M. Razzaq, L. Paulevé, A. Siegel, and J. Saez-rodriguez,

C. Guziolowski-;-lokmane, P. L. Chebouba, H. Jeune, C. Mhamdi, J. Guziolowski et al., Logic and Linear programs to understand cancer response, Automated Reasoning for Systems Biology and Medicine (ARSBM), Accepted 2018. Conference paper Misbah Razzaq

C. Guziolowski, Computing Diverse Boolean Networks from Phosphoproteomic Time Series Data, 16th International Conference on Computational Methods in System Biology (CMSB)
URL : https://hal.archives-ouvertes.fr/hal-01988432

, Academic visits 1, 2017.

, Presentation, 16th International Conference on Computational Methods in System Biology (CMSB), pp.12-14, 2018.

, Presentation, ASSTABIO: Apprentissage de modèles Statistiques et Stochastiques A partir de données BIOlogiques, pp.22-23, 2018.

, Presentaion, 11èmes journées du Cancéropôle Grand Ouest, pp.29-30, 2017.

. , La Journée de doctorants (JDOC), l'Ecole doctorale STIM, 2017.

L. Poster, Journée de doctorants (JDOC), l'Ecole doctorale STIM

. Poster, Formal Modeling of Biological Regulatory Networks, 2016.

, Teaching Teaching Assistant, 2016.

, C++, 102 Hours, 2016.

, Databases, 8 Hours, 2017.

. Matlab, , vol.12, 2018.

, We have managed to develop a first version of the tool. This tool takes a Boolean model as input, simulates it under given experimental settings and visualize the results. We have used the Epidermal Growth Factor (EGF) and Tumor Necrosis Factor Alpha (TNF?) as benchmark, I have supervised three students to develop a tool in python which can simulate and visualize boolean models

, Collaborative Research

, More precisely, I worked on generating PKNs for the Dream 11 challenge for merging knowledge driven methods with data driven methods. An influence graph is extracted from different literature databases based on the selection of core variables. I inferred six influence graphs from literature curated databases i.e BioCarta, Go Ontology, Kegg, NCI, Reactome, and Wiki Pathways using the enrichnet web tool. In order to cover all core variables existing in dataset, I merged influence graphs to generate a new enriched influence graph

J. M. Bree-b-aldridge, D. A. Burke, P. Lauffenburger, and . Sorger, Physicochemical modelling of cell signalling pathways, Nature cell biology, vol.8, issue.11, p.34, 2006.

A. Abboud, F. Grandoni, and V. Williams, Subcubic equivalences between graph centrality problems, apsp and diameter, Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms, p.77, 2014.

U. Alon, An introduction to systems biology: design principles of biological circuits, vol.13, p.14, 2006.

S. Boellner and K. Becker, Reverse phase protein arrays-quantitative assessment of multiple biomarkers in biopsies for clinical use, vol.4, p.28, 2015.

C. Baral, K. Chancellor, N. Tran, A. Tran, M. Joy et al., A knowledge based approach for representing and reasoning about signaling networks, Bioinformatics, vol.20, issue.suppl_1, p.43, 2004.

G. Brewka, J. Delgrande, J. Romero, and T. Schaub, Implementing preferences with asprin, Proceedings of the Thirteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'15), vol.9345, p.93, 2015.
DOI : 10.1007/978-3-319-23264-5_15

URL : https://hal.archives-ouvertes.fr/hal-01187004

C. Mara-a-bonelli, R. R. Fumarola, S. L. Alfieri, A. Monica, M. Cavazzoni et al., Synergistic activity of letrozole and sorafenib on breast cancer cells, Breast cancer research and treatment, vol.124, issue.1, p.21, 2010.

M. Balduccini, M. Gelfond, and M. Nogueira, Answer set based design of knowledge systems, Annals of Mathematics and Artificial Intelligence, vol.47, issue.1-2, p.43, 2006.

A. Biere, M. Heule, and H. Van-maaren, Handbook of satisfiability, vol.185, p.90, 2009.

M. Balduccini and Y. Lierler, Integration schemas for constraint answer set programming: a case study. Theory and Practice of Logic Programming, vol.13, pp.4-5

J. Blondin, Particle swarm optimization: A tutorial, p.34, 2009.

K. Brennan, E. A. Mcsherry, L. Hudson, E. W. Kay, D. K. Arnold et al., Junctional adhesion molecule-a is co-expressed with her2 in breast tumors and acts as a novel regulator of her2 protein degradation and signaling, Oncogene, vol.32, issue.22, p.25, 2013.

A. Birgersdotter, R. Sandberg, and I. Ernberg, Gene expression perturbation in vitro-a growing case for three-dimensional (3d) culture systems, Seminars in cancer biology, vol.15, pp.405-412, 1921.

C. Christopher, . Benz, K. Gary, J. C. Scott, . Sarup et al., Estrogendependent, tamoxifen-resistant tumorigenic growth of mcf-7 cells transfected with her2/neu, Breast cancer research and treatment, vol.24, issue.2, pp.85-95, 1992.

G. Ontology-consortium, The gene ontology (go) database and informatics resource, Nucleic acids research, vol.32, issue.1, p.28, 2004.

. Daniel-e-carlin, Computational evaluation and derivation of biological networks in cancer and stem cells, p.85, 2014.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore et al., Nusmv 2: An opensource tool for symbolic model checking, International Conference on Computer Aided Verification, p.63, 2002.
DOI : 10.1007/3-540-45657-0_29

URL : https://link.springer.com/content/pdf/10.1007%2F3-540-45657-0_29.pdf

A. Cheng, J. Esparza, and J. Palsberg, Complexity results for 1-safe nets, Theoretical Computer Science, vol.147, issue.1, p.61, 1995.
DOI : 10.7146/dpb.v22i455.6773

URL : https://tidsskrift.dk/daimipb/article/download/6773/5889

J. Kathryn, . Chavez, V. Sireesha, S. Garimella, and . Lipkowitz, Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer, Breast disease, vol.32, issue.1-2, p.22, 2010.

J. Chad, S. Creighton, and . Huang, Reverse phase protein arrays in signaling pathways: a data integration perspective. Drug design, development and therapy, vol.9, p.28, 2015.

J. Angelo, A. S. Casa, S. Potter, Z. Malik, I. Lazard et al., Estrogen and insulin-like growth factor-i (igf-i) independently down-regulate critical repressors of breast cancer growth, Breast cancer research and treatment, vol.132, issue.1, pp.61-73, 2012.

R. Dechter and D. Cohen, Constraint processing, p.44, 2003.

X. Dai, H. Cheng, Z. Bai, and J. Li, Breast cancer cell line classification and its relevance with breast tumor subtyping, Journal of Cancer, vol.8, issue.16, p.22, 2017.

P. Dagum, A. Galper, and E. Horvitz, Dynamic network models for forecasting, Proceedings of the eighth international conference on uncertainty in artificial intelligence, p.37, 1992.

P. Dagum, A. Galper, E. Horvitz, and A. Seiver, Uncertain reasoning and forecasting, International Journal of Forecasting, vol.11, issue.1, p.37, 1995.
DOI : 10.1016/0169-2070(94)02009-e

M. Davis, G. Logemann, and D. Loveland, A machine program for theorem-proving, Communications of the ACM, vol.5, issue.7, p.90, 1962.

M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of the ACM (JACM), vol.7, issue.3, p.90, 1960.

G. Duan and D. Walther, The roles of post-translational modifications in the context of protein interaction networks, PLoS Comput Biol, vol.11, issue.2, p.28, 2015.

T. Eiter, E. Erdem, H. Erdo?-gan, and M. Fink, Finding similar or diverse solutions in answer set programming, International Conference on Logic Programming, vol.54, p.102, 2009.

F. Elstrodt, A. Hollestelle, H. A. Jord, M. Nagel, M. Gorin et al., Ans van den Ouweland

M. Schutte, Brca1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants, Cancer research, vol.66, issue.1, p.22, 2006.

P. Stephen and . Ethier, Human breast cancer cell lines as models of growth regulation and disease progression, Journal of mammary gland biology and neoplasia, vol.1, issue.1, p.21, 1996.

D. Ferreira, F. Adega, and R. Chaves, The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing. In Oncogenomics and cancer proteomics-novel approaches in biomarkers discovery and therapeutic targets in cancer, 2013.

N. Friedman and M. Linial, Iftach Nachman, and Dana Pe'er. Using bayesian networks to analyze expression data, Journal of computational biology, vol.7, issue.34, p.37, 2000.

N. Friedman, K. Murphy, and S. Russell, Learning the structure of dynamic probabilistic networks, Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, p.37, 1998.

. R-ian-freshney, Basic principles of cell culture. Culture of cells for tissue engineering, pp.11-14, 1921.

M. Giuliano, H. Hu, Y. Wang, and X. Fu, Agostina Nardone

T. Wang, Upregulation of er signaling as an adaptive mechanism of cell survival in her2-positive breast tumors treated with anti-her2 therapy, Clinical Cancer Research, vol.21, issue.17, p.25, 2015.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub,

, Answer set solving in practice, Synthesis Lectures on Artificial Intelligence and Machine Learning, vol.6, issue.3, p.44, 2012.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Clingo= asp+ control: Preliminary report, vol.62, p.90, 2014.

M. Gebser, B. Kaufmann, and T. Schaub, Conflict-driven answer set solving: From theory to practice, Artificial Intelligence, vol.187, p.94, 2012.

M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP'88), p.45, 1988.

A. Grigoriadis, A. Mackay, E. Noel, P. J. Wu, R. Natrajan et al., Molecular characterisation of cell line models for triple-negative breast cancers, BMC genomics, vol.13, issue.1, p.24, 2012.

C. Geoffrey-l-greene, P. Nolan, E. Engler, and . Jensen, Monoclonal antibodies to human estrogen receptor, Proceedings of the National Academy of Sciences, vol.77, issue.9, pp.5115-5119, 1980.

M. Gebser, T. Schaub, S. Thiele, and P. Veber, Detecting inconsistencies in large biological networks with answer set programming. Theory and Practice of Logic Programming, vol.11, p.43, 2011.
DOI : 10.1007/978-3-540-89982-2_19

URL : http://arxiv.org/pdf/1007.0134

C. Guziolowski, S. Videla, F. Eduati, S. Thiele, T. Cokelaer et al., Exhaustively characterizing feasible logic models of a signaling network using answer set programming
DOI : 10.1093/bioinformatics/btu357

URL : https://hal.archives-ouvertes.fr/hal-00853704

, Bioinformatics, vol.29, issue.18, p.53, 2013.

K. B. Horwitz, W. L. Costlow, and . Mcguire, Mcf-7: a human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors, Steroids, vol.26, issue.6, pp.785-795, 1975.
DOI : 10.1016/0039-128x(75)90110-5

L. Heiser, Hpn-dream breast cancer network inference challenge, vol.58, p.68, 2016.

M. Steven, L. M. Hill, T. Heiser, M. Cokelaer, N. K. Unger et al., Inferring causal molecular networks: empirical assessment through a community-based effort, Nature methods, vol.13, issue.4, p.98, 2016.

E. Hebrard, B. Hnich, O. Barry, T. Sullivan, and . Walsh, Finding diverse and similar solutions in constraint programming, AAAI, vol.5, p.54, 2005.

E. Hebrard, B. Hnich, O. Barry, T. Sullivan, and . Walsh, Finding diverse and similar solutions in constraint programming, Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI'05), p.102, 2005.

Y. Steven-m-hill, J. Lu, L. M. Molina, P. T. Heiser, and . Spellman,

P. Terence, J. W. Speed, G. B. Gray, S. Mills, and . Mukherjee, Bayesian inference of signaling network topology in a cancer cell line, Bioinformatics, vol.28, issue.21, p.39, 2012.

H. Hermjakob, L. Montecchi-palazzi, C. Lewington, S. Mudali, and S. Kerrien,

A. Roepstorff and . Valencia, Intact: an open source molecular interaction database, Nucleic acids research, vol.32, issue.suppl_1, p.28, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00306577

M. Steven, N. K. Hill, K. Nesser, M. Johnson-camacho, A. Jeffress et al., Context specificity in causal signaling networks revealed by phosphoprotein profiling, Cell systems, vol.4, issue.1, p.85, 2017.

M. Hartmann, J. Roeraade, and D. Stoll,

. Thomas-o-joos, Protein microarrays for diagnostic assays, Analytical and bioanalytical chemistry, vol.393, issue.5, p.26, 2009.

L. Deborah, V. Holliday, and . Speirs, Choosing the right cell line for breast cancer research, Breast cancer research, vol.13, issue.4, p.20, 2011.

D. Husmeier, Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks, Bioinformatics, vol.19, issue.17, p.37, 2003.
DOI : 10.1093/bioinformatics/btg313

URL : https://academic.oup.com/bioinformatics/article-pdf/19/17/2271/538681/btg313.pdf

S. Itani, J. Gray, and C. Tomlin, An ode model for the her2/3akt signaling pathway in cancers that overexpress her2, American Control Conference (ACC), p.32, 2010.

S. Iadevaia, Y. Lu, C. Fabiana, G. B. Morales, P. Mills et al., Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis, Cancer research, vol.70, issue.17, p.31, 2010.

K. Inoue, Logic programming for boolean networks, Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol.22, p.60, 2011.

M. Jeng, M. A. Shupnik, T. P. Bender, E. H. Westin, D. Bandyopadhyay et al., Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells, Endocrinology, vol.139, issue.10, pp.4164-4174, 1998.
DOI : 10.1210/en.139.10.4164

URL : https://academic.oup.com/endo/article-pdf/139/10/4164/10349109/endo4164.pdf

Z. Ji, K. Yan, W. Li, H. Hu, and X. Zhu, Mathematical and computational modeling in complex biological systems, BioMed research international, p.34, 2017.
DOI : 10.1155/2017/5958321

URL : http://downloads.hindawi.com/journals/bmri/2017/5958321.pdf

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of theoretical biology, vol.22, issue.3, p.60, 1969.

M. Kanehisa and S. Goto, Kegg: kyoto encyclopedia of genes and genomes, Nucleic acids research, vol.28, issue.1, p.33, 2000.

N. Kumar, S. Bart, K. A. Hendriks, D. Janes, D. De-graaf et al., Applying computational modeling to drug discovery and development. Drug discovery today, vol.11, p.29, 2006.
DOI : 10.1016/j.drudis.2006.07.010

S. Klamt, J. Saez-rodriguez, J. A. Lindquist, L. Simeoni, and E. Gilles, A methodology for the structural and functional analysis of signaling and regulatory networks, BMC bioinformatics, vol.7, issue.1, p.96, 2006.

R. Kaminski, T. Schaub, and P. Wanko, A tutorial on hybrid answer set solving with clingo, Reasoning Web International Summer School, p.93, 2017.
DOI : 10.1007/978-3-319-61033-7_6

T. Kelder, P. Martijn, K. Van-iersel, M. Hanspers, B. R. Kutmon et al., Wikipathways: building research communities on biological pathways, vol.40, p.28, 2012.
DOI : 10.1093/nar/gkr1074

URL : https://academic.oup.com/nar/article-pdf/40/D1/D1301/9478063/gkr1074.pdf

J. A. Brian-d-lehmann, X. Bauer, M. E. Chen, . Sanders, Y. Chakravarthy et al., Identification of human triplenegative breast cancer subtypes and preclinical models for selection of targeted therapies, The Journal of clinical investigation, vol.121, issue.7, p.24, 2011.

E. Y. Lasfargues, Human breast tumor cells in culture; new concepts in mammary carcinogenesis, New Frontiers in Mammary Pathology, p.24, 1981.
DOI : 10.1007/978-1-4757-0019-0_7

J. Lebeau and G. Goubin, Amplification of the epidermal growth factor receptor gene in the bt20 breast carcinoma cell line, International journal of cancer, vol.40, issue.2, p.22, 1987.

V. Lifschitz, What is answer set programming? In AAAI, p.64, 2008.

M. Lacroix and G. Leclercq, Relevance of breast cancer cell lines as models for breast tumours: an update, Breast cancer research and treatment, vol.83, issue.3, p.21, 2004.

Y. Etienne, L. Lasfargues, and . Ozzello, Cultivation of human breast carcinomas, Journal of the National Cancer Institute, vol.21, issue.6, p.22, 1958.

S. Adrian-v-lee, N. E. Oesterreich, and . Davidson,

, JNCI: Journal of the National Cancer Institute, vol.107, issue.7, 2015.

V. Lifschitz and A. Razborov, Why are there so many loop formulas?, ACM Transactions on Computational Logic (TOCL), vol.7, issue.2, p.44, 2006.
DOI : 10.1145/1131313.1131316

R. W. John and . Masters, Human cancer cell lines: fact and fantasy, Nature reviews Molecular cell biology, vol.1, issue.3, p.233, 1921.

K. Shital, S. S. Mishra, H. E. Bhowmick, F. Chua, J. Zhang et al., Computational cell fate modelling for discovery of rewiring in apoptotic network for enhanced cancer drug sensitivity, BMC Systems Biology, vol.9, issue.1, p.36, 2015.

P. Meltzer, . Leibovitz, H. Dalton, . Villar, . Kute et al., Establishment of two new cell lines derived from human breast carcinomas with her-2/neu amplification, British journal of cancer, vol.63, issue.5, p.24, 1991.

C. Mueller, A. Lance, V. Liotta, and . Espina, Reverse phase protein microarrays advance to use in clinical trials, Molecular oncology, vol.4, issue.6, p.26, 2010.

A. Ioannis-n-melas, D. E. Mitsos, . Messinis, S. Thomas, and L. Weiss, Combined logical and data-driven models for linking signalling pathways to cellular response, BMC systems biology, vol.5, issue.1, p.42, 2011.

A. Mitsos, N. Ioannis, P. Melas, . Siminelakis, D. Aikaterini et al., Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data, PLoS computational biology, vol.5, issue.12, p.42

K. , P. Murphy, and S. Russell, Dynamic bayesian networks: representation, inference and learning, p.37, 2002.

G. Macbeath, . Stuart, and . Schreiber, Printing proteins as microarrays for high-throughput function determination, Science, vol.289, issue.5485, p.26, 2000.

A. Macnamara, C. Terfve, and D. Henriques, Beatriz Peñalver Bernabé, and Julio Saez-Rodriguez. State-time spectrum of signal transduction logic models, Physical biology, vol.9, issue.4, p.111, 2012.

W. Materi and . David-s-wishart, Computational systems biology in drug discovery and development: methods and applications, Drug discovery today, vol.12, issue.7-8, p.34, 2007.

, Cancer Genome Atlas Network et al. Comprehensive molecular portraits of human breast tumours, nature, vol.490, p.77, 2012.

A. Nadel, Generating diverse solutions in sat, International Conference on Theory and Applications of Satisfiability Testing, pp.287-301

. Springer, , p.54, 2011.

A. Nadel, Generating diverse solutions in SAT, Proceedings of the Fourteenth International Conference on Theory and Applications of Satisfiability Testing (SAT'11), vol.6695, p.102, 2011.

M. Nogueira, M. Balduccini, and M. Gelfond,

M. Barry, An a-prolog decision support system for the space shuttle, International symposium on practical aspects of declarative languages, p.43, 2001.

S. Neeley, K. A. Baggerly, and S. Kornblau, Surface adjustment of reverse phase protein arrays using positive control spots, Cancer informatics, vol.11, p.26, 2012.

K. Richard-m-neve, J. Chin, J. Fridlyand, . Yeh, L. Frederick et al.,

, A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes, Cancer cell, vol.10, issue.6, pp.515-527, 1921.

I. Niemelä, Logic programs with stable model semantics as a constraint programming paradigm, Annals of mathematics and Artificial Intelligence, vol.25, issue.34, p.44, 1999.

D. Nishimura and . Biocarta, Biotech Software & Internet Report: The Computer Software Journal for Scient, vol.2, p.28, 2001.

A. Nita-lazar, H. Saito-benz, and F. White, Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics, vol.8, p.25, 2008.

D. Napoletani, D. C. Sauer, . Struppa, L. Petricoin, and . Liotta, Augmented sparse reconstruction of protein signaling networks, Journal of theoretical biology, vol.255, issue.1, p.39, 2008.

L. George, L. Nemhauser, C. Wiley, . Nemhauser, and . Savelsbergh, Integer programming and combinatorial optimization

. Sigismondi, Constraint Classification for Mixed Integer Programming Formulations, COAL Bulletin, vol.20, p.39, 1988.

M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, and C. Guziolowski, Boolean network identification from multiplex time series data, BIBLIOGRAPHY Computational Methods in Systems Biology, vol.9308, pp.170-181
DOI : 10.1007/978-3-319-23401-4_15

URL : https://hal.archives-ouvertes.fr/hal-01164751

. Springer, , vol.15, p.58, 2015.

M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, and C. Guziolowski, Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming, Biosystems, vol.149, p.89, 2016.
DOI : 10.1016/j.biosystems.2016.07.009

URL : https://hal.archives-ouvertes.fr/hal-01354075

K. Osborne and R. Schiff, Mechanisms of endocrine resistance in breast cancer. Annual review of medicine, vol.62, pp.233-247, 2011.

L. Ozzello, C. Sordat, . Merenda, . Carrel, J. P. Hurlimann et al., Transplantation of a human mammary carcinoma cell line (bt 20) into nude mice, Journal of the National Cancer Institute, vol.52, issue.5, p.22, 1974.

S. Oesterreich, P. Zhang, R. L. Guler, X. Sun, M. Edward et al., Re-expression of estrogen receptor ? in estrogen receptor ?-negative mcf-7 cells restores both estrogen and insulin-like growth factor-mediated signaling and growth, Cancer research, issue.15, pp.5771-5777, 2001.

L. Cloud-p-paweletz, V. E. Charboneau, N. L. Bichsel, T. Simone, J. W. Chen et al., Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front, Oncogene, vol.20, issue.16, p.26, 1981.

M. Charles and . Perou, Molecular stratification of triple-negative breast cancers, The oncologist, vol.16, pp.61-70, 1921.

S. Peri, D. Navarro, R. Troels-z-kristiansen, V. Amanchy, B. Surendranath et al., Human protein reference database as a discovery resource for proteomics, Nucleic acids research, vol.32, issue.suppl_1, p.28, 2004.

K. Polyak, Heterogeneity in breast cancer, The Journal of clinical investigation, vol.121, issue.10, p.19, 2011.

J. Pietkiewicz, K. Zieli´nskazieli´nska, J. Saczko, J. Kulbacka, M. Majkowski et al., New approach to hydrophobic cyanine-type photosensitizer delivery using polymeric oil-cored nanocarriers: hemolytic activity, in vitro cytotoxicity and localization in cancer cells, European journal of pharmaceutical sciences, vol.39, issue.5, p.21, 2010.

A. Rodriguez, I. Crespo, G. Androsova, A. Del, and S. , Discrete logic modelling optimization to contextualize prior knowledge networks using prunet, PloS one, vol.10, issue.6, p.28, 2015.
DOI : 10.1371/journal.pone.0127216

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0127216&type=printable

A. Rhodes, B. Jasani, J. Couturier, J. Mark, J. M. Mckinley et al., A formalin-fixed, paraffin-processed cell line standard for quality control of immunohistochemical assay of her-2/neu expression in breast cancer, American journal of clinical pathology, vol.117, issue.1, p.22, 2002.

M. Razzaq, R. Kaminski, J. Romero, T. Schaub, J. Bourdon et al., Computing diverse boolean networks from phosphoproteomic time series data, International Conference on Computational Methods in Systems Biology, vol.17, p.87, 2018.
DOI : 10.1007/978-3-319-99429-1_4

URL : https://hal.archives-ouvertes.fr/hal-01988432

G. Sabry-razick, I. M. Magklaras, and . Donaldson, irefindex: a consolidated protein interaction database with provenance, BMC bioinformatics, vol.9, issue.1, p.28, 2008.

M. Razzaq, M. Paulevé, and . Ostrowski, , p.15, 2018.

M. Razzaq, L. Paulevé, A. Siegel, J. Saez-rodriguez, J. Bourdon et al., Computational discovery of dynamic cell line specific boolean networks from multiplex time-course data, PLoS computational biology, vol.14, issue.10, p.57, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01897020

J. Romero, T. Schaub, and P. Wanko, Computing diverse optimal stable models, :14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, vol.52, p.102, 2016.

M. Riaz, T. M. Marijn, A. Van-jaarsveld, . Hollestelle, J. C. Wendy et al.,

J. Liu, B. Helmijr, M. Ozturk, and . Smid, mirna expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific mirnas, Breast cancer research, vol.15, issue.2, p.19, 2013.

C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz et al., Biogrid: a general repository for interaction datasets, Nucleic acids research, vol.34, issue.suppl_1, p.28, 2006.

A. Schrijver, Theory of linear and integer programming, p.44, 1998.

N. Ganesh, R. Sharma, J. Dave, P. Sanadya, K. K. Sharma et al., Various types and management of breast cancer: an overview, Journal of advanced pharmaceutical technology & research, vol.1, issue.2, p.19, 2010.

R. Sabatier, P. Finetti, A. Guille, J. Adelaide, M. Chaffanet et al., Claudin-low breast cancers: clinical, pathological, molecular and prognostic characterization. Molecular cancer, vol.13, p.21, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01192813

Ö. Sahin, H. Fröhlich, C. Löbke, U. Korf, S. Burmester et al., Modeling erbb receptor-regulated g1/s transition to find novel targets for de novo trastuzumab resistance, BMC systems biology, vol.3, issue.1, p.53, 2009.

C. Sachse, B. Gierke, M. Markus-f-templin, and . Pawlak, Reverse phase protein arrays (rppa): The assay platform of choice for pathway mapping, drug mode-of-action and multiplex biomarker analyses, p.26, 2017.

K. Stemke-hale, A. M. Gonzalez-angulo, A. Lluch, W. Richard-m-neve, M. Kuo et al., Aysegul Sahin, et al. An integrative genomic and proteomic analysis of pik3ca, pten, and akt mutations in breast cancer, Cancer research, vol.68, issue.15, p.77, 2008.

E. F. Simon, . Spencer, M. Steven, S. Hill, and . Mukherjee, Inferring network structure from interventional time-course experiments, The Annals of Applied Statistics, vol.9, issue.1, p.39, 2015.

S. Sieberts, Discovering dynamic molecular signatures in response to virus exposure, 0111.

P. Simons, Extending the stable model semantics with more expressive rules

M. In, N. Gelfond, G. Leone, and . Pfeifer, Proceedings of the Fifth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'99), vol.1730, p.46, 1999.

R. Samaga and S. Klamt, Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks, Cell communication and signaling, vol.11, issue.1, p.34, 2013.

K. Subik, J. Lee, L. Baxter, T. Strzepek, D. Costello et al., The expression patterns of er, pr, her2, ck5/6, egfr, ki-67 and ar by immunohistochemical analysis in breast cancer cell lines, Breast cancer: basic and clinical research, vol.4, p.21, 2010.

D. Szklarczyk, H. John, H. Morris, M. Cook, S. Kuhn et al., The string database in 2017: quality-controlled proteinprotein association networks, made broadly accessible, Nucleic acids research, vol.45, issue.D1, p.28, 2017.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome research, vol.13, issue.11, p.28, 2003.

T. Soininen and I. Niemelä, Developing a declarative rule language for applications in product configuration, International Symposium on Practical Aspects of Declarative Languages, p.43, 1999.

H. Shao, T. Peng, Z. Ji, J. Su, and X. Zhou, Systematically studying kinase inhibitor induced signaling network signatures by integrating both therapeutic and side effects, PLoS One, vol.8, issue.12, p.33, 2013.
DOI : 10.1371/journal.pone.0080832

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0080832&type=printable

J. Saez-rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, A. Douglas et al., Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction, Molecular systems biology, vol.5, issue.1, p.53, 2009.

M. Jodi, C. E. Saunus, J. R. Smart, R. L. Kutasovic, P. Johnston et al., Multidimensional phenotyping of breast cancer cell lines to guide preclinical research, Breast cancer research and treatment, p.24, 2017.

H. D. Soule, . Vazquez, A. Long, and M. Brennan, A human cell line from a pleural effusion derived from a breast carcinoma, Journal of the National Cancer Institute, vol.51, issue.5, pp.1409-1416, 1973.
DOI : 10.1093/jnci/51.5.1409

T. Schaub and S. Woltran, Answer set programming unleashed! KIKünstliche Intelligenz, p.44, 2018.
DOI : 10.1007/s13218-018-0550-z

C. Shekar, H. Wu, Z. Fu, S. Yip, S. M. Cahill et al., Mechanism of constitutive phosphoinositide 3-kinase activation by oncogenic mutants of the p85 regulatory subunit, Journal of Biological Chemistry, vol.280, issue.30, p.77, 2005.

N. Tulchin, M. Chambon, G. Juan, S. Dikman, J. Strauchen et al.,

. Monteiro, Brca1 protein and nucleolin colocalize in breast carcinoma tissue and cancer cell lines. The American journal of pathology, vol.176, p.21, 2010.

. Theralink, , p.28, 2018.

J. Cullen-m-taniguchi, T. Winnay, . Kondo, T. Roderick, A. R. Bronson et al., The phosphoinositide 3-kinase regulatory subunit p85? can exert tumor suppressor properties through negative regulation of growth factor signaling, Cancer research, vol.70, issue.13, p.77, 2010.

S. Videla, C. Guziolowski, and F. Eduati,

J. Grabe, A. Saez-rodriguez, and . Siegel, Revisiting the training of logic models of protein signaling networks with asp, Computational Methods in Systems Biology, vol.53, p.61, 2012.

T. Vargo and -. Jeffrey-m-rosen, Modelling breast cancer: one size does not fit all, Nature Reviews Cancer, vol.7, issue.9, p.21, 2007.

D. Ignacio-i-wistuba, C. Bryant, S. Behrens, A. K. Milchgrub, R. Virmani et al., Comparison of features of human lung cancer cell lines and their corresponding tumors, Clinical cancer research, vol.5, issue.5, p.21, 1999.

C. Ignacio-i-wistuba, S. Behrens, S. Milchgrub, M. Syed, A. K. Ahmadian et al., Comparison of features of human breast cancer cell lines and their corresponding tumors, Clinical Cancer Research, vol.4, issue.12, p.21, 1998.

[. Wdd-+-14a]-guanming, E. Wu, A. Dawson, R. Duong, L. Haw et al., Reactomefiviz: a cytoscape app for pathway and network-based data analysis, vol.28, p.70, 1000.

[. Wdd-+-14b]-guanming, E. Wu, A. Dawson, R. Duong, L. Haw et al., Reactomefiviz: a cytoscape app for pathway and network-based data analysis, vol.28, p.70, 1000.

P. Walter, S. Green, G. Greene, A. Krust, J. Bornert et al., Cloning of the human estrogen receptor cdna, Proceedings of the National Academy of Sciences, vol.82, issue.23, pp.7889-7893, 1985.

S. Watterson, S. Marshall, and P. Ghazal, Logic models of pathway biology, Drug discovery today, vol.13, issue.9, p.34, 2008.
DOI : 10.1016/j.drudis.2008.03.019

Y. Wang, G. Morrison, R. Gillihan, J. Guo, M. Robin et al., Different mechanisms for resistance to trastuzumab versus lapatinib in her2-positive breast cancers-role of estrogen receptor and her2 reactivation, Breast Cancer Research, vol.13, issue.6, p.25, 2011.

I. Xenarios, L. Danny-w-rice, M. K. Salwinski, . Baron, D. Edward-m-marcotte et al., Dip: the database of interacting proteins, Nucleic acids research, vol.28, issue.1, p.28, 2000.

Y. Ye, . Xiao, . Wang, . Yearsley, . Gao et al., Er? signaling through slug regulates e-cadherin and emt, Oncogene, vol.29, issue.10, p.21, 2010.
DOI : 10.1038/onc.2009.433

URL : https://www.nature.com/articles/onc2009433.pdf

P. Zhu, . Hamidreza-montazeri-aliabadi, J. Hasan-uluda?-g, and . Han, Identification of potential drug targets in cancer signaling pathways using stochastic logical models, Scientific reports, vol.6, p.89, 2016.

C. Zhang, X. Duan, L. Xu, J. Ye, J. Zhao et al., Erythropoietin receptor expression and its relationship with trastuzumab response and resistance in her2-positive breast cancer cells. Breast cancer research and treatment, vol.136, p.25, 2012.

A. Zanzoni, L. Montecchi-palazzi, M. Quondam, G. Ausiello, M. Helmer-citterich et al., Mint: a molecular interaction database, FEBS letters, vol.513, issue.1, p.28, 2002.

Y. Zhu and M. Truszczynski, On optimal solutions of answer set optimization problems, International Conference on Logic Programming and Nonmonotonic Reasoning, vol.55, p.56, 2013.