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Summary of PhD dissertation (English)

Spatial estimation of actual evapotranspiration and
irrigation volumes using water and energy balance
models forced by optical remote sensing data (VIS / NIR
/ TIR)

Abstract

In arid and semi-arid regions, water availability is a major limitation to crop
production. Efficient agricultural water management is therefore a major issue, mainly
in irrigated areas. The design of tools that provide an estimate of water balance
components, especially of Evapotranspiration (ET), at the regional scale may help
sustainable management of limited water resources in the water scarce regions.
Remotely sensed Earth observation has become a major research field for agricultural
water resources management. It provides regularly distributed data over large
geographic areas about actual vegetation temporal dynamics (through the Normalized
Difference Vegetation Index NDVI) and water availability under water stress (through
the land surface temperature Tsuf) which are crucial factors controlling ET.

The main objective of this thesis is to develop and test efficient techniques and
methods to estimate hydrological variables (ET and irrigation volumes) in order to
assess, in space (at "metric" and "kilometric" resolution) and over relatively long time
periods (four agricultural seasons), the crop water requirements in the Kairouan plain
(central Tunisia), as well as the extracted irrigation volumes from the overexploited
aquifer. The adopted approach combines field experimentation, modeling and the use
of multi-sensor / multi-resolution remote sensing data. Two types of tools to estimate
ET and irrigation volumes are used: (a) a daily water balance model, SAMIR (SAtellite
Monitoring of Irrigation), simulating water fluxes at a daily time step, and (b) an energy
balance model, SPARSE (Soil Plant Atmosphere and Remote Sensing
Evapotranspiration), which characterizes the water status at the satellite overpass time.
For this purpose, two main research focuses have been explored: (i) to develop
methods to integrate 7z situ data and high-resolution (VIS-NIR) remote sensing data
(SPOT5 imagery) in the SAMIR model (calibrated using flux measurements by Eddy
Covariance) to draw up the distributed water balance of irrigated areas in the Kairouan
plain during four agricultural seasons (2008-2009 and 2011-2014) and (ii) to test the
performance of the SPARSE model in monitoring the water status of a heterogeneous
landscape in the study area and determine whether the low-resolution remote sensing
data in the VIS-NIR and TIR domains (Terra-MODIS and Aqua-MODIS) are useful
for spatializing the key variables of the energy balance (sensible and latent heat fluxes)
in a semi-arid context.

ET and irrigation volumes, estimated with the SAMIR model, are assessed using
field measurements (flux measurements by Extra Large Scintillometer XILAS along a
path length of 4 km), and field surveys (observed irrigation volumes), respectively. The
validation of the SPARSE results was carried out by means of XLAS flux
measurements. Special attention has been paid to the extrapolation of the modeled
latent heat flux by SPARSE from instantaneous to daily estimates. The seasonal
irrigation volumes estimated by the SAMIR model are acceptable, even though
results at finer timescales (monthly and below) needed to be improved, in particular

i
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by translating our knowledge of the agricultural practices into algorithmic constraints
in the model. Hence, the SAMIR model parameters, especially non calibrated ones
(market gardening and trees), are revisited in order to enhance the results of
distributed ET and irrigation volumes. The SAMIR model was recalibrated by using
simultaneously latent heat flux and soil moisture measurements of three cereals fields
(irrigated and rainfed). This calibration aims to get a unique set of parameters for
cereals taking into account irrigated and rainfed cereals in order to better parameterize
the model in a context of various cropping practices, which is the case in the area
below the XLLAS transect. For the SPARSE model, the estimates of the sensible and
latent heat fluxes are in close agreement with those obtained from the XLAS. These
results indicate that the XLLAS can be effectively used to validate large-scale sensible
heat flux derived from remote sensing data (and residual latent heat flux), in particular
for the results obtained at the satellite overpass time. However, the extrapolation from
instantaneous to daily ET is less obvious. The daily latent heat fluxes derived from the
XLAS agreed rather well with those modeled using SPARSE, which shows the
potential of SPARSE in water consumption monitoring over heterogeneous landscape
in semi-arid conditions, and especially to identify the most affected areas by water
stress.

Key words: Evapotranspiration, irrigation management, remote sensing,
hydrological modeling, water balance model, energy balance model.
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Estimation spatialisée de ’évapotranspiration réelle et
des volumes d’irrigation a ’aide de mode¢les de bilans
hydrique et énergétique forcés par des données de la

télédétection optique (VIS/PIR/IRT)

Résumé

Dans les régions arides et semi-arides, la disponibilité de I'eau est le principal facteur
limitant de la production agricole. La gestion efficace de I'eau est ainsi un probleme
majeur, principalement dans les zones irriguées. La conception d'outils fournissant des
estimations régionales des composantes du bilan hydrique, en particulier
l'évapotranspiration (ET), composante principale du bilan hydrique, peut aider a la
gestion durable de la ressource en eau dans ces régions. La télédétection par satellite a
démontré un tres fort potentiel pour le suivi a différentes échelles des ressources
hydriques agricoles. Elle fournit des données réparties sur de grandes zones
géographiques et a intervalles réguliers, permettant, ainsi, de suivre la dynamique de la
végétation (a travers des indices de végétation tel que l'indice de végétation par
différence normalisée NDVI) et la détection du stress hydrique (a travers la
température de surface terrestre Tsurf) qui sont des facteurs cruciaux controlant 'ET.

L'objectif principal de ce travail de these est de développer des techniques et des
méthodes efficaces pour estimer les variables hydrologiques (ET et les volumes
d'irrigation) afin d'évaluer, dans l'espace (résolution "métrique" et "kilométrique"), les
besoins en eau des cultures du couvert végétal de la plaine de Kairouan (Tunisie
centrale) ainsi que les volumes d'irrigation extraits de son aquifere surexploité.
L'approche adoptée combine l'expérimentation, la modélisation et l'utilisation de
données de télédétection multi-capteurs / multi-résolutions. Les deux types d'outils
utilisés pour estimer 'ET et les volumes d'irrigation sont le modele de bilan hydrique
journalier SAMIR (SAtellite Monitoring of Irrigation), simulant les flux d'eau a un pas
de temps journalier et le modele SPARSE (Soil Plant Atmosphere and Remote Sensing
Evapotranspiration), qui caractérise 1'état hydrique du sol et du couvert végétal au
temps de passage du satellite. deux axes de recherche principaux ont été explorés a
cette fin; (i) développer des méthodes pour intégrer des données 7 situ et des données
de télédétection haute résolution (VIS-NIR) (imagerie SPOT5) dans le modéle SAMIR
(calibrées a l'aide de mesures de flux par Eddy Corrélation) pour établir le bilan
hydrique spatialisé des zones irriguées de la plaine de Kairouan pendant quatre saisons
agricoles (2008-2009 et 2011-2014) et (ii) tester la performance du modé¢le SPARSE
dans D'estimation de I’état hydrique dun couvert agricole hétérogéne dans la zone
d'étude et déterminer I'utilité des données de télédétection basse résolution dans les
domaines VIS-PIR et IRT (Terra-MODIS et Aqua-MODIS) dans la spatialisation des
variables clés du bilan d’énergie dans un contexte semi-aride: les flux de chaleur
sensible et latente.

Les variables estimées avec le modele SAMIR; ET et volumes d'irrigation; sont
validés a l'aide des mesures terrain (mesures de flux par un scintillomeétre a extra-large
ouverture XLLAS, le long d'un « transect » de 4 km) et des enquétes de terrain (volumes
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d'irrigation observés), respectivement. Alors que la validation des résultats SPARSE a
¢té réalisée au moyen des mesures de flux XLAS. Une attention particulicre a été
portée a l'extrapolation des résultats instantanés du flux de chaleur latente SPARSE, au
pas de temps journalier pour des applications hydrologiques. Les volumes d’irrigation
saisonniers estimés par le modele SAMIR sont acceptables, méme si les résultats a des
échelles de temps plus fines (mensuelles) doivent étre améliorés, notamment en
traduisant notre connaissance des pratiques agricoles en contraintes algorithmiques
dans le mode¢le. Ainsi, les parametres du modele SAMIR, en particulier les parametres
non calibrés, sont revisités afin d'améliorer les performances de simulation de 'ET et
des volumes d'irrigation. Pour le modele SPARSE, les estimations des flux de chaleur
sensible et latente sont en étroit accord avec celles obtenues a partir du XLAS. Ces
résultats indiquent que les mesures d’un scintillometre XLLAS peuvent étre utilisées
avec succes pour valider du flux de chaleur sensible dérivé des données de
télédétection (et du flux de chaleur latente résiduelle), en particulier pour les résultats
obtenus au temps de passage du satellite. Cependant, l'extrapolation de I'ET
instantanée au pas de temps journalier est moins évidente. Les flux de chaleur latente
journalier dérivés du XILAS conviennent plutét bien avec ceux modélisés par SPARSE,
ce qui montre le potentiel du modéle SPARSE dans la surveillance de la consommation
de Teau agricole dans un paysage a couvert végétal hétérogene en conditions semi-
arides, et notamment pour la localisation des zones les plus touchées par le stress

hydrique.

Mots clés : Evapotranspiration, gestion de lirrigation, télédétection, Modélisation
hydrologique, mod¢le de bilan hydrique, mode¢le de bilan d’énérgie.
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Introduction

Introduction

Scientific context

About 71 percent of the Earth's surface is covered by water. Oceans hold about 96.5
percent of all Earth's water, the remainder freshwater is distributed between frozen and
glaciated areas (1.74%), underground water tables (1.69%), and surface water, which
includes rivers, lakes and soil moisture (about 0.07%) (USGS, 2016).

According to the United Nations Environmental Program (UNEP, 2000), the
treshwater scarcity is viewed by scientists and politicians as the second most important
environmental issue of the 215t century. “The world water cycle seems unlikely to be able
to cope with demands in the coming decades” (UNEP, 2000). Water requirements are
generally associated with access to drinking water for the population, whereas it is also
crucial for agriculture and many industrial and agro-food sectors. Indeed, the water use

has continuously intensified and diversified since the beginning of the 20 century (Sauer
et al., 2010; Shiklomanov, 2000; Siebert ez al., 2005; Wisser ez al., 2008).

Water is one of the most important inputs required in agricultural production. Over
90% of fresh biomass is essentially water that complements carbon dioxide as a major
substrate in carbon fixation, photosynthesis, a process that is the essence of life on Earth.
Agriculture water use through crop irrigation accounts for 70 % of all water use in the
world and as much as 95 percent in many developing countries (Assessment Millennium
Ecosystem, 2005). Irrigated agricultural lands occupy less than 20% of all cropped area
but produce 40—-45% of the world’s food. It is generally expected that irrigated agriculture
will have to be considerably extended in the future in order to feed growing population,
which has more than doubled between 1960 and 2008, from about 2.9 billion to mote
than 6.7 billion. Consequently, total agricultural output has increased by almost 170 %
globally between 1961 and 2008 with an average increase of 2.2% per year (Wik ez al.,
2008). However, the gap between available water supply and water demand is increasing
in many parts of the world (Figure 1), limiting future expansion of irrigation (Assessment
Millennium Ecosystem, 2005).


https://water.usgs.gov/edu/watercycleoceans.html
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ratio of withdrawals to supply
Low stress (< 10%)
Low to medium stress (10-20%)
Medium to high stress (20-40%)

High stress (40-80%)
Extremely high stress (> 80%)

Figure 1: Water stress by country; this map shows the average exposure to water stress of water

users in each country, Ze. the ratio of total withdrawals to total renewable supply in a given area.

A higher percentage means more water users are competing limited supplies.(Source: Gassert e#
al. (2013))

Indeed, the distribution of populations is not correlated with water availability. The
arid zones receive only 2.2% of the world's water but are home to 21.5% of the
population (Frérot, 2011). Moreover, in regions subject to a monsoon climate, almost all-
annual rainfall and most river flows are concentrated for a short period, about two
months. In many countries, surface water exploitation has almost reached its limit and
large volumes are taken from underground aquifers to fuel agriculture, industrial and
domestic consumption. Thus, most of the world's aquifers are overexploited (Wada e7 af,
2012). This overexploitation is critical for both quantitative and qualitative aspects since it
often goes together with water quality degradation. This is particularly the case for saline
intrusions for coastal aquifers.

In addition to the food requirements linked to the world population growth,
agricultural production is one of the important sectors that might be significantly affected
by climate change, since crop yields depend mainly on climate conditions (rainfall patterns
and temperature). The Mediterranean region is one of the most prominent “Hot-Spots”
in future climate change projections (Giorgi and Lionello, 2008) due to an expected larger
warming than the global average and an increase in precipitation inter-annual variability.
Indeed, the major part of the southern Mediterranean countries, already suffering from
water scarcity, show a growing water deficit, due to the combined effect of the increase in
water consumption (increased domestic use and extension of irrigated areas), and the
reduction of resources (temporary drought and/or climate change). According to Blue
Plan Note N°11 (UNEP, 2009), Mediterranean water demand is likely to increase by 50
km?3 by 2025 and reach 330 km?3/year. The major portion of this increase would be due to
the Southern and Eastern Mediterranean countries where, in view of demographic growth
and of the immediate impacts of changes in the water cycle, it is estimated that, by 2050,
about 290 million people would end up in a situation of severe water scarcity (Figure 2).
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Figure 2: Evolution of water resources per inhabitant in the Southern and Eastern
Mediterranean countries between 2000 and 2050 (Source: UNEP (2009))

Tunisia is mainly an arid to semi-arid country facing the problem of water scarcity
(water resources per inhabitant are below the water shortage threshold with
460m3/inhabitant/yeat). Strong tensions are being expressed on water access and sharing;
hence, monitoring of agricultural water resources is of paramount importance. The
Kairouan plain, in central Tunisia, is a semi-arid area that has experienced a strong
development of irrigated crops during the last decades of 20™ century. As in many parts
of the Maghreb region, surface water is scarce and groundwater uptake is a dominant
source. Annual consumption exceeds the annual recharge of the water table resulting in a
piezometric decrease of between 0.5 m and 1 m per year (Leduc ez a/., 2004).

In order to understand the reasons of this “hydrological crisis” and to find solutions,
the Kairouan plain has been the subject of several investigations and scientific studies in
the complementary fields of hydrology, anthropology, soil science, geology, hydrogeology,
remote sensing, etc. Their main research topics were surface and groundwater resources
management linked to irrigation (Cudennec, 2005; Feuillette, 2001; Le Goulven ez al,
2009; Leduc ez al., 2007; Massuel ef al., 2017; Pradeleix ez al., 2015). Poussin ez al. (2008)
simulated regional irrigation water demand using a representation of agricultural activities
based on typologies of farms and cropping systems. More recently, some studies dealt
with the use of remote sensing for soil water balance assessment, including soil moisture
estimation (Amri, 2013; Gorrab, 2010), soil texture mapping (Shabou ez al., 2015; Zribi et
al., 2012), distributed evapotranspiration and irrigation water requirement estimation
using low (Amri ¢z al., 2014) and high-resolution remote sensing data (Guermazi ef al.,
2016) and cereal yield prediction (Chahbi ez al., 2014).

In this context, estimating the water consumption of crops is useful to address the
issue of regional planning and management of water resources, which requires an overall
understanding and quantification of the water cycle components (precipitation,
evapotranspiration, run-off, infiltration). Evapotranspiration (ET) is of paramount
importance since it represents the preponderant component of the terrestrial water
balance; it is the second greatest component after precipitation at the global scale and the
most relevant one in arid and semi-arid regions. Thus, ET quantification is a key factor
for water management in arid and semi-arid environments. In this regard, some studies
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aimed to compute distributed ET in Tunisia in view of regional agricultural water
management. The majority of these studies was dealing with distributed reference ET
(Baccour et al., 2012; Habaieb and Masmoudi Charfi, 2003; Jabloun and Sahli, 2008) or
plot scale actual ET estimation (Boudhina e a/, 2017). Some works combined the FAO56
method (Allen e al, 1998) to remotely sensed data in order to estimate low-resolution
distributed maximum ET in the Mejerda watershed in north Tunisia (Mjejra ez al., 2014)
and high-resolution distributed actual ET as well as irrigation water requirement in the
Regueb watershed in central Tunisia (Guermazi ef al., 2016).

While the farmer generally has enough information to manage water for his property,
agricultural land fragmentation, heterogeneous landscapes and the lack of relevant
information on actual water use collected by authorities are important constraints for
regional water management. Hydrologic applications in agriculture and water resource
management require ET information over a range of temporal and spatial scales, from
hourly to monthly to seasonal time steps, and at field to global scales. Therefore, without
resorting to modern technologies of information gathering and management, this task
would require a considerable human effort, an exorbitant financial cost and prohibitive

delays.

On the other hand, Earth Observation by satellites allows the acquisition of spatially
distributed information on a regular acquisition basis. The type of biophysical variables
that can be monitored through remote sensing (RS) varies according to the observed
spectral range: vegetation cover (visible and near infrared domain, VIS-NIR), surface
temperature (thermal infrared domain, TIR), surface soil moisture (microwave domain).
These data must be combined and integrated into operational models, representing the
elementary processes involved at the soil-vegetation-atmosphere interface, in order to
produce information on the evolution of the various components of the surface water
and energy budgets. Therefore, the techniques using RS information are essential when
dealing with hydrological processes to understand water and plant functioning at different
decision-making scales (farms, irrigated perimeter, and sub-watershed). Over the past
decades, RS has shown a great potential for characterizing land surfaces (land use,
vegetation coverage, soil moisture, water stress, etc.).

Data acquisition in the microwave domain makes it possible to estimate soil moisture
in the first centimeters (Wang and Qu, 2009). Active microwave sensors are characterized
by high spatial resolutions (10-20 m) while the passive microwave sensors exhibit lower
resolutions having no reliable applications when dealing with cropped soils. The plant
available water, ze. mainly the water stored in the first meter of soil depth, depends not
only on the evolution of the surface moisture but also more widely on the water supply
(precipitation and irrigation) and the soil structural properties (porosity, density). Hence,
the microwave data cannot estimate directly the total quantity of water mobilized at the
soil-vegetation-atmosphere interface.

The VIS-NIR domain data allows to estimate relatively accurately the vegetation cover
fraction and therefore the leaf area involved in photosynthesis and evapotranspiration
(Baret et al., 1989; Richardson and Everitt, 1992). In addition, since ET is the most
effective means of dissipating the energy received as radiation, the surface temperature is
a good indicator of water stress. When ET is limited by the water availability, the surface
temperature increases above the theoretical surface temperature calculated under potential
conditions (ze. with the characteristics of the current climate and vegetation but with the
assumption that water availability is not limiting). Thus, the use of information acquired in
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the TIR domain is a good tool of estimating actual evapotranspiration (Boulet e a/, 2007;
Hain ¢t al., 2009).

In the recent decades, the various spectral domains have often been used
independently: microwave experts have focused on soil moisture estimation, TIR domain
experts have focused on stress retrieval, etc. It is only recently that joint efforts have been
made between these different communities but also within and between international
space agencies: NASA (with the Earth Observing System (EOS) program), ESA (with
Living Planet and Copernicus programs) and JAXA (with the Global Change Observation
GCOM mission program). There has been a growing number of space programs aimed at
creating a multi-spectral synergy. A recent example of this motivation is the new Sentinel
satellite constellation (ESA, 2017). VIS-NIR, TIR and C-band microwave data are
available with unprecedented spatio-temporal resolution. These strategies are based on
the development of a system of complementary observations in order to better
characterize the continental surfaces.

However, there are several limitations in the efficient use of RS observation for
agricultural and hydrological applications. For instance, the accuracy of the measurement
is as important as the measurement itself, since, it gives an idea of the observations
quality. In most studies, it is defined as the uncertainty associated with instrumentation
and inversion models. However, with the use of satellite images for agro-hydrology, it is
also important to take into account the notion of spatial representativeness of the
measurement, which plays a major role in the agrohydrological variables one wants to
retrieve. Let's take the example of MODIS leaf area index (LAI) and land surface
temperature (Tsuf) products. Global MODIS LAI products were validated using a global
LAT field measurement database created on the basis of a literature review and major
validation campaigns, showed uncertainties of 1.0-1.2 (Fang e al., 2012). Fensholt ez al.
(2004) showed also that MODIS LAI is overestimated by approximately 2—15% in
comparison with LAT field measurements. Moreover, the reported error in MODIS Tiurt
is less than 1 K, as validated over homogenous land surface patches by Wan ez 2/ (2002).
However, this error is greater over bare soil, and biases reach 3.8 K in comparison with
ASTER Tiut product (Duan e al,, 2017). Better accuracy of MODIS Tsur was found when
evaluated against ground observations in an arid area of northwest China, with an average
bias of 0.36 K and minus 0.58 K during daytime and nighttime, respectively (Li e al,
2014). Furthermore, daily Tsur products (MOD/MYD11A1) accuracy in relation to land
cover in China’s arid and semi-arid areas was studied by Yu ez 2/ (2014) and show a mean
absolute error of 2-3 K in comparison with 7 situ longwave radiation measurements at 12
stations; higher accuracy was observed for stations with homogeneous land cover.

Spatial and temporal resolutions are of paramount importance to realistically integrate
spatial observations into bio-physical models. The spatial resolution depends mainly on
the sensitivity of the sensor to receive energy emitted by the surface. This sensitivity is
strongly dependent on the wavelength domain and plays an important role since it
determines the size of the region observed and the size of the objects that will be possible
to characterize. For example, SMOS operating in passive L-band has a spatial resolution
of 40 km that is too wide to be directly integrated into agro-hydrological models. Hence,
spatial resolution must be chosen according to the objects observed and / or modeled
(Figure 3); in other words, the spatial representativeness of the observation. The revisit
frequency that governs the temporal availability of RS data is the time required for the
satellite to perform a complete orbital cycle, that is, to observe exactly the same scene
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again from the same point in space. The temporal resolution is related to the spatial
resolution for a given wavelength domain because it depends on the orbit of the satellite.
For example, in the thermal infrared, Landsat data have a spatial resolution of 100 m but
a temporal resolution of 16 days whereas the MODIS data have a spatial resolution of 1
km but a frequency of twice a day at least. Recently, the concept of satellite constellation
with several satellites having the same characteristics allows to secure the acquisition in
case of failure and also to increase the revisit frequency. For example, the Sentinel-2
mission (10-60 m of spatial resolution) includes two satellites allowing an acquisition
trequency of five days. Similarly, to the spatial resolution, the temporal resolution must
be chosen according to the characteristic timescale of the variation for the objects one
wants to observe and / or model (Figure 3). Finally, it is important to note that all visible
images are sensitive to cloud cover, which can amplify the time gap between the available
data. The recent increased high temporal resolutions cannot completely solve the
problem of cloudiness even in semi-arid areas and combination with other VIS-NIR
high-resolution sensors like Landsat 8 should still be useful.

Currently, in the solar and TIR domains, two types of observation are available. In one
hand, wide swath / low-tresolution sensors (e.g. SPOT-VEGETATION, TERRA-
MODIS or PROBA-V) allow daily observation of the entire globe, but at a resolution (~1
km) generally much larger than the size of an agricultural field. On the other hand, high
spatial resolution sensors (less than 100 m, e.g. Landsat 8, SPOT, Sentinel-2) allow only
one to six observations per month in nominal mode (orbital cycle) on smaller scenes (e.g.
00 km for SPOT, 180 km for Landsat and 290 km for Sentinel-2). At the beginning of
this work, ze. before 2016, it was quite difficult to obtain series of high spatial resolution
images to study an area as large as the Kairouan plain (3000 km?) over long periods.
Moreover, the cost of these data was prohibitive when we had to program acquisition of
SPOT image time series. Today, the situation is quite different with the breakthrough
represented by the lunch of Sentinel-2. However, in a context of operational water
resources management, the use of medium to low spatial resolution sensors, freely
available on the internet, is still interesting. Indeed, they offer a daily acquisition frequency
allowing to cope with cloudiness, and MODIS provides daily thermal acquisition which
are still not available at high-resolution and frequency (Landsat images are acquired only
every 16 days and subjected to clouds) although they are very useful for agricultural water
monitoring. However, the major drawback of low-resolution sensors is that pixels usually
contain several types of surfaces (mixed pixel).
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Figure 3: Multi-sensor / multi-resolution remote sensing data for crop monitoring and agro-
hydrological applications (inspired from Malbéteau, (2010))

Contrarily to zn-situ data (sparse network), RS provides exhaustive monitoring (complete
coverage) over large regions; this contributes to strengthen decision-making tools
designed for resource managers. However, the remotely sensed variables or parameters
are generally only one component of these tools, which must integrate other sources of
information. Broadly speaking, these tools are based on "agro-meteorological" models
simulating the different elementary processes involved in the plant covers dynamics
(phenology, photosynthesis, biomass production etc.) and in the soil water balance
(evapotranspiration, infiltration, runoff etc.). The joint use of agro-meteorological models
and remotely sensed data, regularly distributed in space and time, is a particularly dynamic
research path allowing the establishment of water resources and agricultural production
systems observatories at regional scale.

Several models have been developed to estimate surface evapotranspiration from RS
optical data and meteorological data (Bastiaanssen e¢f al., 2000; Garatuza-Payan and Watts,
2005; Neale ez al., 2005). These methods are roughly divided into those fed with solar
(VIS-NIR) RS data and those fed with TIR RS data (Figure 4). The first group is based on
the fact that evapotranspiration is strongly linked to the green vegetation amount present
at the surface, which is well quantified using remote sensing in the solar domain, typically
vegetation indices. These approaches are thus based on agro-hydrological models fed by
remote sensing. The second group relies on the fact that evapotranspiration is a
component of the energy budget, which is strongly linked with surface temperature.

Regarding the first group, one of the most popular approaches used in agriculture for
crop water budget modeling is the FAO-56 set of evapotranspiration models (Allen e7 a/.,
1998) recommended by the Food and Agriculture Organization (FAO). It is attractive
because it requires a relatively small amount of input data and has a relatively good
precision on evapotranspiration under standard conditions (unstressed vegetation).
However, these models assume a precise knowledge of water supplies to work well. These
models have long been coupled with remote sensing providing estimates of the crop
coefficients representing the vegetation activity. Indeed, some pioneers provided
empirical evidence about the direct relationship between crop coefficients and vegetation
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indices (VI) derived from multispectral satellite images (Heilman ez a/., 1982; M. U. Neale
et al., 1990). Monitoring crop development and crop ET over the growing season for the
purpose of irrigation management requires dense time series of multispectral imagery
delivered in real time and at a spatial resolution high enough to assume an homogeneous
land cover in the pixel (Calera ef al, 2017). Accordingly, the virtual constellation of
Landsat 8 and Sentinel-2 currently provides, at no cost, a time resolution of around one
image per week, which is adequate for the monitoring of crop development. In this
dissertation, as Sentinel-2 images were not yet available, high-resolution SPOT images are
used to feed a VI-based soil water balance (SWB) model run at field and irrigated
perimeter scales to compute distributed ET and irrigation volumes. Nevertheless, the
major drawback of SWB methods, even the relatively simple FAO-56 one, is the high
number of required parameters (often crop specific) but also the lack of real irrigation
information needed to compute actual ET (Figure 4). SWB parameters are difficult to
estimate especially when dealing with heterogeneous land surface at a regional scale.

At the regional scale, the second group of methods based on surface energy balance
(SEB) is often used for ET estimation by combining remotely sensed Tsut with vegetation
parameters and meteorological variables (Figure 4). The pixel size of Tsur sensors ranges
from 100 m for the thermal sensor on board Landsat 8 to 1000 m for MODIS-AQUA,
MODIS-TERRA and Sentinel-3. The advantage of these models, from a crop
management point of view, is to provide ET under actual soil water conditions, including
vegetation stress, and further indicators of water stress. Despite their high temporal
resolution (e.g. twice a day for MODIS), the spatial resolution of TIR images provided by
the most operational platforms is not appropriate for small agricultural fields (Allen ez al.,
2011b) since the pixels may overlay broad mixtures so that surface temperature signals are
mixed and the ET retrievals are difficult to interpret. Otherwise, medium spatial
resolution TIR images (e.g. 60 and 100m for Landsat 7 and Landsat 8, respectively), have
low temporal resolution (16 days for Landsat) which, combined with the cloudiness issue,
does not allow an adequate monitoring of crop development. Disaggregation techniques,
using typically high-resolution Normalized Difference Vegetation Index (NDVI) images
to “distribute” the Tswr of thermal images, are relatively new tools for solving spatial
resolution problems and increasing the effective spatial resolution from satellite thermal
imagery, in order to reach spatial resolutions comparable to the most common
multispectral images (Semmens e# al, 2016). Furthermore, aerial images and growing
advances in airborne thermal cameras show very promising perspectives to produce
temperature maps at very high spatial resolution (Berni ez al., 2009; Zarco-Tejada et al.,
2012).
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Figure 4: Actual evapotranspiration estimation using soil water balance and surface energy
balance models fed by VIS-NIR and TIR remote sensing data, respectively.

PhD motivation, objectives and methodological approach

The central question of my PhD thesis is the control of agrometeorological models by
satellite data from optical and thermal sensors to monitor the crop water budget in semi-
arid environments. The general objective of this work, entitled “Spatial estimation of
actual evapotranspiration and irrigation volumes using water and energy balance models
forced by optical remote sensing data (VIS/ NIR/TIR)”, is to develop and test methods
for estimating the hydrological wvariables related to crop water budget, e
evapotranspiration, crop water requirements and irrigation volumes, at scales ranging
from plot to regional level and for relatively long time periods (up to the agricultural
season). The operational perspective is to provide tools for irrigation and watershed
management. Our study area is the Kairouan semi-arid plain located in central Tunisia,
occupied by irrigated agriculture and where most of the water is extracted from an
overexploited aquifer.

The adopted approach combines field experimentation, modeling and the use of multi-
sensor / multi-resolution remote sensing data. Both types of tools used to estimate
hydrological variables (ET and irrigation volumes) are: i) a daily water balance model,
SAMIR (Simonneaux e al., 2009), simulating water fluxes at a daily time step and ii) an
instantaneous energy balance model, SPARSE (Boulet ¢ 4/, 2015), which characterizes
the water status at the satellite overpass time.

For this purpose, two main research focuses have been explored:

» 'The first was the development of methods to integrate in situ data and high-
resolution (VIS-NIR) remote sensing data (SPOT imagery) in the SAMIR
model to draw up the spatialized water balance of irrigated areas in the
Kairouan plain during four agricultural seasons (2008-2009 and 2011-2014).
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The model was calibrated using plot scale measurement of evapotranspiration
(eddy correlation) and the control output variables, ET and irrigation volumes
were assessed using field fluxes measurements by Extra Large Scintillometer
XLAS and irrigation volumes obtained by field surveys, respectively.

» The second focus was to test the performance of the SPARSE energy balance
model in monitoring the water status of a heterogeneous landscape in the
Kairouan Plain and to determine whether the low-resolution data from Terra-
MODIS and Aqua-MODIS satellites in the VIS-NIR and TIR domains were
useful for spatializing the key variables of the energy balance in a semi-arid
context, ze. sensible and latent heat fluxes. Validation of the results was carried
out by means of the XLLAS sensible heat flux measurements. Special attention
has been paid to the extrapolation of the instantaneous ET estimates to daily
time step for hydrological applications.

This manuscript is organized in five chapters:

- The first chapter reviews general notions concerning the soil water balance
components and the various methods to estimate them. A particular interest is given to
ET and irrigation with a comparison between water balance and energy balance-based
methods for ET modeling. The potential of multi-sensor/multi-resolution spatial remote
sensing data in ET modeling is also discussed.

- The second chapter decribes the study area, the experimental set-up and the satellite
datasets, as well as the pre-processing of the iz situ data.

- The third chapter studies the possibility of using high-resolution VIS-NIR imagery in
an agro-meteorological modeling scheme through the SAMIR model (after calibration for
irrigated cereal-crops) in order to establish maps of daily ET and irrigation volumes at the
scale of the irrigated perimeter for four agricultural seasons (2008-2009 and 2011-2014).
Observed irrigation volumes at field, farm and perimeter scale were used to validate the
modeled irrigation volumes, while ET derived from the XILAS scintillometer
measurements (operated continuously for more than two years from March 2013 to June
2015) was used to validate the modeled ET of the last two seasons.

- In the fourth chapter, the parameterization of SAMIR model was revisited, since the
comparison of daily modeled ET with the scintillometer derived ET shows shortcomings
mainly attributed to the parameterization of the non calibrated crops (trees and
vegetables). Also, the calibration for cereal crops was redone based on both ET (eddy
covariance) and soil moisture measurements. Since no calibration was possible for trees
and vegetables parameters, they were enhanced based on literature.

- In the last chapter, the operational use of the SPARSE model was tested and the
accuracy of the modeled sensible heat flux (H) and of the modeled daily ET over a semi-
arid land surface, in a context of high land cover complexity (ze. trees, winter cereals,
summer vegetables) was assessed. The validation was based on the comparison of
modeled H and ET with the scintillometer measured H and derived ET, respectively.

Finally, we present the conclusions of this work and the research prospects.
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Chapter 1: Soil water balance
components’ estimation methods

This chapter introduces theoretically the main processes of interactions at the Soil-1"egetation-
Atmosphere interface involved in coupled water and energy cycles, on which are based the soil water
balance model and the surface energy balance model applied in this dissertation, i.e. SAMIR and
SPARSE, respectively. We synthesize here the different types of evapotranspiration and irrigation
estimation methods, mainly those based on Soil-1 egetation-Atmosphere Transfer modeling and
assimilation of optical remote sensing data in the visible (V'1S), near infrared (NIR) and thermal
infrared (T1R) domains.
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Chapter 1: Soil water balance components’ estimation methods

The determination of water fluxes at the soil-plant-atmosphere (SPA) interface is of
fundamental interest for agro-hydrological management purposes. Information on water
balance components under cropped soils is crucial for irrigation planning (Calera ef al.,
2017) and crop water stress monitoring (Thuoma and Madramootoo, 2017) at field and
regional scales. The water balance equation is usually applied to the unsaturated zone of
the soil. Mass conservation is thus expressed for agricultural systems as:

[+4S]5
At

P+I+W—ET—R—-D—1Icp = (1.1

where P is precipitation, I is irrigation, W is contribution from water table by capillary
rise, ET is evapotranspiration, R is runoff, D is the deep percolation, Icp is interception
and A4S is soil water storage variation within the time step At in the soil layer where the

roots are active to supply water to the plant (between the surface and the root zone depth
z in meter). All the term in equation 1.1 are expressed in rates (millimeters per unit time).

E - Evaporation

0 : Transpiration

P - Precipitation

| - Irrigation

\W : Capillary rise
lcp : Interception

D - Deep percolation
R - Runoff

AS : Water storage

AS

Figure 1. 1: Components of the soil water balance (Source: Velluet (2014), modified)

Since it is often very difficult to accurately measure all terms of Eq. (1.1), a number of
simplifications are generally made. For application over flat terrain, condition that prevails
in many agricultural regions, the runoff term R could be neglected (e.g. Holmes, 1984)
but, actually, it depends on the occurrence and characteristics of precipitation (amount,
duration and intensity) and can only be neglected for a particular type of soil (Jensen ez al.,
1990), i.e. coarse (sand and loamy sand) and moderately coarse (sandy loam) in absence of
other factors such as the presence of crust, overland flow for gravity irrigation etc. On the
other hand, deep percolation is a major unknown of equation (1.1). Some researchers
suggest that it can be neglected in dry regions (e.g. Holmes, 1984), but actually it depends
on the soil depth, slope, permeability and surface storage (Jensen e a/, 1990) and needs to
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be checked in each particular case (Brutsaert, 2013), depending also on the climate and
irrigation practices. For operational applications in irrigation management, the soil water
balance equation can be expressed in its simplified form as follows:

+AS];
P+1=ET+[_M]° (1. 2)

The precipitation term can be estimated from a network of rainfall stations (rain gauge
measurements) or weather radar data (Arkin and Xie, 1994), from satellite-based
precipitation products like the Tropical Rainfall Measuring Mission (TRMM) (Huffman ez
al., 2007), the Global Satellite Mapping of Rainfall (Ushio ez a/, 2009), the Naval Research
Laboratory blended-satellite rainfall technique (Turk ez a/, 2010) or from meteorological
model outputs (Clark ez al., 20106). Therefore, the evapotranspiration and irrigation terms
become the key terms of the water balance equation.

Strictly speaking, crop water requirement refers to the water transpired by the plant,
the water evaporated from the soil and the water stored by the plant for its metabolic
processes. Since evaporation from soil (E) and transpiration by the plant (T) occur
simultaneously, the term evapotranspiration (ET) is used to describe the total loss of
water from vegetated land surfaces to the atmosphere. Furthermore, since the water used
for the plant metabolism is substantially negligible as compared to E and T, the term crop
water requirement is frequently alternative to evapotranspiration in standard/optimum
conditions.

The crop ET under optimal conditions (unstressed crop), referred to as ETc (for
“ET crop”), is the evapotranspiration from crops grown under standard management and
environmental conditions. When cultivating crops in fields, the actual crop
evapotranspiration, referred to as ETa, often deviates from ETc due to non-optimal
conditions (pests and diseases, soil salinity, low soil fertility, water scarcity or water
logging) that reduce the evapotranspiration rate.

The amount of water required to cover the theoretical water demand by the plant,
e.g. ETc, is defined as crop water requirement (CWR). Although the values for ETc and
CWR are identical, crop evapotranspiration refers to the amount of water that is
evaporated and transpired while CWR refers to the amount of water that needs to be
available in the soil for making such crop consumption possible. The CWR always refers
to a crop grown under optimal conditions, Ze. a uniform crop, actively growing,
completely shading the ground, free of diseases, and favorable soil conditions (including
fertility and water). The crop thus reaches its full production potential under the given
environment. CWR mainly depends on the weather conditions (major climatic factors
influencing the CWR are solar radiation, air temperature and humidity and wind speed),
the crop type and the phenological/growing stage of the crop. The influence of the
climate on CWR is synthesized into the reference crop evapotranspiration (ETo) which is
the evapotranspiration of an hypothetical reference grass cover (Allen ef al, 1998). The
CWR can be supplied to the crops by rainfall, by irrigation or by a combination of
irrigation and rainfall. Efficient agricultural water management requires reliable estimation
of the CWR (or ETc¢) and the corresponding irrigation requirement to meet CWR
complementary to rainfall.
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1.1 Soil water storage

The water balance computation consists in describing the evolution of the stock of
water available in the soil, ze. the profile distribution of the water content in the various
soil hotizons.

In order to calculate the soil water budget, an estimate of the soil's ability to store water
is required. Available water capacity is the maximum amount of water a soil can provide
to the plant. It is the water held between the soil field capacity (FC) and the permanent
wilting point (WP) in the root zone. The FC or drained upper limit (Figure 1.2) is defined
as the water content of a soil that has reached equilibrium with gravity after several days
of drainage. The WP or lower limit of available water (Figure 1.2) is defined as the water
content at which plants can no longer extract a sustainable quantity of water from the soil
and begin to wilt. Typical suction values associated with the FC and WP are -3.3 kPa (-
0.33 bars) and -1500 kPa (-15 bars) respectively. Like water content, FC and WP are
defined as a volume of water per volume of soil. Given these two definitions, the water

available for evapotranspiration after drainage Ze. the available water retention capacity is
defined as the FC minus the WP.
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Figure 1. 2: The relative amounts of water available and unavailable for plant growth in soils
with textures from sand to clay (Source: Soil-Quality (2017))

There are different methods to provide these soil hydrodynamic properties, which are
function of soil texture and organic content. They may be prescribed from literature
values when available (Table 1.1 gives some typical values of available water retention
capacity). The i sitn measurement of these properties is costly and time consuming, in
addition to implementation difficulties, linked to soil manipulation and data
interpretation. Moreover, proxy data on the soil texture, structure, organic matter content,
porosity or dry bulk density, can be used to find the hydrodynamic parameters of the soil
by applying functional mathematical relationships ze. pedotransfer functions or PTF.
However, PTF performance is quite variable and depends on several factors such as the
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similarity between the application region and the database’s source region, climate,

geology or measurement techniques (Wosten ez a/., 2001).

Table 1. 1: Water retention properties for agricultural soils

Soil Type (USA Soil Texture

Soil water characteristics

Classification) Orc [m3/m?] Owr [m3/m?] Orc - Owp [m?/m’]
Sand 0.07 - 0.17 0.02 - 0.07 0.05 - 0.11
Loamy sand 0.11 -0.19 0.03 - 0.10 0.06 - 0.12
Sandy loam 0.18 - 0.28 0.06 - 0.16 0.11 - 0.15
Loam 0.20 - 0.30 0.07 - 0.17 0.13-0.18
Silt loam 0.22 - 0.36 0.09 - 0.21 0.13 - 0.19
Silt 0.28 - 0.36 0.12 - 0.22 0.16 - 0.20
Silt clay loam 0.30 - 0.37 0.17 - 0.24 0.13-0.18
Silty clay 0.30 - 0.42 0.17 - 0.29 0.13 - 0.19
Clay 0.32 - 0.40 0.20 - 0.24 0.12 - 0.20

Source: FAO paper N°56 (Allen ez al., 1998)

For soil water balance calculations, it is necessary to know the total available water
retention capacity in a soil profile. This value is typically expressed in mm and can be
obtained by integrating the available water-holding capacity over the effective depth of
the soil, Ze the soil depth where the roots have access. If the initial soil moisture is
unknown, which is usually the case, a soil moisture evolution model can be used to force
the net change in soil moisture from the beginning to the end of a specified period (for
which the soil moisture at the end can be considered similar to one at the beginning, e.g.
an hydrological year), use the final moisture profile as the initial one and run the model
again over the same period, and repeat the process until the first and the last profile of the
period are similar (long-term equilibrium) according to a given precision (Ghosh, 2016);
this method is called “spin-up”.

Wang-Erlandsson ez al. (2016) described six approaches for the root zone water storage
capacity estimation, and showed that remote sensing-based studies are generally based on

field observations and look up tables (Sanchez ez al., 2010; Sanchez et al., 2012).
1.2 Evapotranspiration

The evapotranspiration process involves a phase change of water from liquid to
gaseous state, with latent heat requirement of about 2.47 MJ per kg of water evaporated.
Most of the energy required in ET process comes from solar and atmospheric radiation.
The large amount of energy involved in the processes of evaporation and transpiration
means a coupling between the water and energy cycles. Actual ET (ET,)— or its energy
equivalent, the total latent heat flux LE (E is the rate of evaporation of water [kg.m2.s]
and L is the latent heat of vaporization of water [J.kg'']) — depends on three factors:
weather, soil water availability and vegetation cover, which are highly variable in time and
space. Depending on the application, an estimation of ET), is required at houtly (weather
applications), daily (hydrology, agronomy) or monthly (surface-subsurface interactions)
time steps (Lagouarde and Boulet, 2016).
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Transpiration occurs through different organs, involving many processes. It is driven
by the water vapor difference between the stomata cavity and the surrounding air: as
water evaporates through the stomata, it creates a negative pressure (also called tension or
suction) within the leaves and the xylem cells, which exerts a pulling force on the water in
the soil to be absorbed by the roots and draws the water upward from the root system to
the air system by the conductive system. Water is then disseminated in liquid form
through the leaf intercellular spaces and stomata (small orifices of a few micrometers in
diameter ensuring and regulating the gas exchange (CO2 and H20) between the plant and
the atmosphere); T includes the transfer towards the atmosphere through the boundary
layer around the leaf.

In addition to the intrinsic specificities of the plant itself, root extraction depends on
soil texture, soil moisture, and the climatic conditions. If the water is insufficiently
abundant in the soil, the plant is under water stress and the leaf potential decreases. The
critical leaf potential represents the water potential of the stomata under which the plant
can no longer extract water to the atmospher. When this threshold is reached, the plant
adapts its morphology to meet its needs, reducing for example the opening of the
stomata, developing its root system or decreasing its leaf area.

The capability to predict levels of actual ET is a valuable asset for water resource
managers, as it describes the water consumption from vegetation. ET can be either
measured or estimated via modeling (even though most models require field
measurements). Conventionally, if ET is quantified by the use of an instrument, it is
‘directly’ measured and when it is found by means of a relationship among several
observations, it is ‘indirectly’ measured (Rana and Katerji, 2000). Conversely, ET is
considered as ‘estimated’ if it is expressed by a model.

1.2.1 Direct measurements of ET

The ET measurement methods are based on concepts which can be critical under
semi-arid and arid environments for several reasons: (7) representativeness (i)
instrumentation (77) microclimate and () applicability. Therefore, to establish the degree
of accuracy of the obtained ET measurement and the validity of a method, it is necessary
to consider all these parameters (Allen e a/, 2011b).

1.2.1.1 Hydrological approach: Weighing lysimeters

Weighing lysimeters have been developed to give a direct measurement of ET. In
general, it is a device, a tank or container, to define the water movement across a
boundary (depth level of the soil). Lysimeters of many different designs, sizes, shapes, and
measurement systems have been built over the years (Howell ef a/, 1991). The main
advantage of the lysimeter iz sitn measurements is that water consumption of vegetation
can be performed under approximately realistic field conditions. However, a lysimeter
measurement requires elaborate preparation. Moreover it is typically limited to only few
individual trees or a small surface area of agricultural crops (Verstraeten ez al., 2008). A
Major limitation of lysimeters is that capillary rise is not taken into consideration because
the water table can be supposed to be at a considerable depth (Makkink, 1959); moreover,
root extension is sometimes limited.
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1.2.1.2 Plant physiology approaches

Methods based on plant physiology either measure the water loss from a whole plant
or a group of plants. They may include methods such as tracer technique and porometry
but here, only two of the most common methods will be analysed: the sap flow method
and the chamber system.

a. Sap flow method

Sap flow measures only plant transpiration by means of simple accurate models; sap
flow can be measured by two basic methods: (i) heat pulse and (i) heat balance. The most
popular sap flow method is the heat balance method, based on the concepts proposed by
Cermék e al. (1973) and Steinberg e al. (1990). The plant transpiration can be estimated
by determining the sap mass flow; this is done using gauges that are attached to or
inserted in the plant stem. For the heat balance method, a heater element is placed around
the plant stem to provide energy to the system. Thermocouples are used to determine
how much heat is lost by conduction up, down and radially in the stem from the heater
element. The difference between the heat input and these losses is assumed to be
dissipated by convection with the sap flow up the stem and may be directly related to
water flow (Kjelgaard ef al, 1997). The mass flow rate F [g.t!] is expressed by the
relationship:

Qn —Qy — Qr

== - - 1.3
F ¢, ST 1.3

where Qn is input heat, Q. is vertical conductive heat, Q; is radial heat loss to
environment, cy [J.g. K] is specific heat of water and 8T is the temperature difference
between the upstream and downstream thermocouples.

Direct measurements of actual transpiration can also be performed with the heat pulse-
sap flow technique, which has been applied in vineyards (Yunusa ez /., 2004) and olive
groves (Testi et al., 2006; Williams ez al., 2004). Sap flow method is a very good alternative
to lysimeter experiments; however, operation of sap-flow sensors requires a vast technical
input and maintenance effort.

b. Chambers system

The chamber system method was described for the first time by Reicosky and Peters,
(1977). The first chambers system version was portable (by means of a tractor, for
example) and the ET rate was calculated as a difference (latent heat storage) between two
measurements by a psychrometer: one acquisition before the chamber was lowered on the
plot and another one minute later. Chambers system is easier to implement than the
weighing lysimeter (Reicosky ef al, 1983), but it is not suitable for long term ET
measurements. The most serious problem of almost all chambers is the microclimate
modification (solar radiation balance; air temperature, wind speed) during the
measurement period.
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1.2.1.3 Micrometeorological approaches

ET consumes energy; this energy corresponds to what is required to transport water
from the inner intercellular space in the leaves and plant organs to the atmosphere; it is
therefore expressed as a flux density in [W.m].

Micrometeorological methods based on physical principles require accurate
measurements of meteorological parameters on a small temporal scale (1 h or less). Their
accuracy depends on the validity of some hypothesis such as the flux conservation, which
implies that measurements are performed over a large flat area with uniform vegetation.

a. Aerodynamic method

Assuming that a flux density can be related to the gradient of the concentration in the
atmospheric surface layer (ASL), the latent heat flux by the aerodynamic technique can be
determined directly by means measurement of the vapour pressure at different heights
above the crop. LE is then calculated by means of the scaling factors u* and g* (Grant,
1975; Saugier and Ripley, 1978):

LE = Lpu*q* (1. 4

where L [J.kg-1] is the latent heat of vaporization of water, p [kg.m] is the air density, q*
is scale of the specific air humidity [kg. kg |, and u* [m.s!] is the friction velocity derived
from the wind profile measurement as follows:

% ku

Uu =m(%m (1. 5)

where k=0.41 is the von Karman constant, d (m) is the zero plane displacement height, zo
(m) is the roughness length of the surface and {m is the stability correction function for
momentum transport. q* is determined similarly from the humidity profile measurement:

.__ k@—4q0)
ln(z—d)_wv (1. 6)

Zg

where qo is the air humidity extrapolated at z=d+zo and {, is the stability correction
function for latent heat transport.

The major difficulty with this technique is the correct measurement of the vapor
pressure at different heights above the crop. For this reason, LE can also be derived
indirectly by the energy balance (see section 1.2.2.1) where the sensible heat flux can be
determined by the flux-gradient relation for temperatures:

H = —pc,u'T* (1.7

where ¢, [J.kg1. K] is the specific heat of air at constant pressure, o [kg.m-3] is density of
air and T*, the temperature scale, is deduced by the air temperature profile:
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Kk(T-T,
T = L) (1. 8)
in(=5)-vn
where Ty is the temperature extrapolated at z=d+zo and ¢n, is the correction function for
the heat transport.

Under this form, the main advantage of the aerodynamic technique consists in
avoiding complex high frequency humidity measurements. Nevertheless, the accuracy
depends on the number of measurement levels for the wind speed and temperature
profiles. In fact, equations (1.8) and (1.9) require at least three or four levels (Webb,
1965), but accuracy is improved when many more levels are used (Wiernga, 1993). This
method showed good results (Pieri and Fuchs, 1990), when the stability correction
tunctions of Dyer and Hicks (1970) and Paulson (1970) were used.

b. Eddy covariance

The transport of scalar (vaport, heat, carbon dioxide CO2) and vectorial amounts (ze.
momentum) in the lower atmosphere in contact with the canopies is mostly governed by
air turbulence. In recent decades, methods for measuring turbulent flows have been
been improved, both in terms of reliability and in terms of operationality. The eddy
covariance method (EC) is considered as the standard method for measuring surface
turbulent fluxes. The first complete scientific contributions to this topic were given by
Dyer (1961) and Hicks (1970); extensive details of the theory can be found in Baldocchi,
(2003), Falge (2017) and Stull (2012) .

EC method is a direct measurement of the turbulence in order to get the surface fluxes
of sensible and latent heat and of CO; with high accuracy.

The mean vertical flux density (Fy) of a physical quantity (X, for example temperature,
water vapor or CO») in the turbulent layer is proportional to the covariance between the
vertical velocity (W) and the concentration of this quantity (Van Dijk, 2004). In general,
the instantaneous vertical flux density (Fy) per unit of time and surface can be written:

F, = wX (1. 9)

Using the Reynolds decomposition W = w + w' and X = X + X'), the average flux (F)
can be approximated by the following formula:

FEE~wX=W+w)X +X) (1. 10)

By expanding this expression and using the fact that X = X and the fluctuations mean is
zero, equation (1.10) becomes:

Fe~w.X+wX (1. 11)

In a horizontal homogeneous boundary layer flow, the average vertical wind speed is zero
by definition (Brunet Y., 1995), hencew = 0 .

Finally, for the flux density, we obtain:
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E =wX (1. 12)

Turbulent fluxes (momentum, sensible heat, latent heat and gas concentration) can be
expressed as the product of the vertical wind speed fluctuations term by the considered
quantity fluctuations term.

The sensible heat flux density H, is given by:
H = —pc,w'T’ (1. 13)

where ¢; [J.kg!.K-1] is the specific heat of air at constant pressure, o [kg.m-3] is density of
air, W is the instantaneous deviation of vertical wind velocity from mean vertical wind
velocity (w) and T’ is the instantaneous deviation of air temperature from mean
temperature (T).

The latent heat flux density LE, is given by:

LE = —pw'q’ (1. 14)

where W is the instantaneous deviation of vertical wind velocity from mean vertical
wind velocity (W) and ¢’ is the instantaneous deviation of specific humidity from mean
specific humidity (q). The negative sign appeats because velocity is conventionally defined
as positive towards the surface while the flux is negative due to the sign convention used
for vertical velocity.

To measure ET directly by the EC method, vertical wind fluctuations have to be
measured (by the sonic anemometer) and acquired synchronously to the vapour density

fluctuations (by fast response hygrometer); both have to be acquired at a typical frequency
of 10-20 Hz.

Despite problems linked to the correct management of the sensors, complex data
processing, and the management of ‘closure error’ (the sum of measured LE+H does not
equal measured Rn—G) of about 10-30% (Foken, 2008; Twine e# al., 2000; Wilson ef al.,
2002), this method has very good performances both at hourly and daily scale, also in
semi-arid environments. Examples of eddy correlation measurements can be found in Er-
Raki ez al. (2009), Hoedjes ez al. (2007), Hoedjes ez al. (2008), Liu et al. (2016) and Williams
et al. (2004). The EC method has the advantage of allowing the measurement of the fluxes
of all kinds of molecules other than water, and in particular COo.

c. Scintillometer

Large-scale turbulent fluxes are difficult to evaluate since the above methods are
mostly valid only on small homogeneous surfaces. Indeed, the heterogeneity of most
landscapes generates large flux variability, which is difficult to measure with the
conventional techniques. Hence, indirect turbulent flow measurement techniques have
been developed, the most promising is the scintillometery. Scintillometry has emerged as
one of the most widely used tools to quantify average fluxes over heterogeneous land
surfaces (Brunsell ¢# /., 2011). Scintillometer operating at wavelengths A of about 1um are
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called optical scintillometer, whereas when A is ranged between 1 and 10 mm these are
called microwave scintillometers.

Scintillometer consists of a transmitter and a receiver at both ends of an atmospheric
propagation path (measurement transect). Fluxes of sensible heat and momentum cause
atmospheric turbulence close to the ground, and creates, with surface evaporation,
refractive index fluctuations due mainly to air temperature and humidity fluctuations (Hill
et al., 1980). The receiver detects and evaluates the intensity fluctuations of the
transmitted signal, called scintillations, which are linked to surface fluxes of sensible and
latent heat. The magnitude of the fluctuations in the refractive index is usually measured
in terms of a structure parameter of the refractive index of air integrated along the optical
path C,2 [m?/3] (Tatarskii, 1961). Scintillometers measure sensible and latent heat fluxes
(H and LE) by relating C,2 to the structure parameter of temperature Crz and the
structure parameter of humidity Crq, respectively, through the Monin Obukhov stability
parameters. Temperature fluctuations given by Cr2 are the dominant cause of scintillation
in the optical wavelengths, and therefore optical scintillometers can be applied to measure
H without making measurements of, or assumptions on, humidity fluctuations.
Scintillometers can provide average H estimates over areas comparable to those observed
by satellites (Hemakumara ez a/., 2003; Lagouarde ef al., 2002) along a path length ranginge
from a few hundred meters to 5 km (the case of large aperture scintillometers LAS) up to
10 km (the case of extra large aperture scintillometers XLAS).

Since the optical scintillometer provides spatially averaged H, LE can be computed as
the energy balance residual term (LE =Rn-G-H) assuming 100% energy balance closure.
The estimation of a representative value for the available energy (Rn-G) across the
transect is therefore crucial for the accuracy of LE retrieved values.

Since the upwind area contributing to the flux (Ze the flux footprint) varies according
to wind direction and atmospheric stability, it must be estimated if one wants to compare
scintillometer measurements to, say, pixel derived estimates of the flux (Brunsell ez 4/,
2011). The footprint of a flux measurement defines the spatial context of the
measurement, Ze. the source areas that influence the sensors. Assessing the upwind area
contributing to the flux can be done using several footprint models (Horst and Weil,
1992; Leclerc and Thurtell, 1990). These models have been developed to determine what
area is contributing the the flux. Contributions of upwind locations to the measurement
depend on the height of the vegetation, height of the instrumentation, wind speed, wind
direction, and atmospheric stability conditions (Chavez ez al., 2005).

The scintillometry technique has been evaluated and analyzed over heterogeneous
landscapes against EC measurements (Bai e# a/, 2009; Chehbouni e al., 2000; Ezzahar ez
al., 2009) and also against model outputs (Marx e al., 2008; Samain e7 al., 2012; Watts ez al.,
2000). Few studies dealt with extra large aperture scintillometer (XLLAS) data (Kohsiek e7
al., 2006; Kohsiek e al., 2002; Moene et al., 2006). An historical survey, the theoretical
rationale as well as recent works in applied research are reviewed in De Bruin and Wang
(2017). Calculations of the sensible heat flux measured by scintillometry as well as the
footprint computation are detailed in the next chapter (see section 2.5.3).
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1.2.2 Remote sensing based method for ET estimation

Direct measurement of ET is only possible at local scale (for a single plot mostly); it is
much more difficult at larger scales (irrigated perimeter or watershed) due to the
complexity of hydrological processes (Minacapilli ez al., 2007). Moreover, at these scales,
land cover is usually heterogeneous and this affects the land-atmosphere exchanges of
heat, water and other constituents (Giorgi and Avissar, 1997). ET estimates for various
temporal and spatial scales, from houtly to monthly to seasonal time steps, and from field
to global scales, are required for hydrologic applications in water resource management
(Anderson ef al., 2011). Techniques using remote sensing (RS) information are therefore
essential when dealing with processes that cannot be represented by point measurements
only. In fact, RS capabilities for monitoring vegetation and its physical properties on large
areas have been identified for years now (Tucker, 1978). Jackson e al. (1977) were ones of
the major pioneers in determining ET by remote sensing, with the use of infrared
thermometry for the estimation of wheat water consumption.

As explained in the introduction of this thesis, RS provides periodic data about some
major ET drivers, amongst others, land surface temperature and vegetation properties
(e.g. NDVI and Leaf Area Index LAI) from plot to regional scales (Li e al., 2009; Mauser
and Schadlich, 1998). Many methods using remotely-sensed data to estimate ET are
reviewed in Courault ef /. (2005;) and Liou and Kar (2014). According to Courault ez 4.
(2005), these methods are difficult to classify because their complexity depends on the
balance between the empirical and physically based used modules.

1.2.2.1 Surface energy budget methods

The quantity of water released by a surface into the atmosphere can be directly
related to the energy that was necessary for its transformation into vapor by the following
equation:

LE=ox L X ET (1. 15)

Where LE [W.m] is the latent heat flux expressed in, L [J.kg-1] is the latent heat of
vaporization of water, representing the energy required for the vaporization of one
kilogram of water. ET represents the evaporation rate of the surface in cubic meter of
water per square meter of surface per unit of time and o [kg.m-is the density of the
water .

The vegetation cover intercepts only part of the radiative energy emitted by the sun
and the atmosphere, the complementary part being reflected towards the atmosphere. A
small fraction of the energy absorbed by vegetation (usually neglected in energy balance
expression) is used for photosynthesis, which is crucial for crop development. Most of
the intercepted radiative energy is redistributed by the vegetation cover in its near
environment under different propagation modes: emission of radiative energy (thermal
infrared), conduction of heat into the ground or convection in the atmosphere. All these
components allow introducing the concept of energy balance based on the principle of
energy conservation in the environment. Conventionally, the radiative fluxes received by
the surface are positive, whereas those emitted are negative. More generally, the heat
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fluxes are positive if they represent a loss of energy for the surface and negative for a
contribution.

Assuming an uniform and vegetation cover of large extension, and therefore no
advection of heat from neighbouring areas, the energy exchange can be considered as
purely vertical, and the equation of the energy balance at the surface is written as follows:

R,—G=LE+H (1. 16)

where LE is the latent heat flux, H is the sensible heat flux, Rn is the net radiation and G
is the conduction flux in the soil. The difference (Rn-G) is called the available energy, an
amount that is converted into H+AE, the turbulent fluxes. This latter denomination is
used because they depend largely and in the same way on the intensity of convection in
the atmospheric surface boundary layer. (Rn-G) is partitioned according to the surface
water status between the two turbulent fluxes H and LE. When water is present in the soil
in sufficient quantity, available energy is mostly converted into LE, while under water
stress, this distribution is instead in favor of H.

({Pbl
C’

Figure 1. 3 : Components of the energy balance at the soil-vegetation-atmosphere interface (
“s” and “a” refer to crop, soil and air, respectively and r, [s.m"'] is the resistance of the canopy
boundary layer)

Radiative exchanges

The radiations involved in the surface energy processes are 1) the solar radiation (short
wavelengths), part of which belongs to the visible spectral domain (0.3-5.0 pm), another
to the ultraviolet domain (0.3-0.4 um) and the remainder to the near and middle infrared
range (0.8-5.0 um) and ii) the thermal infrared radiation (long wavelengths, 5-100 um)
emitted and received by the surface.

Incident short wavelengths radiation ze. global radiation Rg [W.m] reaching the land
surface consists of two components: the incident solar radiation that has not been
absorbed by the atmosphere and has not been diffused in other directions as well as the
solar radiation diffused by the atmosphere towards the surface. A fraction of the global
radiation, the albedo o [-], is reflected by the surface, hence, the reflected short
wavelengths radiation by the surface is therefore aRg (Equation 1.17). The surface albedo
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o depends both on the optical properties of the bare soil as and vegetation cover ay which
in turn depend on the foliage structure affecting light interception (leaf size, orientation
and spatial distribution). Hence, the leaf behaves as a semi-transparent surface for
radiations coming from the atmosphere and those reflected from the ground; with
absorption, transmission and reflection capacities depending on the solar spectrum
wavelengths. The net surface radiation of short wavelengths (Rny) is the resultant of these
two emitted and reflected short wavelengths radiation (Equation 1.17).

Rng=Rg —aRg = (1 —a)Rg (1.17)

The atmosphere emits thermal infrared radiation towards the surface, following the
principle of a black body (Mandel and Wolf, 1995). Downward atmospheric radiation, or
incident longwave radiation Ryem = £,0T,4 [W.m2], results from the gases and aerosols.
Ta [K] and e, [-] are air temperature and emissivity, respectively. Atmospheric radiation
increases with cloud cover. The surface reflects a fraction of the atmospheric radiation,
depending on its absorption coefficient assimilated to the surface emissivity ((1 —
Esurf)Rarm) under the assumption of the surface thermal homogeneity. Furthermore, the
Earth surface emits like a gray body at land surface temperature Tsur [K] and with an
“effective” surface emissivity eswr [-] which takes into account the long wavelengths
radiation exchanges in the canopy. Hence, it emits thermal infrared radiation according to
the Stephan-Boltzmann law (g5,,70Tg,,s) (Johnson, 2012). The net surface radiation of
long wavelengths (Rnj) is the resultant of these emitted and reflected long wavelengths
radiation (Equation 1.18).

4 4 4
Rn; = ¢€,0T, — [(1 - gsurf)gaUTa + Esurf0 sirf] = EarfRatm — EsuwrfOT surf (1.18)
Consequently, the net surface radiation Rn [W.m?] (Figure 1.3) is the balance of energy

between incoming and outgoing shortwave and longwave radiation fluxes at the land-
atmosphere interface can be written as follows:

4
Ry, = Rng+ Rny = (1 — o) Rg + eqrpRatm — EsurfUTsurf (1.19)

where o is Stefan-Boltzmann constant=5.67% 10-8 W.m=2. K-+

Heat conduction

The associated flux with heat conduction is the conduction heat flux, referred G
[W.m?] (Figurel.3). The conductive heat exchanges in the soil are controlled by the
vertical temperature gradient at the soil surface, according to the law of Fourier (Lienhard,
1981). The G flux is positive during the day (the skin surface temperature is greater than
the below ground temperature) and negative at night. The diurnal and nocturnal
conductive fluxes roughly compensate each other and the average daily flux is low. G
depends on several factors including soil composition, amount of organic matter,
minerals, water (which is strongly conductive) and air (which is weakly conductive). In the
absence of sufficiently accurate spatial information on these factors, the G flux is
conventionally expressed as a fraction of total net radiation (¢=G/Rn). Generally, G
represents 5-20% of Rn during daylight hours (Kalma ez 4/, 2008). Since G cannot be
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directly measured remotely, several models have been proposed to estimate G based on
the G/Rn ration as a function of soil and vegetation characteristics (Bastiaanssen, 1995;
Burba ez al., 1999; Choudhury ez al., 1987; Jackson ez al., 1987; Kustas and Daughtry, 1990;
Kustas ez al., 1993; Ma et al., 2002; Payero et al., 2001; Tasumi, 2003).

Heat Convection

Convection is the predominant mode of mass transfer between the surface and the
atmosphere; it propagates thermal energy via eddies. The associated fluxes with this mode
of energy propagation are the sensible heat flux H [W.m?| depending on a vertical
temperature gradient and the latent flux LE [W.m2] associated with the quantity of water
vapor introduced into the atmosphere (Figurel.3). Convective exchanges depend on
fluctuations in wind speed and atmospheric scalars (temperature, humidity). In general,
convective fluxes Fc are expressed, by analogy with the laws of diffusion, as the product
of a transfer coefficient Kt and a vertical concentration gradient dC/dz (Lagouarde and

Boulet, 2016).
dc
Fe=—K. (1. 20)

This equation is strictly valid in the atmosphere, but it has been extended between the
surface itself and a reference level above (Figure 1.5). Assuming that the convective fluxes
are conservative, and linking the turbulent diffusivities to resistive terms by an electrical
analogy (Figure 1.4), it can be shown that sensible heat flux H in the case of a uniform
surface and latent heat flux LE can be written as:

Taero—Ta

H = pc, oo (1. 21)
LE = PCp es(Taero)—€a (122)
14 TatTs

where o [kg.m] is the air density, ¢, [J.kgL.K1] is the specific heat of air at constant
pressure, ¥ [K.Pa.C-1] is the psychrometric constant, T, [K] and e, [Pa] are respectively the
air temperature and vapor pressure at the reference level za, Taero is the aerodynamic
temperature which is equivalent to an air temperature within the canopy at the
evaporation level Zaero=d+zom where d is the displacement height of the wind speed
profile and zom is the bare soil roughness length; e(T) [Pa] denotes the saturation water
vapor pressure curve as a function of temperature T and r, [s.m"'] and 15 [s.m!] are the
aerodynamic and bulk surface resistances, respectively. These two resistances depend on
turbulent diffusivities, turbulent characteristics (wind speed, thermal gradients) and the
surface and vegetation cover characteristics (height, roughness, stomatal functioning, leaf
area). r, is dependent on the turbulent properties of the atmospheric boundary layer
above the surface. An unstable and therefore more mixed atmosphere (this is often the
case during the day) will tend to facilitate vertical energy transfers and thus decrease
atmospheric resistance while a more stable and stratified atmosphere (mostly at night) will
oppose strong resistance to energy transfer (Penman, 1948) .
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u(z=d+z,,)=0 @
. U Uy —Us_gys ua
i=—=r=p——m>==p—=
R v, v,

Figure 1. 4: Electrical analogue of acrodynamic resistance (I [A] is the current through a
conductor between two points, U [V] is the voltage measured across the conductor , R [Ohm] is
the resistance of the conductor, d [m] is the displacement height and z,,,, [m] is the bare soil
roughness length; “a" refers to air).

In fact, surface temperature affects all four terms of the energy balance of equation
1.16, which takes the following form by replacing each of terms with expressions (1.19),
(1.21) and (1.22):

(1 —D[(1 - WRg + &Raem — £s0Thurs] = p cp“%a‘“ + % % (1.23)

In the case of reduced water availability, the surface temperature adjusts so that the
other dissipative terms, H and G (as well as the long wavelength radiation emitted by the
surface, included in the radiation net), all of which are positive functions of temperature,
compensate for the decrease in latent heat flux. The resulting increase in temperature is all
the more significant as the decrease in LE is significant. There is therefore a clear
relationship, in the case of vegetated surfaces, between water stress and surface
temperature.

Remote sensing based energy budget models are reviewed in Courault ez a/. (2005),
Farahani ez al. (2007), Glenn ez al. (2007), Kalma ez a/. (2008), Overgaard et al. (2006) and
Verstraeten ef a/. (2008). The majority considers the land surface as an electrical analogue,
which means that the rate of exchange of a quantity (heat or mass) between two points is
driven by a difference in potential (temperature or concentration) and controlled by a
number of resistances that depend on the local atmospheric environment and internal
properties of the land surface and vegetation.
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Figure 1. 5: Analogous schematization of the transpiration process under the hypothesis of a
conservative transpiration flow (Source: Guyot (1999) and Boulet (2003), modified).

Two types of methods are currently used to compute LE: the so-called “single pixel”
methods use information from each pixel independently of any other pixel in the image,
while the “contextual” methods take advantage of thermal contrasts in the image. They
provide instant estimates of latent heat flux at the time of the satellite overpass. “Single
pixel” estimation methods solve the energy balance at the surface for a given pixel,
independent of the rest of the image. Calculation of atmospheric resistances distributed
over large areas is therefore a major challenge for these models, partly because of the
difficulties encountered in the spatialized estimation of the roughness properties of the
surface. To circumvent this problem, the “contextual” methods exploit the spatial
variability of the surface properties, placing each pixel in its context and locating it with
respect to endmembers. The most cited contextual models are the “Surface Energy
Balance Algorithm for Land model (SEBAL)” (Bastiaanssen ef a/ 1998), "Mapping
EvapoTranspiration with High-resolution and Internalized Calibration (METRIC)” (Allen
et al. 2007), “Triangle method” (Carlson, 2007) and “Simplified Surface Energy Balance
Index (S-SEBI)” (Roerink e al., 2000). These models are based on a "single-source" (see
later) scheme, and solve for H through a relationship with temperature gradient. The
near-surface air temperature gradient obtained by solving the energy balance over
carefully selected “hot and cold” (or dry and wet) pixels identified using the thermal
(radiometric surface temperature) and shortwave (surface albedo and NDVI) bands of the
satellite image. METRIC is based on the same structure as SEBAL but uses a reference
ET (Penman-Monteith) to express the potential evapotranspiration rate. In what follows,
we focus on “single pixel” methods because at kilometric-resolution (e.g. MODIS images)
endmembers (spectra chosen to represent pure surface in a spectral image) are difficult to
found. Moreover, SPARSE model applied in this dissertation is based on these methods.
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“Single pixel” methods

Residual methods use information from each pixel independently of any other pixel in
the image. Here after, we focus on these methods mainly those using thermal infrared
remote sensing data on which is based the SPARSE model applied in this dissertation. A
common approach to LE estimation from RS is to calculate LE as the residual term of
the energy budget, ze. the difference between available energy (Rn-G) and H as follows:

Taero - Ta

LE=Rn—G—- pc, (1.24)

a

This equation is widely used for the estimation of instantaneous LE. When estimated
at midday, it provides a good indicator of plant water status for irrigation scheduling.
When dealing with seasonal, monthly or daily estimations, the use of ground-based ET
trom weather data is necessary to make temporal interpolation.

The main issue of estimating ET as a residual is the need to measure or estimate Rn and
G accurately, which can be problematic under conditions such as with sparse or
heterogeneous vegetation. G is normally considered a fixed fraction of the net radiation
(Anderson et al, 1997; Boegh and Soegaard, 2004; Norman et al, 1995), and since
previous studies have shown that net-radiation can be accurately determined from RS
data (e.g. Boegh ¢t al, 1999), the main task becomes the determination of sensible heat
flux from remote sensing data using the electrical analogue from.

SEB models employ various expressions for the aerodynamic resistance. In the reviews
by Kalma e7 a/. (2008) and Overgaard ez al. (20006) , three broad approaches to describe the
surface and its resistance network are distinguished: (i) “one source” methods considering
the surface as a homogeneous mixture of soil and vegetation without distinction between
soil evaporation and vegetation transpiration (Monteith, 1965; Penman, 1948); (i) “two
source” models taking into account vegetation and bare soil as two separate sources for
energy transfers (Shuttleworth and Wallace, 1985); (iii) “multisource” models, which are
essentially extensions of the “two source” model (figure 1.6) . Moreover, these models use
different representations of the soil water storage, from conceptual to physical or
mechanistic modeling (Boulet, 1999): Single-reservoir model, two-reservoir model derived
from the Force-Restore model (Deardorff, 1978) and the discretized model which
decompose the column of soil into several horizons, among which the equations of water

and heat dissipation in the soil derived from Richards (1931) are applied (figure 1.6).
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Figure 1. 6: Complexity levels of the soil and schematic diagram of the electrical resistance
analogy to one-source, two-source (series and parallel approaches) and multi-layer models
(Source: Boulet (1999) and Chirouze (2009), modified)

+* One source model

One layer or one source models, often referred to “big-leaf” models, are derived from
the approach proposed by Monteith (1965) which recognize the role of surface controls
but do not distinguish between soil evaporation and transpiration in the heat exchange.
They are well adapted to estimate the evapotranspiration of dense canopies (Monteith and
Unsworth, 1990). They consider a stomatal resistance of the vegetation cover and an
aerodynamic resistance between the surface and the atmosphere. The “big-leaf” concept
assumes that the canopy is horizontally homogeneous and that the vertical distribution of
surface fluxes (sensible heat and latent heat) can be represented by a single source at the
“big-leaf” surface located at the conceptual height z=d+zom (figure 1.6).

The one dimensional equations based on aerodynamic theory and energy balance
(Monteith and Unsworth, 2007; Penman, 1948), have proved very useful in the actual
crop ET estimation; because they take into account both the canopy properties and
meteorological conditions (Black e a/., 1970; Szeicz and Long, 1969; Szeicz et al., 1973).
The most widely used form of the combination equation, called Penman-Monteith
equation, can be expressed under the following form:

(Taero)—€a

A(Rp—G)+pgcyssirtaerol=¢a

E=—" L (1.25)
A+y(1+a)

where Rn-G [W.m?] is available energy, 4 [kPa C-] is the slope of the saturation vapour
pressure temperature relationship, (es-ea) [kPa] is the vapour pressure deficit of the air, p.
[kg.m3] is the air density, ¢, [J.kgL.K1] is the air specific heat at constant pressure, y
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[kPa.C-1] is the psychrometric constant, r, [s.m!] is the aecrodynamic resistance and r [s.m-
1] is the bulk (surface) resistance. In Equation 1.25 we can distinguish non-parametric
variables (available energy, vapor pressure deficit 4 and y) which are standard measurable
climatic data; and the parametric variables (r. and r5) which are not directly measurable
and need to be modeled.

The difficulty of using this equation, especially at regional scale, is the estimation of r, .
Differences in crop height and leaf area index (LAI) determine crop roughness and
thereby r.. Crop rooting characteristics, root water uptake and LAI describe the value of
canopy resistance (ts). The lack of information on aerodynamic properties for r, or on the
soil water status necessary for r; makes the Penman-Monteith equation difficult to
implement in operational hydrology and water management studies. This shortcoming has
been solved in the irrigation community by introducing the concept of crop reference ET
and crop coefficients accounting for a rough estimate of the vegetation development and
a global soil moisture level deduced from a simplified water budget equation.

The temperature at the aerodynamic level Taero is defined as the temperature of the air at
the aerodynamic level within the canopy, and can be represented as an average
temperature of the surface elements, weighted by their relative contributions to global
atmospheric conductance (Moran ef al, 1989). This temperature is more a conceptual
variable than a quantity one can measure z siz# (Kalma and Jupp, 1990). Single source
models require a method to relate Tiero and the remotely-sensed surface temperature
(Matsushima, 2005). It has been showed that Taero and Tswt may differ by several degrees
(Kustas and Norman, 1996; Stewart 7 al., 1994; Troufleau ez al, 1997). Taero is greater than
Tsur in stable conditions and lower in unstable conditions (Kalma and Jupp, 1990). This
difference essentially depends on the geometric distribution of the canopy (height of the
canopy, vegetation cover ratio, leaf distribution). It is compensated by adding an
additional resistance term rx , related to a factor kB-! as follows (Stewart ez al., 1994):

kB! (1.26)
ku,

This kB! factor is usually determined empirically or semi-empirically as a function of
atmospheric conditions, LAI and the height of the canopy (Boulet ez a/., 2012). Several
formulations have been proposed in the literature to determine kB-! (e.g. the SEBS model
(Su, 2002)). Other methods for linking Tiero and Tsuwr introduce a B factor B=
(Tacro-Ta)/ (Tsurs-Ta) determined empirically from LAI (Boulet ¢# a/, 2012; Chehbouni ez
al., 1997). Whereby, the radiometric surface temperature can substitute the aerodynamic
surface temperature. Hence, H can be written as:

=

H=pc,= (1.27)

Ta+tTx

% Two-source models

The one source approach makes no distinction between the soil evaporation (E) and
the vegetation transpiration (T); therefore the resistances are not well defined (Raupach
and Finnigan, 1988). To address these concerns, two sources energy balance models such
as described by Shuttleworth and Wallace (1985) include a canopy layer in which heat and
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mass fluxes from the soil and from the vegetation are allowed to interact. These models
treat ET as the sum of separate flux-profile relationships governing E and T and have
been initially developed for sparse canopies (e.g. Jupp e# al., 1998; Kustas and Norman,
1999; Lhomme ¢# al., 1994; Norman ez al., 1995).

In that sense, dual-source models provide a more realistic description of the main
water and heat fluxes, even if the vegetation is seen as a single “big leat” and the soil as a
single “big pore” (Kustas and Norman, 1996), which is especially true for sparse
vegetation, when commonly used scalar profiles within the canopy no longer apply. It also
avoids the use of a parameterized kB~! (Kustas and Anderson, 2009).

The two sources model assumes that in most agro-systems vegetation has access to
enough water in the root zone to transpire at a potential rate, so that a modeled potential
transpiration rate is a valid first guess to estimate T. This assumption implies that, if
vegetation stress is not propetly taken into account, the resulting evaporation will
decrease to unrealistic levels (negative fluxes) in order to maintain the same total surface
temperature, so that a retrieved negative evaporation is a good witness of plant water
stress. The original version of two sources energy balance model (Norman ez al, 1995)
provides two algorithms to describe the soil-vegetation—atmosphere interactions,
representing, respectively, the “patch” and “layer” approaches following the terminology
proposed by Lhomme e a/ (2012). In the “layer” approach, the vegetation layer
completely covers the ground and prevents the soil from interacting directly (in terms of
radiation and turbulent heat transfer) with the atmospheric reference level: soil and
vegetation heat sources are fully coupled through a resistance network organized in series
(Figure 1.6). In the “patch” approach, soil and canopy sources are located side by side,
and the soil interacts directly with the air above the canopy: soil and vegetation heat
sources are thermally uncoupled and fluxes are computed with two parallel resistance

schemes (Figure 1.6).

The two sources energy balance model requires land surface temperature Tsurr
observations adjusted for atmospheric effects and corrected for surface emissivity in the
thermal infrared (TIR) band to produce accurate results.

% Multilayer models

Multi-layer models have been developed since the 1960s (Waggoner 7 a/, 1969), they take
into account the vertical structure of the vegetation (three or more vegetation levels)
(Raupach ez al., 1989); hence, a stomatal resistance is added for each vegetation layer, as
well as a resistance to control the interactions with the overlying and underlying layers.
These models are not considered suitable for hydrological modeling because they require
a large number of parameters that would be very difficult to obtain.

Assimilation of TIR data in SEB models

Land surface temperature (Tsu), as frequently referred to as the skin temperature of
the Earth's surface and is derived from remotely sensed TIR data. It is the result of the
thermodynamic equilibrium dictated by the energy balance at the atmosphere, surface,
and subsurface interface, and the efficiency by which the surface transmits radiant energy
into the atmosphere (Kustas ez al, 2003). Tsut plays a key role in the partitioning of
available energy between turbulent fluxes of sensible and latent heat. There is a strong link
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between water availability in the soil and surface temperature under water stress, hence, in
order to estimate soil moisture status as well as actual ET at relevant space and timescales,
information in the TIR domain (8—14 um) is frequently used (Boulet ez a/, 2007).

Major improvements in large scale estimates of actual ET have been obtained through
remote sensing methods based on TIR data, available from a variety of satellite systems
(Cammalleri ez al., 2014). These approaches reviewed in Kalma ez a/. (2008) and Liang ez .
(2010); appear to accurately reproduce ET over a wide range of conditions at both the
satellite overpass time and daily time scales. The basic idea behind these approaches is
that surface radiative temperature, and by association the surface turbulent energy fluxes,
are dependent on the surface soil water content.

Tsut is highly variable in space and time (Prata e al, 1995), mainly due to the
meteorological forcing variability and of to surface properties heterogeneity. The
environmental conditions impacting the Tswr are climatic conditions, topography,
vegetation cover (density, phenology etc.), surface and root zone soil moisture, soil
hydrodynamic properties (texture, porosity, etc.) and the radiative properties (albedo,
emissivity).

Given the complexity of this variable, ground measurements are not satisfactory,
especially when dealing with large areas. Hence, remote sensing provides the possibility of
observing the Tsur in the spectral range of thermal infrared (8 to 14 um) with varying
temporal and spatial resolutions.

Satellite-based thermal datasets currently available and main TIR missions are
summarized in annex 1. These datasets reflect a tradeoff between temporal and spatial
resolution such that the systems have either high-spatial/low-temporal resolution (e.g.,
Landsat Thematic Mapper (TM); and Landsat Enhanced Thematic Mapper Plus (ETM+)
or low-spatial/high-temporal tresolution (e.g., National Oceanic and Atmosphetic
Administration-Advanced  Very High-resolution Radiometer (NOAA-AVHRR);
Terra/Aqua-Moderate Resolution Imaging Spectrometer (MODIS); Geostationary
Operational Environmental Satellite (GOES). ASTER data are only available by demand
and therefore provide only sporadic temporal coverage at a given site.

1.2.2.2 Soil water balance method: crop coefficient approach

The most common and practical approach used for estimating ET is the FAO-56
method (Allen e7 al., 1998), previously adopted by Doorenbos and Pruitt (1977), on which
is based the SAMIR model used in this dissertation. It is used to estimate crop water
requirements based on the reference evapotranspiration (ETo) and crop coefficients.

According to the FAO drainage and irrigation paper N°56 (Allen ez al., 1998),
distinctions are made between reference crop evapotranspiration (ET,), crop
evapotranspiration (ETc) and actual evapotranspiration (ETa). ETo is the
evapotranspiration rate from a hypothetical grass reference crop with an assumed crop
height of 0.12 m, a fixed surface resistance of 70 s.m"! and an albedo of 0.23. ETo was
often confused with potential ET (ETp) (Douglas 7 al., 2009; Tortes et al., 2011; Zhang et
al., 2010). ETc is the water lost by crops that are grown in large fields under optimum soil
moisture, excellent management and environmental conditions, and achieve full
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production under the given climatic conditions. ETa involves all conditions of the
vegetated surface. Due to sub-optimal crop management and environmental constraints
that affect crop growth and limit evapotranspiration, ETa is generally smaller than ETc.

The FAO-56 method is applied in three steps: (i) determine the climatic reference
ETo, ii) apply a single (Kc) or double crop coefficient (Ke and Kcb) to get ET of a given
crop under standard conditions Ze. optimal agronomic conditions (ETc), and (iif) apply a
water stress coefficient Ks to get ET under non-standard conditions ze. stress conditions
(ETa) also called actual ET (ETc.q).

The FAO-56 method 1is based on two wunderlying assumptions: (1)
ETo represents the climate effect and (2) Kc (and Kcb) varies mainly with the specific
characteristics of the crop, allowing the use of these coefficients regardless of the
climates and environmental conditions (Allen ez a/., 1998).

In the single crop coefficient approach, ETa is computed as follows:
ET, = K, * ET, (1.28)

In the dual crop coefficient approach, the effects of crop transpiration and soil
evaporation are determined separately. Two coefficients are used: the basal crop
coefficient (Kcb) to describe plant transpiration and the soil water evaporation coefficient
(Ke) to describe evaporation from the soil surface. ETc and ETa are computed as
follows:

ET. = (K., + K,) X ET, (1.29)
ET, = (K, X K, + K,) X ET, (1.30)

More exactly, the basal crop coefficient, Kcb, is defined as the ratio of ETc to ETo
when the soil surface layer is dry but where the average soil water content of the root
zone is adequate to sustain full plant transpiration. Thus, it is the sum of transpiration and
evaporation due to capillary rise from the root compartment passing through the dry soil
surface, which explains why the Kcb during the initial stage for annual crops (before
vegetation appears), as proposed in the FAO-56 paper, is above zero. In other words, the
Kcb represents the baseline potential Kc in the absence of the additional effects of soil
wetting by irrigation or precipitation. If the soil is wet following rain or irrigation, Ke may
be large. However, the sum of Kcb and Ke can never exceed a maximum value, Kcmas,
determined by the energy available for ET at the soil surface. As the soil surface becomes
drier, Ke becomes smaller and falls to zero when no water is left for evaporation. The
estimation of Ke requires a daily water balance computation for the calculation of the soil
water content remaining in the upper topsoil. The dual crop coefficient approach is best
for real time irrigation scheduling and for soil water balance computations.

The evaporation coefficient Ke is driven by both the water content in the soil surface
and the fraction of soil actually subject to evaporation, ze. exposed and wet (few).

The total evaporable water of the surface layer (TEW) [mm)] is defined by water
content at field capacity and wilting point (O [-], Owp [-]) and the depth of the evaporation
layer Ze [mm] as follows:
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TEW = (0.~ (%))_ Ze (1.31)

REW [mm)] is the readily evaporable water, ze. the fraction of TEW evaporating
without resistance, related to soil texture and defined by the user. When the water
depletion in the evaporation layer (De) [mm)] is higher than the easily evaporable water
(REW), a reduction factor Kr [-] is computed as follows to reduce evaporation:

TEW — De (1.32)
<1

Kr = Tew —RrEW =

Kris equal to 1 as long as De < REW, Ze. as long as there is readily evaporable water.

The fraction of soil actually subjected to evaporation, fey [0-1], is determined by to
parameters: the fraction of soil wetted by irrigation (fw), linked to the type of irrigation
(typically 1 for gravity irrigation, <1 for drip irrigation), and the fraction of soil actually
exposed to evaporation, ze. not shadowed by vegetation.

fow = min(1 — fc, fw) (1.33)

For example, for flood irrigation where evaporation is not limited by the wetted

fraction of soil (fw = 1), few is only controlled by the fraction cover of vegetation,
few = 1-fc.

Finally, Ke is computed using the following equation:

Ke = Min(Kr.(Kcmax — Kcb) ; f,,,. Kcmax) (1.34)

where the first term accounts for limitation due to available energy and soil water
content, and the second term accounts for limitation due to few.

The estimation of Ks requires a daily water balance computation for the root zone in
order to highlight the effect of water stress on crop ET and irrigation requirement. Soil
water balance is calculated on a daily basis following the scheme illustrated in Figure 1.7,
although in our case surface runoff is neglected. It is expressed in terms of water
depletion in the effective root zone, Dr [mm], at the end of each day i through the
following equation (Allen e# al., 1998):

Dr;=Dri_y —P;—I; — W; + ETa; + D; (1.35)

where Dri [mm] is root zone depletion at the end of day i, Dri1 [mm)] is root zone
depletion at the end of the previous day i-1, P; [mm] is effective rainfall on day i [mm], I;
[mm] is net irrigation depth on day i that infiltrates the soil [mm], W is contribution from
water table by capillary rise on day i, ETa; [mm] is crop evapotranspiration on day i and D;
[mm] is water loss out of the root zone by deep percolation on day 1.
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Figure 1. 7: Water balance components in the root zone (Source: Allen ez al. (1998))

At field capacity, Dr is zero. When soil water is extracted by ET, the depletion
increases and stress will be induced when Dr becomes larger than the readily available
water (RAW). When the root zone depletion is smaller than RAW, then Ks = 1. For root

zone depletion greater than RAW, the water stress coefficient is computed as (Allen ez al.,
1998):

K = TAW — Dr _ TAW — Dr
S TAW — RAW (1 — p) TAW

(1.36)

where Ks [-] is a dimensionless transpiration reduction factor dependent on available soil
water ranging between 0 and 1, Dr [mm)] is root zone depletion, TAW [mm)] is total
available soil water in the root zone [mm], RAW [mm)] is readily available water in the
root zone and p [-] is the fraction of TAW (ie. RAW/TAW) that the crop can extract

from the root zone without causing water stress.

The total available water (TAW) in the root zone is linked to the root depth and to the
difference between the water content at field capacity and wilting point as expressed in
equation 1.37. The two latter terms depends on the type of soil.

TAW = (0p; — O).Z1 (1.37)

Complementarily of the FAO-56 method and remote sensing

The FAO-56 method has long been used to monitor plot scale water budget with tools
like CROPWAT (Clarke, 1998) using most of the time crop coefficients taken from the
FAO tables. RS provides spatial and updated information about vegetation. The satellite
images not only allow distinguishing different types of land use, but also, provide further
information about the actual development of vegetation. This information is well
correlated with the photosynthetic activity of plants, which is itself determinant of ET.

To compute ET on larger areas, some tools have been developed based mainly on the
use of thermal remote sensing for energy balance methods, like METRIC (Allen Richard
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et al., 2007). However, the increasing availability of high-resolution NDVI time series
arose the coupling of the FAO-56 with remotely sensed crop coefficients (Gonzalez-
Dugo et al., 2013; Mateos et al., 2013; Neale ez al., 2007; Simonneaux ez al., 2008). This
trend lead to the emergence of tools like the DEMETER concept (Calera-Belmonte ef al.,
2005) providing Kc to farmers, the HYDROMORE tool (Sanchez ez a/.,, 2010) computing
the water budget of crops, or the TOPS-SIM “system-of-system” for irrigation
management (Melton ez al, 2012). Zhang and Wegehenkel (2006) developed a model
based on the FAO-56, lumped in a more complex model including the whole watershed
system, and using essentially low-resolution MODIS images. Minacapilli ez a/ (2008)
proposes the SIMODIS model based on a variant of FAO-56 where Kc is determined

analytically using vegetation and climatic parameters, and a more physical soil modeling.

Spatio-temporal monitoring of vegetation dynamics by remote sensing is possible
through the use of reflectance combinations through vegetation indices (VI). VIs are
based essentially on the red band (R) corresponding with a high absorption of the
radiation and the infrared band (NIR) offering a high reflectance. VIs determined over
the last thirty years by different authors and their fields of application are summarized in
annex 3.

The first researches relating vegetation development and canopy reflectance was
carried out during the 1970s (Kanemasu, 1974; Tucker, 1979), It has been shown that the
crop coefficients were linked to the VIs (Er-Raki ef /., 2007; Glenn e# al., 2011; Hunink e#
al., 2017; Hunsaker ¢ al., 2005a; Hunsaker ¢ a/., 2005b; Simonneaux ¢f al., 2008). The
arguments in favor of the causal Kcb-VI relationship include the direct relationship
between Kcb and the fraction of photosynthetic active radiation absorbed by the canopy
(fPAR) and the relationship of these parameters with the VIs (Calera e af, 2017). Ke is
linked to the bare soil fraction, complementary of the fractional vegetation cover (fc)
which can also be related to visible RS data (Huete ez a4/, 1985). Although the relations
proposed between Kcb, fc and VIs are not theoretically fully linear, they can usually be
approximated by linear relations (Choudhury ef al, 1994; Gonzalez-Dugo and Mateos,
2008). One pitfall of RS methods based on crop coefficient is their requirement for crop
specific relations providing crop coefficient from RS data (Gowda e# 4/, 2008). Some
relations may be found in the literature, either directly estimating crop coefficients from
VIs, or assessing them from vegetation parameters like the leaf area index (LAI) or fc.
This difficulty also applies to the relation between VIs and fractional vegetation cover (fc)
required running the FAO-56. Furthermore, establishing a unique relationship between
crop coefficient and spectral vegetation indices is an ongoing research topic (Er-Raki ez
al., 2010) and many empirical linear relationships available in the literature have been
derived experimentally. The interest for coupling the FAO-56 method (Allen et al, 1998)
with remotely-sensed crop coefficients is raising alongside the increasing availability of
high-resolution NDVI time series (Gonzalez-Dugo e al., 2013; Mateos e al., 2013; Neale
¢t al., 2007; Simonneaux ¢# al, 2008). The low availability of such data, for financial as well
as technical reasons, combined with the intermittent presence of cloud, has been a restraint
to their use (J. Trout ef al, 2008; Pinter et al., 2003; Takeuchi et al, 2003). However, the
recently lunched Sentinel-2 mission offers a unique opportunity to improve this monitoring
thanks to high-resolution (10 m) and high repetitivity (5 days) visible and near infrared
(VIS-NIR) remote sensing. Main VIS-NIR missions are detailed in annex 2.
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1.2.2.3 Deterministic methods

Surface processes are driven by three important interlocking mass and energy budgets,
a water balance, an energy balance and a carbon budget (Figure 1.8). Deterministic
methods are based on more complex models such as land surface models (LSM) which
compute the different components of energy and/or water balance. Water and energy
balances are coupled by the ET flux, in the water balance; which is called LE in the
energy balance. The development of LSMs since the 1960s has allowed the understanding
of the complex biophysical, hydrological, and biogeochemical interactions between land
surface and the atmosphere at micro- and mesoscales by providing a simple and realistic
way to represent the transfer of energy, water and carbon fluxes between the land surface
and the atmosphere (Zhao and Li, 2015). Soil-Vegetation-Atmosphere Transfer (SVAT)
models are a subgroup of the LSMs, they solve the coupled water and energy budget
equations via ET. They are generally mechanical models, describe the vertical exchanges
(one-directional 1-D vertical transfers are considered while lateral interactions are
neglected), and rely on a simplified representation of the vegetation cover. SVAT models
are mainly used for estimating ET, surface-energy exchanges and water balance
components (Olioso ¢# al., 2005) (Figure 1.8). Their application has often been limited by
the lack of 7» situ data required for models forcing, calibration and evaluation. The over-
parameterization of SVAT models due to their physical nature requires a multi-criteria
analysis (Ze. several variables) over a sufficiently long period. Indeed, a major problem
related to the degree of complexity of SVAT models is the equifinality problem (Beven,
2000), which is to say that the good performance of the global description of a complex
model does not mean that its components are estimated correctly. Indeed, there are
theoretically an infinite number of possible combinations between the different variables
of the system that can lead to the same overall result. This means, for example, that a
precise estimate of the ET rate of the surface does not mean that the evaporation and
transpiration components are correctly simulated. Moreover, in studies of land—
atmosphere interactions, a SVAT model is assumed to respond in a realistic way to
changes in land surface properties, despite the fact that the model may be validated only
for specific locations or surface types. However, model response is potentially sensitive
not only to changes in land surface properties, but also to interactions between them
(Beringer ef al., 2002).

Remote sensing data are used at different SVAT modeling levels, either for forcing the
model input, or correcting the course of state variables in the model each time remote
sensing data are available (sequential assimilation) or re-initializing unknown parameters
using data sets acquited over temporal windows of several days/weeks (variational
assimilation) (Courault ez /., 2005).
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Figure 1. 8: The current generation of land surface models (LSM) treats the biosphere and
atmosphere as a coupled system based on modeling the transfers of (A) energy, (B) water and (C)
carbon fluxes between land surface and atmosphere. Soil Vegetation Atmosphere (SVAT) models

are based on the coupled water and energy cycles (Source: Bonan (2008), modified)

1.2.2.4 Inter comparisons of ET estimation methods

Soil water balance (SWB) and the surface energy budget (SEB) approaches, as well as
both approaches integrated into SVAT modeling, use remote sensing data to estimate
spatially distributed ET (Minacapilli ez a/., 2009). The SWB approach exploits only visible-
near-infrared (VIS-NIR) observations to perceive the spatial variability of crop
parameters. The SEB modeling approach uses visible (VIS), near infrared (NIR) and
thermal (TIR) data to solve the SEB equation by forcing remotely sensed estimates of the
SEB components (mainly the land surface temperature Tsuf). The SWB approach has the
advantage of high-resolution and frequency VIS-NIR remote sensing data availability
against limited availability of high-resolution thermal imagery for the SEB approach.
Indeed, satellite data such as Landsat or Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) provide accurate field scale (30—100 m) estimates of ET
(Allen ez al., 2011a), but they have a low temporal resolution (16 day-monthly) (Anderson
et al., 2011).

Three categories of methodologies for the integration of satellite data in the models are
distinguished; (i) forcing consists of directly integrating the data in the model as input data
of the system; (ii) calibration consists of estimating a set of constant parameters of the
model so that its estimates are optimal over a given period or study area. The validity of
this set of parameters over other time periods or study zones can be questioned; and (iii)
data assimilation is a set of techniques for combining data from a variety of sources
(satellite observations, field measurements, model outputs) in order to estimate a system
variables that are statistically optimal (Bouttier and Courtier, 2002; Gu ez al, 2009). A
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classic assimilation scheme is composed of three elements: a set of observations, a
dynamic model and an assimilation technique (Robinson and Lermusiaux, 2000). These
techniques make it possible to use the distributed satellite data in order to correct and
improve the spatialized predictions of land surface models, and also help calibrate them
on large study areas.

SWB and SEB models each have their strengths and weaknesses. The RS-based SWB
models provide estimation of ET, soil water content, and irrigation requirements in a
continuous way. For instance, at plot scale, accurate estimates of seasonal ET and
irrigation can be obtained by SWB modeling using high-resolution remote sensing
torcing. However, for an appropriate estimation of ET, the SWB model requires
knowledge of the water inputs (precipitation and irrigation) and an assessment of the
extractable water from the soil (mostly derived from actual water content in the root
zone, wilting point and field capacity ), whereas, significant bias are found mainly when
dealing with large areas and long periods, due to the spatial variability of the water inputs
uncertainties as well as the inaccuracy in estimating other flux components such as the
deep drainage (Calera ez al., 2017). Hence, the major limitation of the SWB method is the
high number of needed inputs whose estimations are likely uncertain especially over a
heterogeneous land surface due to hydrologic processes complexity. Moreover, spatially
distributed SWB models (typically those using the FAO guidelines (Allen ez a/, 1998) for
crop ET estimation) generally parameterize the vegetation characteristics on the basis of
land use maps (Bounoua ez al., 2015; Xie ef al., 2008), and different parameters are used
for different land use classes. Nevertheless, SWB modelers generally do not have the
possibility to carry out remote sensing-based land use change mapping due to time,
budget, or capacity constraints and use often very generic classes potentially leading to
modeling errors (Hunink ez @/, 2017). In addition, the lack of data about the soil
properties (controlling field capacity, wilting point and the water retention) as well as the
actual root depths for heterogeneous areas crops, lead to limited practical use of the SWB
models (Calera ez al, 2017). The same apply to the soil evaporation whose estimation
generally rely on the FAO guidelines (Allen ef al, 1998). Although, it was shown that
under high evaporation conditions, immediately after rain or irrigation for instance, the
FAO-56 daily evaporation computed on the basis of the readily evaporable water (REW)
is overestimated (Mutziger e# al., 2005; Torres and Calera, 2010). Hence, to improve the
estimation of E at the beginning of each drydown, a reduction factor proposed by Torres
and Calera (2010) was applied to deal with this problem in several studies (e.g. Odi-Lara ez
al. (2016) and Saadi e# a/. (2015)). Furthermore, since actual ET is computed based on
actual soil moisture status, the limited knowledge of the actual farmers’ irrigation
scheduling is a further critical limitation for SWB modeling. Therefore, SWB modelers
must deal with the lack of information about real irrigation, which induces unreliable
estimations. Some approaches assimilate either water stress estimates based on canopy
temperature (Colaizzi ez al, 2003) or ET estimates based on SEB models into the soil
water balance models (Anderson et al, 2007; Crow et al, 2008; Neale et al, 2012;
Schuurmans ez 4/, 2003), in order to calibrate the fraction of water depleted derived from
the water balance model. In a slightly different approach, some authors propose the
integration of actual ET values in order to calibrate the soil water balance model in terms
of the root zone storage capacity (Campos ¢z al., 2016; Hain et al., 2009; Wang-Erlandsson
et al., 2010).
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At regional scale, ET estimation is often achieved using SEB approaches, by
combining surface temperature from medium to low-resolution (kilometer scale) remote
sensing data with vegetation parameters and meteorological variables (Liou and Kar,
2014). Recently, many efforts have been made to feed remotely-sensed surface
temperature into ET modeling platforms in combination with other critical variables, e.g.,
NDVI and albedo (Kalma ef 4/, 2008; Kustas and Anderson, 2009). A wide range of
satellite-based E'T models were developed, and these methods are reviewed in (Liou and
Kar, 2014). The majority of SEB-based models are “single source” models”. However, as
mentioned before, separate estimates of evaporation and transpiration makes the “dual-
source” models more useful for agro-hydrological applications (water stress detection,
irrigation monitoring etc.) (Boulet ez al., 2015).

Contrarily to SWB models, most SEB models are run in their most standardized
version, using observed remote sensing-based parameters such as albedo in conjunction
with a set of input parameters taken from literature or zz situ data; results are mostly
instantaneous images of surface fluxes of which the extrapolation (instantaneous satellite
overpass to the daily accumulation) and the interpolation (between acquisition two dates)
are sources of uncertainty. On the other hand, the SEB model validation with enough
data in space and time is difficult to achieve, due to the lack of enough ET field
measurements but also to the limited availability of high-resolution thermal images
(Chirouze et al., 2014). Therefore, it is usually possible to evaluate SEB models results
only at similar scale (km) to medium or low-resolution images. Indeed, the pixel size of
thermal remote sensing images, except for the scarce Landsat7 images (60 m), covers a

range of 1000 m (MODIS), to the order of 4000 m (GOES).
1.3 Irrigation

The irrigation schedule indicates how much irrigation water has to be given to the
crop, and how often or when this water is given. How much and how often water has to
be applied depends on the irrigation water requirement (IR) of the crop. IR is defined as
the amount of irrigation water required to be delivered in the field to meet the CWR.

1.3.1 How much water is given?

The amount of irrigation water, usually expressed in mm.day! or mm.month-!, which
can be given during one irrigation application is influenced by the soil type (influences the
maximum amount of water which can be stored in the soil per meter depth), the root
depth (frequent - but small - irrigation applications shallow root system and less
frequently and more water for deep rooting crops) and the irrigation method (surface,
sprinkler or drip irrigation).

Surface irrigation consists of a broad class of irrigation methods in which water is
distributed over the soil surface by gravity flow. The irrigation water is introduced into
level or graded furrows or basins, using siphons, gated pipe, or turnout structures, and is
allowed to advance across the field. Surface irrigation is best suited to flat terrain, and
medium to fine textured soil types which promote the lateral spread of water down the
furrow row or across the basin.
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Sprinkler irrigation is a method of irrigation in which water is sprayed, or sprinkled
through the air in rain like drops. The spray and sprinkling devices can be permanently set
in place (solid set), temporarily set and then moved after a given amount of water has
been applied (portable set or intermittent mechanical move), or they can be mounted on
booms and pipelines that continuously travel across the land surface (wheel roll, linear
move, central pivot).

Drip Irrigation is sometimes called trickle irrigation and involves dripping water onto
the soil at very low rates (2-20 litres/hour) from a system of small diameter plastic pipes
fitted with outlets called emitters or drippers. Water is applied close to plants so that only
part of the soil in which the roots grow is wetted, unlike surface and sprinkler irrigation,
which involves wetting the whole soil surface. With drip irrigation water, applications are
more frequent (usually every 1-3 days) than with other methods and this provides a very
favorable high moisture level in the soil in which plants can flourish.

In the Kairouan plain, the main used irrigation techniques are drip and sprinkler
irrigation. Cereals are mainly irrigated by sprinkling. The olive tree, with a density of less
than or equal to 200 trees per hectare, is most often irrigated by gravity. The development
of drip irrigation since 1999, facilitated by state subsidies (NOURY ez a/, 2007), has
concerned vegetables crops and fruit trees (apple, pear, peach and apricot trees), as well as
new olive plantations. At the time, these crops were irrigated mainly by surface irrigation
(Koukou-Tchamba, 2000). The work of (Feuillette, 2001; Kadi, 2002) showed that the
conversion to drip irrigation allowed not only a reduction in labor but also an increase in
the yields and the financial benefit of vegetable crops.

In most cases, CWR is supplied by rainfall and the remaining part by irrigation. In such
cases IR is computed as a residual term of the water balance equation Ze. as the difference
between the CWR and the rainfall part which is effectively used by the plants ze. the
effective rainfall defined as the fraction of the total amount of rainwater retained in the
root zone and useful for meeting the water need of the crops.

IR = CWR — Pjs + [+4S]} (1.38)

IR is mainly estimated using RS-based SWB models, since irrigation is a component of
the water balance equation on which SWB models are based. The crop coefficient
method (FAO56 method) is currently the main method used for scheduling irrigations
around the world (Glenn ez a/, 2007). IR was rarely directly estimated using SEB models.
Indeed, SEB outputs are generally actual ET ze. its energy equivalent LE, and if irrigation
is estimated, it should be computed as a residual term of the water balance equation.
Exception exists, for example, Courault ez a/ (1998) used surface temperature derived
from NOAA data and a SVAT model called MAGRET to find parameters linked to the
irrigation over the agricultural region “la Crau” in South-Eastern France ; the predicted
parameters were the beginning and the end of irrigation, frequency and water quantity
diverted. IR for a typical crop and an assumed rainfall pattern may be illustrated as in
figure 1.9; it is rather a dynamic variable.
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Figure 1. 9: Typical crop water requirement and corresponding water provided naturally by rain
or artificially by irrigation

1.3.2 When water is given?

The total water required for crop growth is not uniformly distributed over its entire life
span. The total growing season of an annual crop can be divided into four growth stages;
the initial stage, the crop development stage, the mid-season stage (including flowering
and grain setting or yield formation) and the late season stage (including ripening and
harvest).

Since it is the period of the highest crop water needs, the mid-season stage is most
sensitive to water scarcity in which water shortages occurrence lead to negative effects on
the crop yield. The least sensitive to water shortages is the late season stage. Water
shortages in this stage - especially if the crop is harvested dry - have only a slight effect on
the yield. Care should, however, be taken even during this stage with crops which are
harvested fresh (lettuce as example) which are also sensitive to water shortages during the
late season stage. The initial and crop development stages are between the mid-season
and late season stages with respect to sensitivity to water shortages. Some crops react
favorably to water shortage during the crop development stage: they react by developing a
deeper root system, which is helpful during the later stages (Brouwer ez a/, 1989).
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1.3.3 How often water is given?

Soon after irrigation, when the soil is saturated, up to the field capacity, the extraction
of water from the soil by the plants is at the peak. This rate of water withdrawal decreases
as the soil moisture depletes. A critical threshold is reached in the moisture content of the
soil, below which the plant is stressed. Unless the soil moisture is increased by application
of water, the plant production would decrease. The difference of moisture content
between the maximum content of available water ze field capacity and the lowest
allowable moisture content ze. wilting point is called the optimum soil water, from which
the interval period of irrigation water may be estimated
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Figure 1. 10: Rise and fall of soil moisture content due to irrigation and evapotranspiration
(Source: Dhrubajyoti (2009))

When sprinkler and drip irrigation methods are used, it may be possible and practical
to vary both the irrigation depth and interval during the growing season. Whereas, when
surface irrigation methods are used, it is not very practical to vary the irrigation depth and
frequency, and it is very confusing for the farmers to change the schedule all the time.
Therefore, farmers usually fix the most suitable irrigation depth and interval and keep
them constant over the growing season.

Irrigation schedule can be determined either by plant observation method or by
estimation method:

o Plant observation method is based on observing changes in the plant characteristics
(plants color, curling of the leaves and ultimately plant wilting). The changes can often
only be detected by looking at the crop as a whole rather than at the individual plants.
The disadvantage of this method is that by the time the symptoms are evident, the
irrigation water has already been withheld too long for most crops and yield losses are
already unavoidable.

o Estimation method is based on the estimated depth (in mm) of the irrigation
application, and the calculated irrigation water need of the crop during the growing
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season. Thus, the influence of the climate, ze. radiation, air temperature and humidity,
wind speed and rainfall, is more accurately taken into account.

1.3.4 Plant response to water stress

In order to increase water savings and enhance agricultural sustainability, early
detection of water stress in crops, before it causes irreversible damage and yield loss, is
crucial. In water deficit settings, ET will be less than in fully irrigated conditions because
deficit-irrigated plants cannot transpire water at the same rate as fully watered, healthy,
and actively growing plants (NebGuide, 2009). Under the same microclimatic conditions,
irrigated crops will have higher ET rates than rainfed crops. Under rainfed or deficit
irrigation, the plant leaf stomata will close when the soil cannot supply water at a
sufficient rate, or the root system is not extensive and efficient enough to withdraw water
from the soil system to meet the atmospheric demand. Rainfed crops usually will have
deeper and more extensive root systems than irrigated crops and can withdraw water
from deeper soil layers. However, in the absence of rain, when the available soil water is
depleted, rainfed plants will experience wilting and ET will be reduced. Beyond a certain
water stress threshold, crop yield will decrease. Water stress indicators are therefore useful
to diagnose the causes of crop yield variability and develop management strategies in
water-limited environments.

Conventional methods for monitoring crop water stress rely on zz situ soil moisture
measurements, however, recent studies have focused on the use of remotely-sensed data
as an alternative to traditional field measurements of plant stress parameters, as this
provides information about the spatial and temporal variability of crops, these methods
are reviewed in Thuoma and Madramootoo (2017). The most classical indicator of crop
water stress that uses RS data without using direct measurements is the crop water stress
index (CWSI) based on the difference between air and canopy temperature (Idso ez af,
1981).

1.3.5 Irrigation efficiencies

The water that is required to irrigate a field or plot of land growing a particular crop
not only has to satisfy the evapotranspiration needs for growing the crop (.e. CWR), but
would also include i) losses in the form of deep percolation and surface runoff while
conveying water from the inlet of the field up to its tail end and ii) water requirement for
special operations like land preparation, transplanting, leaching of salts, etc.

The net irrigation requirement (NIR) is defined as the amount of irrigation water
required to be delivered in the field to meet the irrigation water requirement of crop (IR)
as well as other needs such as leaching, pre-sowing, etc. The Gross Irrigation
Requirement (GIR) is defined as the amount of water required to meet NIR plus the
amount of water lost as surface runoff and through deep percolation. Hence, to reflect
water losses at field scale, the field application efficiency (ea) defined as the ratio of NIR
and GIR, is used; it depends on the irrigation method and the level of farmer discipline.

NIR = e, X GIR (1. 39)
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1.4 Synthesis

This chapter is a state of art of the different estimation methods of the two main soil
water balance components, ET and irrigation, with a special care to VIS-NIR and TIR
remote sensing contribution in ET modeling. Finally, a comparative analysis between the
two main approaches using remote sensing data to estimate spatially distributed ET: the
SWB-based approach and the SEB-based approach, was performed, since, in this
dissertation, the two applied models to our study area; SAMIR and SPARSE; and aiming
to estimate ET either at field or regional scale are SWB model and SEB model,
respectively.

The study area as well as the used dataset is presented in the next chapter.
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Chapter 2: Study area and data
processing

In this chapter, the general framework of the study area (location, climate, natural resonrces,
land wuse etc.) is presented. Then, the different experimental sets and satellite data that have been
collected and used during this thesis are detailed. Climate and soil data as well as land use maps
are useful for agrometeorological models implementation. Other data are used for models
calibration (soil moisture, evapotranspiration flux) and validation (irrigation volumes on the main
zrrigated areas of the region, scintillometer measurements). The processing steps of these data are
also described. Finally, satellite images series and associated pre-processing are detailed. The high
spatial resolution SPOT5 images series are used to feed the SAMIR model with VIS-NIR data
Sor four agricultural seasons (2008-2009, 2011-2012, 2012-2013 and 2013-2014). The
atmospheric and radiometric correction of the SPOTS images series were based (among other pre-
processing methods) on the SPOT4-Take5 high repetitivity images series acquired by CNES' in
the beginning of the year 2013. The low spatial resolution images series Terra-MODIS and
Aqua-MODIS are used to feed the SPARSE model with V'IS-NIR and TIR data.
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2.1 Study area description
2.1.1 Geographic location

The Merguellil watershed (Figure 2.1) is a large watershed in Tunisia (1540 km?), it has
a relatively mountainous upstream part (1200 km?) with contrasting topography and land
use, and a downstream part, a vast plain mostly devoted to agriculture; the outlet of the
upstream subcatchment is the el Haouareb dam, built in 1989 which receives the waters
of the Merguellil wadi (Leduc ez a/., 2005). The downstream plain is the Kairouan plain,
our study area (Figure 2.1), located 9°30' E - 10°15' E and 35°N - 35°45' N, southwest of
Kairouan city and surrounding the village of "Sidi Ali Ben Salem".

The Kairouan plain is a low-lying plain (less than 100 m) whose water flows reach
closed depressions ze. sebkhas; Sebkha of el-Kalbia and Sebkha of sidi-el-Heni; acting as a
base level for the two main wadis in the region; Merguellil wadi and Zeroud wadi,
respectively. It is surrounded by the Sahel hills to the east and by mountains to the west
(Jebel Ouesslat, Jebel Cherichira, and Jebel Touila) (Figure 2.1).
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Figure 2. 1: The upstream and downstream parts of the Merguellil watershed in central Tunisia

The climate of this region is a semi-arid climate with very high precipitation variability
(average annual rainfall ranging from 250 to 500 mm/year); dry summers, wet winters and
large thermal amplitudes.

Various water and soil conservation works were carried out in the Merguellil basin
such as hill lakes and dams, which significantly reduce surface runoff and therefore
protect the El Haouareb dam from rapid siltation; contour ridges that locally reduce
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erosion processes and retain rainwater; and artificial groundwater recharge areas.
However, these structures have been poorly maintained and managed, resulting in
successive drying of the El Houareb dam (Cudennec ¢7 a/., 2003). The dam has altered the
balance of water intakes in the plain which leads, outside of flood periods, to dry out the
portions of wadis situated downstream of the dam (Leduc e7 /., 2007).

2.1.2 Climat data

The Kairouan plain is part of the arid bioclimatic zone with a temperate winter
(Barbery and Mohdi, 1987). Indeed, the Merguellil basin is sometimes influenced by a
temperate climate, specific to the cold and rainy Tellian mountainous of northern Tunisia
and at other times by the arid desert climate typical of southern Tunisia. However, du to
its topography, this basin is more influenced by Southern climate than by the North one
(Bouzaiane and Laforgue, 19806).

2.1.2.1 Rainfall

In central Tunisia, the rainy season extends from September to April, and in summer
the rains are almost absent. Precipitation is mainly rainfall, with dew and mist are
insignificant due to quasi-permanent atmosphere dryness. In the Kairouan region, annual
mean rainfall ranges from 265 mm in the plain to 515 mm in the highest part of the
catchment (Alazard ez al., 2015).

The Merguellil watershed is characterized by high interannual and spatial precipitation
variability with intense floods and droughts. The annual rainfall measured between 1986
and 2016 at the Kairouan SM meteorological station (9°32' 40" E - 35°22' 60" N) is
illustrated in figure 2.2. In this figure, totals are computed for hydrological years, from
September to August. The average annual precipitation is about 320 mm. 2000-2001 was
the driest hydrological year, with a total annual rainfall of 160 mm. The wettest
hydrological year was 1989-1990, with 575 mm of annual rainfall.
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Figure 2. 2: Kairouan SM station annual precipitation during the time series period 1986-2016

Moreover, average monthly precipitation measured in the same meteorological station
is shown in figure 2.3, showing significant irregularities in inter-monthly rainfall
throughout the year. The most intense downpours are recorded in September and
October. Generally, winter rains are often of low intensity compared to autumn rains,
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whereas in summer rains are rare or absent, which is a characteristic of semi-arid regions.
As annual rainfall averages fall below 400 mm, summer and spring drought affects plant
development and yields (Gorrab, 2016).
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Figure 2. 3: Average monthly rainfall variation of the Kairouan SM station (1986-2016).

2.1.2.2 Temperature

Analyzing the temperature data for the Kairouan station during the last 30
years (1986-2016) (Figure 2.4), it can be seen that the average monthly temperature
oscillates between 10°C and 28°C. Generally the coldest months are December, January
and February with average monthly temperatures below 15°C. The warmest months are
July and August with an average temperature of about 28°C. This temperature variation in
proves the region climate aridity. Warming at Kairouan during the last 50 years (1951—
2002) is statistically significant (0.29°C/10 years), also minimum temperatures have
increased significantly (Mougou e¢f a/., 2011).
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Figure 2. 4: Monthly average air temperature variation in the Kairouan Station (1986-2016)
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2.1.2.3 Relative humidity

The average monthly relative humidity in the region varies between 55% and 70%
during the cold season and between 40% and 55% during the warm season. The climate is
therefore moderately dry from September to April and very dry from May to August,
which explains the atmospheric clarity (Bouzaiane and Laforgue, 1986).

2.1.2.4 Wind conditions

The prevailing wind is from the north and north-west direction in winter and from the
south and south-west in summer. Winds are generally light winds (speed less than 50
km.h1). Two characteristic winds of the region are worth noting:

i- The sirocco is a warm, dry wind of Saharan origin, often accompanied by sand. It
blows between April and September (between 20 and 55 days per year) and causes
significant temperature increases of up to 50°C and can last for 12 successive days.
Annual mean sirocco days recorded during 1975 to 1995 were 41 (minimum 13;
maximum 60) (Mougou and Henia, 1998).

ii- Jebbali is a cold winter wind. It begins on the Algerian massifs (Bouzaiane and
Lafforgue, 1980).

2.1.3 Water Resources

The water resources of the Merguellil watershed are characterized by a very high
complexity, linked in particular to a spatial disparity in rainfall, to the interconnection of
surface and underground flows, to water withdrawals for various uses (agricultural,
domestic and industrial), to water and soil conservation works, and to large dams (El
Haouareb and Sidi Saad) located in the downstream part of the watershed (Kingumbi ez
al., 2007).

2.1.3.1 Surface water resources

The Merguellil watershed (Figure 2.5) is mainly drained by the Merguellil wadi. It
drains a vast basin of about 8600 km and collects surface water from most of central
Tunisia from the Tunisian-Algerian border. When large floods occur, usually during the
months of September, October or April, the waters of the Wadi Zeroud flooded a large
part of the Kairouan plain, especially its southern shore.
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Figure 2. 5: Hydrographic Network of the Merguelil and Zeroud wadi (Source: SIG Merguellil,
AMETHYST project)

During the autumn of 1969, the region of Kairouan experienced intense floods. In
September 1969, the rainfall was 145 mm (with 127 mm over six days), four times the
monthly average. This flood was followed by a second more intense flood in October
1969 (three times larger than in September, 428 mm). These exceptional floods are part of
the remarkable rainfall events in the Merguellil watershed (Bouzaiane and Laforgue,
1980).

2.1.3.2 Groundwater resources

The aquifer system of the plain of Kairouan is considered as the most important
reservoir of Central Tunisia (about 3000 km), with several aquifers stacked on top of each
other and communicating most often between them. The natural recharge of the
Kairouan aquifers was estimated at 57 Mm?3/year (Besbes, 1975; Chaieb, 1988). The
outlets of this hydrogeological system are the hydraulic boundaries of the Cherbai, Sidi El
Hani and Kalbia border sebkhas. The discharge of the water table takes place towards the
sebkhas where the waters are subjected to a strong evapotranspiration (natural discharge).

The Kairouan aquifer, of regional importance, is overexploited for irrigation as well as
for drinking water supply. This is due to the continued increase in the population
occupying the plain (564900 inhabitants in 2011) and the fact that water withdrawals
increasingly exceed natural inputs. The intensification of agriculture since the 1970—1980s
has relied on groundwater supply. The tendency is to intensify agriculture, not necessarily
with additional wells, but by the deepening of existing wells to increase their capacity. The
main irrigated crops are horticultural crops, cereals and orchards. The Tunisian State has
invested in public and collective wells in some areas, whereas others are private and
individually managed. However, illicit drilling and pumping were rapidly developed, while
water authorities tried to maintain situational awareness by conducting regional inventory
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of the pumping wells and maintaining a regional network to monitor water-table levels
(Massuel ez al., 2017). The evolution of the number of private wells in the Kairouan plain
from an inventory done in 2010 (approximately 2,066 private pumping wells; dug wells
and boreholes, for a total irrigated area of 12,000 ha within the 700 km? of the northern
part of the plain) was studied by Massuel ez a/ (2017); they found that this evolution
follows a steep growth often qualified as exponential (Figure 2.6).

The increase in water withdrawals from the Kairouan aquifer is the cause of its
overexploitation. The overexploitation of aquifers is perceptible through a general decline
in the piezometric level from 0.25 to 1 m per year for the last two decades and an average
annual drawdown of around 0.30 m for the period 1995-2007 (Leduc ez al, 2007). The
Kairouan plain aquifer has presented a general drop of the piezometric head of about
30 m over the last 40 years (Jerbi ez al, 2014). Figure 2.7 shows an example of a
piezometer in the Kairouan Plain in which a considerable decline in the piezometric level
is noted.
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Figure 2. 6: Exponential evolution of the cumulative number of private pumping wells from the
2010 inventory (Source: Massuel e al. (2017))

In an attempt to stop overexploitation, the authorities initially intervened on supply
through the management of dams and then on demand, by setting up a "back-up area"
(areas where drilling is prohibited) supposed to compel the drilling of new wells, since
1991. However, the Kairouan aquifer remains a collective resource in free access: the
restrictive regulations are not respected and the wells continue to proliferate especially
after the revolution (January 2011).
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Figure 2. 7: Variation of the Kairouan aquifer piezometeric level during 1969-2008: Example of
the El Grin piezometer (9°50' 52" E; 35° 36' 13" N) (Source, DGRE)

2.2 Land use maps

Land use in the Kairouan plain is intimately linked to climatic factors as well as soil and
available water resources. Land use maps were available for 2008-2009 (Shabou, 2010),
2011-2012 (Chahbi ez al, 2014), 2012-2013 (Chahbi, 2015) and 2013-2014 (Chahbi,
20106); they include eight, six, six and seven land use classes, respectively (only agricultural
area is taken into account). These classifications were obtained by applying a multi
temporal decision tree, which allows the identification of crop types based on NDVI
thresholds derived from ground truth datasets.

In order to validate these remotely-sensed classifications, confusion matrix were
produced for each map by comparing the classification results to actual land use for more
than 100 validation fields (independent from the training data). Test fields data collection
(land use, crop characteristics, estimated crop coverage rate, etc.) was a periodic work to
which I took part since 2014. This analysis showed an overall accuracy of approximately
97%, 80%, 85% and 88%, for the 2008-2009, 2011-2012, 2012-2013 and 2013-2014

seasons, respectively.

The most recent land use map (2013-2014) of the study area, given in figure 2.8, shows
that the main occupation of agricultural land in the Kairouan plain is non-irrigated olive
trees that occupy 41% of the plain. The olive tree is particularly adapted to the specific
characteristics of the arid zones. Irrigated tree crops (4%) and annual crops (12%, mainly
durum wheat and barley) are the other major land uses. Market gardening crops occupy
also a significant percentage of areas such as autumn vegetables (4.5%) and summer
vegetables (4%). During the summer, they consist mostly of tomatoes and peppers, and in
smaller proportions watermelons and melon, while in autumn many plots are used for
growing peppers and beans. The percentage of bare soils (rangeland and fallow) is
important (18.4%) due to the hydric constraint that becomes more and more limiting in
the plain. The lack of rain often incites farmers to decide not to sow or to abandon the
plots originally planted in cereals. Moreover, the unfavorable soil characteristics and the
extension of the zones affected by the salinization are other factors explaining the
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increase of the uncultivated soils. These soils are vulnerable areas exposed to various
degradation forms (water and wind erosion).
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Figure 2. 8: Land use map of the Kairouan plain obtained by the classification of SPOT 5 multi-
date images for the 2013/2014 agricultural season.

2.3 Observed irrigation data

Information on actual irrigation volumes at scales ranging from plot to perimeter is
essential for the validation of the SAMIR model irrigation estimates.

a. Perimeter scale

The dominant structure for irrigation in the Kairouan plain is the Agricultural
Development Group (Groupement de Développement Agricole, GDA —in French)
(Figure 2.9). Monthly irrigation volumes were obtained at the scale of each GDA irrigated
sector. It was assumed that these data were trustworthy since these entities manage a
collective well equipped with a meter, providing the water to the plots inside the
perimeter. However, some plots outside the official perimeter also benefit from this water
and in the frame of the acquisition of our validation data, they were delineated with the
help of the irrigation manager. Conversely, no private well is exploited inside the GDAs,
so that the monthly volumes collected can be reliably linked to the declared cultivated
area.
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Figure 2. 9: Geographic location of the GDAs in the study area

The irrigation data (2008-2015) of three GDAs, Ben Salem II, Mlelsa and Karma II
extending on 267 ha, 225 ha and 106 ha, respectively, were collected within the
framework of this thesis (figure 2.10). The pumped volumes are obviously dependent on
each GDA area, however, the general shape is the same and the peaks are always reached
in summer with the decrease in rainfall and the summer vegetables requiring a lot of
water.
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Figure 2. 10: Monthly pumped water volume in the Ben Salem II, Mlelsa and Karma II GDAs.

b. Plot scale

Field surveys conducted in 2013 in Ben Salem II, Mlelsa and Karma I and Karma II
GDAs were carried out to collect plot-scale irrigation data. The irrigation volumes
invoiced to the owners (or farmers) obtained from the managers of the collective
perimeters (GDA) were combined with the identification of each owner’s plot (or plots)
carried out in the field thanks to the aid of the managers in charge of the water
distribution. Thus, one irrigation volume was obtained per "name". The term "name"
refers to one or more plots belonging to the same owner, or cultivated by the same
farmer, corresponding to a single invoiced volume. Finally, 106, 76 and 34 "names" were
identified for the GDAs Mlelsa, Karma I and Karma II respectively. For the GDA of Ben
Salem II the invoicing was done at the level of only eight blocks.
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2.4 Remote sensing data
2.4.1 High-resolution satellite imagery

Acquisition of SPOT5 image time series were planned over the plain: Nine, six,
thirteen and nine SPOT5 images were acquired for the 2008—2009, 2011-2012 , 2012—
2013 and 2013-2014 seasons, respectively (Figure 2.11). These images were used to feed
the SAMIR model with NDVI data allowing the vegetation dynamic monitoring.

For the 2012-2013 season, we benefited also from images acquired in the frame of the
SPOT4-Take5 experiment (SPOT4-Take5, 2013) which occurred during the first half of
2013 and whose main purpose was to simulate the revisit frequency and resolution of
Sentinel-2 images to help users set up and test their applications and methods before the
mission is launched. In this frame, SPOT4-Take5 images at 20 meters resolution were
acquired every 5 days from 3 February to 18 June 2013 over the Kairouan plain, but only
14 dates were cloud free among the 28 images acquired (Figure 2.11).

The longest gap in the SPOT4-take5 time series was at the beginning of the period, as
the first correct image was acquired on 10 March 2015, which means 40 days without
image data. This is quite long regarding vegetation monitoring and emphasizes the
limitation of a five-day revisit frequency even in semi-arid areas (frequent cirrus clouds
can be observed over the study site). However, in our case, this gap was filled using the
SPOT5 satellite, which successfully acquired two images, thanks to the programming
capabilities of this sensor and its oblique viewing agility allowing observing areas on cloud
free days. This is interesting since it shows that combining Sentinel-2 data with other
sensors (Landsat 8, SPOTO, etc.) may still be necessary in many places to get consistent
high-resolution time series. Another way to bridge the gaps in the time series would be to
use fusion methods using medium-resolution images to estimate high-resolution
signatures (Gao ¢t al., 2000).
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Figure 2. 11: Acquisition dates of the SPOT images.

SPOT images processing

Those images require processing in order to get rid of geometric and radiometric
measurement errors.

a. Geometric corrections

A raw satellite image is affected by geometrical deformations due to the relative
movement of the sensor during acquisition, its angle of view, the rotation of the Earth
and the geometry of the Earth surface (curvature and relief). These images cannot be
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stacked with maps of the same area. Hence, satellite image geometric correction is
paramount since it allows remote sensing derived information to be related to other
thematic information in Geographical Information System. In our case, the coordinate
system chosen is UTM, 327 Zone, North.

The image acquired on 5 November 2012 was first corrected using orthorectification
and georeferenced using GPS points. This image was used as a reference image for the
geometric correction of the subsequent SPOT5 campaigns. The subsequent images were
first orthorectified and then georeferenced regarding the reference image using a first-
degree polynom adjusted on a set of 20-30 points control points selected manually all
over the image. The resulting Root Mean Square (RMS) was usually less than 0.5 pixel, the
equivalent of 5 m for SPOT images, which is valid for this type of data. Geometric
correction was performed using ENVI software.

b. Radiometric corrections of SPOT5 image time series

There are three types of radiometric corrections: calibration of sensor values to get
physical data, correction for the geometric variation in the image acquisition (satellite view
angle and topography) and atmospheric correction (absorption and scattering of solar
radiation).

SPOTS5 images (2008-2009 and 2011-2013) were radiometrically corrected to obtain
top of canopy (TOC) reflectance on the basis of physical modeling corrections using the
Simplified Method for Atmospheric Corrections (SMAC) algorithm based on the 6S
radiative transfer model (Rahman and Dedieu, 1994). The SMAC 6S model was applied
for each image using values of atmospheric optical depth and water content taken from a
photometer located in the area and part of the AERONET network (Aeronet). The
corrections for the 2008-2009 and 2011-2012 image time series were done by Zaghouani
(2013) and for the 2012-2013 and 2013-2014 seasons, pre-processing was done in the
frame of this thesis.

The SPOT4-take5 series were provided already corrected using the Multi-sensor
Atmospheric Correction and Cloud Screening (MACCS) algorithm taking into account
both temporal and spectral approaches for retrieving the aerosol optical thickness
(AOT)(Hagolle e al., 2015).

c. Internal radiometric normalization of 2012-2013 season’s SPOT5 and SPOT4-
take5 images time series

Due to the uncertainties in the atmospheric parameters, and in order to eliminate time
profile artifacts due to radiometric correction discrepancies within the time series, an
additional inter-calibration between images acquired in 2012-2013 was achieved (both
SPOT5 and SPOT4-take5 time series) and was applied only to the two SPOT bands used
for the NDVI computation, ze. XS2 (red band) and XS83 (NIR band). Among the several
methods of radiometric normalization (Furby and Campbell, 2001), the pseudo-invariant
teatures (PIFs) method is widely used (Eckhardt ez a/., 1990; Paolini e al., 2006; Schott ez
al., 1988; Schroeder e# al., 2006). Indeed, the radiative transfer model shows that for a flat
topography and an assumed spatially homogeneous atmosphere, the reflectance can be
linearly related to the image digital numbers DNs (Schott e al, 1988). This relative
approach allows calibrating all images with similar atmospheric conditions with one image
used as a reference. In our case, the seasonal average image was used. Hence, pseudo-
invariant features were identified for which a constant reflectance value could be assumed
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over time. Thus, an additional normalization of the image time series was achieved by
linear correction of the identified inconsistent dates as it was done by Houles 7 a/. (2000)
and Simonneaux e# al. (2008).

The PIFs method was applied to the SPOT5 and SPOT4-take5 image time series. 28
invariant objects were identified manually in the scene by visually comparing pairs of
distant dates in the SPOT5 2012-2013 image time series (ze., 5 November 2012 and 10
June 2013). Then, for these 28 objects, the reflectance of one band at each date is plotted
against the reflectance of the average image of this band (Figures 2.12 and 2.13). The
quality of the invariant objects is confirmed by the determination of the linear fit.
However, whereas in some cases the regression fits the 1:1 line (Figures 2.12a and 2.13a),
in other cases the regression line is significantly different from the 1:1 line, showing a
problem in the quality of the atmospheric correction Figures 2.12b and 2.13b). These
discrepancies are more frequent for the SPOT5 time series, which is not surprising as
each date was corrected independently, whereas the SPOT4-take5 series was corrected
using the MACCS algorithm taking into account the temporal dimension of the series.
When the deviation from the 1:1 line was important, the linear correction was applied to
the image to match it with the average image.

For the SPOT5 time series, eight images were corrected while for the SPOT4-take5
time series, seven dates were linearly corrected, and one date was discarded (20* of
March) because of the strong scattering of the reflectance due to haze (Figure 2.13c).
Figures showing the comparison, between each SPOT5 and SPOT4-take5 images and the

average image of the time series for the 28 invariant sites are given in annex 4.1.
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Figure 2. 12: Comparison between the 2012-2013 SPOT5 images after atmospheric correction
using SMACOS and the average reflectance image of this series for the 28 invariant sites, for
spectral bands XS2 and XS3. Example of (a) an image for which no additional correction is

required and (b) an image needing an additional correction.
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Figure 2. 13: Comparison between the SPOT4-take5 atmospherically corrected images and the

average SPOT4-take5 reflectance for the 28 invariant sites, for spectral bands XS2 and XS83.
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Example of (a) an image for which no additional correction is required, (b) an image needing an
additional correction and (c) a hazy image (discarded from the final time series).

d. Additional 2012-2013 season’s SPOTS5 images radiometric normalization
(SPOTH4-take5 images as reference)

Once the consistency of reflectance levels within the two time series had been checked,
a similar analysis is performed between the SPOT5 (2012-2013 season) and SPOT4-take5
images time series by plotting the average reflectance of the invariant objects (Figure
2.14). A significant bias was observed which can be explained by:

) Differences in the atmospheric correction algorithm used;
i1) Difference in band definition between SPOT4-take5 and SPOT5;
1if) The variations in viewing angle between both sets of images. Indeed the

SPOT4-take5 images were acquired at a fixed angle different from nadir,
whereas SPOT5 images were acquired at any angle.

The observed bias had a strong impact on maximum NDVI values observed in the
images, which was 0.9 for the SPOT4-take5 series, and only 0.7 for the SPOT5 series.
Considering that fully covering vegetations were certainly present in the area (ze., cereals
or forage fields), a realistic maximum NDVI value of 0.9 was expected for all seasons.
Therefore, the SPOT5 series was linearly normalized to match the SPOT4-take5
radiometry on the basis of the linear regression established between the reflectance of the
SPOT5 and SPOT4-take5 average images (Figure 2.14). Figures showing the comparison
between the reflectance of the 2012-2013 SPOT5 images (after internal normalization
using the PIFs method) and the average SPOT4-take5 reflectance (after internal
normalization using the PIFs method) for the 28 invariant sites for all images are given in
annex 4.2.

Finally, a NDVI profile was generated for each pixel, for all 2012-2013 SPOT5 and
SPOTH4-take5 images.
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Figure 2. 14: Comparison between the average reflectances of the 28 invariants for the 2012-
2013 SPOTY5 and SPOT4-take5 time series before correction.
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e. NDVI standardization of 2008-2009, 2011-2012 and 2012-2013 SPOT5 images
(SPOTH4-take5 images as reference)

For the 2008-2009 and 2011-2012 seasons, the NDVI time series were already
computed by Zaghouani (2013) using the XS2 and XS3 bands. Maximum NDVI as well
as bare soil NDVI were identified for the 2008-2009, 2011-2012 and 2012-2013 SPOT5
time series images, and an average maximum NDVI and an average bare soil NDVI were
computed for each season. Then, these values were compared to those obtained with the
SPOT4-take5 series. As mentioned above, considerable NDVI bias was observed not
only for the 2008-2009 and 2011-2012 seasons but even for the 2012-2013 season.
However, intra-annual maximum vegetation and bare soil NDVI are supposed to be the
same in a context of an irrigated area. Therefore, the NDVI values for the three SPOT5
series were linearly normalized (based on maximum vegetation and bare soil) to match the
SPOT4-take5 series (Table 2.1). Although ideally we should have go back to the Red and
NIR bands for correction, this direct NDVI correction, although approximative, was
achieved for the sake of simplicity, considering errors remain low.

Table 2. 1: linear regressions for NDVI standardization

SPOT campaigns Bare soil Maximum vegetation Linear regressions
NDVI NDVI

SPOTS5 2008-2009 0.14 0.84 Y =115X-0.06

SPOTS5 2011-2012 0.16 0.85 Y =117X-0.09

SPOTS5 2012-2013 0.09 0.72 Y =127X-0.02
SPOT4-take5 2012-2013 0.10 0.90

£ Radiometric corrections of 2013-2014 SPOT5 image time series

Since the SPOT4-take5 image series was taken as reference to radiometrically correct
the SPOT5 images, we also used it to directly correct the 2013-2014 seasons’ SPOT5
images series using the PIF approach, without applying the SMAC 6S model. Hence, 31
invariant objects were identified manually in the scene by visually comparing pairs of
distant dates, zZe. 26 February 2013 and 15 February 2014. For these 31 objects, the DNss
of each date were plotted against the reflectance of the average SPOT4-take5 image
(Figures 2.15). Each date was then linearly corrected to match the SPOT4-Take5
radiometry based on the established linear regressions. The figure 3.15 shows example of
two images, all the other figures are given in annex 4.3.
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Figure 2. 15: Comparison between the 2013-2014 SPOT5 images DNs and the average SPOT4-
takeb reflectance for the 31 invariant sites, for spectral bands XS2 and XS3. Example of (a) an
image in early season and (b) an image in mid-season.

2. Cloud masking

The SPOT4-take5 series was delivered with cloud masks that were applied to avoid
anomalies in the NDVI, while for the SPOT5 images, only two images included small
cumulus clouds (5 November 2012 and 21 January 2013) which were manually masked.
The clouds were identified using a simple threshold since they have a strong reflectance in
the green band. The cloud shadows were also easy to identify because they had the lowest
reflectance in the near infrared band. As small clouds were rarely at the same place, they
have limited impact on the resulting ND VI profiles.

2.4.2 Low-resolution satellite imagery

To feed the SPARSE energy balance model, we used products of the MODIS sensor
embarked on board of the satellites Terra (overpass time around 10:30 local solar time)
and Aqua (overpass time around 13:30 local solar time) (Table 2.2). MODIS products
were acquired for the study period, from 1 September 2012 to 30 June 2015, at the
resolution of 1 km. The data used were: land surface temperature (Tsuf), surface emissivity
(esurf) and viewing angle (¢) (MOD11A1 and MYD11A1 products for Terra and Aqua,
respectively; NDVI (MOD13A2 and MYD13A2 products for Terra and Aqua,
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respectively) and albedo () (the combined products MCD43B1, MCD43B2 and
MCD43B3).

All MODIS products are stored in a hierarchical format of enhanced data, HDF
(Hierarchical Data Format) files, consisting of multidimensional data tables and
descriptive metadata. The structure of the MODIS data directory is based on the short
names of the MODIS products. TERRA MODIS products are abbreviated "MOD",
AQUA MODIS products are abbreviated "MYD" and the combined products TERRA
and AQUA MODIS are abbreviated "MCD". Abbreviated names also include the version
number. The classification of MODIS data (Earth, atmosphere and cryptosphere data) is
done in a hierarchy of five levels according to the applied processing to these data:

e Tevel 0: This is the first level in which the raw data are stored in PDS (Production
Data Set) format. Raw data are reconstructed, unprocessed instrument and payload
data at full resolution, with all communications artefacts removed.

e JTevel 1A: Reconstructed, unprocessed instrument data at full resolution, time-
referenced, and annotated with ancillary information, including radiometric and
geometric calibration coefficients and georeferencing parameters computed and
appended but not applied to Level 0 data.

e Jevel 1B: Level 1A data that have been processed to sensor units (not all
instruments have Level 1B source data).

e Level 2: This is the level where the geophysical parameters are derived at the same
resolution and location. These are data of level 1B to which the atmospheric
corrections have been applied. They are directly exploitable to process the surface
parameters.

e Level 3: This is the level at which the data are averaged over a time scale. Variables
are mapped on uniform space-time grid scales, usually with some completeness
and consistency.

e Level 4 Model output or results from analyses of lower-level data (e.g., variables
derived from multiple measurements).

The Characteristics of the used MODIS data are detailed in annex 5.

MODIS images pre-processing

Most standard MODIS Land products use the Sinusoidal grid tiling system (Figure
2.106). Tiles are 10 degrees by 10 degrees at the equator. The tile coordinate system starts
at (0, 0) (horizontal tile number, vertical tile number) in the upper left corner and
proceeds right (horizontal) and downward (vertical).
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Figure 2. 16: MODIS sinusoidal tiling system (Source: https://lpdaac.usgs.gov/)

a. Data reprojection , extraction and temporal interpolation

The sinusoidal projection is used for the storage of MODIS images at the Land
Processes Distributed Active Archive Center (LP-DAAC). This projection is not suitable
for displaying images. The composite data was therefore reprojected using MODIS
Reprojection Tool (MRT). The MRT free software is developed by the Land Processes
Distributed Active Archive Centre (LP-DAAC); it enables users to 1) read data files in
HDF format (MODIS Level-2G, Level-3, and Level-4 land data products), ii) specify a
geographic subset or specific science data sets as input to processing, iii) perform
geographic transformation to a different coordinate system/cartographic projection, and
1v) write the output to file formats other than HDF (Dwyer and Schmidt, 2006)

A MATLAB (matrix laboratory programming language https://fr.mathworks.com/)
code was used to apply MRT and retrieve the images for each MODIS product in order
to extract the variables that will be used as input data into the SPARSE model. A 10 km X
8 km sub-image centered on the scintillometer transect (see section 2.5.3) was extracted
(Figure 2.17).
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Figure 2. 17: Geographic location of the extracted 10 kmX 8 km MODIS sub-image (MODIS

grid)
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The daily MODIS T and viewing angle, 8-day MODIS albedo, and 16-day MODIS
NDVI contain some missing or unreliable data; hence, days with missing data in MODIS
pixels regarding the scintillometer footprint were excluded. Linear temporal interpolation
of albedo and NDVI data were done to get daily images. For each pixel, only the good RS
data was taken into account (based on the quality index supplied with the product); hence,
the temporal interpolation was specific for each pixel.

b. Remote sensed leaf area index

LAI is a key variable functionally related to plant biomass production. Accurate
estimation of leaf area index (LAI) is important for monitoring vegetation dynamics.
Indeed, early research showed that there is a strong correlation between a red to near-
infrared transmittance ratio and LAI (Jordan, 1969) and spectral measurements are
strongly related to the LAI (Tucker, 1979). The NDVI is one of the most extensively
applied vegetation indices related to LAI, hence, a single equation (Clevers, 1989) was
used to compute remotely-sensed LAI of all crops in the study area from the MODIS
NDVI product:

2.1

LAI = _%ln( NDVIw—NDVI )

NDVIw—NDVIgyir

Soil and vegetation NDVI threshold, NDVIoo and NDVlIs, are often difficult to
obtain, particularly in sparsely or highly vegetated areas (Song e# a/., 2017). The traditional
methods for their estimation are: i) maximum and minimum NDVI in a study area
(Gutman and Ignatov, 1998), ii) the accumulative maximum and minimum over a long-
term series dataset (Zeng et al, 2000) or iii) NDVI®© and NDVIi based on field
measurements or high-resolution remotely-sensed data (Jiapaer e al, 2011; Zhang e al.,
2013). It has been reported that the underestimation of NDVIu in sparse vegetation
areas may cause the overestimation of LAIT as high as 0.2 (Montandon and Small, 2008).

The calibration of this relationship was done over the Yaqui irrigated perimeter
(Mexico) during the 2007-2008 growing season using hemispherical LAI measured in all
the studied fields and NDVI, derived from Formosat-2 images (Chirouze ef al, 2014) .
Calibration results gave the asymptotical values of NDVI, NDVIco = 0.97 and
NDVIi = 0.05, as well as the extinction factor k = 1.13. The NDVIu obtained by
Chirouze et al. (2014) over the Yaqui perimeter was different from the bare soil NDVI
computed using the SPOT images (see sect. 2.4.1 table 2.1). In fact, bare soil NDVI
depends on the used remotely-sensed data and on the study area which are different in
our case (SPOT vs. Formosat-2 and Yaqui perimeter vs. Kairouan plain) but it is always
assumed that NDVI of 0.1 and below correspond to bare soil (Weier and Herring, 2000).
However, as this relationship was calibrated over a heterogeneous land surface but on
herbaceous vegetation only, its relevance for trees was checked. For that purpose, clump-
AT measurements on an olive tree, as well as allometric measurements, ze¢. mean distance
between trees and mean crown size were obtained using Pleiades satellite data (Mougenot
¢t al., 2014; Touhami, 2013). We checked that the pixels with tree dominant cover showed
LAT values close to the results of allometric measurements (of the order of 0.3 given the
interrow distance of 12 m on average).
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2.5 In situdata
2.5.1 Meteorological data

Half houtly standard meteorological measurements including global incoming radiation
i.e incident short wavelengths radiation [W.m2|, wind speed [m.s"], air temperature [°C],
air humidity [%] and rainfall [mm] have been recorded using an automated weather
station installed in the study area (delegation of Chebika, Sidi Ali Ben Salem sector) since
December 2011(Figure 2.18) in the frame of the SudMed programm!. Hereafter, this
weather station is referred as the Ben Salem meteorological station (35° 33' 1" N; 9° 55'
18" E). It is an automatic Campbell Scientific (Logan, USA) station. The global radiation
is measured using a Str11 pyranometer (Wittich, Netherland). Wind speed and direction [°]
are measured using a Windvane-Anenometer R.M.010305 (Young, USA); wind speed is
measured at 2.32m above the ground. The air temperature and air humidity are measured
using a HMP45C thermo-hygrometer (Vaisala, Finland). Rainfall is measured with a
Tipping Bucket Raingauge SBS500 (Campbell Scientific, USA).

Figure 2. 18: Ben Salem meteorological station set-up

Required meteo data over periods prior to the Ben Salem meteorological station
installation date (from 2008 to 2011) were taken from the nearest weather station referred
as the INGC (National Institute of Field Crops, Institut National des Grandes
cultures—in French) meteorological station (35° 37' 14" N; 9° 56' 16"E). This wheather
station is managed by the National Meteorological Institute (INM, Institut National
météorologique—in French).

Processing of meteorological data

The processing of INGC meteorological data aquired from January 2008 to December
2011 was done in the frame of Zaghouani (2013) master thesis, while the Ben Salem
meteorological data sets acquired from December 2011 to June 2015 and used in this

I The SUDMED program has been launched by the CESBIO (Center for Space Studies of the BIOsphere, Centre
d’Etudes Spatiales de la BIOsphére—in French) to address the issue of improving understanding of the hydrological
functioning of semi-arid watersheds. Study sites are the Tensift in central Morocco since 2002, the Merguellil
catchment since 2008 and the Mount Lebanon for snow hydrology since 2011.
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PhD thesis work required primary processing to make them relevant and usable; thus the
reliability and accuracy of each climate variable was checked by identifying periods with
missing data as well as outliers and measurement artefacts. Depending on the nature of
the errors found, they have been corrected as follows by linear interpolation if only a half
an hour data is missing or erroneous; otherwise, missing or erroneous data over several
hours or several days were substituted by data from the Ben Salem flux station or the
INGC weather station (subject to availability). Thus, for each meteorological variable, a
complete data set was generated at a half-hour time step, which enabled us to compute
half hourly reference ET (ETo) using the FAO “reduced form” equation for application
to both 24-h and houtly or shorter time steps (Allen e al., 2005a; Allen ez al., 2000):

C
0408 4R, —G)+ v T—EZB U,(e°(To.5n) —eq) 2.2
ET, = ’ ’
o A+ Y (1 + CdUZ)

where where ETo is in mm (0.5h)! for half hourly time steps, Rn-G [M] m2 (0.5h)-!] is
half hourly available energy, y [kPa.C-1] is the psychrometric constant, Tosn [K] is half
houtly air temperature, 4 [kPa C] is saturation slope vapour pressure curve at Tosn, Uz
[m.s!] is average half-houtly wind speed, ¢°( Tosn) [kPa] is saturation vapour pressure at
air temperature Tosh , €. [kPa] is the average half-hourly actual vapour pressure and C,
and Cq are respectively the numerator and denominator constants that change with
reference type and calculation time step (Cn= 0.5%37 and C4=0.34 (Allen ez a/., 2000)).

The relationships allowing calculation of the equation 2.2 parameters are detailed in
annex 6. Once calculated at the half-hour time step, the daily ETo was computed. The
following graph (Figure 2.19) represents the two series of daily ETo and rainfall of the
Ben Salem meteorological station from December 2011 to June 2015, higher values of
about 10 mm/day are reached in summer.
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Figure 2. 19: Daily variation of reference evapotranspiration and rainfall over the period
December 2011-June 2015 (Ben Salem meteorological station)

2.5.2 Flux and soil moisture data

The flux data sets used in this PhD thesis works were measured by three automatic
Campbell Scientific (Logan, USA) flux stations (Figure 2.20) based on the eddy
correlation (EC) method. Moreover, soil properties (moisture, temperature and heat flux)
measurement is carried out in soil pits near the flux towers.

The first station was installed few tens of meters away from the Ben Salem
meteorological station, in an irrigated field (delegation of Chebika, Sidi Ali Ben Salem
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sector) from December 2011 until November 2014. Hereafter, this station is referred as
the Ben Salem 1 station (35° 33' 1" Nj; 9° 55' 18" E). It was operated to measure the four
components of the surface energy budget as well as soil properties of i) an irrigated barley
tfrom December 2011 to June 2012 and i) an irrigated wheat from November 2012 to
June 2013 and iii) an irrigated pepper from June to November 2014. The second station
was installed in a rainfed wheat field (delegation of Chebika, Sidi Ali Ben Salem sector)
from January to June 2012. Hereafter, this station is referred as the Ben Salem 2 station
(35° 33' 32" N; 9° 56' 25" E). The third station was installed in a rainfed olive orchard
(delagtion of Nasrallah) from March 2012 to September 2016. It consists of two stations:
one on the olive tree and the other on the bare soil. Hereafter, this station is referred as
Nasrallah station (35° 18" 17" N; 9° 54' 56" E). The measured parameters as well as the
measuring sensor are detailed in table 2.3 for the three stations.

9

Olive tree station

Bare soil station

Figure 2. 20: set-up of a) Ben Salem 1 b) Ben Salem 2 and c) Nasrallah stations

These three stations measure the convective fluxes exchanged between the surface and
the atmosphere (H and LE) by the turbulent covariance method, combined with
measurements of the net radiation Rn and the soil heat flux G (15mn recording time

step).

The components of the radiative surface balance which are short wavelength radiations
(incoming and outgoing) and long wavelength radiations (incoming and outgoing) are
measured by net radiometer). From these measurements, the net radiation is deduced
since it represents the balance between short and long wavelengths radiation according to
the equation 1.19 (see section 1.2.2.1). G is measured by three soil heat flux plates
uniformly distributed at a soil pit (2-3 cm depth) close to the flux towers of the Ben Salem
1 and Ben Salem 2 stations. Five soil heat flux plates were used in the Nasrallah  station.
A correction was performed to bring the soil heat flux measured in depth to a surface
heat flux by taking into account the heat stored between the surface and the measurement
depth. H and LE are measured using 1) a CSAT3 anemometer recording high-frequency
fluctuations (20 Hz) of the three components of wind speed; the component u horizontal
and parallel to the wind direction, the component v horizontal and perpendicular to the
wind direction and the vertical component w; as well as the air temperature fluctuations
(20 Hz) from the sound velocity; and ii) an optical hygrometer KH20 recording high-
frequency (20 Hz) fluctuations of water vapor in the atmosphere ze water vapor. Since the
KH20 sensor cannot measure the absolute vapor pressure, it is coupled with a thermo-
hygrometer installed at the same height which measures the air humidity and temperature
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(Table 2.2). Moreover, soil moisture and temperature are measured using respectively five
thetaprobes and five thermistors (Table 2.2)

Table 2. 2: Measured parameters and measuring instruments in the Ben Salem 1, Ben Salem 2

and Nasrallah stations

Flux stations Measured parameters Sensor Model and Manufacturer
Ben Salem1 Flux Wind speed (u, v, w) [m.s1] 3D Sonic CSAT?3 (Campbell Scientific,
tower Anemometer USA)
Specific air humidity [kg.kg!] Hygrometer KH20 (Campbell Scientific,
USA)
Temperatute ait [°C] Thermo- HMP155 (Vaisala, Finland)
hygrometer
Relative humidity [%o] Thermo- HMP155 (Vaisala, Finland)
hygrometer
Radiations Net radiation [W.m2| Net Radiometer ~ NRO1 (Hukesflux, Netherlands)
Infrared temperatutre [°K] Infrared IR120 (Campbell Scientific,
thermometer USA)
NDVI [-] NDVI sensor SKR1800 (Skye, UK)
Soil Soil hat flux [W.m-?2] Simple soil heat ~ HFPO1 (Hukseflux,
flux plates (x4)  Netherlands)
Self calibrated HFPO01SC (Hukseflux,
soil heat flux Nethetlands)
plate
Soil Temperature [°C] Thermistors TH108 (Campbell Scientific,
(x5) USA)
Soil moisture [m3.m-3) Thetaprobes MI.2x (x5) and PR2/6 (x1)
(DeltaT, UK)
Ben Salem 2 Flux Wind speed (u, v, w) [m.s] 3D Sonic CSAT?3 (Campbell Scientific,
tower Anemometer USA)
Specific air humidity [kg.kg!] Hygrometer KH20 (Campbell Scientific,
USA)
Air temperature [°C] Thermo- HMP155 (Vaisala, Finland)
hygrometer
Air relative humidity [%0] Thermo- HMP155 (Vaisala, Finland)
hygrometer
Radiations Net radiation [W.m Net Radiometer ~ NRLITE 2 (Kipp&Zonen,
Netherlands)
Soil Soil hat flux [W.m?2] Soil heat flux HFPO1 (Hukseflux,
plates (x5) Netherlands)
Soil Temperature [°C] Thermistors TH108 (Campbell Scientific,
(x5) USA)
Soil moisture [m3.m3] Thetaprobes ML2x (DeltaT, UK)
(x5)
Nasrallah Flux Wind speed (u, v, w) [m.s']] 3D Sonic CSAT?3 (Campbell Scientific,
(olive tree) tower Anemometer USA)
Specific air humidity [kg.kg!] Hygrometer KH20 (Campbell Scientific,
USA)
Air temperature [°C] Thermo- HMP155 (Vaisala, Finland)
hygrometer
Air relative humidity [%o] Thermo- HMP155 (Vaisala, Finland)
hygrometer
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Flux stations Measured parameters Sensor Model and Manufacturer
Nasrallah  Radiations Net radiation [W.m2] Net CNR4 (Kipp&Zonen,
(olive tree) Radiometer Netherlands) and NRO1

(x2) (Hukesflux, Nethetrlands)
Infrared temperature [°K]  Infrared IR120 (Campbell Scientific,
thermometer USA)
Soil Soil hat flux [W.m| Soil heat flux HFPO1 (Hukseflux,
plates (%5) Netherlands)
Soil Temperature [°C] Thermistors TH108 (Campbell Scientific,
(x5) USA)
Soil moisture [m3.m3] Thetaprobes ML2x (DeltaT, UK)
(x5)
Nasrallah  Flux Air temperature [°C] Humidityand =~ HMP155 (Vaisala, Finland)
(bare soil)  tower Temperature
Probe
Relative humidity [%] Humidityand =~ HMP155 (Vaisala, Finland)
Temperature
Probe
Wind speed [m.s!] Windvane- R.M. 010305 (Young, USA)
Anenometer
Wind direction [°] Windvane- R.M. 010305 (Young, USA)
Anenometer
Rainfall [mm| Raingauge SBS500 (Campbell Scientific,
USA)
Radiations Infrared temperature [°’K]  Infrared IR120 (Campbell Scientific,
thermometer USA)
Soil Soil hat flux [W.m-?2] Soil heat flux HFPO1 (Hukseflux,
plates (% 5) Netherlands)
Soil Temperature [°C] Thermistors TH108 (Campbell Scientific,
(x5) USA)
Soil moisture [m3.m-3] Thetaprobes MIL2x (DeltaT, UK)
(x5)

Processing of flux data

The processing of the Ben Salem 1 irrigated wheat (2012/2013) flux data was done in
the frame of this PhD thesis work. The processing of the Ben salem 1 irrigated barley
(2011/2012) and the Ben Salem 2 rainfed wheat (2011/2012) flux data was done in the
frame of Zaghouani (2013) master thesis while Nasrallah flux data processing was done
by Chebbi e# al. (2017, in progress) . It is all the same for the irrigated fields soil moisture
data.

The EC processing sequence to calculate turbulent fluxes from raw, high-frequency
data is complex, depending on the chosen instruments, their deployment, the site
characteristics and the atmospheric turbulence peculiarities (Fratini and Mauder, 2014).
Several software programs allowing the calculation of convective flows using the
turbulent covariance method have been developed and made available to the scientific
community in recent years (Foken ef al., 2012). They allow the application of required
instrument corrections, applying calibration coefficients if needed, rotating coordinates;
correcting for time delays; and conducting quality control. The most used are: TK2,
developed at the University of Bayreuth, Germany (Mauder and Foken, 2011); EDIRE,
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developed at the University of Edinburgh, UK (Clement and Moncreif, 2007), ECPACK
developed in the University of Wageningen, Netherlands (Van Dijk ez al, 2004), and
EDDYPRO developed by LI-COR, USA (LI-COR, 2016). In our case, post-processing
of 20 Hz EC data was done using the EddyPro software in order to get half hourly
convective fluxes (LE and H).

In a subsequent step, the energy balance closure was calculated by statistical regression
of half hourly turbulent energy fluxes against available energy for the irrigated barley
(2011/2012), the irrigated wheat (2012/2013) and the rainfed wheat (2011/2012) fields.
The result indicates a lack of closure with an imbalance of 14% (Figure 2.21), 40% (Figure
2.22) and 20% (Figure 2.23) for the irrigated batley, irrigated wheat and rainfed wheat
tields, respectively. The low closure value (60%) for the irrigated wheat field can be
explained by the quality of EC measurements which is influenced not only by possible
deviations from the theoretical assumptions but also by problems of sensor
configurations and meteorological conditions (Foken and Wichura, 1996). However, it is
difficult to isolate the causes of measurement errors. Instrumental errors, uncorrected
sensor configurations, problems of heterogeneities in the area and atmospheric conditions
are the main problems that affect data quality (Foken, 2008). Figure 2.24 shows statistical
regression of half hourly turbulent energy fluxes against available energy of the Nasrallah
station

- y=0.6628x + 13.029 ot

H+LE (W.m-2)

Available energy Rn-G (W.m2)

Figure 2. 21: Statistical regression of half hourly turbulent energy fluxes against available energy
of the Ben salem 1 station (irrigated barley 2011/2012)
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Figure 2. 22: Statistical regression of half houtly turbulent energy fluxes against available energy

of the Ben salem 1 station (irrigated wheat 2012/2013)

y=0.8155x-10.616
R?=0.80

H+LE (W.m-2)

300 ¢

Available energy Rn-G (W.m2)

Figure 2. 23: Statistical regression of half hourly turbulent energy fluxes against available energy

of the Ben salem 2 station (rainfed wheat 2011/2012)
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Figure 2. 24: Statistical regression of half hourly turbulent energy fluxes against available energy
of the Nasrallah station (olive orchard 2012-2015) (Source: Chebbi ef a/. (2017, in progress))

Since the energy balance closure found is low, the measured LE was not taken into
account and a LE:s was computed as the residual term of the energy balance equation
using the EC measurement of H, Rn and G as follows:

LE,,,=R,—G—H 2. 3)

On the other hand, the Bowen ratio () method was applied to compute a LEBowen as
follows:
H Rn—G

B = 1E = LEgowen = m and Hgowen = (Rn — G). (ﬁ @4

where LE and H , Rn and G are the half hourly EC measured fluxes.

Finally, daily LEe; and LEBowen were computed from the half hourly LE and an average
daily observed LE (Figures 2.25, 2.26 and 2.27) was computed and converted from [W.m-
'] to [mm/day], since these observed LE Ze. ET will be used to calibrate the parameters of
SAMIR model (see sections 3.2 and 4.1) which computes a daily soil water balance.
Figures 2.28 shows observed daily latent heat flux LE and reference evapotranspiration
(ETo) of the Nasrallah station (November 2012 to December 2015).

75



Chapter 2: Study area and data processing

==alF

Eto

cr
= 02/
:’r..l“U 0ro
—— Ly ery, 2,
b - \%a\mrv
LT =2
2.}
‘.\ > N\Wo Ver
i e 0z,
W E= 750y, S0
Ld
~ Z,
w R M,D.rv\ b0, Vs,
1 </ <
rg,
/s,
< e
crp,
%/,
muull Vs 0
— 21
——— o, V.
e 9&
eI,
/s
" — €0/g r
[ —
r e
== L
, (¢]
S | o,
la <
ﬂd.w 2z 70
J.W. Ve,
<
ter,
= e.w\wo V5o
L or
q Oz,
< 1o/5;
2 L e,
< T, 0,
nwﬂv_f V9 T
= \|
—

Nw:
)
g @ N~ W ot Mmoo =] wa\ms

(Aep/wuw) 37 usjeainba A3iaua sy ‘ uoneldsuelrjodea]

Dates

Figure 2. 25: Observed daily latent heat flux LE of the Ben salem 1 flux station (irrigated barley

2011/2012 agricultural season) and reference evapotranspiration (ETo) computed at the Ben

Salem meteorological station for the same period.
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Figure 2. 26: Observed daily latent heat flux LLE of the Ben salem 1 flux station (irrigated wheat

2012/2013 agricultural season) and reference evapotranspiration (ETo) computed at the Ben

Salem meteorological station for the same period.
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Figure 2. 27: Observed daily latent heat flux LE of the Ben salem 2 flux station (rainfed wheat

2011/2012 agticultural season) and reference evapotranspiration (ETo) computed at the Ben

Salem meteorological station for the same period.
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Figure 2. 28: Observed daily latent heat flux LE and reference evapotranspiration (ETo) of the
Nasrallah station (olive orchard 2012-2015)

Processing of soil moisture data and irrigation doses calculation

Information on irrigation practices at our experimental plots has several shortcomings,
as the farmer does not always have precise irrigation dates. Thus, half-hourly
measurements of soil moisture at the flux stations were used to estimate irrigation doses

and application days.

At the Ben Salem 1 flux station, there are two sensors for measuring soil moisture
(Table 2.3); five theta probes ML2x (at 0.05 m, 0.10 m, 0.20 m, 0.40 m and 1.00 m soil
depth) and one theta probe PR2 (at 0.10 m, 0.20 m, 0.30 m, 0.40 m, 0.60 m and 1.00 m
soil depth). The half hourly measured soil moisture by the two sensors were processed
together in order to compare them and thus keep the most reliable data. Soil moisture
measurements calibration consists in the conversion of these electric measurements
millivolts (mV) to volumetric water content @vo [% or m>.m73], based on gravimetric
measurements (Baize, 2000) and soil bulk density estimation (Duchaufour, 1995) done by
Gorrab (2016). Calibration parameters coming from gravimetric method as well as soil
bulk density for each soil depth are detailed in table 2.4.

Table 2. 3: Calibration coefficients of the measured soil moisture in the Ben Salem 1 flux station
(irrigated wheat field 2012/2013)

Measurement depth (m) 005 | 010 | 020 | 030 | 040 | 0.0 1.00
Soil a 0.050 | 0036 | 0.046 ] 0.044 ; 0.008
moisture MI2x

b 3.65 | 6228 | -8.188 ] -8.928 ; 6.801

sSe€nsor
calibration - a _ 0032 | 0032 | 0.049 | 0064 | 0051 | -0.016

t
parameters b ; 6298 | -7.704 | -26.082 | -43.247 | -34.796 | 28.98
Soil bulk density [-] 11 119 | 128 | 128 | 128 | 134 14

Source: SudMed Project

Hence, for each sensor, and for each measurement depth, the following relationship
was applied to compute volumetric soil moisture Qyor:

Ovor = Op X Ypuie = (@ X Oe; + b) X Vi

2. 5)
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whete @p [% or g.g’!] is the moisture content, 8« [mV] is the theta probe measured soil
moisture, Yui [-] 1s the soil bulk density and a and b are the calibration coefficients.

Half houtly soil moisture measurements using the ML2x sensor and the PR2 sensor are
llustrated in figures 2.27a and 2.27b showing measurements errors in PR2 measurements
in particular for the measurement depth 60 cm, in addition, peaks of soil moistures are
sharper with ML2x rather than with PR2. Hence, the M12x data, which are a priori more
reliable, have been chosen for further elaborations.

a
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Figure 2. 29: Half hourly a) ML.2x and b) PR2 soil moisture measurement in the Ben Salem 1
station from November 2012 to June 2013 and rainfall from the Ben Salem meteorological
station for the same period.
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In a subsequent step, daily soil moisture was computed from the half hourly ML2x
measurements. Since measured soil moisture is a punctual measurement of a specific soil
depth in which the sensor is put, each measurement was supposed to be representative of
a soil horizon (referred as i) having a certain depth determined on the basis of the depth
were the sensor is put, for example, soil moisture measurement at 5 cm (6voL1)
corresponds to the moisture of a 0.075 m deep soil horizon , from the soil surface z1,1=0
cm to z2,1=0.075 cm soil depth. Likewise, the other measurement depths: soil moisture
measurement at 0.1 m, 0.2 m, 0.4 m and 1 m corresponds to the moisture of z12,=0.075 m
to 2z22=0.15 m, z13=0.15 m to z23=0.30 m, z14=0.30 m to z24=0.70 m and z15=0.70 m to
225=1.00 m soil horizons, respectively. Thus, water content of each horizon wq [mm] was
computed as follow:

Wai = Opori X 1000 % (z,; — 2y ;) (2. 06)

Then, cumulative soil moisture for the total depth (1.00 m) was computed. In order to
get the daily irrigation doses, the moisture inversion method was used to eliminate the
moisture peaks corresponding to rainfall. The remaining peaks are assumed to be
irrigations (Figure 2.30). A subtraction between moisture at the date of the alleged
irrigation (day j) and humidity at the previous date (day j-1) gives us approximately the
irrigation dose.
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Figure 2. 30: Computed irrigations doses from the cumulative soil moisture in 1.00 m soil deep
(the Ben Salem 1 soil moisture measurement from November 2012 to June 2013) and rainfall
from the Ben Salem meteorological station for the same period.

2.5.3 Extra large aperture scintillomter (XLAS)

An optical Kipp and Zonen Extra Large Aperture Scintillometer (XLLAS) was operated
continuously for more than two years (1 March 2013 to 3 June 2015) over a relatively flat
terrain (difference in levels of about 18 m). The scintillometer consists in a transmitter
and a receiver both with an aperture diameter of 0.3 m. The wavelength of the light beam
emitted by the transmitter is 940 nm. The transmitter was located on an eastern water
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tower (coordinates: 35° 34" 0.7" N; 9° 53' 25.19" E; 127 m above sea level) and the
receiver on a western water tower (coordinates: 35° 34' 17.22" N; 9° 56' 7.30"E; 145 m
above sea level) separated by a path length of 4 km (Figure 2.31). Both instruments were
installed at 20 m height. The scintillometer transect was above mixed vegetation canopy:
trees (mainly olive orchards) with some annual crops (cereals and market gardening).

Furthermore, two automatic Campbell Scientific (Logan, USA) eddy correlation
stations were also positioned at the same level on the two water tower top platforms. Half
houtly turbulent fluxes in the eastern and the western EC stations were measured used a
sonic anemometer CSAT3 (Campbell Scientific, USA) at a rate of 20 Hz and a sonic
anemometer RM 81000 (Young, USA) at a rate of 10 Hz, respectively. These EC set-ups
were used to initialise friction velocity u* values in the scintillometer derived flux
computation.

Figure 2. 31 : XILAS Set-up : XLLAS transect (white), emitter and receiver are located at the
extremity of each white arrow and half-hourly XILAS footprint for selected typical wind
conditions (green), MODIS grid (black), trees plots (blue) and the location of the Ben Salem
meteorological and the Ben Salem 1 flux station. This figure illustrates three colour (red, green,
blue) composite of SPOTS5 bands 3, 2 and 1 aquired acquired on 9" April 2013 and showing in
red the cereal plots.

2.5.3.1 Scintillometer derived fluxes

In order to compute the XILAS sensible heat flux, the refractive index of air integrated
along the optical path C,2 [m?/3] was converted to the structure parameter of
temperature Cr? [K2 m~2/3] by introducing the Bowen ratio (ratio between sensible and
latent heat fluxes), hereafter referred to as 3, which is a temperature /humidity correlation
factor. Moreover, the height of scintillometer beam above the surface varies along the
path. Consequently, C,? and therefore C7? are not only averaged horizontally but vertically
as well.
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At visible wavelengths, the refractive index is more sensitive to temperature than
humidity fluctuations Then, we can relate the Cyzto Cr=:

—0.78 x 1076 x P\° 0.03\2
Cpo ~ (T) Cpe (1 + 7) 2.7

with T is the air temperature [°K] and P is the atmospheric pressure [Pa].

Green and Hayashi (1998) proposed another method to compute the sensible heat flux
(H) assuming full energy budget closure and using an iterative process without the need
of the Bowen ratio as an input parameter (Solignac ez al., 2009; Twine ez al., 2000). Then,
the similarity relationship proposed by Andreas (1988) is used to relate the Cr= to the
temperature scale T+ in unstable atmospheric conditions:.

2 2
Cr Cras = A _ 5 (1 — 61 x (24 d)_§> 2.8
T: Lo

and for stable atmospheric conditions:

2 2
Cr2 (Zpas — d)3 Zias — d\3
TT=4.9X<1+2.2X(T)> 2.9)
where Lo [m] is the Obukhov length , Zias [m] is the scintillometer effective height, and d
(m) is the displacement height, which corresponds to 2/3 of the averaged vegetation
height z, (see section 5.2).

From T+ and the friction velocity, u« , the sensible heat flux can be derived as follows:
H = —pc,T.u, (2. 10)

where g [kg.m™3] is the density of air and ¢, [J.Kg!'.K-!] is the specific heat of air at
constant pressure.

XLAS sensible heat flux (H_XILLAS) was computed at a half hourly time step. Negative
night-time data were set to zero and daytime flux missing data (one to three 30mn-data)
were gap filled using simple interpolation. Flux anomalies in early morning (around
sunrise) and late afternoon (around sunset) were corrected on the basis of the ratio
between sensible heat flux and half hourly incoming short wavelengths radiation (Rg)
measurements using the Ben Salem meteorological station. Furthermore, aberrant values
of XLLAS sensible heat flux were ruled out.

2.5.3.2 XLAS footprint computation

The footprint of a flux measurement defines the spatial context of the measurement
and the source area that influences the sensors. In case of inhomogeneous surfaces like
patches of various land covers and moisture variability due to irrigation, the measured
signal is dependent on the fraction of the surface having the strongest influence on the
sensor and thus on the footprint size and location. Footprint models (Horst and Weil,
1992; Leclerc and Thurtell, 1990) have been developed to determine what area is
contributing the heat fluxes to the sensors as well as the relative weight of each particular
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cell inside the footprint limits. Contributions of upwind locations to the measured flux
depend on the height of the vegetation, height of the instrumentation, wind speed, wind
direction, and atmospheric stability conditions (Chavez ez al., 2005).

According to the model of Horst and Weil (1992), for one-point measurement system,
the footprint function f relates the spatial distribution of surface fluxes, Fo(x,y) 7o the
measured flux at height 2, F(x,5,3,), as follows:

F(x,y,2y) = f fFO "y f(x—x",y —y',zn)dx'dy’ (2. 11

—00 —00

The footprint function fis computed as:

_ dz zy, u(zm) o
y = ZIM TV A o= (Zm/b2)
(e zm) = dx 22 u(cZ) 2.12)

where %(z)is the mean wind speed profile and Z is the mean plume height for
diffusion from a surface source. The variables .4, / and ¢ are scale factors and r a scale
factor of the Gamma function. In the case of a scintillometer measurement, the footprint
function has to be combined with the spatial weighting function W/(x) of the
scintillometer to account for the sensor integration along its path. Thus, the sensible heat
flux footprint mainly depends on the scintillometer effective height z7.45 (Hartogensis ef
al., 2003), which includes the topography below the path and the transmitter and receiver
heights, the wind direction and the Obukhov length Lo, which characterizes the
atmospheric stability (Solignac ¢z a/., 2009). In a subsequent step, having the half hourly
footprints (Fpag), daily footprints (Fpday) were computed as a weighted sum by the
sensible heat flux (H3o), as follows:

12800 FP30(i) X Hzo ()

dea
y = 16:00
i=10:00 Hso(l)

2.13)

Only daytime observations from 10:00 to 16:00 UTC are considered, since the most
important latent heat fluxes occur during this period. An example of a daily footprint is
shown in figure 2.32. In the chosen day two wind directions are noted, south wind in the
morning and then a north wind in the afternoon.
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Figure 2. 32: Variation in source area contributions for 12 April 2013 at (a) 10:30 South Wind

and (b) 16:00 North Wind and (c) resultant daily computed footprint
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2.5.3.3 XILAS derived latent heat flux

Since the scintillometer only provides spatially averaged sensible heat flux (H_XLAS),
the latent heat flux (LE_XLAS), energy equivalent of ET, can then be computed as the
energy balance rest-term, hence, the estimation of a representative value for net surface
radiation Rn combined with soil heat flux G, as available energy (AE=Rn-G) is always
crucial for the accuracy of the retrieved values of LE_XIAS.

Instantaneous (LE_residual XLAS.rp) and daily (LE_residual XT.ASgay.rp) XLAS
derived latent heat flux (ze residual latent heat flux) of the XLAS upwind area were
computed assuming 100% energy budget closure of the XLLAS measured sensible heat
flux (H_XLAS) with additional estimations of AE as follows:

LE_residual_XLAS,_gp = AE,_pp — H_XLAS, 2. 14)
LE_residual XLASgay_pp = AEgay_pp — H_XLASgay 2.15)

H_XTLAS: is the scintillometer sensible heat flux at the time of the satellite overpass
interpolated from the half hourly fluxes measurements. Daily H (H_XILASq4.,) was
computed as the average of the half hourly XILAS-measured H. Daily available energy
(AEday-rp) was computed from instantaneous available energy (AEt-FP) as detailed the
following paragraphs. The subscripts “day” and “t” refer to daily and instantaneous (at
the time of Terra and Aqua overpasses) variables, respectively; while the subscript “FP”
means that the footprint is taken into account ze. instantaneous or the daily (depending
on time scale) footprint was multiplied by the variable.

This assumption of 100% Energy Balance closure is valid only under the similarity
hypothesis of Monin-Obukhov implying homogenous surface and stationary flows which
is the case of our study area. In fact, above the XLLAS transect, topography is flat, and
landscape is heterogeneous only from an agronomic point of view since we find different
land uses (cereals, vegetables and fruit trees mainly olive trees with considerable spacing
of bare soil); however, this heterogeneity in landscape features at field scale is randomly
distributed and there is no drastic change in height and density of the vegetation at the
scale of the XILAS transect (ze. little heterogeneity at the km scale, most MODIS pixels
have similar NDVI values for instance). In order to provide a first guess on these relative
heterogeneities, land use classes within each MODIS pixel of the 10 X 8 km sub-image
were studied based on the land use map of the 2013-2014 season (see section 5.2).

a. Instantaneous available energy

Net surface radiation is the balance of energy between incoming and outgoing
shortwave and longwave radiation fluxes at the land-atmosphere interface. Remote sensed
surface radiative budget components provide unparalleled spatial and temporal
information, thus several studies have attempted to estimate net radiation by combining
remote sensing observations with surface and atmospheric data. Net radiation was
computed using the equation 1.17 (see section 1.2.2.1)

The soil heat flux G depends on the soil type and water content as well as the
vegetation type (Allen e al., 2005b). The direct estimation of G by remote sensing data is
not possible (Allen e# al., 2011a), however, empirical relations could estimate the fraction
G/Rn as a function of soil and vegetation characteristics using satellite image data, such
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as the LAI, NDVI, « and Tsuw+. In order to estimate the G/Rn ratio, several methods have
been tested for various types of surfaces at different locations (Bastiaanssen, 1995; Burba
et al., 1999; Choudhury ez al., 1987; Jackson et al, 1987; Kustas and Daughtry, 1990;
Kustas ez al., 1993; Ma et al., 2002; Payero et al., 2001) .

Danelichen e# al. (2014) evaluated the parameterization of these different models in
three sites in Mato Grosso state in Brazil and found that the model proposed by
Bastiaanssen (1995) showed the best performance for all sites, followed by the model
trom Choudhury ez a/. (1987) and Jackson ez al. (1987). Hence, to estimate G, we tested
three methods:

Bastiaanssen (1995):

G = Rn X (Tgyf — 273.16) x (0.0038 + 0.0074 o) X (1 — 0.98NDVI*) 2.16)
Choudhury ez al. (1987):

G = 0.4 X Rn(exp(—0.5LAI)) . 17)
Jackson et al. (1987)

G = 0.583 X Rn(exp(—2.13NDVI)) 2. 18)

Remote sensing variables o, T, &, LAl and NDVI were calculated at the resolution
of the sensor (MODIS, 1 km resolution). The Ben Salem meteorological station was used
to provide Rg and Ram. MODIS Available Energy AE: was computed for a 10 km X 8 km
sub-image centered on the XLAS transect at Terra-MODIS and Aqua-MODIS overpass
time, using the three methods estimating G. Since, the measured heat fluxes H_XLAS:
represents only the weighted contribution of the fluxes from the upwind area to the tower
(footprint) then instantaneous footprint at the time of Terra and Aqua overpass were
selected among the two half hour preceding and following the satellite’s time of overpass
(lowest time interval) and then was multiplied by AE: to get the available energy of the
upwind area AE.rp.

b. Daily available energy

Most methods using TIR domain data rely on once-a-day acquisitions, late morning
(such as Terra-MODIS overpass time) or eatly afternoon (such as Aqua-MODIS overpass
time). Thus, they provide a single instantaneous estimate of energy budget components,
since the diurnal cycle of the energy budget is not recorded. In order to obtain daily AE
from these instantaneous measurements and to reconstruct houtly variations of AE, we
considered that its evolution was proportional to another variable whose diurnal
evolution can be easily known.

The extrapolation from an instantaneous flux estimate to a daytime flux assumes that
the surface energy budget is “self-preserving” ze the relative partitioning among
components of the budget remains constant throughout the day. However, many studies
(Brutsaert and Sugita, 1992; Gurney and Hsu, 1990; Sugita and Brutsaert, 1990) showed
that the self-preservation method gives day- time latent heat estimates that are smaller
than observed values by 5-10%. Moreover, Anderson ¢ al. (1997) found that the
evaporative fraction computed from instantaneous measured fluxes tends to
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underestimate the daytime average by about 10%, hence, corrected parameterization was
used and a coefficient=1.1 was applied. Similarly, Delogu ¢ a/ (2012) found an
overestimation of about 10% between estimated and measured daily component of the
available energy thus, a coefficient =0.9 was applied. The Delogu ¢ a/. (2012) corrected
parameterization were tested, but this coefficient did not give consistent results, therefore,
the extrapolation relationship was calibrated in order to get accurate daily results of AE .

Thereby, the applied extrapolation method was tested using 7z situ Ben Salem 1 (2012-
2013) flux station measurements, but only for clear sky days for which MODIS images
can be acquired and remote sensing data used to compute AE are available. Clear sky days
were selected based on the ratio of daily measured Rg to the theoretical clear sky radiation
Rso as proposed by the FAO-56 method (Allen ez @/, 1998). A day was defined as clear if
the measured Rg is higher than 85 % of the theoretical clear sky radiation at the satellite
overpass time (Delogu ef al., 2012). Daily measured available energy AEps 4oy computed as
the average of half-hourly measured AEps30, was compared to daily available energy
(AEBs-day-Terra and  AEBps.day-Aqua) computed using the extrapolation method from
instantaneous measured AEpscTerra and AEBstaqua at Terra and Aqua overpass time,
respectively (Equations 2.19 and 2.20).

AEps ¢ 2.19
AEBS—day—Terra = aTerraRgday ﬁ + brerra ( )
t-Terra
AEBS—t—A
AEBS—day—Aqua = aAquaRgdayRg—qua + I:)Aqua 2. 20)
t-Aqua

where Rgaay is the daily measured incoming short wavelengths radiation in the Ben Salem
meteorological station; Rgirera and Rgraqua are the instantaneous incoming short
wavelengths radiations measured at Terra and Aqua overpass time, respectively and AEgs.
tTerra and AEBs +Aqua are the instantaneous measured available energy in the Ben Salem flux
station, at Terra and Aqua overpass time.

Results gave an overestimation of about 15 % (Figure 2.33). The -corrected
parameterizations of AE (Table 2.5), needed to remove the bias between measured (AEps-
day) and computed AE (AEBs-day-Terra and AEBs day-Aqua), Were applied to compute daily
remotely sensed AE (AEdy) from instantaneous AE (AE:) following the extrapolation
method shown in equations 2.19 and 2.20.
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Figure 2. 33: Comparison of daily AE observed at Ben Salem 1 flux station (2012-2013) and
daily AE estimated using the scaling method based on Rg.

Table 2. 4: Corrected parameterizations of available energy extrapolation method

Terra aTerra 0.85
bTerra -19.81

Aqua aAqua 0.87
baqua -18.94

Daily available energy was computed for the 10 km X 8 km sub-image, and then was
weighted by the corresponding daily footprint to get the daily available energy of the
upwind area AEqay-rp. Finally, estimates of observed daily LE (LE_residual XI.ASday-rp)
were obtained based on the three methods used to compute the soil heat flux G.

2.6 Synthesis

In this chapter, the geographic and climatic framework as well as ground and surface
water resources of our study area was presented. In addition, the experimental set-ups and
in situ data were described. Experimental measurements are used either for model forcing
(meteorological data), calibration (Eddy Covariance measurement for SAMIR model) or
validation (XLLAS measurement).

The different remote sensing data used in this PhD work were also presented; high-
resolution SPOT image time series for four agricultural seasons are used to feed SAMIR
model with NDVI data while low-resolution MODIS data are used to feed SPARSE
model with NDVI and TIR data. This chapter detailed also the processing of all 7 situ
and remote sensing data in order to get reliable and accurate data
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Chapter 3: Evapotranspiration and
irrigation volumes estimation at high
spatial resolution: application of the soil
water balance model SAMIR

The results of this chapter are taken from the article:

Saadi, S., Simonneaux, V., Boulet, G., Raimbault, B., Mougenot, B., Fanise, P., Ayari,
H., Lili-Chabaane, Z., 2015. Monitoring Irrigation Consumption Using High-resolution
NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia).
Remote Sensing 7, 13005.

- Posted in « Remote Sensing » journal.

In this chapter, the operationality and accuracy of the SAMIR tool in computing distributed
water balance components was assessed at both plot  scale (calibration based on
evapotranspiration ground measurements) and perimeter scale (irrigation volumes) when several
land use types, irrigation and agricultural practices are intertwined in a given landscape.
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Chapter 3: Crop water requirements and irrigation volumes estimation at high spatial resolution:
application of the crop water balance model SAMIR

3.1 SAMIR model description

The SAMIR tool (SAtellite Monitoring of IRrigation) (Simonneaux ez a/, 2009) is based
on the coupling of the FAO-56 dual crop coefficient model with time series of high-
resolution NDVI imagery which provide estimates of the actual basal crop coefficient
(Kcb) and the vegetation fraction cover (fc).

The basis of SAMIR is the FAO dual crop method under non standard conditions, Ze.
considering the actual soil water status, as described in the FAO paper 56 (Allen ef al.,
1998) and summarized in a subsequent paper (Allen e¢7 a/, 2005b). The main originality of
SAMIR lies in the use of remote sensing NDVI time series for the monitoring of
vegetation development, from which crop coefficients and vegetation fraction covers are
derived, instead of using standard values. The NDVI, derived from near infra red (NIR)
and red (R) reflectances, is available from most Earth observation sensors. SAMIR has
been written in IDL/ENVI language as a plug-in to the ENVI software package, and is
accessible through a Graphic User Interface. The FAO-56 basis of SAMIR has been
described in chapter 1. All additional specific features of this tool are described in the
paper included hereafter (section 3.2, Saadi ez a/., 2015).

The input data in SAMIR are (i) meteorological data (7e. reference evapotranspiration
and rainfall), (ii) landuse map, (iii) NDVI time series, (iv) soil data and (v) irrigation rules.

Meteorological data (global radiation, air humidity, wind speed, and air temperature)
are required to compute the Penman-Monteith reference evapotranspiration ETo (see
section 2.5.1). SAMIR allows the user to use ecither uniform (one single station) or
spatialized (e.g. several stations interpolated) input values of ETo. Rainfall data may also
be considered homogeneous if a single station is available or spatially interpolated based
on several stations.

The knowledge of land use is required for relating NDVI to the vegetation fraction
cover (fc) and the basal crop coefficient (Kcb) and to define rooting parameters and
irrigation rules. Since a land use map can usually be obtained only once some images have
been acquired, which means several days after the beginning of the vegetation cycle, real
time application would require the use of a land use assumption at the beginning of the
season, based for example on the maps of the previous year along with crop rotation
rules. This constraint emphasizes the need for developing new methods for monitoring
the land use in quasi real time.

Moreover, the model requires calibrated NDVI time series based on soil reflectances.
The user defines the NDVI-fc and the NDVI-Kcb or fc-Kcb relationships for each land
use class. The values are then interpolated at daily step between the dates of imagery. For
some annual crops, while NDVI drops during senescence due to drying, vegetation
fraction cover remains high and affects turbulent and radiative transfers (shadowing). To
account for this phenomenon, the fc profile can be kept steady during a given numbers of
days after reaching its peak value, or until NDVI drops below a threshold indicating that
harvest has occurred. For trees, considering the potential impact of the shades on
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evaporation, we used a formalism defining the effective fraction cover; hypothesis of
spherical canopies (Allen ez al., 1998).

The water content at field capacity and wilting point (O, Oyp) are specified by the user.
They can be considered uniform over the study area or spatialized based on a soil map.
Following the FAO-56 recommendations, evaporation is controlled by the surface layer,
whereas transpiration is controlled by the root zone. An additional layer was considered
below the root compartment to account for deep water storage (Zhang and Wegehenkel,
20006). In order to allow water stored in this deep layer to be used by the plant, a diffusion
process was introduced to simulate capillary water movement between deep and root
layer. For coherence, diffusion was also introduced between the root and evaporation
layer, allowing evaporation to last longer after a wetting event, and also to the deeper
layers to keep drying after harvest. These additions to the FAO-56 aim to enable the
simulation of rainfed cultivation or non-optimal irrigation. Lateral circulation of water
(overland and subsurface runoff) is assumed negligible. During rainfall or irrigation
events, the water fills the compartments successively from top to bottom by gravity.
When all compartments are full, the excess water flows out of the system as deep
drainage. For each land use class, the user specifies the minimum and maximum rooting
depths (Ztmin, Ztmax) and the depletion fraction beyond which stress begins (p). The root
depth Zr varies according to the plant development and is assumed to be linearly linked
to the vegetation fraction cover (fc) (see section 3.2).

If irrigation volumes are known at the daily scale for any plot, they can be forced in
SAMIR, but this is rarely the case, except for some experimental plots. For this reason, a
set of rules triggering irrigation automatically has been built for SAMIR. These rules have
to be specified by the user based on the known or assumed farmer’s behaviour. Rules can
be specific to each land use class and/or any irrigation unit. The main parameters to
define are (i) the maximum allowable depletion for irrigation triggering, (i) the irrigation
depth to apply and (iii) the soil fraction wetted by irrigation (few). Irrigation may be
triggered based on the level of readily available water (RAW), the level of total available
water (TAW), for a given depletion of the root zone (Dr) or at any fixed time step. The
water input depth may be either a fraction of the depletion or a fixed amount.
Additionally, for annual crops which are not irrigated during senescence, inputs can be
stopped once the Kcb decreases below a given fraction of the peak value reached. Finally,
management constrains can give further control on the delivery of water at the seasonal
scale. These are the maximum cumulated input depth for a plot during the whole season,
the maximum number of water inputs, the minimum and maximum depth for each water
input and a minimum time lapse between two inputs.

The rationale for daily water budget update is summarized as follows:
e Updating the soil configuration resulting from crop development
- Updating the root depth (Zr)

- Updating the soil moisture depletions (root zone depletion Dr and deep layer
depletion Dd)

- Updating the water capacities (TAW, RAW and the total available water in the
deep compartment TDW)
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e Applying water inputs (rainfall and irrigation)

- Computing the automatic irrigation (based on irrigation rules) or forcing them
if known

- Updating the depletions with rainfall and irrigation

e Applying evapotranspiration and diffusion
- Computing the evapotranspiration
- Computing the diffusive fluxes
- Updating the depletions with evaporation, transpiration and diffusion.

Actually, all these processes occur either during the whole day (e.g. evapotranspiration
and diffusion) or at any random hour of the day (rainfall, irrigation). Thus, the order in
which they are computed is somewhat arbitrary.

The output data of SAMIR are distributed daily values of ET [mm)], irrigation [mm],
stress coefficient (Ks), soil moisture [m3/m?] for the three soil layers, and percolation
below the deeper soil layer (DP).

3.2 Irrigation volumes results validation at perimeter scale: Published results
(article)

The soil water balance model SAMIR was run in our study area for four agricultural
seasons 2008-2009, 2011-2012, 2012-2013 and 2013-2014 using NDVI time series of
SPOT images. The following article shows results for only the first three seasons, because
for the last one the satellite data was not yet available. The simulation was achieved on an
area of about 18 km X 5 km encompassing three irrigated perimeters (GDAs) of the
kairouan plain. The irrigation volumes observed in these GDAs were used to validate the
irrigation volumes estimated using SAMIR.
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Abstract: Water scarcity is one of the main factors limiting agricultural
development in semi-arid areas. Remote sensing has long been used as an input
for crop water balance monitoring. The increasing availability of high-resolution
high repetitivity remote sensing (forthcoming Sentinel-2 mission) offers an
unprecedented opportunity to improve this monitoring. In this study, regional crop
water consumption was estimated with the SAMIR software (SAtellite
Monitoring of IRrigation) using the FAO-56 dual crop coefficient water balance
model fed with high-resolution NDVI image time series providing estimates of
both the actual basal crop coefficient and the vegetation fraction cover. Three time
series of SPOT5 images have been acquired over an irrigated area in central
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Tunisia along with a SPOT4 time series acquired in the frame of the SPOT4-
Take5 experiment, which occurred during the first half of 2013. Using invariant
objects located in the scene, normalization of the SPOT5 time series was realized
based on the SPOT4-Take5 time series. Hence, a NDVI time profile was
generated for each pixel. The operationality and accuracy of the SAMIR tool was
assessed at both plot scale (calibration based on evapotranspiration ground
measurements) and perimeter scale (irrigation volumes) when several land use
types, irrigation and agricultural practices are intertwined in a given landscape.
Results at plot scale gave after calibration an average Nash efficiency of 0.57
between observed and modeled evapotranspiration for two plots (barley and
wheat). When aggregated for the whole season, modeled irrigation volumes at
perimeter scale for all campaigns were close to observed ones (resp. 135 and 121
mm, overestimation of 11.5%). However, spatialized evapotranspiration and
irrigation volumes need to be improved at finer timescales.

Keywords: Remote sensing; water balance; FAO paper 56; evapotranspiration;
irrigation; semi-arid Mediterranean; SPOT.

1. Introduction

In arid and semi-arid regions, water availability is a major limitation for crop production.
In the Kairouan plain (Central Tunisia), the combined effect of drought spells and the increase
of irrigated surfaces during the last decades have had a negative impact on the available water
resources. Efficient agricultural water management is therefore a major issue, especially in
irrigated areas. The design of tools that provide regional estimates of the water balance may
help the sustainable management of water resources in these regions.

Evapotranspiration (ET) is one of the most important fluxes of the water balance in semi-
arid areas; it is a key factor for optimizing irrigation water management [1]. Direct
measurements of ET are only possible at local scale (single plot) using for example eddy-
covariance devices. Scintillometers measure sensible heat flux along a given path and then
latent heat flux (ET) is returned as a residual term of the surface energy budget. Furthermore,
remote sensing (RS) capabilities for monitoring vegetation and its physical properties on large
areas have been identified for years now (UNEP). It provides spatialized and periodic
information about some major drivers of ET such as albedo, surface temperature and
vegetation properties. Several methods for estimating ET using remotely-sensed data have
been developed [3-7]. Most of them solve the surface energy budget for latent heat using
thermal imagery. Instantaneous estimates at the time of satellite overpass have been
successfully used to estimate ET at daily scale [8]. However, the main limitations of these
methods are the difficulties in obtaining valid estimates of the aerodynamic surface

94



Remote Sens. 2015, 7

temperature and the atmospheric resistance to heat transfer in single-pixel methods or the
difficulty in identifying the wet and dry edges when using triangle-based methods (UNEP). A
further limitation arises when trying to extrapolate ET beyond one day due to the limited
availability of high-resolution thermal imagery.

Another possible approach is to use Soil Vegetation Atmosphere Transfer models (SVAT) to
simulate ET. These models can benefit from remote sensing since the latter provides periodic
information about the vegetation development which is a primary factor driving
evapotranspiration. The use of high-resolution image time series for monitoring irrigated crops
was more recently discussed [10-12]. The low availability of such data, for financial as well as
technical reasons, combined with the intermittent presence of cloud, has been a restraint to their
use [13-15]. However, the forthcoming Sentinel-2 mission offers a unique opportunity to
improve this monitoring thanks to high-resolution (10 m) and high repetitivity (5 days) visible
and near infrared (VIS-NIR) remote sensing.

For the operational monitoring of soil-plant water balance, the most common and practical
approach used for estimating crop water requirement is the FAO-56 method [16]. The FAO
56 dual crop coefficient approach uses two coefficients to separate the respective contribution
of plant transpiration (Kcb) and soil evaporation (Ke). However, standard basal crop
coefficients (Kcb) profiles provided by FAO tables are average values not suited for specific
growth conditions that can largely differ between plots. Remote sensing is a valuable asset to
derive those temporal profiles of crop coefficients. It has been shown that the crop
coefficients were linked to the spectral response of the cover, especially vegetation indices
[12,17-20]. Ke is linked to the bare soil fraction, complementary of the fractional vegetation
cover (fc) which can also be related to visible RS data [21]. Although the relations proposed
between Kcb, fc and vegetation indices are not theoretically fully linear, they can usually be
approximated by linear relations [22-23]. Moreover, establishing a unique relationship
between crop coefficient and spectral vegetation indices is an ongoing research topic [24] and
many empirical linear relationships available in the literature have been derived
experimentally.

The FAO-56 method has long been used to monitor water budget at plot scale with tools
like CROPWAT [25]. The interest for coupling the FAO-56 method with remotely-sensed
crop coefficients is rising alongside the increasing availability of high-resolution Normalized
Difference Vegetation Index (NDVI) time series [26-30]. The SAMIR tool (SAtellite
Monitoring of IRrigation) [31] used in this paper computes spatially distributed estimates of
ET and crop water budget at regional scale. It is based on the coupling of the FAO-56 dual
crop coefficient model with time series of high-resolution NDVI imagery (Normalized
Difference Vegetation Index) providing estimates of the actual basal crop coefficient (Kcb)
and the vegetation fraction cover (fc).

In this study, regional evapotranspiration and crop water consumption were estimated over
an irrigated area located in the Kairouan plain using the SAMIR model fed by SPOT high-
resolution time series. The model was calibrated on the basis of local ET measurements from
flux towers and was validated at perimeter scale using known irrigation volumes. The objective
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of the work was to assess the operationality and accuracy of SAMIR outputs at plot and
perimeter scales, in a context of high land cover complexity (i.e., trees, winter cereals, summer
vegetables) and limited data available for parameterization.

2. Material and methods
2.1. Study Area

The experimental site is located in the Kairouan plain, a semi-arid region in central Tunisia
(9°30'E to 10°15'E, 35°N to 35°45'N) (Figure 1), covering an area of more than 3000 km?,
which is part of the Merguellil watershed. The rainfall patterns are highly variable in time and
space with an average annual rainfall of approximately 320 mm (extreme values recorded in
Kairouan city are 108 mm in 1950/51 and 703 mm in 1969/70). The mean daily temperature
in the city of Kairouan is 19.2 °C (minimum of 10°C in January and maximum of 28 °C in
August). The relative humidity ranges between 70% and 55% in winter and 40% and 55% in
summer. The mean annual reference evapotranspiration estimated by the Penman-Monteith
method is close to 1600 mm. Dominant crops in this region are cereals, olive and fruit trees
and market gardening [32].

Water management in the Merguellil basin is characteristic of semi-arid regions with an
upstream sub-basin that collects surface and subsurface flows to a dam (the El Haouareb
dam), and a downstream plain supporting irrigated agriculture (Figure 1). Irrigation water
comes exclusively from the groundwater, except for a very small part of the plain on the edge
of the dam: the major part of dam water infiltrates to the downstream aquifer. The main user
of the Kairouan aquifer is agriculture, which consumes more than 80% of the total amount
extracted each year [1]. Most farmers in the Kairouan plain extract water for irrigation
directly from private wells, while a few rely on public irrigation schemes based on collective
networks of water distribution pipelines stemming from a main gauged borehole. Each
borehole corresponds to one organizational unit named GDA (“Groupement de
Développement Agricole”). Annual consumption exceeds the annual recharge of the water
table resulting in a piezometric decrease of between 0.5 mand 1 m per year [33].
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Figure 1. The study area
2.2. Experimental Setup and Data Pre-Processing

Half hourly meteorological measurements were recorded using an automated weather
station installed in the study area. It includes measurements of solar radiation, air temperature
and humidity, wind speed and rainfall. Cumulative precipitation and reference
evapotranspiration (ETo) values between November and June were respectively 238 mm and
1008 mm, for the 2008/2009 season, 142 mm and 666 mm for the 2011/2012 season and 97
mm and 992 mm for the 2012/2013 season.

A flux station was installed in a plot located in the study area. It measures the various
energy balance components using the eddy correlation method. Energy fluxes measurements
were acquired over irrigated barley and irrigated wheat during the 2011-2012 and 2012-2013
seasons, respectively. These experiments allowed continuous monitoring of actual ET as well
as soil moisture measurements. Energy balance closure of the EC measurements was checked
and corrected using the residual method. The low uncorrected value obtained at both sites
(around 60% of closure) led to discard fast response psychrometer measurements. Few
isolated inconsistent peaks were also removed. Overall, the quality of eddy covariance
measurements is mainly affected by instrumental errors, uncorrected sensor configurations or
problems of heterogeneities in the area and atmospheric conditions [34].

Time series of SPOT5 image acquisitions were planned over the plain: Nine, six and ten
SPOT5 images were acquired for the 2008-2009, 2011-2012 and 2012-2013 seasons,
respectively (Figure 2).The SPOT5 images for the three campaigns were georeferenced using
orthorectification and then radiometrically corrected to obtain top of canopy (TOC)
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reflectance on the basis of physical modeling corrections using the Simplified Method for
Atmospheric Corrections (SMAC) algorithm based on the 6S radiative transfer model [35].
The SMAC 6S model was applied for each image using values of atmospheric optical depth
and water content taken from a photometer located in the area and part of the AERONET
network [36]. Due to the uncertainties in the atmospheric parameters, and in order to
eliminate time profile artifacts due to radiometric correction discrepancies within the time
series, an additional inter-calibration between dates was achieved based on the identification
of pseudo-invariant features for which a constant reflectance value is assumed over time.
Indeed, the radiative transfer model shows that for a flat topography and an assumed spatially
homogeneous atmosphere, the reflectance can be linearly related to the image DNs [37].
Thus, an additional normalization of the image time series was achieved by linear correction
of the identified inconsistent dates [30,38]. For the last season, we also benefited from images
acquired in the frame of the SPOT4-Take5 experiment which occurred during the first half of
2013 [39] and whose main purpose was to simulate the revisit frequency and resolution of
Sentinel-2 images to help users set up and test their applications and methods before the
mission is launched. In this frame, SPOT4 images at 20 meters resolution were acquired every
5th day from 3" February to 18" June 2013 over the Kairouan plain, but only 14 dates were
cloud free among the 28 images acquired (Figure 2). The SPOT4 series was corrected using
the Multi-sensor Atmospheric Correction and Cloud Screening (MACCS) algorithm taking
into account both temporal and spectral approaches for retrieving the aerosol optical thickness
(AQOT) [40].

2013 4—.—‘—.—{—‘—#—4‘1‘—4&‘—‘““——. J - -  SPOT5 2008-2009
2012 @ @ @ L J | L |
@ SPOT 5 2011-2012
2011 @
2010 W SPOT 5 2012-2013
2009 * * PRI N
2008 * A SPOT4 (Take 5)
2012-2013
2007
T Y YL L YL ERELRS S ST 8T
R R A L A NP

Figure 2. Acquisition dates of the SPOT images.

Monthly irrigation volumes used for validation were obtained at the scale of each GDA
irrigated sector. It was assumed that these data were trustworthy since these entities manage a
collective well equipped with a meter, providing the water to the plots inside the perimeter.
However, some plots outside the official perimeter also benefit from this water and in the
frame of the acquisition of our validation data, they were delineated with the help of the
irrigation manager. Conversely, no private well is exploited inside the GDAs, so that the
monthly volumes collected can be reliably linked to the declared cultivated area.
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2.3. Method for Evapotranspiration and Irrigation Estimates
2.3.1. Model Description

The algorithmic basis of SAMIR is the FAO dual crop coefficient method under stress
conditions, i.e., considering actual soil water status [16]. This approach has been largely used
for irrigation scheduling and to compute crop evapotranspiration for operational purpose. It is
based on the concept of reference evapotranspiration for a standard well-watered grass,
modulated by crop coefficients to account for the specific development of any vegetation
cover as well as its actual water status. We present here only the major equations of the model
and the modifications implemented within SAMIR. The reader should refer to the FAO paper
N°56 for other equations; we kept for clarity the same notations as FAO paper 56 [16]. The
actual (adjusted) evapotranspiration ETa of a crop is defined as:

ET, = (Ks* K., + K.)ET, (1)

where Kcb is the basal crop coefficient representing unstressed crop transpiration, Ke is the
evaporation coefficient representing soil evaporation and Ks is a stress coefficient accounting
for the reduction of transpiration due to water shortage in the root zone.

ETo was computed following the FAO paper 56 and is thus not presented here. Regarding
Ke, in order to account for frequent overestimations of bare soil evaporation as observed by
[41], we used the same formalism as the latter reference to modify the Kr coefficient, i.e., the
evaporation reduction coefficient accounting for water availability in the evaporation layer
which is used to compute Ke.

TEW — De
. <1

TEW — REW

with TEW the total evaporable water, REW the easily evaporable water and De the
depletion (water deficit) in the shallow surface layer used to compute soil evaporation.
The m coefficient lies within [0,1] and allows to further reduce the maximum evaporation
level when REW = 0 and is functionally equivalent to a minimum surface resistance to
evaporation of the soil.

As an extension to the standard FAO-56 formalism, an additional layer of depth Zd was
considered beyond the root depth Zr to account for capillary flow from below the root zone
[42]. The total depth of soil involved in crop functioning Zsoil is defined as Zsoil = Zr + Zd.
To allow the water stored in this deep layer to be used by the plant, a diffusion process was
introduced in the SAMIR model to simulate capillary flow between deep and root layers
(Dif4). For coherence, diffusion was also introduced between the root zone and the shallow
evaporation layer (Dife), allowing especially evaporation to last long after a wetting event,
and also to the deeper layers to sustain low evaporation fluxes observed after harvest. The
depth of the root and deep layers evolves dynamically with root growth: when root depth
increases, a portion of the deep layer is included in the root zone. The total available water in

Kr = m )
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the deep compartment (TDW) is computed similarly to total available water in the root layer
(TAW) using the following formula:

TDW = (6fc — 6wp)-Zd (3

with 6fc the water content at field capacity and Owp the water content at wilting point. Water
diffusion is driven by the water gradient between layers as follows:

(TAW — Dr) _ (TEW — De)

Dif,, = cdE. Zr o7 Ze (4)
(TDW — Dd) _ (TAW — Dr)
Dif.q = cdR. Zd o7 Zr 5)

where De, Dr and Dd are the depletions in the evaporation , root and deep layers, respectively,
while cdE and cdR are the diffusion coefficients for the transfers between the root zone and
the surface layer, and the root zone and the deep layer, respectively (mm-day ™).

Regarding the vegetation development, instead of using standard values provided by the
FAO paper 56, the major specificity of SAMIR is to use remote sensing data to estimate the
actual basal crop coefficient Kcb using a linear relationship:

Kcb = Agch -NDVI + bKCb (6)

where NDVI is the Normalized Difference Vegetation Index, depending on near infra red
(NIR) and red (R) reflectances:

NIR — R .
NDVI = ——— )
NIR + R

The NDVI time series is linearly interpolated for each day between the successive dates of
image acquisition.

In the same manner, the vegetation fraction cover fc was derived from NDVI using the
following linear relation:

fC = afCNDVI + be (8)

Then the root depth is linked to the vegetation fraction cover using the following formula:

Zr= Zrmin + £ (Zrmax — Zrmin) ©®)
femax

where fcmax is the maximum fraction cover for which the maximum rooting depth Zrmax is
reached and Zrmin is the minimum rooting depth when the vegetation is detected by the
satellite (fc > 0).

Finally, the model updates the water content of the three soil layers at a daily time step in
order to compute the water budget using equations similar to those in the FAO paper 56 [16].
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The main difference lies in the added Dife and Dify terms for water diffusion, and the
addition of the deep layer. The surface runoff is neglected.
The water content in the evaporation layer is updated as follows:

i & .
w ew
0 < Dej < TEW

where Dej is the cumulative depth of evaporation (depletion) at the end of day j (mm), De; -,

is the same variable at the end of day j — 1 (mm), P; is the precipitation, |; is irrigation depth,

E; is the soil evaporation, Tew; is the depth of transpiration from the exposed and wetted

fraction of the soil surface layer, all on day j (mm), f,, is the fraction of soil surface wetted by

irrigation and fe, is the wetted soil fraction exposed to evaporation.
The water content in the root layer is updated as follows:

{Dr- = Drj_y — P — I; + ET¢; — Difyq

J (11)
With0 < Dr; < TAW

where Drj is the depletion in the root layer at the end of day j (mm), Dr; -, is the same variable

on day

j — 1, ETgc;j is the soil evaporation on day j (mm). If the water content goes beyond field

capacity after a heavy rain or irrigation (i.e., Drj < 0), it is assumed that the amount of water

above field capacity is lost the same day by percolation to the deep layer (DPrj= —Dr;) and

then Dr is set to zero.

The depletion in the deep layer is computed as follows:

{Dd,j = Dgj-1 — DB + Dife,

(12)
0 < Dy; < TDW

where Dd; is the depletion in the deep layer at the end of day j (mm), Dd; - ; is the same
variable on day j — 1. In the same manner as for the root zone, if Dd; < 0 then an amount DPd;
of deep percolation is assumed to be lost for the crop (DPd; = —Dd;) and Ddj is set to zero.

The water stress of vegetation in the FAO method is expressed by a coefficient Ks related
to the actual root zone water content. A fraction p of TAW named Readily Available Water
(RAW) is supposed to be available for the plant without stress (Ks = 1). The stress is
presumed to start when
Dr > RAW and is calculated using Equation (13) (Ks < 1). Conversely, when Dr < RAW then
Ks=1.

TAW — Dr TAW — Dr

K, = _ (13)
TAW — RAW ~ (1 — p) TAW

whereas rainfall inputs can be estimated using meteorological data, the irrigation inputs are very
variable in space and time and cannot be known practically on large areas. Thus, the SAMIR
tool simulates irrigations based on the daily soil water balance of the root zone. Irrigation is
modeled specifically for each land cover class, so as to reproduce the various irrigation
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practices applied by the farmers on the ground. These practices are described by several
parameters that the user has to set. A major parameter is the threshold water content in the root
layer to trigger a water input, defining the management allowable depletion MAD [16], i.e., the
amount of water which can be depleted between two irrigations. When the root zone depletion
reaches this value, irrigation is automatically triggered to fill up the soil. Other parameters to set
are the fraction of soil surface wetted by irrigation (fw) depending on the irrigation system, the
minimum depth of each input (Min_ir) and the minimum number of days between two water
inputs (Min_days). Finally, the Kcb threshold to stop irrigation during the senescence stage
(Kcb stop) is defined as a percentage of the peak Kcb value (maximum development) below
which irrigation is stopped. In simulating irrigations, SAMIR does not aim at detecting an actual
vegetation stress at the time it occurs. Instead, the hypothesis is that if a significant stress
occurs, it will have an effect on the NDVI in the following days which will be accounted for by
SAMIR.

2.3.2. Model Calibration and Validation at Plot Scale

The model was calibrated at plot scale using latent heat flux measurements for two
seasons. Calibration consists in maximizing the Nash efficiency computed between observed
and modeled ET. The Nash-Sutcliffe efficiency coefficient is a non-dimensional statistical
performance index that determines the relative magnitude of the residual variance compared
to the observed variance [43].

Z?: 1(ETiObS _ ETisim)Z

NASH =1 — S (ET"bS W)Z (14)
i=1 i -

where ET;® is the observation of evapotranspiration on day i, ET™ is the modeled value of
evapotranspiration on day i and ET°Ps is the observed mean over the entire growing season.
The Nash efficiency ranges from —oo to 1; an efficiency of 1 corresponds to a perfect match
between model outputs and observations.

Some of the model parameters were taken from the FAO paper 56 [16] or measured in situ
(e.g., soil water content), while others were calibrated either because they were not available
from the bibliography or because the model was particularly sensitive to these parameters.
The procedure to prescribe each parameter value is detailed in the results section. For
irrigation, a two-step approach was implemented. First, actual irrigations values resulting
from soil moisture measurement analysis were used as inputs in the calibration of the model,
then, known irrigations were removed from the model inputs and the automatic irrigation
mode was switched on in order to calibrate the irrigation parameters.

2.3.3. Spatialization of ET and Irrigation.

SAMIR was run over the whole irrigated plain using the image time series for the three
seasons to compute spatially distributed estimates of irrigation depths. Water balance components,
including irrigation, are computed for each pixel. Land use information is required for each pixel
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since many parameters of the model are crop specific. This is the case for the root zone
parameters, the irrigation rules and the fc(NDVI) and Kcb(NDVI) relations. Land cover maps
were available for 2008-2009 [44], 2011-2012 [45] and 20122013 [46]; they include eight, six
and six land use classes, respectively. These classifications were obtained by applying a multi
temporal decision tree, which allows the identification of crop types on the basis of NDVI
thresholds derived from ground truth datasets. The SAMIR parameters required for each land use
class were taken either from the previous calibration step (i.e., for cereals) or from bibliographic
data since there was no calibration data for market gardening and fruit trees classes. The climatic
forcing was considered homogeneous over the plain and meteorological data was taken from the
sole station present in the area. Finally, the irrigation parameterization for crops other than cereals
was defined from our knowledge of the farmers’ practices, while considering the main differences
in irrigation practices between classes (e.g., aspersion for cereals, drip irrigation for orchards). In
order to validate the SAMIR estimates, irrigation depths were cumulated to monthly values at the
scale of irrigation sectors (GDA) and compared to available official irrigation volumes gathered
through our ground survey.

3. Results and Discussion
3.1. Remote Sensing Data Preprocessing

For the SPOT4-take5 time series acquired in 2012-2013, the longest gap was at the
beginning of the period, as the first correct image was acquired on 10/03/2015, which means
40 days without image data. This is quite long regarding vegetation monitoring and
emphasizes the limitation of a five-day revisit frequency even in semi-arid areas (frequent
cirrus clouds can be observed over the study site). However, in our case, this gap was filled
using the SPOT5 satellite, which successfully acquired two images, thanks to the
programming capabilities of this sensor and its oblique viewing agility allowing to observe
areas on cloud free days. This is an interesting result showing that combining Sentinel-2 data
with other sensors (Landsat 8, SPOT6, etc.) may still be necessary in many places to get
consistent high-resolution time series. Another way to bridge the gaps in the time series
would be to use fusion methods using medium resolution images to estimate high-resolution
signatures [47].

We present hereafter the outcome of the images pre-processing for the 2012-2013 season;
the same approach was applied to the 2008-2009 and 2011-2012 images. After application of
an atmospheric correction, we identified manually 28 invariant objects in the scene by
visually comparing pairs of distant dates (i.e., 5 November 2012 and 10 June 2013). Then, for
these 28 objects, the reflectance of one band at each date is plotted against the reflectance of
the average image of this band (Figures 3 and 4). The quality of the invariant objects is
confirmed by the determination of the linear fit. However, whereas in some cases the
regression fits the 1:1 line (Figures 3a and 4a), in other cases the regression line is
significantly different from the 1:1 line, showing a problem in the quality of the atmospheric
correction. These discrepancies are more frequent for the SPOT5 time series, which is not
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surprising as each date was corrected independently, whereas the SPOT4 series was corrected
using the MACCS algorithm taking into account the temporal dimension of the series. When
the deviation from the 1:1 line was important (Figures 3b and 4b), the linear correction was
applied to the image to match it with the average image. For the SPOT4 series, seven dates
were linearly corrected, and one date was discarded (20 March) because of the strong
scattering of the reflectance due to haze (Figure 4c). For the SPOT5 time series, eight images
were corrected.

Once the consistency of reflectance levels within the two time series had been checked, a
similar analysis is performed between the two time series by plotting the average reflectance
of the invariant objects (Figure 5). A significant bias was observed which can be explained by
(i) differences in the atmospheric correction algorithm used, (ii) difference in band definition
between SPOT4 and 5 and (iii) the variations in viewing angle between both sets of images.
Indeed the SPOT4 images were acquired at a fixed angle different from nadir, whereas
SPOT5 images were acquired at any angle. The observed bias had a strong impact on
maximum NDVI values observed in the images, which was 0.9 for the SPOT4 series, and
only 0.7 for the SPOTS5 series. Considering that fully covering vegetations were certainly
present in the area (i.e., cereals or forage fields), a realistic maximum NDVI value of 0.9 was
expected for all seasons. Therefore, the SPOT5 series was linearly normalized to match the
SPOTA4-Take5 radiometry on the basis of the linear regression established between the
reflectance of the SPOT5 and SPOT4-Take5 average images (Figure 5).

104



b)

Average Image

Average lamge

0.6

0.4

0.6

0.4

0.2

SPOTS5 XS2

y=0.931x +0.017
R?=0.968

i

0 0.2 0.4 0.6
19 March 2013

SPOTS5 XS2

y =1.200x-0.159
R?=0.920

0 0.2

T T 1

0.4 0.6
30 April 2013

Average Image

Average Image

0.6

0.4

0.2

O
o

o
~

o
[N

Remote Sens. 2015, 7

SPOTS XS3

y=0.945x + 0.016
R?=0.963

7

T T 1

0.2 0.4 0.6
19 March 2013

SPOT5 XS3

y=1.138x-0.178
R*=0.909

g

T T 1

0.2 0.4 0.6
30 April 2013

Figure 3. Comparison between the SPOT5 images after atmospheric correction
using SMACS6S and the average SPOT5 reflectance for the 28 invariant sites, for
spectral bands XS2 and XS3. Example of (a) an image for which no additional
correction is required and (b) an image needing an additional correction.
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Figure 4. Comparison between the SPOT4-Take5 atmospherically corrected
images and the average SPOT4 reflectance for the 28 invariant sites, for spectral
bands XS2 and XS3. Example of (a) an image for which no additional correction is
required, (b) an image needing an additional correction and (c) a hazy image
(discarded from the final time series).
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The SPOT4 series was delivered with cloud masks that were applied to avoid
anomalies in the NDVI. For the SPOTS5 series, two images included small cumulus clouds
(5 November 2012 and 21 January 2013) which were masked. The clouds were identified
using a simple threshold since they have a strong reflectance in the blue band. The cloud
shadows were also easy to identify because they had the lowest reflectance in the near
infra-red band. As small clouds were rarely at the same place, they have limited impact on
the resulting NDVI profiles.

Finally, from the combination of these two time series, a NDVI profile was generated
for each pixel.
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Figure 5. Comparison between the average reflectances of the 28 invariants for
the SPOT5 and SPOT4-Take5 time series before correction.

3.2. Plot Scale Calibration of Evapotranspiration Parameters

In a subsequent step, the NDVI time profile for each flux site was extracted from the SPOT
time series and was used in the SAMIR model for calibration. The NDVI-fc relationship was
determined empirically considering that for a bare soil (NDVI = 0.1) the fraction cover was
null (fc = 0) and that at full coverage (fc = 1) the NDVI was the maximum value observed in
the image (0.9). The characteristic volumetric soil water contents were determined from soil
texture analysis (clay loam, 0+ = 0.29, 6wp = 0.15). An initial water content of 10% was
considered for the two plots since soils were mostly dry after the summer and before the first
autumnal rainfalls. The soil fraction wetted by rain or irrigation (fw) was set to one because
the irrigation technique for cereals was sprinkler irrigation. The depth of the evaporation layer
(Ze) and the proportion of easily available water (p) were fixed following FAO paper 56
recommendations [16]. All other parameters were fixed by calibration (REW, m, Zrnax, Zsoil,
Dify, Difg, Kcb) and are summarized in Tables 1 and 2. In a second phase, irrigation
parameters were calibrated by assuming an optimal management to avoid stress (i.e., water
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input when RAW is empty) and the depth of water inputs was selected in order to fill the
depletion

(Dr = 0). The calibration was applied simultaneously to both seasons to get a unique set of
parameters for cereals. The results (Table 3) show that cereals are irrigated only a short time
after the vegetation peak is reached (Kcb_stop = 99%) which is consistent with the
conventional agricultural practice for cereals (no more water is needed after grain filling
during the maturation stage.

The results showed that although evapotranspiration simulations are on the whole correct
(Figure 6), they are better for the barley plot than for the wheat plot (Nash efficiency of 0.6
and 0.53 respectively and a root mean square deviation RMSD of 0.63 and 0.94 mm
respectively). However, we also see that this difference might be due to problems in the
observed data, as it is very clear that the daily variations of observed ET for wheat are much
stronger than for barley and should be considered with care. However, they might be mainly
noisy and we see no clue of any significant bias since they reproduce well the seasonal cycle
and they are also coherent with the independent ETO measurements. The discrepancies were
more frequent at the end and at the beginning of the growing season
(Figure 6), when vegetation cover is low and soil evaporation process dominates. The
calibrated parameters are shown in Table 1.

Table 1. Parameters obtained after calibration on observed ET for wheat and barley
plots. Grey cells show calibrated parameters.

Definition Value Data Sources
Vegetation Parameters
s NDVI-fc relation’s slope 1.25 Satellite imagery
bt NDVI-fc relation’s intercept —-0.13 Satellite imagery
Akch NDVI-Kcb relation’s slope 1.35 Calibrated
bken NDVI-Kcb relation’s intercept —0.18 Calibrated
Soil Parameters
0 (M3 /m°) Volumetric water content at field capacity 0.29 Ground observation
Owp (m*m?) Volumetric water content at wilting point 0.15 Ground observation
Init_RU (%) Soil initial water content 10 Ground observation
Ze (mm) Height of the surface layer 125 FAO-56
REW (mm) Readily evaporable water at surface layer 0 Calibrated
m Coefficient de reduction 0.264 Calibrated
Zr min (Mm) Minimum root depth 125 FAO-56
Zr max (Mm) Maximum root depth 1650 Calibrated
Maximum Root Water Depletion Fraction
p 0.55 FAO-56
before stress
Zgoii (Mm) Total soil thickness 2000 Calibrated
Dife, (%) Diffusion between surface and root layers 10 Calibrated
Difq4 (%) Diffusion between deep and root layers 20 Calibrated
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Table 2. Relations used for fc and Kcb estimates from NDVI

NDVI  NDVI fc fc .
NDVI-fc . . Relations Sources
min max min  max
Cereals 0.1 0.9 0 1
Market fc = 1.25 x NDVI — 0.13 L
) 0.1 0.9 0 1 Satellite imagery
gardening
Fruit trees 0.1 0.8 0 0.9 fc = 1.34 x NDVI — 0.17
NDVI  NDVI Kcb  Kcb .
NDVI-kcb i ] Relations Sources
min max min  max
Cereals - - - - K., = 136 x NDVI — 0.18  Calibration (barley and
wheat experiment field).
Market 0.1 0.9 0 098 K. = 123 x NDVI — 0.12 FAO paper 56 [16] and
gardening Satellite imagery.
Fruit trees - - - - K., = 0.76 x fc Calibration (olive trees

experimental field in

Morocco)
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Figure 6. Simulations of ET for the (a) barley and (b) winter wheat experiment fields for the calibrated model using observed
irrigations (Nash = 0.6 and 0.53, respectively).
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Table 3. Soil and Irrigation parameters used for spatialization.

Cereals Marke_t Fruit Trees
Gardening
Soil parameters
Zrmax (mm) 1650 1000 1600
p 0.55 0.55 0.65
Initial RU (%) 2008/2009 10 10
2011/2012 32 32 50
2012/2013 10 10
Irrigation rules
Fw, fraction wetted (%) 100 25 100
MAD, management allowable depletion for irrigation MAD = MAD =0.2* MAD =
triggering RAW TAW RAW
Kcb_stop, Kcb threshold to stop irrigation (% of Kcbmax) 99 75 0
Irrigation constraints
Min_ir, minimum water depth per turn (mm) 20 0 20
Min_days, minimum number of days between two water turns 7 7 7

3.3. Validation of Irrigation Volumes at Perimeter Scale
3.3.1. Model Parameters Setting for Evapotranspiration and Irrigation Spatialization

Evapotranspiration and irrigation estimates were spatially distributed at perimeter scale for the
seasons 2008-2009 (December to June), 2011-2012 (November to May) and 2012-2013
(November to June). Considering the difficulty to get individual parameter values for specific crop
types, the land cover typology was grouped into three major classes: market gardening (about 35%
of the GDAs’ areas), cereals (about 17%) and orchards (about 34%, mainly olive trees). The linear
relationship linking fc and Kcb with NDVI for the market gardening were estimated using the
FAO paper 56 [16] and satellite data (Table 2). For bare soil conditions, we assumed like [23] that
fc and Kcb values were zero, with NDVI values for bare soils extracted from the images. For full
vegetation cover, fc was assumed to be 1 and Kcb was taken as Kcb-mid in the FAO paper 56,
while NDVI was also extracted from the images. For olive trees, the same method was applied to
estimate the NDVI-fc relation. For Kcb, a relationship between fc and Kcb was obtained from a
previous calibration achieved on experimental data for irrigated olive trees in the Haouz plain in
Morocco (not shown here) which was considered more representative of the Merguellil area than
using bibliographic data. In absence of a detailed soil map, soil properties (01, Owp, REW, Ze, Zsi,
Dif.,, Dif) were considered homogeneous in the study area and the parameters were taken from
calibration at plot scale (Section 3.2). Crop specific parameters (Zrmax and p) were set to
calibrated values for cereals and taken from FAO paper 56 [16] for the other land use classes
(Table 3). The initial soil water content (Init_RU) for annual crops was estimated considering the
previous precipitations. For the 2008-2009 and 2012-2013, it was also set to 10% of the soil
available water (between 0¢ and 0p) because no significant precipitations were observed since
summer, while for the 2011-2012 season initial water content was set at a relatively larger value
of 32% of the soil available water due to 85 mm of precipitations recorded ten days before the
starting date of the simulation. Higher initial soil filling rate was used for trees (50%) since they
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are almost continuously irrigated. Regarding irrigation rules (Table 3), market gardening was
irrigated using drip irrigation which means that less soil surface is wetted (fw = 25%) and
irrigation lasts longer because vegetable require water until harvest (Kcb_stop = 75%). In
addition, to reproduce the drip irrigation, MAD was set to a low value (MAD = 0.2 * TAW),
which triggers frequent irrigation inputs. Trees are mainly irrigated by gravity all year round (fw =
100%, Kcb_stop = 0).

3.3.2. Comparison between Modeled and Observed Irrigation Volumes

After running the SAMIR model using the image time series over the plain for the three seasons
(Figure 7), the monthly values of modeled irrigation were computed for three irrigated perimeters
(GDAs) for which validation data were available (Ben Salem I1, Mlelsa and Karma |1, Figure 8).
The cumulated ET values are also plotted on the figure in order to scale irrigation totals to the total
water loss occurring during the month. The seasonal water budget was computed for all campaigns
(Figure 9) and shows that on the whole the inputs (P and 1) are close to evaporative consumption
(ET) with little water remaining in the soil.
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Figure 8. Comparison between surveyed and SAMIR (SAtellite Monitoring of IRrigation) estimated irrigation depth at seasonal scale for
the (a) 2008-2009, (b) 2011-2012 and (c) 2012-2013 seasons.
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Figure 9. Seasonal water budget for the eight campaigns (ASW is the variation of
soil water content).

For the 2008-2009 season (Figure 8a), the modeled irrigations are quite close to the
observed values, although irrigations are small compared to ET, especially in summer. The
larger discrepancy visible in June can be due to market gardening which dominates at this
time as cereals are harvested (beginning of June). Indeed the parameters used for these
crops are rather uncertain. For the 2011-2012 season (Figure 8b), the estimated irrigations
are also on the whole satisfying with two noticeable exceptions for the first and last months
of the simulation. Indeed, November exhibits a strong overestimation of irrigation which
can be due to an error in soil water content initialization but is also at least partially due to
the fact that late vegetables (e.g., pepper or tomatoes) are not all removed although still
green and not irrigated. The model is not able to manage such partial vegetation cycles and
irrigates as if it was the crop that will follow in the crop rotation (i.e., the crop mentioned in
the land use map). In May, the discrepancy is not clearly explained but can be also due to
the growing importance of vegetables planted mainly in April. For the 2012-2013 season
(Figure 8c), irrigations are also on the whole correct but with several exceptions.
Overestimations in November and December for Karma Il and November for Mlelssa are
linked to previous crops as explained for 2011-2012. The problem of May for Mlessa and
June for Karma Il can be also related to market gardening which is poorly parameterized.
When aggregated at seasonal scale, the irrigation estimates for the eight campaigns give a
mean absolute percentage error (MAPE) of 25% (Figure 10) and the overall difference for
all campaigns is very low (121 mm irrigation observed for 135 mm modeled). This is an
encouraging result considering the fact that (i) the calibration dataset is minimal, and (ii) the
calibration protocol affects a limited number of parameters for a limited number of LU
classes. Progress in parameterization would require ideally crop specific information, e.g.,
flux measurements on vegetables of trees, or at least irrigation volumes collected at plot
scale so as to be crop specific. However, even with the current irrigation volumes at
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perimeter scale, it might be possible to achieve a global calibration of some parameters.
Although there would be too many degrees of freedom to correctly calibrate all parameters
with such aggregated data, we could focus on irrigation practices which are much uncertain
though quite sensitive.
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Figure 10. Comparison between observed and SAMIR modeled seasonal
irrigation depths.

4. Conclusions

We show in this study that the five days acquisition frequency of Sentinel-2, as simulated
in the SPOT4-Take5 experiment, will not completely solve the problem of cloudiness even
in semi-arid areas like Tunisia. The combination with other VIS-NIR high-resolution
sensors like Landsat 8 or SPOT should still be useful. We also showed that although the
radiometric correction of images was performed with special care using the state-of-the-art
MACCS algorithm, the invariant analysis proposed here can help improving the time series
quality, especially in semi-arid areas where such objects can be easily found. Moreover,
although a cloud masking is performed during the MACCS implementation, the subsequent
invariant analysis helps identifying and discarding some remaining hazy images. Using
these high-resolution time series including clear images approximately every 20 days, we
have shown that with limited local data and literature review it was possible to estimate
irrigation volumes at perimeters scale. The seasonal volumes estimated by this method
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appear acceptable, even though results at finer timescales (monthly and below) need to be
improved, in particular by translating our knowledge of the agricultural practices into
algorithmic constraints in the model. Despite these shortcomings, we have demonstrated
that combining HR data and simple water balance modeling offers an interesting method to
monitor irrigation volumes.
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3.3 Unpublished results and additional analyzes

This part presents a set of analyzes and results that are not included
in the previous publication.

e SAMIR was also run on the same area for the 2013-2014 season. It was a wet
season in comparison to the three other ones, which was interesting to assess
SAMIR in different climatic conditions.

e The validation of modeled irrigation volumes of the 2012-2013 season was also
carried out at field-scale using an irrigation dataset collected from field surveys
conducted in the Ben Salem II, Mlelsa, Karma I and Karma II GDAs.
Moreover, a comparison was also made between measured groundwater
withdrawals obtained for some private farms with irrigation volumes estimated
by SAMIR.

e Tor the 2012-2013 and 2013-2014 seasons, SAMIR was also applied on a 10 km
X 8 km sub-image centered on the XLAS using the same parameters as in the
article. In this case, the modeled ET was validated using the XILAS derived ET.

3.3.1 Irrigation volumes results validation at perimeter scale for the 2013-2014
season

Evapotranspiration and irrigation estimates were spatially distributed at perimeter scale
for the seasons 2013-2014 (November to October) following the same approach detailed
in the paper and applying the same model parameters. Figure 3.1 shows modeled ET over
the study area for the 2013-2014’s season. This season was the wettest one with a
cumulated rainfall of about 341 mm.
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Figure 3. 1: Modeled ET over the study area for the 2013—-2014 season.

Then, the monthly values of modeled irrigation were computed for the three GDAs
and compared to the observed irrigation volume (Figure 3.2).
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Figure 3. 2: Comparison between surveyed and SAMIR estimated irrigation depth at seasonal
scale for the 2013—-2014’s season.

The cumulated ET values are also plotted on the figure in order to give a scale to
irrigation totals. SAMIR overestimates irrigation in November for the three GDAs. This
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error may be due to an error in soil water content initialization which was estimated
based only on rainfall during the previous month, without taking into account the
impact of the previous crops. One other possible explanation is that late vegetables
(e.g., pepper or tomatoes) are not all removed at the beginning of the simulation in
November and are still green although no more irrigated. As it was already mentioned,
SAMIR is not able to manage such partial vegetation cycles and irrigates these remaining
crops as if it was the crop that will follow in the crop rotation, since only one land use
map is used for the whole season.

The figure 10 of the article was redone considering the 2013/2014 results of irrigation
volume aggregated at seasonal scale and inversing the two axis since traditionally
observations are plotted on the Y-axis (figure 3.3). All seasonal values were calculated
using the months available for the four seasons, z¢ from November to June. The seasonal
water budget computed for all campaigns (Figure 3.4) and the observed irrigation volume
are detailed in the following table:

Table 3. 1: Estimated and observed seasonal water budget components for all campaigns

Campaigns ilz'/f'iog(iilif)crll ]1;4/,11? deled  Rainfall 4sw gﬁ;ﬁ:ﬁi
(mm) (mm) (mm) (mm) (mm)
Ben Salem 08-09 98.8 281.2 232.5 50.1 108.3
Milelsa 08-09 84.7 283.0 232.5 34.2 112.2
Ben Salem 11-12 133.6 268.8 142.0 6.8 80.5
Milelsa 11-12 126.8 250.3 142.0 18.5 86.0
Karma IT 11-12 129.2 235.2 142.0 36.0 94.0
Ben Salem 12-13 137.4 237.2 96.9 2.9 172.9
Milelsa 12-13 164.0 259.0 96.9 1.9 136.9
Karma II 12-13 204.2 274.0 96.9 27.1 173.9
Ben Salem 13-14 70.4 248.1 340.9 163.1 97.3
Milelsa 13-14 77.6 221.3 340.9 197.1 67.6
Karma II 13-14 76.2 234.1 340.9 183.0 93.2
Seasonal results (November 118.4 253.8 200.4 65.0 111.2

to June)

The irrigation estimates for the eleven campaigns give a mean absolute percentage
error (MAPE) of 25% and a root mean square error (RMSE) of 30 mm. The overall
difference for all campaigns decreases as compared to the results based only on the
eight campaigns: 111 mm of total observed irrigation compared to the 118 mm
simulated by SAMIR. The regression is also better with R2=0.42.
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Although the overall results are encouraging, SAMIR always overestimates the
monthly irrigation volumes at the beginning of the season and the largest discrepancy is
recorded in November for all campaigns. Hence, we highlight a real problem in the
initialization parameters, especially parameters linked to the soil water content. Another
limiting factor is the land use map. One single annual land use map is usually far from
the reality of the major part of our study area characterized by crop rotation (up to three
crop per year) and by intercropping of cereals (winter) and vegetables (summer)
between the rows of irrigated trees fields which can lead to error in model simulation
since it remains unable to take into account these aspects.
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Figure 3. 3 : Comparison between observed and SAMIR modeled seasonal irrigation depths
(improvement of fig. 10 of (Saadi ez al., 2015) paper including the 13-14 season).
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Figure 3. 4 : Seasonal water budget for the eight campaigns (ASW is the variation of soil water
content).

3.3.2 Irrigation volumes results validation at field and farm scales

Field scale

Modeled irrigation volumes were also compared to plot-scale irrigation dataset
collected during field surveys conducted in 2013 in Ben Salem II, Mlelsa and Karma I and
Karma II GDAs.

Although the overall difference between simulated and averaged irrigation volumes at
perimeter scale is coherent (Table 3.2), property-level results (Figures 3.5, 3.6, 3.7 and 3.8)
are disappointing. The detailed results are presented in Annex 7. However, the
discrepancies observed are not so surprising considering the complexity of the invoice
system, the frequent redistribution of water between farmers, and the difficulty to identify
people in large families. As a clue, we have to say that the names’ list collected during the
ground survey to map the plots was very different from the list of names corresponding
to invoices. After discussion with the managers, it was possible to match the two list
considering family relations and also owner-farmer links, but it seems that it was not so
successful. We are not surprised to see also that for the Mlelsa GDA the relation between
estimated and observed irrigation is better, as this GDA was clearly better organized and
managed (“here we all belong to the same great family” said the manager).

Table 3. 2: Comparison between simulated SAMIR irrigation and irrigation observed at the
“name” / block scale for the 2012/2013 season

GDA “name” / block Modeled irrigation Observed irrigation (mm)
number (mm)
Karma 1 76 names 196.0 146.4
Karma 11 34 names 278.0 2721
Mlelsa 106 names 186.6 148.6
Ben salem 11 8 blocks 145.30 173.75
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Figure 3. 5: Modeld vs. obsereved irrigation volumes in the GDA Karma I
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Figure 3. 6 : Modeld vs. obsereved irrigation volumes in the GDA Karma II
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Figure 3. 8 : Modeled vs. observed irrigation volumes in the irrigation blocks of the Ben Salem

Farm scale

II GDA.

SAMIR estimates of irrigation volumes were also assessed at farm scale in the frame of
Fradi (2017) master thesis. The main objective was to report and evaluate the farmers’
irrigation practices. A comparison was made between measured groundwater withdrawals
obtained for three farms in the Kairouan plain, with irrigation volumes estimated by
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SAMIR. These farms were chosen because they used only a private well for irrigation, and
it was possible to install a meter on these wells. The results showed first that the tabulated
standard Kcb values proposed in the FAO-56 paper were far from the remotely sensed
Kcb values used by SAMIR, showing the advantage of remote sensing for actual
vegetation monitoring. However, the most interesting results came from the comparison
between the pumped volumes and the estimated irrigation requirements, showing strong
discrepancies. Three water consumption scenarios were applied in SAMIR to account for
uncertainties in parameters, zZe. (1) the economic scenario with minimum Kcb and
economic irrigation allowing limited stress, (2) a standard scenario with medium
parameters and optimal irrigation management (irrigation triggered when RAW is empty)
and (3) a scenario with maximum Kcb and frequent irrigations, without generating
drainage however. The results showed that actual irrigations were always greater or equal
even to the maximum water consumption scenario simulations. The over irrigation was
also observed after rainfall events: while the amount of simulated irrigation depth
decreases, this drop is not observed on actual farmer’s inputs. This shows that farmers do
not account much for rainfall events and prefer to secure their production. Over
irrigation is also recorded in plots using drip irrigation, showing that the use of this
technique does not always imply an economic irrigation management.

The differences between modeled and observed irrigation volume may be partially
explained by the modeling uncertainties. Also, the efficiency of the irrigation scheme may
be questioned although the short distance between the pump and the plots and the use of
plastic pipes may limit these losses. However, the fact that even the most water
consuming parameters’ set doesn’t allow to reach the observed water consumption
advocates for a clear over irrigation by farmers. This strategy has been confirmed by
ground enquiries showing that they usually pump water as much as possible, to secure
their production, and that the cost of pumping is not a limitation. The logic of the famers
is not only driven by hydrological considerations and constraints.

3.3.3 Evapotranspiration results validation using the XILAS data

The daily distributed ET simulated by SAMIR were also validated using the daily
XLAS derived ET (z.e. LE_residual_XILAS4ay-rp). Daily observed ET was computed using
the residual method; hence, six estimates of the daily observed ET were obtained by
combining the two satellite overpasses and three methods to compute G and thus AE
(see Section 2.5.3.3). From the daily observed ET estimates, minimum and maximum ET
were selected for each day and minimum and maximum daily ET time series were
interpolated between successive days based on the preservation of the ratio of the
available energy (AE) to the global incoming radiation Rg as scale factor (Figure 3.10). On
the other hand, SAMIR was run for the 10 km X 8 km sub-image centered on the XLLAS
transect (see figure 2.17 section 2.4.2). Computed daily ET was then weighted by the
corresponding daily XLLAS footprint in order to get an ET comparable to XLLAS derived
ET. Figure 3.9 shows two examples of daily footprint overlying the daily modeled ET.
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Figure 3. 10 : Daily SAMIR modeled evapotranspiration vs. observed daily latent heat fluxes.
Light grey bars show gaps in XLLAS data.
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Observed ET ranged from zero and 2.8 mm and from zero and 3.8 mm for 2012-2013
and 2013-2014, respectively; this is consistent with the fact that 2013-2014 is a wet season
in comparison with 2012-2013. The comparison between XLAS derived and SAMIR ET
values shows better results for 2012-2013 than 2013-2014. Results show a good
agreement between observed and modeled ET for the first mid-season of cereals crops
tfrom March to May 2013, and for the subsequent season of market gardening (e.g.
tomato, water melon, pepper etc.) from May to August 2013. In addition, a good
agreement is observed for the second market gardening season (May to August 2014).
However, discrepancies are observed for the remaining periods which may correspond to
periods when bare soil fraction (fallow and trees fields) outweighs the vegetation covered
fraction or when evaporation process. Also the discrepancy observed for the second
wheat period and not for the first may be due to a bad simulation of evaporation
processes occurring more during the second wet year. This highlights the known
problems of the FAO method to simulate evaporation from bare soil, mainly the readily
evaporable water at surface layer REW, as observed during the SAMIR calibration (Saadi
et al. 2015) and as mentioned by other authors (Torres et Calera, 2010, Odi-Lara, 2016).

With the current parameterization, SAMIR is not able to well reproduce the ET
interseasonality and modeled ET range from 0.3 mm and 2 mm for both seasons. The
average annual levels are not bad but the slight difference between seasons is insufficient,
given that the two seasons are different in terms of climatic conditions. The transpiration
component is assumed more stable between years because it is linked to external water
inputs by irrigation, and thus mainly link to the cropped surfaces. Conversely, the
evaporation component is more linked to soil surface moisture and thus correlated with
rainfall events and partially with irrigation. Then, the fact that the contrast between years
is not well reproduced advocates for a problem with evaporation, in this case an
underestimation. The fact that the evaporation peaks present in the XLLAS derived ET
after each rainfall event are not observed in the SAMIR ET corroborates this evaporation
problem. The area below XLAS transect is mainly cropped by trees with considerable
fractions of bare soil, especially during the dry season (rain-fed cereals did not develop),
which explains the importance of the contrast observed for ET between years but not
with SAMIR.

This problem with evaporation may be because of the REW parameter controlling the
evaporation rate (REW=0 and m=0.246) has been obtained by the calibration of cereals.
Having not much information or other crops, and considering this parameter was linked
mainly to soil properties, we have decided to use this parameter for all crops in the area,
which may be the reason for the observed problem. Therefore, in order to improve
SAMIR results, we have decided to revisit the calibration of cereals using more standard
REW values, and to apply in any case standard REW values (7.e. between 0 and 8) to other
crops, assuming this parameter cannot be extrapolate simply from one crop to another.
This will be presented in chapter 4.
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3.4 Synthesis and partial conclusion

The major originality of SAMIR relies on the use of remote sensing NDVI time series
for vegetation monitoring, from which crop coefficients and vegetation fraction covers
are derived, instead of using standard values. The irrigations are simulated based on the
soil water budget. Irrigation volume estimates have been evaluated at perimeter, farm and
tield scales. The seasonal volumes estimated at perimeter scale were acceptable, although
comparison at finer spatial scales (farm and field scales) were not significant. Indeed, at
plot scale we faced the difficulty to collect accurate information. At farm scale, the
result gave significant information about the farmer’s behavior but the data set did not
allow assessing accurately SAMIR estimates themselves. At perimeter scale, it was shown
that the modeled monthly irrigations are on the whole satisfying with some noticeable
exceptions pointing out the limitations of SAMIR regarding (1) the initialization of the
soil moisture, and (2) the impossibility to take into account changes of land use during
the same season. This last point emphasizes the necessity to develop methods for
monthly land use mapping instead of the traditional annual or seasonal mapping
frequency used for now. Finally, SAMIR ET estimates were compared with ET derived
tfrom XLAS measurements over four kilometers transect during two years. Although the
values were on the whole coherent, discrepancies revealed some possible problems in
the evaporation simulations with SAMIR. Therefore, further elaborations are carried out
to enhance SAMIR parameterization which will be presented in the next chapter.
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Chapter 4: Revisiting SAMIR
parameters setting for evapotranspiration
and irrigation spatialization

The SAMIR overall results of modeled E'T and irrigation volumes are enconraging. However,
with the current parameterization, in the sparsely vegetated area observed by the XI.AS,
SAMIR s not able to well reproduce the seasonal variations of E'T and the modeled ET is
located within the same range for the 2012-2013 and 2013-2014 seasons althongh XI1.AS
measurements are more contrasted, because of significant differences in precipitations for these two
years. NMoreover, the issue of parameterization, regarding mainly the soil water content
initialization and the soil evaporation (REW), has been already highlighted. Therefore, in order
to improve SAMIR results, the input parameters are revisited. New cereals parameters calibration
25 carried out based simultaneously on evaporation and soil moisture measurements for the three
observed plots. A further attempt to get calibrated parameters for trees was performed based on
ET and soil moisture measurements of the rainfed olive orchard (Nasrallah flux station).
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4.1 SAMIR model calibration
4.1.1 Second calibration on cereals fields

The SAMIR model was recalibrated at plot scale using simultaneously latent heat flux
and soil moisture measurements (section 2.5.2) of the irrigated barley (20111-2012),
irrigated wheat (2012-2013) and rainfed wheat (2011-2012) plots. The goal of this
calibration is to get a unique set of parameters for cereals taking into account irrigated and
rainfed cereals in order to get a robust parameterization in a context of various cropping
practices. Another difference with the first calibration described in (Saadi e a/, 2015) is
that the Nash efficiency between observed and modeled values was maximized for both
ET and soil moisture for the three soil layers (7.e. evaporation layer, root zone and deep

layer).

The NDVI time profile for each flux site was extracted from the SPOT time series.
The NDVI-fc relationship was determined empirically considering that for a bare soil
(NDVI = 0.1) the fraction cover was null (fc = 0) and that at full coverage (fc = 1) the
NDVI was the maximum value observed in the image (0.9). The NDVI-kcb relations
were calibrated. Differently from the first calibration, wilting point (Bwp) and field capacity
(0r.) were determined for each plot on the basis of the soil moisture measurements as the
upper and lower limits of the soil moisture measurement range. The field capacity was
determined after discarding the water content peaks observed after strong wetting events
before soil drainage. An initial water content of 45%, 70% and 10% of the water holding
capacity was considered for the rainfed winter wheat (2011-2012), irrigated barley (2011-
2012) and irrigated winter wheat (2012-2013) plots, respectively, based on previous
rainfall as soil water measurements when usually not yet available. For 2012—2013, it was
set to 10% because no significant precipitations were observed since summer, while for
the 2011-2012 season, the initial water content was set at a relatively larger value of 45%
and 70% due to 85 mm of precipitations recorded ten days before the starting date of the
simulation. Higher percentage was considered for the irrigated barley because this plot is
irrigated and barley was preceded by a market gardening crop (during summer 2011). The
soil fraction wetted by rain or irrigation (fw) was set to one because the irrigation
technique for cereals is sprinkler irrigation. The depth of the evaporation layer (Ze) and
the proportion of easily available water (p) were fixed following FAO paper 56
recommendations (Allen e# al., 1998). The calibrated parameters (REW, m, Ztmax, Zsoil,
Dife.,, Difrq, and Kcb) are summarized in table 4.1.
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Table 4. 1: Parameters obtained after calibration on observed ET and soil moisture for the three
cereals plots.

Definition Value Data Sources
Vegetation Parameters
ag NDVI-fc relation’s slope 1.25 Satellite imagery
bt NDVI-fc relation’s intercept —-0.13 Satellite imagery
akeh NDVI-Kcb relation’s slope 1.31 Calibrated
bren NDVI-Kcb relation’s intercept -0.13 Calibrated

Soil Parameters

0 [m®/m?] Volumetric water content at 0.22 Rainfed wheat ground observation
field capacity

0.27 Irrigated barley ground observation
0.25 Irrigated wheat ground observation
Bup [M*/m?] Volumetric water content at 0.07 Rainfed wheat ground observation
wilting point
0.14 Irrigated barley ground observation
0.11 Irrigated wheat ground observation
Init_RU [%] Soil initial water content 45 Rainfed wheat ground observation
70 Irrigated barley ground observation
10 Irrigated wheat ground observation
Ze [mm] Depth of the surface layer 125 FAO-56
REW [mm] Readily evaporable water at 0 Calibrated
surface layer
m [] Coefficient de reduction 0.264 Calibrated
Zrmin [Mm] Minimum root depth 125 FAO-56
Zlmax [MmM] Maximum root depth 800 Calibrated
D Fraction of re_adlly aval_lable 0.55 EAO-56
water holding capacity
Zsoit [mm] Total soil thickness 1550 Calibrated
Dif,, [%] Diffusion coeff. between 5 Calibrated
surface and root layers
Dif 4 [%] Diffusion coeff. between deep 10 Calibrated

and root layers

The results showed that the dynamics of ET are on the whole correctly simulated
(Figures 4.1). One important result is that it was not possible to obtain correct results
without decreasing the m factor down to 0.264. When trying to keep it to one, even with
REW at a value of zero, the average Nash decreases significantly around 0.4. This
confirms that the evaporation process is difficult to described using the standard FAO
method, and confirms the usefulness of the m factor. However, some important
discrepancies explain that the final Nash and RMSD values are not so good. For rainfed
wheat, we see that SAMIR does not reproduces ET peaks due to rainfall events, showing,
if observations are correct, that the low m factor is not appropriate during this period of
bare soil and high ET0. SAMIR increases evaporation after harvest (around May, 27%),
but the raise is not as pronounced as for observations. For the irrigated barley, we see also
a significant underestimation of ET by SAMIR starting mid-April, which can be explained
also by soil evaporation problems. Finally, the problem of the irrigated wheat is quite
different and seems to be linked to measurement errors. Indeed, especially when
compared with irrigated barley, the strong variability of ET is probably due to errors in
observed ET, quite obvious considering the dozen of ET values which are not associated
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with null values of ETo and are anyway not realistic. Calibrating rainfed and irrigated
crops together appears to be successful here, showing that except the difference in water
inputs, they have roughly similar behavior. Nevertheless, observed ET for the rainfed
wheat seems to be lower than modeled one, which could be interpreted by a lower Kcb,
but this lower value may also be the result of compensation, through the calibration, of
the higher observed values during the last month.

The soil moisture simulation for the surface and root layer is correct with Nash values
better than for ET simulations (Table 4.2). The results for the deep layer soil moisture
were not considered because calibration was unsuccessful. This can be explained either by
the complex hydrological behavior of this layer or by soil moisture measurement errors
(e.g. the raise of moisture in the deep la