol.467, pp.376-382, 2009.

D. A. Medvedev, E. V. Gorbova, A. K. Demin, and B. D. Antonov, Structure and electric properties of BaCe 0.77?x Zr x Gd 0.2 Cu 0.03 O 3??, Russ. J. Electrochem, vol.47, pp.1404-1410, 2011.

T. S. Zhang, S. H. Chan, L. B. Kong, P. T. Sheng, and J. Ma, Synergetic effect of NiO and SiO 2 on the sintering and properties of 8mol % yttria-stabilized zirconia electrolytes, Electrochim. Acta, vol.54, pp.927-934, 2009.

H. Wang, R. Peng, X. Wu, J. Hu, and C. Xia, Sintering Behavior and Conductivity Study of Yttrium-Doped BaCeO 3BaZrO 3 Solid Solutions Using ZnO Additives, J. Am. Ceram. Soc, vol.92, pp.2623-2629, 2009.

P. Babilo and S. M. Haile, Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO, J. Am. Ceram. Soc, vol.88, pp.2362-2368, 2005.

E. Gorbova, V. Maragou, D. Medvedev, P. Demin, and . Tsiakaras, Influence of sintering additives of transition metals on the properties of gadolinium-doped barium cerate, Solid State Ionics, vol.179, pp.887-890, 2008.

C. Zhang, H. Zhao, N. Xu, X. Li, and N. Chen, Influence of ZnO addition on the properties of high temperature proton conductor Ba 1.03 Ce 0.5 Zr 0.4 Y 0.1 O 3?? synthesized via citrate-nitrate method, Int. J. Hydrogen Energy, vol.34, pp.2739-2746, 2009.

D. Medvedev, E. Murashkina, . Pikalova, . Demin, P. Podias et al., Materials development, properties and application, Prog. Mater. Sci, vol.3, pp.72-129, 2014.

A. Subramaniyan, J. Tong, R. P. O'hayre, and N. M. Sammes, Sintering studies on 20 mol % yttrium-doped barium cerate, J. Am. Ceram. Soc, vol.94, pp.1800-1804, 2011.

D. Pergolesi, E. Fabbri, A. D'epifanio, E. D. Bartolomeo, A. Tebano et al., High proton conduction in grainboundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition, Nat. Mater, vol.9, pp.846-52, 2010.

A. Vahid, Z. Mohammadi, and . Cheng, Fundamentals of Synthesis, Sintering Issues, and Chemical Stability of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? Proton Conducting Electrolyte for SOFCs, J. Electrochem. Soc, vol.162, pp.803-811, 2015.

L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu et al., Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr 0, Science, vol.326, pp.126-135, 2009.

L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu et al., Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr 0.1 Ce 0.7 Y 0.2-x Yb x O 3-?, Science, vol.326, pp.126-129, 2009.

K. Yang, J. X. Wang, Y. J. Xue, M. S. Wang, C. R. He et al., Synthesis, sintering behavior and electrical properties of BaZr 0, Ceram. Int, vol.40, pp.15073-15081, 2014.

X. Zhou, L. Liu, J. Zhen, S. Zhu, B. Li et al., Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? prepared by ethylene diamine tetraacetic acid assisted glycine nitrate process, J. Power Sources, vol.196, pp.5000-5006, 2011.

S. Wang, L. Zhang, L. Zhang, K. Brinkman, and F. Chen, Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics, Electrochim. Acta, vol.87, pp.194-200, 2013.

Y. Liu, L. Yang, M. Liu, Z. Tang, and M. Liu, Enhanced sinterability of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? by addition of nickel oxide, J. Power Sources, vol.196, pp.9980-9984, 2011.

S. Wang, F. Zhao, L. Zhang, and F. Chen, Synthesis of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? proton conducting ceramic by a modified Pechini method, Solid State Ionics, vol.213, pp.29-35, 2012.

Z. Shi, W. Sun, and W. Liu, Synthesis and characterization of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? proton conductor for solid oxide fuel cells, J. Power Sources, vol.245, pp.953-957, 2014.

D. Kek, Effect of electrode material on the oxidation of H 2 at the metal-Sr 0, Solid State Ionics, vol.131, pp.249-259, 2000.

E. Fabbri, D. Pergolesi, and E. Traversa, Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells, Sci. Technol. Adv. Mater, vol.11, p.44301, 2010.

J. Mizusaki, Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H 2-H 2 O Atmospheres, J. Electrochem. Soc, vol.141, p.2129, 1994.

M. Brown, S. Primdahl, and M. Mogensen, Structure/Performance Relations for Ni/Yttria-Stabilized Zirconia Anodes for Solid Oxide Fuel Cells, J. Electrochem. Soc, vol.147, p.475, 2000.

W. ,

S. Zhu and . Deevi, A review on the status of anode materials for solid oxide fuel cells, Mater. Sci. Eng. A, vol.362, pp.228-239, 2003.

T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro et al., Impact of anode microstructure on solid oxide fuel cells, Science, vol.325, pp.852-857, 2009.
DOI : 10.1126/science.1176404

A. Virkar, J. Chen, C. W. Tanner, and J. Kim, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells q, vol.131, pp.189-198, 2000.

D. Skarmoutsos, F. Tietz, and P. Nikolopoulos, Structure ± Property Relationships of Ni / YSZ and Ni /( YSZ + TiO 2 ) Cermets, pp.243-248, 2001.

G. Taillades, P. Batocchi, A. Essoumhi, M. Taillades, D. J. Jones et al., Engineering of porosity, microstructure and electrical properties of Ni-BaCe 0.9 Y 0.1 O 2.95 cermet fuel cell electrodes by gelled starch porogen processing, Microporous Mesoporous Mater, vol.145, pp.26-31, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00607087

S. H. Nien, C. S. Hsu, C. L. Chang, and B. H. Hwang, Preparation of BaZr 0.1 Ce 0.7 Y 0.2 O 3-? Based Solid Oxide Fuel Cells with Anode Functional Layers by Tape Casting, Fuel Cells, vol.11, pp.178-183, 2011.

M. Li, B. Hua, J. Pu, B. Chi, and L. Jian, Ni or NiCu) anodes for solid oxide fuel cells, Electrochemical performance and carbon deposition resistance of MBaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? (M = Pd, vol.5, p.7667, 2015.

C. Zuo, S. Dorris, U. Balachandran, and M. Liu, Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe 0. 8 Y 0. 2 O 3-? mixed protonic-electronic conductor, Chem. Mater, pp.4647-4650, 2006.

N. Nasani, D. Ramasamy, A. D. Brandão, A. Yaremchenko, and D. P. Fagg, The impact of porosity, pH 2 and pH 2 O on the polarisation resistance of Ni-BaZr 0.85 Y 0.15 O 3?? cermet anodes for Protonic Ceramic Fuel Cells (PCFCs), Int. J. Hydrogen Energy, vol.39, pp.21231-21241, 2014.

N. Narendar, G. C. Mather, P. A. Dias, and D. P. Fagg, The importance of phase purity in Ni-BaZr 0.85 Y 0.15 O 3?? cermet anodes-novel nitrate-free combustion route and electrochemical study, RSC Adv, vol.3, pp.859-869, 2013.

N. Narendar, R. Devaraj, P. Dias, I. Antunes, J. Perez et al., Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for PCFCs-A comparative study, Int. J. Hydrogen Energy, vol.154, 2014.

E. Traversa, Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method, vol.158, 2011.

P. Batocchi, Pile à combustible à céramique conductrice protonique : developpement, optimisation des matériaux, réalisation de cellules élémentaires PCFC opérant dans le domaine de température 400-600 °C, 2012.

M. Taillades, P. Batocchi, A. Essoumhi, G. Taillades, D. J. Jones et al., Development of Multilayer Anodes for Proton-conducting Solid Oxide Fuel Cells, ECS Trans., ECS, pp.2193-2200, 2009.

J. Chen, F. Liang, D. Yan, J. Pu, B. Chi et al., Performance of large-scale anode-supported solid oxide fuel cells with impregnated La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3?? +Y 2 O 3 stabilized ZrO 2 composite cathodes, J. Power Sources, vol.195, pp.5201-5205, 2010.

E. Fabbri, I. Markus, L. Bi, D. Pergolesi, and E. Traversa, Tailoring mixed proton-electronic conductivity of BaZrO 3 by Y and Pr co-doping for cathode application in protonic SOFCs, Solid State Ionics, vol.202, pp.30-35, 2011.

H. Wang, C. Tablet, A. Feldhoff, and J. Caro, Investigation of phase structure, sintering, and permeability of perovskite-type Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? membranes, J. Memb. Sci, vol.262, pp.20-26, 2005.

A. Grimaud, F. Mauvy, J. M. Bassat, S. Fourcade, L. Rocheron et al., Hydration Properties and Rate Determining Steps of the Oxygen Reduction Reaction of Perovskite-Related Oxides as H +-SOFC Cathodes, J. Electrochem. Soc, vol.159, p.683, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00700611

J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin et al., Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells, ChemSusChem, vol.7, pp.2811-2816, 2014.
DOI : 10.1002/cssc.201402351

E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa, High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes, Energy Environ. Sci, vol.4, p.4984, 2011.
DOI : 10.1039/c1ee02361f

D. Marinha, J. Hayd, L. Dessemond, E. Ivers-tiffée, and E. Djurado, Performance of La,SrCo,FeO 3? ? double-layer cathode films for intermediate temperature solid oxide fuel cell, J. Power Sources, vol.196, pp.5084-5090, 2011.

Z. Zhu, Z. Tao, L. Bi, and W. Liu, Investigation of SmBaCuCoO 5+ ? double-perovskite as cathode for protonconducting solid oxide fuel cells, Mater. Res. Bull, vol.45, pp.1771-1774, 2010.

N. S. Tsvetkova, A. Y. Zuev, and D. S. Tsvetkov, Investigation of GdBaCo 2-x Fe x O 6-? (x = 0, 0.2)-Ce 0.8 Sm 0.2 O 2 composite cathodes for intermediate temperature solid oxide fuel cells, J. Power Sources, vol.243, pp.403-408, 2013.

L. Zhao, B. He, Q. Nian, Z. Xun, R. Peng et al., In situ drop-coated BaZr 0.1 Ce 0.7 Y 0.2 O 3-? electrolyte-based proton-conductor solid oxide fuel cells with a novel layered PrBaCuFeO 5+ ? cathode, J. Power Sources, vol.194, pp.291-294, 2009.

J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J. C. Grenier et al., Perovskite and A 2 MO 4-type oxides as new cathode materials for protonic solid oxide fuel cells, Electrochim. Acta, vol.55, pp.5847-5853, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00505788

M. Liu, J. Gao, X. Liu, and G. Meng, High performance of anode supported BaZr 0.1 Ce 0.7 Y 0.2 O 3-? (BZCY) electrolyte cell for IT-SOFC, Int. J. Hydrogen Energy, vol.36, pp.13741-13745, 2011.

Z. Yang, W. Wang, J. Xiao, H. Zhang, F. Zhang et al., A novel cobalt

, O 3-? composite cathode for solid oxide fuel cells, J. Power Sources, vol.204, pp.89-93, 2012.

Z. Yang, Z. Ding, J. Xiao, H. Zhang, G. Ma et al., A novel cobalt-free layered perovskite-type GdBaFeNiO 5+? cathode material for proton-conducting intermediate temperature solid oxide fuel cells, J. Power Sources, vol.220, pp.15-19, 2012.

W. Sun, Z. Zhu, Y. Jiang, Z. Shi, L. Yan et al., Optimization of BaZr 0.1 Ce 0.7 Y 0.2 O 3-?-based proton-conducting solid oxide fuel cells with a cobalt-free proton-blocking La 0.7 Sr 0.3 FeO 3??-Ce 0.8 Sm 0.2 O 2?? composite cathode, Int. J. Hydrogen Energy, vol.36, pp.9956-9966, 2011.

R. Mukundan, P. K. Davies, and W. L. Worrell, Electrochemical Characterization of Mixed Conducting BaCe 0.8?y Pr y Gd 0.2 O 2.9 Cathodes, J. Electrochem. Soc, vol.148, p.82, 2001.

Z. Tao, L. Bi, L. Yan, W. Sun, Z. Zhu et al., A novel single phase cathode material for a proton-conducting SOFC, Electrochem. Commun, vol.11, pp.688-690, 2009.

A. Grimaud, J. Bassat, F. Mauvy, M. Pollet, M. Wattiaux et al., Oxygen reduction reaction of PrBaCo 2?x Fe x O 5+? compounds as H +-SOFC cathodes: correlation with physical properties, J. Mater. Chem. A, vol.2, p.3594, 2014.

D. Poetzsch, R. Merkle, and J. Maier, Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation, Phys. Chem. Chem. Phys, vol.16, p.16446, 2014.

S. Jeon, D. Lim, I. Kim, B. Singh, and S. Song, Effectiveness of Protonic Conduction in Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-? Cathode in Intermediate Temperature Proton-Conducting Ceramic-Electrolyte Fuel Cell, J. Electrochem. Soc, vol.161, pp.754-760, 2014.

L. Yang, C. Zuo, S. Wang, Z. Cheng, and M. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors, Adv. Mater, vol.20, pp.3280-3283, 2008.

P. Batocchi, F. Mauvy, S. Fourcade, and M. Parco, Electrical and electrochemical properties of architectured electrodes based on perovskite and A 2 MO 4-type oxides for Protonic Ceramic Fuel Cell, Electrochim. Acta, vol.145, pp.1-10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071524

H. Iwahara, High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production, Solid State Ionics, vol.28, pp.573-578, 1988.

M. Liu, C. Chen, M. Leu, Y. Bai, L. Yang et al., Anode-supported tubular SOFCs based on BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? electrolyte fabricated by dip coating, Electrochem. Commun, vol.13, pp.615-618, 2011.

S. H. Min, R. Song, J. G. Lee, M. Park, K. H. Ryu et al., Fabrication of anode-supported tubular BaZr 0.1 Ce 0.7 Y 0.2 O 3-? cell for intermediate temperature solid oxide fuel cells, Ceram. Int, vol.40, pp.1513-1518, 2014.

X. Zhang, Y. Qiu, F. Jin, F. Guo, Y. Song et al., A highly active anode functional layer for solid oxide fuel cells based on proton-conducting electrolyte BaZr 0.1 Ce 0.7 Y 0.2 O 3-?, J. Power Sources, pp.654-659, 2013.

M. Liu, J. Gao, X. Liu, and G. Meng, High performance of anode supported BaZr 0.1 Ce 0.7 Y 0.2 O 3-? (BZCY) electrolyte cell for IT-SOFC, Int. J. Hydrogen Energy, vol.36, pp.13741-13745, 2011.

N. T. Nguyen and H. H. Yoon, Preparation and evaluation of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells, J. Power Sources, vol.231, pp.213-218, 2013.

J. Kim, S. Sengodan, G. Kwon, D. Ding, and J. Shin, Triple-Conducting Layered Perovskites as Cathode Materials for Proton-Conducting Solid Oxide Fuel Cells, pp.1-5, 2014.
DOI : 10.1002/cssc.201402351

J. Dailly, M. Marrony, G. Taillades, M. Taillades-jacquin, A. Grimaud et al., Evaluation of proton conducting BCY10-based anode supported cells by co-pressing method: Up-scaling, performances and durability, J. Power Sources, vol.255, pp.302-307, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00949313

M. Marrony, M. Ancelin, G. Lefevre, and J. Dailly, Elaboration of intermediate size planar proton conducting solid oxide cell by wet chemical routes: A way to industrialization, Solid State Ionics, vol.275, pp.97-100, 2015.

J. Dailly and M. Marrony, BCY-based proton conducting ceramic cell: 1000 h of long term testing in fuel cell application, J. Power Sources, vol.240, pp.323-327, 2013.

C. Zuo, S. Zha, and M. Liu, BaZr 0.1 Ce 0.7 Y 0.2 O 3-? as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells, Adv. ?, vol.18, pp.3318-3320, 2006.

B. Guan, Z. Lü, G. Wang, B. Wei, W. Li et al., A Performance Study of Solid Oxide Fuel Cells With BaZr 0.1 Ce 0.7 Y 0.2 O 3-? Electrolyte Developed by Spray-Modified Pressing Method, Fuel Cells, vol.12, pp.141-145, 2012.

B. Lin, H. Ding, Y. Dong, S. Wang, X. Zhang et al., Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba 0, J. Power Sources, vol.186, pp.58-61, 2009.

Y. Lin, R. Ran, and Z. Shao, Silver-modified Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-? as cathodes for a proton conducting solid-oxide fuel cell, Int. J. Hydrogen Energy, vol.35, pp.8281-8288, 2010.

W. Sun, Z. Shi, S. Fang, L. Yan, Z. Zhu et al., A high performance BaZr 0.1 Ce 0.7 Y 0.2 O 3-?-based solid oxide fuel cell with a cobalt-free Ba 0.5 Sr 0.5 FeO 3-?-Ce 0.8 Sm 0.2 O 2-? composite cathode, Int. J. Hydrogen Energy, vol.35, pp.7925-7929, 2010.

L. Zhao, B. He, Y. Ling, Z. Xun, R. Peng et al., Cobalt-free oxide Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-? for protonconducting solid oxide fuel cell cathode, Int. J. Hydrogen Energy, vol.35, pp.3769-3774, 2010.

Y. Ding, Y. Chen, X. Lu, and B. Lin, Preparation and characterization of Ba 0.5 Sr 0.5 Fe 0.9 Ni 0.1 O 3??-Sm 0.2 Ce 0.8 O 1.9 compose cathode for proton-conducting solid oxide fuel cells, Int. J. Hydrogen Energy, vol.37, pp.9830-9835, 2012.

Z. Yang, W. Wang, J. Xiao, H. Zhang, F. Zhang et al., A novel cobalt-free Ba 0.5 Sr 0.5 Fe 0.9 Mo 0.1 O 3-?BaZr 0.1 Ce 0.7 Y 0.2 O 3-? composite cathode for solid oxide fuel cells, J. Power Sources, vol.204, pp.89-93, 2012.

Y. Lin, R. Ran, D. Chen, and Z. Shao, A novel Ba 0.6 Sr 0.4 Co 0.9 Nb 0.1 O 3-? cathode for protonic solid-oxide fuel cells, J. Power Sources, vol.195, pp.4700-4703, 2010.

H. Ding, B. Lin, X. Liu, and G. Meng, High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba 0.5 Sr 0.5 Fe 0.8 Zn 0.2 O 3-?-delta perovskite cathode, Electrochem. Commun, vol.10, pp.1388-1391, 2008.
DOI : 10.1016/j.jallcom.2009.11.180

Y. Lin, W. Zhou, J. Sunarso, R. Ran, and Z. Shao, Characterization and evaluation of BaCo 0.7 Fe 0.2 Nb 0.1 O 3?? as a cathode for proton-conducting solid oxide fuel cells, Int. J. Hydrogen Energy, vol.37, pp.484-497, 2012.

H. Wang, Z. Tao, and W. Liu, Electrochemical characterization of YBaCo 3 ZnO 7+? as a stable proton-conducting SOFCs cathode, Ceram. Int, vol.38, pp.1737-1740, 2012.

L. Yan, H. Ding, Z. Zhu, and X. Xue, Investigation of cobalt-free perovskite Ba 0.95 La 0.05 FeO 3?? as a cathode for proton-conducting solid oxide fuel cells, J. Power Sources, vol.196, pp.9352-9355, 2011.

Z. Zhu, J. Qian, Z. Wang, J. Dang, and W. Liu, High-performance anode-supported solid oxide fuel cells based on nickel-based cathode and BaZr 0.1 Ce 0.7 Y 0.2 O 3-? electrolyte, J. Alloys Compd, vol.581, pp.832-835, 2013.
DOI : 10.1016/j.jallcom.2013.07.210

W. Sun, Y. Wang, S. Fang, Z. Zhu, L. Yan et al., Evaluation of BaZr 0.1 Ce 0.7 Y 0.2 O 3-?-based proton-conducting solid oxide fuel cells fabricated by a one-step co-firing process, Electrochim. Acta, vol.56, pp.1447-1454, 2011.

L. Yang, C. Zuo, and M. Liu, High-performance anode-supported Solid Oxide Fuel Cells based on BaZr 0.1 Ce 0.7 Y 0.2 O 3-? BZCY) fabricated by a modified co-pressing process, J. Power Sources, vol.195, pp.1845-1848, 2010.

H. Ding, X. Xue, X. Liu, and G. Meng, A novel layered perovskite cathode for proton conducting solid oxide fuel cells, J. Power Sources, vol.195, pp.775-778, 2010.

G. Zhou, X. Fu, J. Luo, K. T. Chuang, and R. Sanger, Ag modified LSCF as cathode material for protonic conducting SOFCs, Mater. Technol, vol.28, pp.3-8, 2013.
DOI : 10.1179/1753555712y.0000000035

W. Sun, Z. Tao, Z. Shi, L. Yan, Z. Zhu et al., Fabrication of BaZr 0.1 Ce 0.7 Y 0.2 O 3-?-Based Proton-Conducting Solid Oxide Fuel Cells Co-Fired at 1,150 °C, Fuel Cells, vol.10, pp.1108-1113, 2010.

X. Zhang, J. Zhou, and Y. Wang, Novel layered perovskite GdBaCuFeO 5+? as a potential cathode for protonconducting solid oxide fuel cells, Ionics (Kiel), vol.19, pp.941-945, 2013.

B. Lin, Y. Dong, R. Yan, S. Zhang, M. Hu et al., In situ screen-printed BaZr 0.1 Ce 0.7 Y 0.2 O 3-? electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo 2 O 5+? cathode, J. Power Sources, vol.186, pp.446-449, 2009.

Y. Ling, B. Lin, L. Zhao, X. Zhang, J. Yu et al., Layered perovskite LaBaCuMO 5+ ? (M=Fe, Co) cathodes for intermediate-temperature protonic ceramic membrane fuel cells, J. Alloys Compd, vol.493, pp.252-255, 2010.
DOI : 10.1016/j.jallcom.2009.12.072

H. Ding and X. Xue, GdBa 0.5 Sr 0.5 Co 2 O 5+ ? layered perovskite as promising cathode for proton conducting solid oxide fuel cells, J. Alloys Compd, vol.496, pp.683-686, 2010.

H. Ding and X. Xue, Novel layered perovskite GdBaCoFeO 5+ ? as a potential cathode for proton-conducting solid oxide fuel cells, Int. J. Hydrogen Energy, vol.35, pp.4311-4315, 2010.
DOI : 10.1016/j.ijhydene.2010.02.027

H. Ding and X. Xue, Proton conducting solid oxide fuel cells with layered PrBa 0.5 Sr 0.5 Co 2 O 5+ ? perovskite cathode, Int. J. Hydrogen Energy, vol.35, pp.2486-2490, 2010.

B. Lin, S. Zhang, L. Zhang, L. Bi, H. Ding et al., Prontonic ceramic membrane fuel cells with layered GdBaCo 2 O 5+ ? cathode prepared by gel-casting and suspension spray, J. Power Sources, vol.177, pp.330-333, 2008.
DOI : 10.1016/j.jpowsour.2007.11.109

C. Yang and Q. Xu, A functionally graded cathode for proton-conducting solid oxide fuel cells, J. Power Sources, vol.212, pp.186-191, 2012.
DOI : 10.1016/j.jpowsour.2012.03.081

Z. Wang, M. Liu, W. Sun, D. Ding, Z. Lü et al., A mixed-conducting BaPr 0.8 In 0.2 O 3?? cathode for protonconducting solid oxide fuel cells, Electrochem. Commun, vol.27, pp.19-21, 2013.

Y. Ling, X. Zhang, S. Wang, L. Zhao, B. Lin et al., A cobalt-free SrFe 0.9 Sb 0.1 O 3-? cathode material for protonconducting solid oxide fuel cells with stable BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? electrolyte, J. Power Sources, vol.195, pp.7042-7045, 2010.

H. Ding and X. Xue, BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? electrolyte-based solid oxide fuel cells with cobalt-free PrBaFe 2 O 5+ ? layered perovskite cathode, J. Power Sources, vol.195, pp.7038-7041, 2010.

L. Zhao, X. Zhang, B. He, B. Liu, and C. Xia, Micro-tubular solid oxide fuel cells with graded anodes fabricated with a phase inversion method, J. Power Sources, vol.196, pp.962-967, 2011.

H. Ding, Y. Xie, and X. Xue, Electrochemical performance of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? electrolyte based protonconducting SOFC solid oxide fuel cell with layered perovskite PrBaCo 2 O 5+? cathode, J. Power Sources, vol.196, pp.2602-2607, 2011.

R. Cervera, Y. Oyama, and S. Yamaguchi, Low temperature synthesis of nanocrystalline proton conducting BaZr 0.8 Y 0.2 O 3?? by sol-gel method, Solid State Ionics, vol.178, pp.569-574, 2007.

V. Igarwa and M. Liu, Preparation of barium cerate-based thin films using a modified Pechini process, J. Mater. Sci, vol.32, pp.619-625

J. Brzezi?ska-miecznik, K. Haberko, and M. M. Bucko, Barium zirconate ceramic powder synthesis by the coprecipitation-calcination technique, Mater. Lett, vol.56, pp.273-278, 2002.

M. Jacquin, Y. Jing, A. Essoumhi, G. Taillades, D. J. Jones et al., Flash Combustion Synthesis and Characterisation of Nanosized Proton Conducting Yttria-doped Barium Cerate, vol.248, pp.243-248, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00349615

C. Hwang and T. Wu, Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method, Mater. Sci. Eng. B, vol.111, pp.197-206, 2004.

N. Balagopal, K. G. Warrier, and A. D. Damodaran, Alumina-ceria composite powders through a flash combustion technique, J. Mater. Sci. Lett, vol.10, pp.1116-1118, 1991.

P. Babilo and S. M. Haile, Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO, J. Am. Ceram. Soc, vol.88, pp.2362-2368, 2005.

P. Batocchi and B. , Pile à combustible a céramique conductrice protonique: développement, optimisation des matériau, réalisation de cellules élémentaires PCFC opérant dans le domaine de température 400-600°C, université montpellier2, 2012.

K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, Protonic conduction in Zr-substituted BaCeO, vol.3, pp.91-98, 2000.

B. Y. Shannon, M. H. , N. H. Baur, O. H. Gibbs, M. Eu et al., Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Acta Cryst, vol.32, pp.751-767, 1976.

M. Amsif, D. Marrero-lópez, J. C. Ruiz-morales, S. N. Savvin, and P. Núñez, The effect of Zn addition on the structure and transport properties of BaCe 0.9-x Zr x Y 0.1 O 3-?, J. Eur. Ceram. Soc, vol.34, pp.1553-1562, 2014.

S. Ricote, N. Bonanos, M. C. Marco-de-lucas, and G. Caboche, Structural and conductivity study of the proton conductor BaCe 0.9?x Zr x Y 0.1 O 3?? at intermediate temperatures, J. Power Sources, vol.193, pp.189-193, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418829

L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu et al., Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr 0, Science, vol.326, pp.126-129, 2009.

B. Mirfakhraei, F. Ramezanipour, S. Paulson, V. Birss, V. Thangadurai-;-m-=-fe et al., Effect of Sintering Temperature on Microstructure, Chemical Stability, and Electrical Properties of Transition Metal or Yb-Doped BaZr 0, Front. Energy Res, vol.2, pp.1-10, 2014.

Y. Liu, L. Yang, M. Liu, Z. Tang, and M. Liu, Enhanced sinterability of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? by addition of nickel oxide, J. Power Sources, vol.196, pp.9980-9984, 2011.

A. Vahidmohammadi and Z. Cheng, Sintering Issues, and Chemical Stability of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? Proton Conducting Electrolyte for SOFCs, Fundamentals of Synthesis, vol.162, pp.803-811, 2015.

S. Wang, F. Zhao, L. Zhang, and F. Chen, Synthesis of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? proton conducting ceramic by a modified Pechini method, Solid State Ionics, vol.213, pp.29-35, 2012.

X. Zhou, L. Liu, J. Zhen, S. Zhu, B. Li et al., Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? prepared by ethylene diamine tetraacetic acid assisted glycine nitrate process, J. Power Sources, vol.196, pp.5000-5006, 2011.

A. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev, vol.56, pp.978-982, 1939.

T. Pagnier and G. Lucazeau, Raman Spectroscopy of Perovskite-Type BaCeZrO, vol.3, pp.220-227, 1999.

L. Yang, C. Zuo, and M. Liu, High-performance anode-supported Solid Oxide Fuel Cells based on BaZr 0.1 Ce 0.7 Y 0.2 O 3?? BZCY fabricated by a modified co-pressing process, J. Power Sources, vol.195, pp.1845-1848, 2010.

B. Lin, Y. Dong, R. Yan, S. Zhang, M. Hu et al., In situ screen-printed BaZr 0.1 Ce 0.7 Y 0.2 O 3?? electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo 2 O 5+? cathode, J. Power Sources, vol.186, pp.446-449, 2009.

A. Subramaniyan, J. Tong, R. P. O'hayre, and N. M. Sammes, Sintering Studies on 20 mol% Yttrium-Doped Barium Cerate, J. Am. Ceram. Soc, vol.94, pp.1800-1804, 2011.

A. V. Orlov, O. A. Shlyakhtin, A. L. Vinokurov, A. V. Knotko, and Y. D. , Tret'yakov, Preparation and Properties of Fine BaCeO 3 Powders for Low-Temperature Sintering, Inorg. Mater, vol.41, pp.1194-1200, 2005.

S. Nikodemski, J. Tong, and R. O'hayre, Solid-state reactive sintering mechanism for proton conducting ceramics, Solid State Ionics, vol.253, pp.201-210, 2013.

M. Amsif, D. Marrero-lópez, J. C. Ruiz-morales, S. N. Savvin, and P. Núñez, Effect of sintering aids on the conductivity of BaCe 0.9 Ln 0.1 O 3??, J. Power Sources, vol.196, pp.9154-9163, 2011.

A. K. Baral, Reduction in sintering temperature of stable proton conductor BaCe 0.35 Zr 0.5 Y 0.15 O 3-? prepared by sol-gel method and its transport properties, Solid State Ionics, vol.272, pp.107-111, 2015.

C. Zhang, H. Zhao, N. Xu, X. Li, and N. Chen, Influence of ZnO addition on the properties of high temperature proton conductor Ba 1.03 Ce 0.5 Zr 0.4 Y 0.1 O 3?? synthesized via citrate-nitrate method, Int. J. Hydrogen Energy, vol.34, pp.2739-2746, 2009.

R. Costa, N. Grünbaum, M. Berger, and L. Dessemond, On the use of NiO as sintering additive for BaCe 0,9 Y 0,1 O 3??, Solid State Ionics, vol.180, pp.891-895, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00399526

S. Wang, L. Zhang, L. Zhang, K. Brinkman, and F. Chen, Two-step sintering of ultrafine-grained barium cerate proton conducting ceramics, Electrochim. Acta, vol.87, pp.194-200, 2013.

N. T. Nguyen and H. H. Yoon, Preparation and evaluation of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells, J. Power Sources, vol.231, pp.213-218, 2013.

P. Batocchi, Pile à combustible a céramique conductrice protonique: développement, optimisation des matériau, réalisation de cellules élémentaires PCFC opérant dans le domaine de température 400-600°C, université montpellier2, 2012.

N. Narendar, G. C. Mather, P. A. Dias, and D. P. Fagg, The importance of phase purity in Ni-BaZr 0.85 Y 0.15 O 3?? cermet anodes-novel nitrate-free combustion route and electrochemical study, RSC Adv, vol.3, pp.859-869, 2013.

J. H. Yu, G. W. Park, S. Lee, and S. K. Woo, Microstructural effects on the electrical and mechanical properties of NiYSZ cermet for SOFC anode, J. Power Sources, vol.163, pp.926-932, 2007.

L. J. Van-der-pauw, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports, vol.13, pp.1-9, 1958.

W. Wang and A. V. Virkar, Ionic and electron-hole conduction in BaZr 0.93 Y 0.07 O 3?? by 4-probe dc measurements, J. Power Sources, vol.142, pp.1-9, 2005.

U. Anselmi-tamburini, Electrical properties of Ni/YSZ cermets obtained through combustion synthesis, Solid State Ionics, vol.110, pp.35-43, 1998.

G. Mather, Synthesis and characterisation of Ni-SrCe 0.9 Yb 0.1 O 3?? cermet anodes for protonic ceramic fuel cells, Solid State Ionics, vol.158, pp.333-342, 2003.

V. Agarwal, Electrochemical Properties of BaCe 0.8 Gd 0.2 O 3 Electrolyte Films Deposited on Ni-BaCe 0.8 Gd 0, vol.2

. Substrates, J. Electrochem. Soc, vol.144, p.1035, 1997.

S. W. Baek and J. Bae, Anodic behavior of Y 2 O 3-ZrO 2 /NiO cermet using an anode-supported electrode, Int. J. Hydrogen Energy, vol.36, pp.689-705, 2011.

M. Benamira, M. Letilly, E. Quarez, O. Joubert, A. Le-gal et al., Optimization of SOFC anode/electrolyte assembly based on BaIn 0.3 Ti 0.7 O 2.85 (BIT07)/Ni-BIT07 using an interfacial anodic layer, J. Power Sources, vol.251, pp.66-74, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988101

N. Nasani, D. Ramasamy, A. D. Brandão, A. Yaremchenko, and D. P. Fagg, The impact of porosity, pH 2 and pH 2 O on the polarisation resistance of Ni-BaZr 0.85 Y 0.15 O 3?? cermet anodes for Protonic Ceramic Fuel Cells (PCFCs), Int. J. Hydrogen Energy, vol.39, pp.21231-21241, 2014.

M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic et al., Influence of the ratio between Ni and BaCe 0.9 Y 0.1 O 3?? on microstructural and electrical properties of proton conducting NiBaCe 0.9 Y 0.1 O 3?? anodes, J. Alloys Compd, vol.509, pp.1157-1162, 2011.

E. J. Schouler, Electrocatalysis and Inductive Effects at the Gas, Pt/Stabilized Zirconia Interface, J. Electrochem. Soc, vol.134, p.1045, 1987.

S. Jiang, An electrode kinetics study of H 2 oxidation on Ni/Y 2 O 3 ZrO 2 cermet electrode of the solid oxide fuel cell, Solid State Ionics, vol.123, pp.209-224, 1999.

M. Chen, B. H. Kim, Q. Xu, B. G. Ahn, and D. P. Huang, Effect of Ni content on the microstructure and electrochemical properties of Ni-SDC anodes for IT-SOFC, Solid State Ionics, vol.181, pp.1119-1124, 2010.

W. Sun, M. Liu, S. Feng, W. Liu, H. C. Park et al., Hydrogen oxidation at the Pt-BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3-? (BZCYYb) interface, Phys. Chem. Chem. Phys, vol.15, pp.3820-3826, 2013.

S. Akoshima, M. Oishi, K. Yashiro, K. Sato, and J. Mizusaki, Reaction kinetics on platinum electrode / yttrium-doped barium cerate interface under H 2-H 2 O atmosphere, Solid State Ionics, vol.181, pp.240-248, 2010.

E. Traversa, Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method, vol.158, 2011.

L. Bi, E. Fabbri, Z. Sun, and E. Traversa, BaZr 0.8 Y 0.2 O 3??-NiO Composite Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method, J. Electrochem. Soc, vol.158, p.797, 2011.

D. Kek, Effect of electrode material on the oxidation of H 2 at the metal-Sr 0, Solid State Ionics, vol.131, pp.249-259, 2000.

A. Ringuede, D. Bronine, and J. R. Frade, Ni 1-x Co x /YSZ cermet anodes for solid oxide fuel cells, vol.48, pp.437-442, 2002.

S. Primdahl, Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells, 1999.

S. , Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes, J. Electrochem. Soc, vol.146, p.2827, 1999.

A. M. Hussain, J. V. Høgh, T. Jacobsen, and N. Bonanos, Nickel-ceria infiltrated Nb-doped SrTiO 3 for low temperature SOFC anodes and analysis on gas diffusion impedance, Int. J. Hydrogen Energy, vol.37, pp.4309-4318, 2012.

L. Bi, E. Fabbri, and E. Traversa, Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs), Electrochem. Commun, vol.16, pp.37-40, 2012.

L. Chevallier, M. Zunic, V. Esposito, E. D. Bartolomeo, and E. Traversa, A wet-chemical route for the preparation of Ni-BaCe 0.9 Y 0.1 O 3?? cermet anodes for IT-SOFCs, Solid State Ionics, vol.180, pp.715-720, 2009.

H. Moon, S. Kim, E. Park, S. Hyun, and H. Kim, Characteristics of SOFC single cells with anode active layer via tape casting and co-firing, Int. J. Hydrogen Energy, vol.33, pp.2826-2833, 2008.

M. Brown, S. Primdahl, and M. Mogensen, Structure/Performance Relations for Ni/Yttria-Stabilized Zirconia Anodes for Solid Oxide Fuel Cells, J. Electrochem. Soc, vol.147, p.475, 2000.

J. Mizusaki, Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H 2-H 2 O Atmospheres, J. Electrochem. Soc, vol.141, p.2129, 1994.

Z. Shao and S. M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, vol.431, pp.170-173, 2004.

Y. Lin, R. Ran, Y. Zheng, Z. Shao, W. Jin et al., Evaluation of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell, J. Power Sources, vol.180, pp.15-22, 2008.

Y. Yoo and N. Lim, Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate-zirconate thin-film electrolyte, J. Power Sources, vol.229, pp.48-57, 2013.

S. Park, S. Choi, J. Shin, and G. Kim, A collaborative study of sintering and composite effects for a PrBa 0.5 Sr 0.5 Co 1.5 Fe 0.5 O 5+? IT-SOFC cathode, vol.4, p.1775, 2014.

Y. Lin, R. Ran, C. Zhang, R. Cai, and Z. Shao, Performance of PrBaCo 2 O 5 as a proton-conducting solid-oxide fuel cell cathode, J. Phys. Chem. A, vol.114, pp.3764-72, 2010.

S. Choi, S. Yoo, J. Kim, S. Park, A. Jun et al., PrBa 0.5 Sr 0.5 Co 2-x Fe x O 5+?, Sci. Rep, vol.3, p.2426, 2013.

A. Jun, S. Yoo, Y. Ju, J. Hyodo, S. Choi et al., Correlation between fast oxygen kinetics and enhanced performance in Fe doped layered perovskite cathodes for solid oxide fuel cells, J. Mater. Chem. A, vol.3, pp.15082-15090, 2015.

J. H. Kim, Y. Kim, P. A. Connor, J. T. Irvine, J. Bae et al., Structural, thermal and electrochemical properties of layered perovskite SmBaCo 2 O 5+d , a potential cathode material for intermediate-temperature solid oxide fuel cells, J. Power Sources, vol.194, pp.704-711, 2009.

T. V. Aksenova, L. Y. Gavrilova, A. A. Yaremchenko, V. A. Cherepanov, and V. V. Kharton, Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo 2 O5 +? and SmBaCo 2 O 5+?, Mater. Res. Bull, vol.45, pp.1288-1292, 2010.

X. Zhou, L. Liu, J. Zhen, S. Zhu, B. Li et al., Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3?? prepared by ethylene diamine tetraacetic acid assisted glycine nitrate process, J. Power Sources, vol.196, pp.5000-5006, 2011.

Z. Zhu, Z. Tao, L. Bi, and W. Liu, Investigation of SmBaCuCoO 5+? double-perovskite as cathode for protonconducting solid oxide fuel cells, Mater. Res. Bull, vol.45, pp.1771-1774, 2010.

X. Che, Y. Shen, H. Li, and T. He, Assessment of LnBaCo 1.6 Ni 0.4 O 5 (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells, J. Power Sources, vol.222, pp.288-293, 2013.

A. Jun, J. Shin, and G. Kim, High redox and performance stability of layered SmBa 0.5 Sr 0.5 Co 1.5 Cu 0.5 O 5+? perovskite cathodes for intermediate-temperature solid oxide fuel cells, Phys. Chem. Chem. Phys, vol.15, pp.19906-19918, 2013.

X. Li, X. Jiang, H. Xu, Q. Xu, L. Jiang et al., Scandium-doped PrBaCo 2-x Sc x O 6-? oxides as cathode material for intermediate-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, vol.38, pp.12035-12042, 2013.

Y. N. Kim, J. H. Kim, and . Manthiram, Effect of Fe substitution on the structure and properties of LnBaCo 2x Fe x O 5 (Ln = Nd and Gd) cathodes, J. Power Sources, vol.195, pp.6411-6419, 2010.

?. Konrad, Correlation between crystal and transport ( Ln-selected lanthanides , Y ), Solid State Ionics, vol.262, pp.645-649, 2015.

L. Mogni, F. Prado, C. Jiménez, and A. Caneiro, Oxygen order-disorder phase transition in layered GdBaCo 2 O 5+? perovskite : Thermodynamic and transport properties, Solid State Ionics, vol.240, pp.19-28, 2013.

T. V. Aksenova, L. Y. Gavrilova, A. A. Yaremchenko, V. A. Cherepanov, and V. V. Kharton, Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo 2 O 5+? and SmBaCo 2 O 5+?, Mater. Res. Bull, vol.45, pp.1288-1292, 2010.

A. Chang, S. Skinner, and J. Kilner, Electrical properties of GdBaCo 2 O 5+x for ITSOFC applications, Solid State Ionics, vol.177, 2006.

S. Choi, S. Yoo, J. Kim, S. Park, A. Jun et al., Highly efficient and robust cathode materials for lowtemperature solid oxide fuel cells: PrBa0.5Sr0.5Co 2-x Fe x O 5+?, Sci. Rep, vol.3, p.2426, 2013.

A. Jun, J. Kim, J. Shin, and G. Kim, Optimization of Sr content in layered SmBa 1-x Sr x Co 2 O 5 perovskite cathodes for intermediate-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, vol.37, pp.18381-18388, 2012.

N. E. Volkova, L. Y. Gavrilova, V. Cherepanov, T. V. Aksenova, V. A. Kolotygin et al., Synthesis, crystal structure and properties of SmBaCo 2?x Fe x O 5+?, J. Solid State Chem, vol.204, pp.219-223, 2013.

S. H. Nien, C. S. Hsu, C. L. Chang, and B. H. Hwang, Preparation of BaZr 0.1 Ce 0.7 Y 0.2 O 3-? Based Solid Oxide Fuel Cells with Anode Functional Layers by Tape Casting, Fuel Cells, vol.11, pp.178-183, 2011.

S. Yoo, T. Lim, J. Shin, and G. Kim, Comparative characterization of thermodynamic, electrical, and electrochemical properties of Sm 0.5 Sr 0.5 Co 1?x Nb x O 3?? (x = 0, 0.05, and 0.1) as cathode materials in intermediate temperature solid oxide fuel cells, J. Power Sources, vol.226, pp.1-7, 2013.

B. Lin, H. Ding, Y. Dong, S. Wang, X. Zhang et al., Intermediate-to-low temperature protonic ceramic membrane fuel cells with Ba 0, J. Power Sources, vol.186, pp.58-61, 2009.

H. Ding, B. Lin, X. Liu, and G. Meng, High performance protonic ceramic membrane fuel cells (PCMFCs) with Ba 0.5 Sr 0.5 Zn 0.2 Fe 0.8 O 3-delta perovskite cathode, Electrochem. Commun, vol.10, pp.1388-1391, 2008.

L. Yang, C. Zuo, S. Wang, Z. Cheng, and M. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors, Adv. Mater, vol.20, pp.3280-3283, 2008.

L. Zhao, B. He, Y. Ling, Z. Xun, R. Peng et al., Cobalt-free oxide Ba 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3?? for protonconducting solid oxide fuel cell cathode, Int. J. Hydrogen Energy, vol.35, pp.3769-3774, 2010.

C. Yang and Q. Xu, A functionally graded cathode for proton-conducting solid oxide fuel cells, J. Power Sources, vol.212, pp.186-191, 2012.

P. Batocchi, F. Mauvy, S. Fourcade, and M. Parco, Electrical and electrochemical properties of architectured electrodes based on perovskite and A 2 MO 4-type oxides for Protonic Ceramic Fuel Cell, Electrochim. Acta, vol.145, pp.1-10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071524

N. Dai, Z. Wang, Z. Lou, Y. Yan, J. Qiao et al., One-step synthesis of high performance Sr 2 Fe 1.5 Mo 0.5 O 6Sm 0.2 Ce 0.8 O 1.9 composite cathode for intermediate-temperature solid oxide fuel cells using a self-combustion technique, J. Power Sources, vol.217, pp.519-523, 2012.

W. Jiang, B. Wei, Z. Lv, Z. H. Wang, L. Zhu et al., Performance and stability of co-synthesized Sm 0.5 Sr 0.5 CoO 3Ce 0.8 Sm 0.2 O 1.9 composite oxygen electrode for solid oxide electrolysis cells, Int. J. Hydrogen Energy, vol.40, pp.561-567, 2015.

B. Liu, Y. Zhang, and L. Zhang, Oxygen reduction mechanism at Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? cathode for solid oxide fuel cell, Int. J. Hydrogen Energy, vol.34, pp.1008-1014, 2009.

K. Wang, R. Ran, W. Zhou, H. Gu, Z. Shao et al., Properties and performance of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? + Sm 0.2 Ce 0.8 O 1.9 composite cathode, J. Power Sources, vol.179, pp.60-68, 2008.

W. Zhou, R. Ran, Z. P. Shao, H. X. Gu, W. Q. Jin et al., Significant impact of nitric acid treatment on the cathode performance of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? perovskite oxide via combined EDTA-citric complexing process, J. Power Sources, vol.174, pp.237-245, 2007.

I. Hung, C. Liang, C. Ciou, R. Song, and Z. Lai, Effect of pH value on the synthesis and characterization of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? powders prepared by the citrate-EDTA complexing method, J. Mater. Sci, vol.45, pp.3824-3832, 2010.

L. Yang, S. Wang, X. Lou, and M. Liu, Electrical conductivity and electrochemical performance of cobalt-doped BaZr 0.1 Ce 0.7 Y 0.2 O 3?? cathode, Int. J. Hydrogen Energy, vol.36, pp.2266-2270, 2011.

P. Haworth, S. Smart, J. Glasscock, J. C. Diniz-da, and C. , Yttrium doped BSCF membranes for oxygen separation, Sep. Purif. Technol, vol.81, pp.88-93, 2011.

A. Yan, B. Liu, Y. Dong, Z. Tian, D. Wang et al., A temperature programmed desorption investigation on the interaction of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? perovskite oxides with CO 2 in the absence and presence of H 2 O and O 2, Appl. Catal. B Environ, vol.80, pp.24-31, 2008.

A. Yan, M. Cheng, Y. Dong, W. Yang, V. Maragou et al., Investigation of a Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? based cathode IT-SOFC. I. The effect of CO 2 on the cell performance, Appl. Catal. B Environ, vol.66, pp.64-71, 2006.

P. Briault, M. Rieu, R. Laucournet, B. Morel, and J. P. Viricelle, Catalytic study of SOFC electrode materials in engine exhaust gas atmosphere, J. Mater. Sci, vol.48, pp.7184-7195, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850716

J. Kim, S. Choi, A. Jun, H. Y. Jeong, J. Shin et al., Chemically stable perovskites as cathode materials for solid oxide fuel cells: La-doped Ba 0, ChemSusChem, vol.7, pp.1669-75, 2014.

C. Niedrig, S. Taufall, M. Burriel, W. Menesklou, S. F. Wagner et al., Solid State Ionics, vol.197, pp.25-31, 2011.

Y. Lin, R. Ran, and Z. Shao, Silver-modified Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? as cathodes for a proton conducting solid-oxide fuel cell, Int. J. Hydrogen Energy, vol.35, pp.8281-8288, 2010.

T. Ishihara, S. Fukui, H. Nishiguchi, and Y. Takita, La-Doped BaCoO 3 as a Cathode for Intermediate Temperature Solid Oxide Fuel Cells Using a LaGaO 3 Base Electrolyte, J. Electrochem. Soc, vol.149, p.823, 2002.

T. Shimura, M. Komori, and H. Iwahara, Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature, Solid State Ionics, pp.685-689, 1996.

J. , Fabrication of thin electrolytes for second-generation solid oxide fuel cells, Solid State Ionics, vol.131, pp.79-96, 2000.

S. Ha, P. Su, S. Ji, and S. W. Cha, Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO 3 electrolyte on porous anodic aluminum oxide substrate, Thin Solid Films, vol.544, pp.125-128, 2013.

M. Cassir, A. Ringuedé, and L. Niinistö, Input of atomic layer deposition for solid oxide fuel cell applications, J. Mater. Chem, vol.20, p.8987, 2010.

M. Arab-pour, P. Yazdi, S. Briois, R. Georges, A. Costa et al., Characterization of PCFC-Electrolytes Deposited by Reactive Magnetron Sputtering; Comparison with Ceramic Bulk Samples, Fuel Cells, vol.13, pp.549-555, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01109568

S. Zhang, L. Bi, L. Zhang, Z. Tao, W. Sun et al., Stable BaCe 0.5 Zr 0.3 Y 0.16 Zn 0.04 O 3?? thin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells, J. Power Sources, vol.188, pp.343-346, 2009.

N. Duan, D. Yan, B. Chi, J. Pu, and L. Jian, High performance anode-supported tubular solid oxide fuel cells fabricated by a novel slurry-casting method, Sci. Rep, vol.5, p.8174, 2015.

C. Xia, F. Chen, and M. Liu, Reduced-Temperature Solid Oxide Fuel Cells Fabricated by Screen Printing, Electrochem. Solid-State Lett, vol.4, p.52, 2001.
DOI : 10.1149/1.1361158

URL : https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1006&context=emec_facpub

L. Zhang and W. Yang, High-performance low-temperature solid oxide fuel cells using thin proton-conducting electrolyte with novel cathode, Int. J. Hydrogen Energy, vol.37, pp.8635-8640, 2012.
DOI : 10.1016/j.ijhydene.2012.02.140

M. P. Carpanese, A. Barbucci, G. Canu, and M. Viviani, BaCe 0.85 Y 0.15 O 2.925 dense layer by wet powder spraying as electrolyte for SOFC/SOEC applications, Solid State Ionics, vol.269, pp.80-85, 2015.

Y. Yoo and N. Lim, Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate-zirconate thin-film electrolyte, J. Power Sources, vol.229, pp.48-57, 2013.

W. Zhou, H. Shi, R. Ran, R. Cai, Z. Shao et al., Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying, J. Power Sources, vol.184, pp.229-237, 2008.

T. Jiang, Z. Wang, B. Ren, J. Qiao, W. Sun et al., Compositionally continuously graded cathode layers of Ba 0.5 Sr 0.5 Fe 0.91 Al 0.09 O 3??-Gd 0.1 Ce 0.9 O 2 by wet powder spraying technique for solid oxide fuel cells, J. Power Sources, vol.247, pp.858-864, 2014.

A. Ruder, H. P. Buchkremer, H. Jansen, W. Malléner, and D. Stöver, Wet powder spraying-a process for the production of coatings, vol.53, pp.0-3, 1992.

B. E. Schüller, R. Vaûen, and D. Stöver, Thin Electrolyte Layers for SOFC via Wet Powder Spraying ( WPS ), pp.659-662, 2002.

B. Guan, Z. Lü, G. Wang, B. Wei, W. Li et al., A Performance Study of Solid Oxide Fuel Cells With BaZr 0.1 Ce 0.7 Y 0.2 O 3-? Electrolyte Developed by Spray-Modified Pressing Method, Fuel Cells, vol.12, pp.141-145, 2012.

Y. Lin, R. Ran, D. Chen, and Z. Shao, A novel Ba 0.6 Sr 0.4 Co 0.9 Nb 0.1 O 3-? cathode for protonic solid-oxide fuel cells, J. Power Sources, vol.195, pp.4700-4703, 2010.

Y. Lin, R. Ran, and Z. Shao, Silver-modified Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? as cathodes for a proton conducting solid-oxide fuel cell, Int. J. Hydrogen Energy, vol.35, pp.8281-8288, 2010.

H. Shi, R. Ran, and Z. Shao, Wet powder spraying fabrication and performance optimization of IT-SOFCs with thinfilm ScSZ electrolyte, Int. J. Hydrogen Energy, vol.37, pp.1125-1132, 2012.

, Forschungszentrum Jülich-Production processes-equipment-Powder technology, 2015.

L. Zhang, M. Li, X. Song, T. Guo, S. Zhu et al., Preparation of half-cell by bi-layer wet powder spraying and tape casting for anode-supported SOFCs, J. Alloys Compd, vol.586, pp.10-15, 2014.

A. Vahidmohammadi and Z. Cheng, Sintering Issues, and Chemical Stability of BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3-? Proton Conducting Electrolyte for SOFCs, Fundamentals of Synthesis, vol.162, pp.803-811, 2015.

S. Fiaxell, S. Technologies-fiaxell, and . Technologies, , 2015.

Y. Lin, R. Ran, Y. Zheng, Z. Shao, W. Jin et al., Evaluation of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3?? as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell, J. Power Sources, vol.180, pp.15-22, 2008.

J. Park, J. Zou, H. Yoon, G. Kim, and J. S. Chung, Electrochemical behavior of Ba 0.5 Sr 0.5 Co 0.2?x ZnxFe 0.8 O 3?? (x = 0-0.2) perovskite oxides for the cathode of solid oxide fuel cells, Int. J. Hydrogen Energy, vol.36, pp.6184-6193, 2011.

Y. Guo, Y. Lin, R. Ran, and Z. Shao, Zirconium doping effect on the performance of proton-conducting BaZr y Ce 0.8?y Y 0.2 O 3?? (0.0?y?0.8) for fuel cell applications, J. Power Sources, vol.193, pp.400-407, 2009.

K. Wang, R. Ran, W. Zhou, H. Gu, Z. Shao et al., Properties and performance of Ba 0, J. Power Sources, vol.179, pp.60-68, 2008.

R. Küngas, J. M. Vohs, and R. J. Gorte, Effect of the Ionic Conductivity of the Electrolyte in Composite SOFC Cathodes, J. Electrochem. Soc, vol.158, p.743, 2011.

L. Yang, C. Zuo, S. Wang, Z. Cheng, and M. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors, Adv. Mater, vol.20, pp.3280-3283, 2008.

S. Park, S. Choi, J. Shin, and G. Kim, A collaborative study of sintering and composite effects for a PrBa 0.5 Sr 0.5 Co 1.5 Fe 0.5 O 5+? IT-SOFC cathode, vol.4, p.1775, 2014.

L. Yang, C. Zuo, and M. Liu, High-performance anode-supported Solid Oxide Fuel Cells based on BaZr 0.1 Ce 0.7 Y 0.2 O 3-? (BZCY) fabricated by a modified co-pressing process, J. Power Sources, vol.195, pp.1845-1848, 2010.

S. H. Nien, C. S. Hsu, C. L. Chang, and B. H. Hwang, Preparation of BaZr 0.1 Ce 0.7 Y 0.2 O 3-? Based Solid Oxide Fuel Cells with Anode Functional Layers by Tape Casting, Fuel Cells, vol.11, pp.178-183, 2011.

W. Sun, Y. Wang, S. Fang, Z. Zhu, L. Yan et al., Evaluation of BaZr 0.1 Ce 0.7 Y 0.2 O 3-?-based proton-conducting solid oxide fuel cells fabricated by a one-step co-firing process, Electrochim. Acta, vol.56, pp.1447-1454, 2011.

M. Liu, J. Gao, X. Liu, and G. Meng, High performance of anode supported BaZr 0.1 Ce 0.7 Y 0.2 O 3-? (BZCY) electrolyte cell for IT-SOFC, Int. J. Hydrogen Energy, vol.36, pp.13741-13745, 2011.

Y. Ling, J. Yu, B. Lin, X. Zhang, L. Zhao et al., A cobalt-free Sm 0.5 Sr 0.5 Fe 0.8 Cu 0.2 O 3??-Ce 0.8 Sm 0.2 O 2?? composite cathode for proton-conducting solid oxide fuel cells, J. Power Sources, vol.196, pp.2631-2634, 2011.

J. Kim, S. Sengodan, G. Kwon, D. Ding, J. Shin et al., Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells, ChemSusChem, vol.7, pp.2811-2816, 2014.

A. Jun, S. Yoo, Y. Ju, J. Hyodo, S. Choi et al., Correlation between fast oxygen kinetics and enhanced performance in Fe doped layered perovskite cathodes for solid oxide fuel cells, J. Mater. Chem. A, vol.3, pp.15082-15090, 2015.

S. Choi, S. Yoo, J. Kim, S. Park, A. Jun et al., Highly efficient and robust cathode materials for lowtemperature solid oxide fuel cells: PrBa 0.5 Sr 0.5 Co 2-x Fe x O 5+?, Sci. Rep, vol.3, p.2426, 2013.

H. Ding, X. Xue, X. Liu, and G. Meng, A novel layered perovskite cathode for proton conducting solid oxide fuel cells, J. Power Sources, vol.195, pp.775-778, 2010.

H. Ding and X. Xue, Proton conducting solid oxide fuel cells with layered PrBa 0.5 Sr 0.5 Co 2 O 5+ ? perovskite cathode, Int. J. Hydrogen Energy, vol.35, pp.2486-2490, 2010.

Z. Zhu, Z. Tao, L. Bi, and W. Liu, Investigation of SmBaCuCoO 5+ ? double-perovskite as cathode for protonconducting solid oxide fuel cells, Mater. Res. Bull, vol.45, pp.1771-1774, 2010.

H. Ding and X. Xue, GdBa 0.5 Sr 0.5 Co 2 O 5+? layered perovskite as promising cathode for proton conducting solid oxide fuel cells, J. Alloys Compd, vol.496, pp.683-686, 2010.

X. Zhang, Y. Qiu, F. Jin, F. Guo, Y. Song et al., A highly active anode functional layer for solid oxide fuel cells based on proton-conducting electrolyte BaZr 0.1 Ce 0.7 Y 0.2 O 3-?, J. Power Sources, pp.654-659, 2013.

Z. Shao and S. M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, vol.431, pp.170-173, 2004.