V. Hernandez-gea and S. L. Friedman, Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group, Annual review of pathology, vol.6, pp.15-20, 1994.

A. Pellicoro, P. Ramachandran, J. P. Iredale, and J. A. Fallowfield, Liver fibrosis and repair: immune regulation of wound healing in a solid organ, Nat Rev Immunol, vol.14, pp.181-194, 2014.

M. Pinzani, Pathophysiology of Liver Fibrosis, Digestive diseases, vol.33, pp.492-497, 2015.

T. A. Drixler, M. J. Vogten, E. D. Ritchie, T. J. Van-vroonhoven, M. F. Gebbink et al., Liver regeneration is an angiogenesis-associated phenomenon, Ann Surg, vol.236, pp.711-702, 2002.

M. Fernandez, D. Semela, J. Bruix, I. Colle, M. Pinzani et al., Angiogenesis in liver disease, Journal of hepatology, vol.50, pp.604-620, 2009.

C. Corpechot, V. Barbu, D. Wendum, N. Kinnman, C. Rey et al., Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis, Hepatology, vol.35, pp.1010-1021, 2002.

O. Rosmorduc, D. Wendum, C. Corpechot, B. Galy, N. Sebbagh et al., Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis, The American journal of pathology, vol.155, pp.1065-1073, 1999.

Z. Zhang, F. Zhang, Y. Lu, and S. Zheng, Update on implications and mechanisms of angiogenesis in liver fibrosis, Hepatol Res, vol.45, pp.162-178, 2015.

S. Tugues, G. Fernandez-varo, J. Munoz-luque, J. Ros, V. Arroyo et al., Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats, Hepatology, vol.46, pp.1919-1926, 2007.

K. Taura, S. De-minicis, E. Seki, E. Hatano, K. Iwaisako et al., Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis, Gastroenterology, vol.135, pp.1729-1738, 2008.

H. Yoshiji, S. Kuriyama, J. Yoshii, Y. Ikenaka, R. Noguchi et al., Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis, Gut, vol.52, pp.1347-1354, 2003.

J. Ehling, M. Bartneck, X. Wei, F. Gremse, V. Fech et al., CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis, Gut, vol.63, pp.1960-1971, 2014.

J. O. Moon, T. P. Welch, F. J. Gonzalez, and B. L. Copple, Reduced liver fibrosis in hypoxia-inducible factor-1alpha-deficient mice, American journal of physiology. Gastrointestinal and liver physiology, vol.296, pp.582-592, 2009.

B. L. Copple, S. Kaska, and C. Wentling, Hypoxia-inducible factor activation in myeloid cells contributes to the development of liver fibrosis in cholestatic mice, J Pharmacol Exp Ther, vol.341, pp.307-316, 2012.

E. Novo, S. Cannito, E. Zamara, L. Valfre-di-bonzo, A. Caligiuri et al., Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells, The American journal of pathology, vol.170, pp.1942-1953, 2007.

O. Rosmorduc, Antiangiogenic therapies in portal hypertension: a breakthrough in hepatology, Gastroenterol Clin Biol, vol.34, pp.446-449, 2010.

E. Patsenker, Y. Popov, F. Stickel, V. Schneider, M. Ledermann et al., Pharmacological inhibition of integrin alphavbeta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis, Hepatology, vol.50, pp.1501-1511, 2009.

L. Yang, J. Kwon, Y. Popov, G. B. Gajdos, T. Ordog et al., Vascular endothelial growth factor promotes fibrosis resolution and repair in mice, Gastroenterology, vol.146, p.1331, 2014.

N. Sandbo and N. Dulin, Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function, Transl Res, vol.158, pp.181-196, 2011.

I. A. Darby, B. Laverdet, F. Bonte, and A. Desmouliere, Fibroblasts and myofibroblasts in wound healing, Clin Cosmet Investig Dermatol, vol.7, pp.301-311, 2014.

C. Guyot, C. Combe, and A. Desmouliere, The common bile duct ligation in rat: A relevant in vivo model to study the role of mechanical stress on cell and matrix behaviour, Histochem Cell Biol, vol.126, pp.517-523, 2006.

S. L. Friedman, Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver, Physiol Rev, vol.88, pp.125-172, 2008.

P. Kulasekaran, C. A. Scavone, D. S. Rogers, D. A. Arenberg, V. J. Thannickal et al., Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation, American journal of respiratory cell and molecular biology, vol.41, pp.484-493, 2009.

T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz et al., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motil Cytoskeleton, vol.60, pp.24-34, 2005.

S. Aarabi, K. A. Bhatt, Y. Shi, J. Paterno, E. I. Chang et al., Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis, FASEB J, vol.21, pp.3250-3261, 2007.

F. Grinnell, C. H. Ho, Y. C. Lin, and G. Skuta, Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices, J Biol Chem, vol.274, pp.918-923, 1999.

P. J. Wipff, D. B. Rifkin, J. J. Meister, and B. Hinz, Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix, J Cell Biol, vol.179, pp.1311-1323, 2007.

T. Kisseleva, H. Uchinami, N. Feirt, O. Quintana-bustamante, J. C. Segovia et al., Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis, Journal of hepatology, vol.45, pp.429-438, 2006.

R. Higashiyama, T. Moro, S. Nakao, K. Mikami, H. Fukumitsu et al., Negligible contribution of bone marrow-derived cells to collagen production during hepatic fibrogenesis in mice, Gastroenterology, vol.137, p.1451, 2009.

A. Kaimori, J. Potter, J. Y. Kaimori, C. Wang, E. Mezey et al., Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro, J Biol Chem, vol.282, pp.22089-22101, 2007.

K. Taura, K. Miura, K. Iwaisako, C. H. Osterreicher, Y. Kodama et al., Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice, Hepatology, vol.51, pp.1027-1036, 2010.

D. Scholten, C. H. Osterreicher, A. Scholten, K. Iwaisako, G. Gu et al., Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice, Gastroenterology, vol.139, pp.987-998, 2010.

A. Claperon, M. Mergey, T. H. Nguyen-ho-bouldoires, D. Vignjevic, D. Wendum et al., EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition, Journal of hepatology, vol.61, pp.325-332, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01514460

H. Senoo, N. Kojima, and M. Sato, Vitamin A-storing cells (stellate cells), Vitam Horm, vol.75, pp.131-159, 2007.

T. Roskams, Different types of liver progenitor cells and their niches, Journal of hepatology, vol.45, pp.1-4, 2006.

D. C. Rockey, C. N. Housset, and S. L. Friedman, Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo, The Journal of clinical investigation, vol.92, pp.1795-1804, 1993.

C. Housset, D. C. Rockey, and D. M. Bissell, Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin 1, Proceedings of the National Academy of Sciences of the United States of America, vol.90, pp.9266-9270, 1993.

L. D. Deleve, X. Wang, L. Hu, M. K. Mccuskey, and R. S. Mccuskey, Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation, American journal of physiology. Gastrointestinal and liver physiology, vol.287, pp.757-763, 2004.

L. D. Deleve, X. Wang, and Y. Guo, Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence, Hepatology, vol.48, pp.920-930, 2008.

G. Kent, S. Gay, T. Inouye, R. Bahu, O. T. Minick et al., Vitamin Acontaining lipocytes and formation of type III collagen in liver injury, Proceedings of the National Academy of Sciences of the United States of America, vol.73, pp.3719-3722, 1976.

I. Mederacke, D. H. Dapito, S. Affo, H. Uchinami, and R. F. Schwabe, Highyield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers, Nat Protoc, vol.10, pp.305-315, 2015.

M. Bartneck, K. T. Warzecha, C. G. Tag, S. Sauer-lehnen, F. Heymann et al., Isolation and time lapse microscopy of highly pure hepatic stellate cells, Anal Cell Pathol (Amst), vol.2015, p.417023, 2015.

G. A. Ramm, Isolation and culture of rat hepatic stellate cells, J Gastroenterol Hepatol, vol.13, pp.846-851, 1998.

S. R. Caliari, M. Perepelyuk, B. D. Cosgrove, S. J. Tsai, G. Y. Lee et al., Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation, Sci Rep, vol.6, p.21387, 2016.

D. Cassiman, L. Libbrecht, V. Desmet, C. Denef, and T. Roskams, Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers, Journal of hepatology, vol.36, pp.200-209, 2002.

I. Mederacke, C. C. Hsu, J. S. Troeger, P. Huebener, X. Mu et al., Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries. Laboratory investigation, Nat Commun, vol.4, pp.292-303, 2007.

N. Kinnman, C. Francoz, V. Barbu, D. Wendum, C. Rey et al., The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Laboratory investigation, vol.83, pp.163-173, 2003.

C. Degott, E. S. Zafrani, P. Callard, B. Balkau, R. E. Poupon et al., Histopathological study of primary biliary cirrhosis and the effect of ursodeoxycholic acid treatment on histology progression, Hepatology, vol.29, pp.1007-1012, 1999.

S. Michalak, M. C. Rousselet, P. Bedossa, C. Pilette, D. Chappard et al., Respective roles of porto-septal fibrosis and centrilobular fibrosis in alcoholic liver disease, J Pathol, vol.201, pp.55-62, 2003.

N. Bosselut, C. Housset, P. Marcelo, C. Rey, T. Burmester et al., Distinct proteomic features of two fibrogenic liver cell populations: hepatic stellate cells and portal myofibroblasts, Proteomics, vol.10, pp.1017-1028, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539861

H. El-mourabit, E. Loeuillard, S. Lemoinne, A. Cadoret, and C. Housset, Culture Model of Rat Portal Myofibroblasts, Front Physiol, vol.7, p.120, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302789

T. Knittel, D. Kobold, B. Saile, A. Grundmann, K. Neubauer et al., Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential, Gastroenterology, vol.117, pp.1205-1221, 1999.

Z. Li, J. A. Dranoff, E. P. Chan, M. Uemura, J. Sevigny et al., Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture, Hepatology, vol.46, pp.1246-1256, 2007.

B. Tuchweber, A. Desmouliere, M. L. Bochaton-piallat, L. Rubbia-brandt, and G. Gabbiani, Proliferation and phenotypic modulation of portal fibroblasts in the early stages of cholestatic fibrosis in the rat, Laboratory investigation, vol.74, pp.265-278, 1996.

J. A. Dranoff, E. A. Kruglov, S. C. Robson, N. Braun, H. Zimmermann et al., The ecto-nucleoside triphosphate diphosphohydrolase NTPDase2/CD39L1 is expressed in a novel functional compartment within the liver, Hepatology, vol.36, pp.1135-1144, 2002.

J. Dudas, T. Mansuroglu, D. Batusic, B. Saile, and G. Ramadori, Thy-1 is an in vivo and in vitro marker of liver myofibroblasts, Cell Tissue Res, vol.329, pp.503-514, 2007.

T. Ogawa, C. Tateno, K. Asahina, H. Fujii, N. Kawada et al., Identification of vitamin A-free cells in a stellate cell-enriched fraction of normal rat liver as myofibroblasts, Histochem Cell Biol, vol.127, pp.161-174, 2007.

K. Iwaisako, K. Taura, Y. Koyama, K. Takemoto, A. et al., Strategies to Detect Hepatic Myofibroblasts in Liver Cirrhosis of Different Etiologies, Current pathobiology reports, vol.2, pp.209-215, 2014.

W. S. Argraves, L. M. Greene, M. A. Cooley, and W. M. Gallagher, Fibulins: physiological and disease perspectives, EMBO Rep, vol.4, pp.1127-1131, 2003.

R. N. Ono, G. Sengle, N. L. Charbonneau, V. Carlberg, H. P. Bachinger et al., Latent transforming growth factor beta-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites, J Biol Chem, vol.284, pp.16872-16881, 2009.

A. Strom, A. I. Olin, A. Aspberg, and A. Hultgardh-nilsson, Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration, Cardiovasc Res, vol.69, pp.755-763, 2006.

D. Karin, Y. Koyama, D. Brenner, and T. Kisseleva, The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis, Differentiation, vol.92, pp.84-92, 2016.

S. Lemoinne, A. Cadoret, P. E. Rautou, H. El-mourabit, V. Ratziu et al., Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles, Hepatology, vol.61, pp.1041-1055, 2015.

N. Kinnman, O. Goria, D. Wendum, M. C. Gendron, C. Rey et al., Hepatic stellate cell proliferation is an early platelet-derived growth factormediated cellular event in rat cholestatic liver injury. Laboratory investigation, vol.81, pp.1709-1716, 2001.

K. H. Kim, C. C. Chen, G. Alpini, and L. F. Lau, CCN1 induces hepatic ductular reaction through integrin alphavbeta(5)-mediated activation of NF-kappaB, The Journal of clinical investigation, vol.125, pp.1886-1900, 2015.

Y. He, G. D. Wu, T. Sadahiro, S. I. Noh, H. Wang et al., Interaction of CD44 and hyaluronic acid enhances biliary epithelial proliferation in cholestatic livers, American journal of physiology. Gastrointestinal and liver physiology, vol.295, pp.305-312, 2008.

S. Milani, H. Herbst, D. Schuppan, H. Stein, and C. Surrenti, Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease, The American journal of pathology, vol.139, pp.1221-1229, 1991.

C. Grappone, M. Pinzani, M. Parola, G. Pellegrini, A. Caligiuri et al., Expression of platelet-derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats, Journal of hepatology, vol.31, pp.100-109, 1999.

I. Lua, Y. Li, J. A. Zagory, K. S. Wang, S. W. French et al., Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers, Journal of hepatology, vol.64, pp.1137-1146, 2016.

S. Lemoinne, D. Thabut, and C. Housset, Portal myofibroblasts connect angiogenesis and fibrosis in liver, Cell Tissue Res, vol.365, pp.583-589, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01338347

C. Hetz, E. Chevet, and S. A. Oakes, Proteostasis control by the unfolded protein response, Nat Cell Biol, vol.17, pp.829-838, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01175531

C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nature reviews. Molecular cell biology, vol.13, pp.89-102, 2012.

D. Ron and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response, Nature reviews. Molecular cell biology, vol.8, pp.519-529, 2007.

P. Walter, R. , and D. , The unfolded protein response: from stress pathway to homeostatic regulation, Science, vol.334, pp.1081-1086, 2011.

C. Hetz, F. Martinon, D. Rodriguez, and L. H. Glimcher, The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha, Physiol Rev, vol.91, pp.1219-1243, 2011.

A. Baiceanu, P. Mesdom, M. Lagouge, and F. Foufelle, Endoplasmic reticulum proteostasis in hepatic steatosis, Nat Rev Endocrinol, vol.12, pp.710-722, 2016.

A. Bertolotti, Y. Zhang, L. M. Hendershot, H. P. Harding, R. et al., Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response, Nat Cell Biol, vol.2, pp.326-332, 2000.

H. P. Harding, Y. Zhang, R. , and D. , Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase, Nature, vol.397, pp.271-274, 1999.

S. J. Marciniak, C. Y. Yun, S. Oyadomari, I. Novoa, Y. Zhang et al., CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum, Genes Dev, vol.18, pp.3066-3077, 2004.

F. Walter, J. Schmid, H. Dussmann, C. G. Concannon, and J. H. Prehn, Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival, Cell death and differentiation, vol.22, pp.1502-1516, 2015.

Y. Ma, J. W. Brewer, J. A. Diehl, and L. M. Hendershot, Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response, J Mol Biol, vol.318, pp.1351-1365, 2002.

K. D. Mccullough, J. L. Martindale, L. O. Klotz, T. Y. Aw, and N. J. Holbrook, Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state, Mol Cell Biol, vol.21, pp.1249-1259, 2001.

H. Malhi and R. J. Kaufman, Endoplasmic reticulum stress in liver disease, Journal of hepatology, vol.54, pp.795-809, 2011.

N. Ohoka, S. Yoshii, T. Hattori, K. Onozaki, and H. Hayashi, TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death, EMBO J, vol.24, pp.1243-1255, 2005.

J. Han, S. H. Back, J. Hur, Y. H. Lin, R. Gildersleeve et al., ERstress-induced transcriptional regulation increases protein synthesis leading to cell death, Nat Cell Biol, vol.15, pp.481-490, 2013.

M. Lu, D. A. Lawrence, S. Marsters, D. Acosta-alvear, P. Kimmig et al., Opposing unfoldedprotein-response signals converge on death receptor 5 to control apoptosis, Science, vol.345, pp.98-101, 2014.

J. W. Brewer, L. M. Hendershot, C. J. Sherr, and J. A. Diehl, Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression, Proceedings of the National Academy of Sciences of the United States of America, vol.96, pp.8505-8510, 1999.

J. W. Brewer and J. A. Diehl, PERK mediates cell-cycle exit during the mammalian unfolded protein response, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.12625-12630, 2000.

R. B. Hamanaka, B. S. Bennett, S. B. Cullinan, and J. A. Diehl, PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway, Mol Biol Cell, vol.16, pp.5493-5501, 2005.

A. Nagelkerke, J. Bussink, A. J. Van-der-kogel, F. C. Sweep, and P. N. Span, The PERK/ATF4/LAMP3-arm of the unfolded protein response affects radioresistance by interfering with the DNA damage response, Radiother Oncol, vol.108, pp.415-421, 2013.

D. Senft and Z. A. Ronai, UPR, autophagy, and mitochondria crosstalk underlies the ER stress response, Trends Biochem Sci, vol.40, pp.141-148, 2015.

J. H. Teckman and D. H. Perlmutter, Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response, American journal of physiology. Gastrointestinal and liver physiology, vol.279, pp.961-974, 2000.

S. A. Houck, H. Y. Ren, V. J. Madden, J. N. Bonner, M. P. Conlin et al., Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR, Mol Cell, vol.54, pp.166-179, 2014.

D. Tomar, P. Prajapati, L. Sripada, K. Singh, R. Singh et al., TRIM13 regulates caspase-8 ubiquitination, translocation to autophagosomes and activation during ER stress induced cell death, Biochimica et biophysica acta, vol.1833, pp.3134-3144, 2013.

J. A. Rubiolo, H. Lopez-alonso, P. Martinez, A. Millan, E. Cagide et al., Yessotoxin induces ER-stress followed by autophagic cell death in glioma cells mediated by mTOR and BNIP3, Cell Signal, vol.26, pp.419-432, 2014.

U. Ozcan, Q. Cao, E. Yilmaz, A. H. Lee, N. N. Iwakoshi et al., Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes, Science, vol.306, pp.457-461, 2004.

M. F. Gregor, L. Yang, E. Fabbrini, B. S. Mohammed, J. C. Eagon et al., Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss, Diabetes, vol.58, pp.693-700, 2009.

P. Puri, F. Mirshahi, O. Cheung, R. Natarajan, J. W. Maher et al., Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease, Gastroenterology, vol.134, pp.568-576, 2008.

N. Tamaki, E. Hatano, K. Taura, M. Tada, Y. Kodama et al., CHOP deficiency attenuates cholestasisinduced liver fibrosis by reduction of hepatocyte injury, American journal of physiology. Gastrointestinal and liver physiology, vol.294, pp.498-505, 2008.

H. Bernstein, C. M. Payne, C. Bernstein, J. Schneider, S. E. Beard et al., Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate, Toxicology letters, vol.108, pp.37-46, 1999.

S. Tsuchiya, M. Tsuji, Y. Morio, and K. Oguchi, Involvement of endoplasmic reticulum in glycochenodeoxycholic acid-induced apoptosis in rat hepatocytes, Toxicology letters, vol.166, pp.140-149, 2006.

T. Adachi, T. Kaminaga, H. Yasuda, T. Kamiya, and H. Hara, The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury, Journal of clinical biochemistry and nutrition, vol.54, pp.129-135, 2014.

I. M. Bochkis, N. E. Rubins, P. White, E. E. Furth, J. R. Friedman et al., Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress, Nature medicine, vol.14, pp.828-836, 2008.

J. H. Koo, H. J. Lee, W. Kim, and S. G. Kim, Endoplasmic Reticulum Stress in Hepatic Stellate Cells Promotes Liver Fibrosis via PERK-Mediated Degradation of HNRNPA1 and Up-regulation of SMAD2, Gastroenterology, vol.150, p.188, 2016.

A. M. Hetherington, C. G. Sawyez, E. Zilberman, A. M. Stoianov, D. L. Robson et al., Differential Lipotoxic Effects of Palmitate and Oleate in Activated Human Hepatic Stellate Cells and Epithelial Hepatoma Cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, vol.39, pp.1648-1662, 2016.

R. Sasaki, T. Kanda, M. Nakamura, S. Nakamoto, Y. Haga et al., Possible Involvement of Hepatitis B Virus Infection of Hepatocytes in the Attenuation of Apoptosis in Hepatic Stellate Cells, PloS one, vol.11, p.146314, 2016.

J. Hu, H. Han, M. Y. Lau, H. Lee, M. Macveigh-aloni et al., Effects of combined alcohol and anti-HIV drugs on cellular stress responses in primary hepatocytes and hepatic stellate and kupffer cells, Alcohol Clin Exp Res, vol.39, pp.11-20, 2015.

V. Hernandez-gea, M. Hilscher, R. Rozenfeld, M. P. Lim, N. Nieto et al., Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy, Journal of hepatology, vol.59, pp.98-104, 2013.

E. Borkham-kamphorst, B. T. Steffen, E. Van-de-leur, L. Tihaa, U. Haas et al., Adenoviral CCN gene transfers induce in vitro and in vivo endoplasmic reticulum stress and unfolded protein response, Biochimica et biophysica acta, vol.1863, pp.2604-2612, 2016.

E. Borkham-kamphorst, B. T. Steffen, E. Van-de-leur, U. Haas, L. Tihaa et al., CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis, Cell Signal, vol.28, pp.34-42, 2016.

S. Matsuzaki, T. Hiratsuka, M. Taniguchi, K. Shingaki, T. Kubo et al., Physiological ER Stress Mediates the Differentiation of Fibroblasts, vol.10, p.123578, 2015.

F. Heindryckx, F. Binet, M. Ponticos, K. Rombouts, J. Lau et al., Endoplasmic reticulum stress enhances fibrosis through IRE1alpha-mediated degradation of miR-150 and XBP-1 splicing, EMBO Mol Med, vol.8, pp.729-744, 2016.

J. L. Maiers, E. Kostallari, M. Mushref, T. M. Deassuncao, H. Li et al., The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice, Hepatology, 2016.

F. Binet and P. Sapieha, Stress and Angiogenesis, vol.22, pp.560-575, 2015.

E. R. Pereira, K. Frudd, W. Awad, and L. M. Hendershot, Endoplasmic reticulum (ER) stress and hypoxia response pathways interact to potentiate hypoxiainducible factor 1 (HIF-1) transcriptional activity on targets like vascular endothelial growth factor (VEGF), J Biol Chem, vol.289, pp.3352-3364, 2014.

R. Ghosh, K. L. Lipson, K. E. Sargent, A. M. Mercurio, J. S. Hunt et al., Transcriptional regulation of VEGF-A by the unfolded protein response pathway, PloS one, vol.5, p.9575, 2010.

E. R. Pereira, N. Liao, G. A. Neale, and L. M. Hendershot, Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response, PloS one, vol.5, 2010.

N. Bouvier, S. Fougeray, P. Beaune, E. Thervet, and N. Pallet, The unfolded protein response regulates an angiogenic response by the kidney epithelium during ischemic stress, J Biol Chem, vol.287, pp.14557-14568, 2012.

O. V. Oskolkova, T. Afonyushkin, A. Leitner, E. Von-schlieffen, P. S. Gargalovic et al., ATF4-dependent transcription is a key mechanism in VEGF up-regulation by oxidized phospholipids: critical role of oxidized sn-2 residues in activation of unfolded protein response, Blood, vol.112, pp.330-339, 2008.

C. N. Roybal, S. Yang, C. W. Sun, D. Hurtado, D. L. Vander-jagt et al., Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4, J Biol Chem, vol.279, pp.14844-14852, 2004.

T. Afonyushkin, O. V. Oskolkova, M. Philippova, T. J. Resink, P. Erne et al., Oxidized phospholipids regulate expression of ATF4 and VEGF in endothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded protein stress pathways, Arterioscler Thromb Vasc Biol, vol.30, pp.1007-1013, 2010.

C. Philippe, A. Dubrac, C. Quelen, A. Desquesnes, L. Van-den-berghe et al., PERK mediates the IRES-dependent translational activation of mRNAs encoding angiogenic growth factors after ischemic stress, Sci Signal, vol.9, p.44, 2016.

E. Karali, S. Bellou, D. Stellas, A. Klinakis, C. Murphy et al., VEGF Signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress, Mol Cell, vol.54, pp.559-572, 2014.

R. Poupon, Y. Chretien, R. E. Poupon, F. Ballet, Y. Calmus et al., Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis, Lancet, vol.1, pp.834-836, 1987.

A. F. Hofmann, Pharmacology of ursodeoxycholic acid, an enterohepatic drug, Scand J Gastroenterol Suppl, vol.204, pp.1-15, 1994.

G. A. Kullak-ublick, B. Stieger, B. Hagenbuch, and P. J. Meier, Hepatic transport of bile salts, Semin Liver Dis, vol.20, pp.273-292, 2000.

C. M. Van-nieuwkerk, R. P. Elferink, A. K. Groen, R. Ottenhoff, G. N. Tytgat et al., Effects of Ursodeoxycholate and cholate feeding on liver disease in FVB mice with a disrupted mdr2 P-glycoprotein gene, Gastroenterology, vol.111, pp.165-171, 1996.

P. Fickert, A. Fuchsbichler, M. Wagner, G. Zollner, A. Kaser et al., Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice, Gastroenterology, vol.127, pp.261-274, 2004.

E. Sinakos, H. U. Marschall, K. V. Kowdley, A. Befeler, J. Keach et al., Bile acid changes after high-dose ursodeoxycholic acid treatment in primary sclerosing cholangitis: Relation to disease progression, Hepatology, vol.52, pp.197-203, 2010.

K. D. Lindor, K. V. Kowdley, V. A. Luketic, M. E. Harrison, T. Mccashland et al., High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis, Hepatology, vol.50, pp.808-814, 2009.

C. Benz, S. Angermuller, U. Tox, P. Kloters-plachky, H. D. Riedel et al., Effect of tauroursodeoxycholic acid on bile-acid-induced apoptosis and cytolysis in rat hepatocytes, Journal of hepatology, vol.28, pp.99-106, 1998.

A. F. Hofmann, Bile Acids: The Good, the Bad, and the Ugly, News Physiol Sci, vol.14, pp.24-29, 1999.

R. Botla, J. R. Spivey, H. Aguilar, S. F. Bronk, and G. J. Gores, Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection, J Pharmacol Exp Ther, vol.272, pp.930-938, 1995.

C. M. Rodrigues, G. Fan, X. Ma, B. T. Kren, and C. J. Steer, A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation, The Journal of clinical investigation, vol.101, pp.2790-2799, 1998.

L. Qiao, E. Studer, K. Leach, R. Mckinstry, S. Gupta et al., Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis, Mol Biol Cell, vol.12, pp.2629-2645, 2001.

U. Ozcan, E. Yilmaz, L. Ozcan, M. Furuhashi, E. Vaillancourt et al., Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes, Science, vol.313, pp.1137-1140, 2006.

Y. Zhou, R. Doyen, and L. M. Lichtenberger, The role of membrane cholesterol in determining bile acid cytotoxicity and cytoprotection of ursodeoxycholic acid, Biochimica et biophysica acta, vol.1788, pp.507-513, 2009.

P. Fickert, G. Zollner, A. Fuchsbichler, C. Stumptner, C. Pojer et al., Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver, Gastroenterology, vol.121, pp.170-183, 2001.

G. Zollner, P. Fickert, A. Fuchsbichler, D. Silbert, M. Wagner et al., Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine, Journal of hepatology, vol.39, pp.480-488, 2003.

G. Salvioli, R. Lugli, J. M. Pradelli, A. Frignani, and V. Boccalletti, Urinary excretion of bile acids during acute administration in man, Eur J Clin Invest, vol.18, pp.22-28, 1988.

M. G. Roma, F. D. Toledo, A. C. Boaglio, C. L. Basiglio, F. A. Crocenzi et al., Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications, Clin Sci, vol.121, pp.523-544, 2011.

T. Pusl and U. Beuers, Ursodeoxycholic acid treatment of vanishing bile duct syndromes, World journal of gastroenterology : WJG, vol.12, pp.3487-3495, 2006.

A. K. Kurz, D. Graf, M. Schmitt, S. Vom-dahl, and D. Haussinger, Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats, Gastroenterology, vol.121, pp.407-419, 2001.

U. Beuers, S. Hohenester, L. J. De-buy-wenniger, A. E. Kremer, P. L. Jansen et al., The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies, Hepatology, vol.52, pp.1489-1496, 2010.

M. Yoshikawa, T. Tsujii, K. Matsumura, J. Yamao, Y. Matsumura et al., Immunomodulatory effects of ursodeoxycholic acid on immune responses, Hepatology, vol.16, pp.358-364, 1992.

A. Bergamini, L. Dini, L. Baiocchi, L. Cappannoli, L. Falasca et al., Bile acids with differing hydrophilic-hydrophobic properties do not influence cytokine production by human monocytes and murine Kupffer cells, Hepatology, vol.25, pp.927-933, 1997.

G. Y. Park, Y. K. Han, J. Y. Han, and C. G. Lee, Tauroursodeoxycholic acid reduces the invasion of MDA-MB-231 cells by modulating matrix metalloproteinases 7 and 13, Oncol Lett, vol.12, pp.2227-2231, 2016.

A. L. Cao, L. Wang, X. Chen, Y. M. Wang, H. J. Guo et al., Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy, Laboratory investigation, vol.96, pp.610-622, 2016.

A. R. Gani, J. K. Uppala, and K. V. Ramaiah, Tauroursodeoxycholic acid prevents stress induced aggregation of proteins in vitro and promotes PERK activation in HepG2 cells, Archives of biochemistry and biophysics, vol.568, pp.8-15, 2015.

T. Namisaki, R. Noguchi, K. Moriya, M. Kitade, Y. Aihara et al., Beneficial effects of combined ursodeoxycholic acid and angiotensin-II type 1 receptor blocker on hepatic fibrogenesis in a rat model of nonalcoholic steatohepatitis, Journal of gastroenterology, vol.51, pp.162-172, 2016.

G. Svegliati-baroni, F. Ridolfi, R. Hannivoort, S. Saccomanno, M. Homan et al., Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor, Gastroenterology, vol.128, pp.1042-1055, 2005.

Y. P. Rao, E. J. Studer, R. T. Stravitz, S. Gupta, L. Qiao et al., Activation of the Raf-1/MEK/ERK cascade by bile acids occurs via the epidermal growth factor receptor in primary rat hepatocytes, Hepatology, vol.35, pp.307-314, 2002.

N. W. Werneburg, J. H. Yoon, H. Higuchi, and G. J. Gores, Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines, American journal of physiology. Gastrointestinal and liver physiology, vol.285, pp.31-36, 2003.

R. Reinehr, D. Graf, and D. Haussinger, Bile salt-induced hepatocyte apoptosis involves epidermal growth factor receptor-dependent CD95 tyrosine phosphorylation, Gastroenterology, vol.125, pp.839-853, 2003.

M. P. Lim, L. A. Devi, and R. Rozenfeld, Cannabidiol causes activated hepatic stellate cell death through a mechanism of endoplasmic reticulum stress-induced apoptosis, Cell death & disease, vol.2, p.170, 2011.

Y. Huang, X. Li, Y. Wang, H. Wang, C. Huang et al., Endoplasmic reticulum stress-induced hepatic stellate cell apoptosis through calcium-mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways, Mol Cell Biochem, vol.394, pp.1-12, 2014.

S. De-minicis, C. Candelaresi, L. Agostinelli, S. Taffetani, S. Saccomanno et al., Endoplasmic Reticulum stress induces hepatic stellate cell apoptosis and contributes to fibrosis resolution, Liver international : official journal of the International Association for the Study of the Liver, vol.32, pp.1574-1584, 2012.

M. Szabat, M. M. Page, E. Panzhinskiy, S. Skovso, M. Mojibian et al., Reduced Insulin Production Relieves Endoplasmic Reticulum Stress and Induces beta Cell Proliferation, Cell Metab, vol.23, pp.179-193, 2016.

H. Mujcic, A. Nagelkerke, K. M. Rouschop, S. Chung, N. Chaudary et al., Hypoxic activation of the PERK/eIF2alpha arm of the unfolded protein response promotes metastasis through induction of LAMP3, Clin Cancer Res, vol.19, pp.6126-6137, 2013.

A. Nagelkerke, J. Bussink, H. Mujcic, B. G. Wouters, S. Lehmann et al., Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response, Breast Cancer Res, vol.15, p.2, 2013.

S. F. Abcouwer, P. L. Marjon, R. K. Loper, V. Jagt, and D. L. , Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress, Invest Ophthalmol Vis Sci, vol.43, pp.2791-2798, 2002.

W. E. Lawson, D. S. Cheng, A. L. Degryse, H. Tanjore, V. V. Polosukhin et al., Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.10562-10567, 2011.

H. Tanjore, W. E. Lawson, and T. S. Blackwell, Endoplasmic reticulum stress as a pro-fibrotic stimulus, Biochimica et biophysica acta, vol.1832, pp.940-947, 2013.

C. K. Chiang, S. P. Hsu, C. T. Wu, J. W. Huang, H. T. Cheng et al., Endoplasmic reticulum stress implicated in the development of renal fibrosis, Mol Med, vol.17, pp.1295-1305, 2011.

A. Mencin, E. Seki, Y. Osawa, Y. Kodama, S. De-minicis et al., Alpha-1 antitrypsin Z protein (PiZ) increases hepatic fibrosis in a murine model of cholestasis, Hepatology, vol.46, pp.1443-1452, 2007.

A. Cadoret, C. Rey, D. Wendum, K. Elriz, F. Tronche et al., IGF-1R contributes to stress-induced hepatocellular damage in experimental cholestasis, The American journal of pathology, vol.175, pp.627-635, 2009.

Q. Xie, V. I. Khaoustov, C. C. Chung, J. Sohn, B. Krishnan et al., Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation, Hepatology, vol.36, pp.592-601, 2002.

J. Zhang, Y. Fan, C. Zeng, L. He, W. et al., Tauroursodeoxycholic Acid Attenuates Renal Tubular Injury in a Mouse Model of Type 2 Diabetes, Nutrients, vol.8, 2016.

M. Sasaki, M. Yoshimura-miyakoshi, Y. Sato, and Y. Nakanuma, A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis, Journal of gastroenterology, vol.50, pp.984-995, 2015.

C. Hetz, E. Chevet, and H. P. Harding, Targeting the unfolded protein response in disease, Nature reviews. Drug discovery, vol.12, pp.703-719, 2013.

B. F. Teske, S. A. Wek, P. Bunpo, J. K. Cundiff, J. N. Mcclintick et al., The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress, Mol Biol Cell, vol.22, pp.4390-4405, 2011.

M. E. Fusakio, J. A. Willy, Y. Wang, E. T. Mirek, R. J. Baghdadi et al., Transcription factor ATF4 directs basal and stressinduced gene expression in the unfolded protein response and cholesterol metabolism in the liver, Mol Biol Cell, vol.27, pp.1536-1551, 2016.

R. S. Kim, D. Hasegawa, N. Goossens, T. Tsuchida, V. Athwal et al., The XBP1 Arm of the Unfolded Protein Response Induces Fibrogenic Activity in Hepatic Stellate Cells, Through Autophagy. Sci Rep, vol.6, p.39342, 2016.