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Introduction

Machine Learning is a eld of Arti cial Intelligence aiming at acquiring new knowledge from
data. This new knowledge generally takes the form of a model, learned from a limited number
of observed examples, and able to generalize well to future queries. In other words the goal is
to learn how to automatically solve a problem from a nite set of observations. For example,
the objective in spam detection is to use the annotated mail box of a user to learn how to
separate solicited emails from unsolicited ones; in tracking the underlying problem is to follow
an object in a video; in face recognition the goal is to identify a person in a set of images. ...
The large diversity of problems raised in machine learning has attracted a lot of attention in
the past and still deserves a lot of active research.

In this thesis we are mainly interested in Supervised Learningproblems. The idea behind
this paradigm is that the examples are accompanied by a label. This label can be either a
value or a class and it corresponds to the solution of the problem for the given example. As
illustrative examples, let us consider the problems of house pricing and poisonous mushrooms
recognition. For the former the goal is to predict the price of a house, each example then
corresponds to a set of characteristics of a particular building while the label is its price. For
the latter we want to recognize from images poisonous mushrooms from edible ones, each
example is the picture of a mushroom while the label is its class, i.e. poisonous or not. From
these examples one can see the importance, in supervised learning, of generalization to new
data. Indeed, the labels for the training examples are already known, if the model cannot
nd the correct labels for new examples then its interest becomes limited. Note that the
previous examples correspond to two widely studied problems in supervised learning, namely
regression and classi cation. The di erence between the two is that the goal of the former is
to predict a continuous value while the objective of the latter is to guess the correct class.

Supervised learning is not the sole paradigm existing in machine learning. In fact it
can be opposed toUnsupervised Learning where examples are unlabelled. For example a
widely studied problem in this paradigm is called clustering. The underlying goal is to
obtain a meaningful partition of the space where the examples share common properties.
The performance of unsupervised learning algorithms is often di cult to assess as, contrary
to the supervised learning case, there is no labels to provide an obvious feedback on the model.

Drawing from these two paradigms, the idea behindSemi-Supervised Learningis to con-
sider two sets of examples where the rst one is labelled while the second one is not. In this

11



12 Introduction

case the goal is often to use the labelled examples to help solve an unsupervised learning task
or to consider the unlabelled examples to aid in a supervised learning problem.

So far we have considered that the goal of a machine learning approach is to solve a single
task. Taking a di erent point of view the idea behind Transfer Learning is to transfer some
knowledge learned on a so-called source to a so-called target. Following this idea, Bomain
Adaptation the goal is to transfer the model learned on a source task to solve a di erent but
related target problem. For example, in the spam detection problem, the two tasks could be
to detect unsolicited emails from the mailboxes of two di erent users. The two users share the
same problem but their email distributions might di er, e.g. because they did not subscribe
to the same mailing lists. In this case the goal is to adapt the model learned from one of the
users to the other.

In this manuscript we will see that despite being mainly interested in supervised learning
problems, several of our contributions also share some ties with the other paradigms presented
here.

When presenting the supervised learning paradigm we stressed the fact that a model,
learned with a limited number of training examples, should generalize well to new examples.
One way to verify this property is to evaluate the learned model on a set of new test examples
independent from training examples and for which the solution to the problem is known.
However the number of test examples that can be obtained is often limited. It might make
this approach insu cient to ensure that the model generalizes well. Other approaches are
then necessary. To this extent note that a common assumption in machine learning is that the
task that we want to solve is completely de ned by an unknown distribution from which the
training examples are drawn. Then, one possible solution is to use a cross-validation procedure
where the idea is to partition the learning sample intok parts. The model is learned onk 1
parts and tested on the last one. This procedure is repeated times, i.e. until each part
was used as a test set, and the accuracy is averaged over the di erent test samples. Anyway,
this procedure still requires a signi cant amount of examples to be valid. Another possibility
following the assumption evoked previously consists in theoretically studying the learning
algorithm in order to derive so-called generalization bounds. The idea behind these bounds is
to show that the true error of the model, i.e. its error on the unknown distribution, is bounded
by its empirical error, i.e. its error on the training sample, plus a term which decreases when
the size of the training set increases. Obtaining such bounds guarantees that models learned
by the concerned algorithm generalize reasonably well.

Many di erent approaches have been proposed to solve supervised learning problems.
Among these several rely on a notion of distance or similarity between the examples to learn
a model. A very representative example is the nearest neighbour classi er which is based
on the idea that two similar examples should share the same label. Another example is
the support vector machine algorithm. It proposes to classify examples depending on their
similarity to landmarks points called the support vectors. In these two examples the notion of
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similarity is of critical importance. However di erent tasks often call for di erent measures of
similarity. As an example recall the two examples used previously in this introduction, it does
not make sense to compare houses and mushrooms in the same way. Manually choosing an
appropriate measure of similarity can be tedious and di cult. However it might be possible

to automatically infer it from the data. This is the underlying idea behind Metric Learning
which is the eld of interest of this thesis.

We identify several limits of the current approaches in metric learning. First some methods
propose to make use of side informations to help during the learning process. However there
is no theoretical understanding of the impact of such information on the learned metric.
Second the intrinsic properties of the learned metrics are often the same. Indeed metrics are
usually learned with the objective of bringing closer similar examples while pushing far away
dissimilar ones. In some cases it might be interesting to consider di erent kinds of constraints.
One example is to obtain a metric whose behaviour is not limited to the examples but is more
global in the sense that it is, for example, able to move masses of examples together. A third
limit to current approaches is that there is often no theoretical justi cations on the proposed
approaches, i.e. there is no guarantees on the generalization ability of the learned metrics.

Contributions: Learning Metrics with Controlled Behaviour

In this thesis we propose several approaches to learn metrics whose behaviour is controlled.
First we propose to use side informations in the form of a reference metric to either strictly
or loosely guide the learned metric. Hence in our rst contribution we propose to address the
problem of regressing the values of a reference metric only accessible through a limited training
set. In our second contribution we theoretically study how using a reference metric coming
from a related but di erent problem can help during the learning process. In particular we
derive several measures of goodness of the reference metric for the problem at hand. Second we
propose two approaches able to consider new kinds of constraints for metric learning. Hence
in our third contribution we consider that the training examples should not be moved with
respect to each other but rather with respect to some virtual points which lay in the output
space of the learned metric. By this way it is possible to carefully control the movement of
each example. In our fourth contribution we build upon our third contribution and on recent
advances in Optimal Transport to propose a new approach to learn a metric able to move
masses of examples across the space. As a last remark, note that throughout this thesis we
put particular emphasis on providing theoretically sound approaches.

Outline

In the rst part of this thesis we propose some preliminary informations. In the rst chapter
we introduce some concepts that are used throughout the manuscript while in the second
chapter we propose a review of the state of the art in metric learning.
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Chapter 1| The rst chapter of this thesis is dedicated to the presentation of several notions
and tools used throughout it. The rst part of the chapter presents the risk minimization
framework which is the basis of all our algorithmic contributions. The second part is dedicated
to the theoretical analysis of algorithms. More precisely we present two frameworks used to
derive generalization bounds. They correspond to the uniform stability and the Rademacher
complexity frameworks. The third part is interested in the notion of losses and regularization
terms. These elements are core in the formulation of a regularized risk minimization problem.
Through several examples we show that there exist a wide range of possibilities with di erent
properties. This second part is also interested in the formal de nition of the notion of metric
as a general term to design a similarity, a dissimilarity or a distance. As for the losses
and regularization terms, several examples are presented. The last part of this rst chapter
introduces other useful notions such as the nearest neighbour classi er, which we often use
with our leaned metrics, and the domain adaptation setting in which two of our contributions
are evaluated.

Chapter 2| The second chapter of this thesis corresponds to a review of metric learning.
Here we present the main approaches which have made the success of the eld. We propose to
divide this review in four parts answering four basic questions about metric leaning problems.
In the rst part we consider the problem of the kind of metrics which can be learned. Then in
the second part we answer the question of how, technically, these metrics can be learned. In
the third part of this chapter we review some approaches deriving theoretical guarantees for
metric learning. In the last part we present several works interested in making use of metric
learning for di erent kind of applications ranging from classi cation to clustering or domain
adaptation.

In the second part of this thesis we present our rst two contributions which are interested
in using reference metrics to help during the metric learning process.

Chapter 3] In the third chapter of this thesis we present our rst contribution. It corre-
sponds to a metric learning method able to approximate an existing metric. The rst part
of this chapter is dedicated to the presentation of the main optimization problem considered.
It corresponds to a regression of the values of a metric. Furthermore we show that when the
reference metric is too complex it is possible to use local metric learning to obtain a better
approximation. In the second part we present a theoretical analysis of the approach both in
the global and the local settings. It shows that the metrics learned by our algorithm gener-
alize well. In the third and fourth parts we consider the problem of learning perceptual color
di erences to show the interest of our approach in a real life application.

Chapter 4| The fourth chapter of this thesis is dedicated to our second contribution. As in
the third chapter it corresponds to a metric learning approach able to use some knowledge
given by an existing metric. The di erence is that, this time, we do not want to approximate
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this metric but we want to use some information that it carries to help during the learning
process. This contribution is thus strongly related to the eld of transfer learning/domain
adaptation. The chapter is divided in seven parts. In the rst part we present the frame-
work of Metric Hypothesis Transfer Learning which corresponds to a minimization problem
equipped with a biased regularization term. In the second, third and fourth parts we propose
a theoretical analysis of metric hypothesis transfer learning using three di erent theoretical
frameworks. It allows us to derive di erent notions of goodness of the reference metric. In the
fth part of the chapter we summarize the di erent bounds and in the sixth part we present
several loss functions and regularization terms which fall into our framework. In the last part
we show that this framework can be used in practice to obtain competitive results on several
widely used transfer learning problems.

In the last part of this thesis we introduce our last two contributions where we propose new
ways to control the behaviour of the learned metric.

Chapter § ] In the fth chapter we present our third contribution. Here instead of using
standard similarity and dissimilarity constraints we propose to consider that the metric should
bring the examples closer to virtual points de ned a priori. It allows us to learn a metric
with a regression and to reduce the number of constraints considered. In the rst part of the
chapter we present our algorithm. In the second part we address the problem of selecting the
virtual points and de ning the constraints. In the third part we propose a theoretical analysis

of the algorithm showing that learning a metric with our approach is founded but also that

it is possible to obtain some links with a standard metric learning method. In the last part
we validate our approach with several experiments.

Chapter § | The sixth chapter introduces the last contribution of this thesis. It corresponds
to a new method able to learn a metric that moves masses of examples by approximating the
transformation corresponding to the solution of an Optimal Transport problem. In the rst
part of this chapter we formally introduce the problem of optimal transport. In the second
part we present our formulation while in the third we propose an e cient way to optimize it.

In the fourth part we discuss some theoretical aspects showing that if standard assumptions
made in the optimal transport community are correct, then our approach is founded. In the
last part we empirically validate our approach on a domain adaptation and an image editing
problem.

Notations
In this thesis R and R+ respectively represent the sets of real and non negative real numbers.

A vector is denoted by a bold lower case letter. For examplex 2 RY is a d-dimensional

matrices are denoted by a bold upper case letter. For examples 2 R¢ & is a real valued
matrix with d rows and d° columns. We also denote byS the set of symmetric real valued



16 Introduction

M (;j) are respectively the row and column vectors of indices and j. xT and M T stand for
the transpose of vectorx and matrix M . h; i represents the dot product between two vectors
while h; i corresponds to the Frobenius produc@ between two matrices.

We are interested in supervised learning. Hence throughout this thesis we consider that
we are working in a domain T corresponding to the spaceZ = X Y equipped with a
probability distribution Dt. In this case X  RY is the example space whileY is the label
space, e.g.Y = f 1;1gin a binary classi cation problem. We consider that we have access
to a set of n examplesT = fz; =(X;;yi)gL; with x; 2 X andy; 2 Y. The fact that the
examples of the setT are drawn i.i.d. from the distribution Dt is denoted asT D t. In
matrix form we write T = (X;y) where X contains one example per row andy is a column
vector of the labels.

We denote by [], the hinge loss function, i.e. k], = max(0;x), Ex p ; [X] corresponds
to the expectation of the random variable X drawn from the distribution Dy, Pr(E) denotes
the probability of an event E and Dt (x) corresponds to the probability of drawing x from
distribution Dt . We denote the composition of two functions agy f,i.e. (g f)(x) = g(f (x)).

All the notations are summarized in Table[1.

In the various mathematical proofs of this thesis we propose to explain the derivations
step by step by adding a justi cation surrounded by brackets and ushed on the right between
the concerned lines.

'W;Bi. =Tr ATB
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Table 1: Notations.

Notation Description

R; R+ Sets of real and non negative real numbers

B;C Constants

X Scalar

X Vector

X Matrix

X(i;),X(;j) Row i and columnj of matrix X

X(i;)) Entry in row i and columnj of matrix X

x(i) Entry i in vector x

y Label

X;Y; H; M Input Space, Output Space, Hypothesis Space, Space of Metrics
S S, Sets of symmetric and symmetric positive semi-de nite matrices
ST Domains

S:T Sets

Ds; Dy Distributions over the domains S and T respectively
f() Function

k k Norm

debc Ceil and oor functions

ii Absolute value

[1. Hinge loss function

h;i Dot product between vectors

h; ig Frobenius product between matrices

E[] Expectation

Pr[] Probability

I Loss function

Lt True risk over the domain T

Cr Empirical risk over the set T

A Algorithm

Composition of functions
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Chapter 1

Preliminaries

Abstract

In this chapter we present several notions used throughout this thesis. In particular
we formalize the risk minimization framework in which fall our algorithmic contributions.
From a theoretical standpoint we present two frameworks interested in deriving general-
ization guarantees for risk minimization. As we will see in the next chapter these two
frameworks have been successfully extended to the metric learning problem. We use them
to theoretically analyse our contributions demonstrating the ability of our algorithms to
learn metrics able to generalize well. From a more practical point of view we present
several loss functions and regularization terms which can be used in the risk minimiza-
tion framework and we introduce a formal de nition of the notion of metric considered
in this thesis. Finally we present the nearest neighbour classi er and the domain adap-
tation setting which will be used to empirically demonstrate the interest of most of our
contributions.

1.1 Introduction

In this chapter we are interested in supervised learning problems. We consider that we have
access to a domaim which corresponds to the spac& = X Y equipped with the probability
distribution Dt. In this case X RY is the example space andy is the label space. The
goal is to nd the correct relation between the examples inX and the labels inY. In other
words we are looking for an hypothesih : X 'Y coming from an hypothesis spaced and
able to solve the problem of associating each example iX with the correct value in Y. A
key assumption in machine learning is that the distribution Dt is unknown and that we only
have access to it through a nite size sampleT = fz; = (X;yi)gL,. This sample of sizen
is assumed to be representative of the true distribution and is called the training set. One
of the key objective is then to useT to learn an hypothesish which generalizes well to new
examples drawn from the distribution Dt . To present this notion of generalization we start
by introducing two notions of risk of an hypothesis. Before that we address the problem of
assessing the performance of an hypothesis with respect to an example.

21



22 Chapter 1. Preliminaries

One of the most intuitive way to assess the performance of a model for a given problem
is to measure its error. However the notion of error can vary from one problem to another.
To illustrate this let us consider an examplez = ( x;y) and the two problems of classi cation
and regression. In classi cation the label spaceY is discrete and of limited size, e.g. in binary
classication Y = f 1;1g. The goal is to correctly choose the class of an object. Hence an
error is the prediction of the wrong class, i.e. h(x) & y. In regression the label spacey is
continuous, i.e. Y = R. The goal is to return the correct value given an example. Hence an
error is the prediction of a value far from the ground truth, i.e. h(x) yorh(x) v. Inthis
thesis we consider that the error, or the risk, is de ned with respect to a loss function able to
quantify it. More formally we consider that each problem is associated with a loss function
l[:H Z! R+ which, given an hypothesish 2 H and an examplez = (x;y) D 1 is able
to return a positive real value in R;. This value is a numerical representation of the error
committed by the hypothesis on the example. It should be large if the error is signi cant
and small otherwise. Considering the same examples as before we can de ne intuitive loss
functions. On the one hand in classi cation we can consider the following loss, called the1
loss and presented in Figurg 1]2:

( 0 if h(x) =y,

[ (h;z) = .
(h:2) 1 otherwise.

(1.1)

On the other hand in regression we can consider the following loss function, called the absolute
loss and presented in Figuré 1]3:

I(h;z) = jh(x) vij. (1.2)

Note that we come back to this notion of loss function in Sectiorf .4 where we give a formal
de nition and several examples. We can now de ne the notions of empirical and true risk in
the two following de nitions.

De nition 1.1  (Empirical risk) . Given a loss functionl : H Z ! R+ and a set of examples
T, the empirical risk of an hypothesish is de ned as:
1 X
Cr(h)= = 1(h;2).
n z2T

It corresponds to the average error of the hypothesis on the training set.

De nition 1.2  (True risk) . Given a loss functionl : H Z ! R+ and a distribution D,
the true risk of an hypothesish is de ned as:

Lr(h)= | E 1(h2).

It corresponds to the expected error of the hypothesis on the whole distribution. The goal
of a supervised learning algorithm is to learn an hypothesis with the smallest possible true
risk. However this quantity is only theoretical and cannot be computed. Indeed in practice
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we do not have access to the distributionDt but only to the so called training set T which
is assumed to be a good empirical approximation oD+. Hence we say that an algorithm
generalizes well when the di erence between the true risk and the empirical risk is small. In
Section[1.3 we will see that even if this di erence cannot be computed it can sometimes be
upper bounded by a small value in a generalization bound.

We have seen that we have access to the empirical risk but not to the true risk. However
we argued that the ideal hypothesis should have the smallest possible true risk. Hence in
Section[1.2 we discuss the problem of empirically learning an hypothesis and we see that
directly minimizing the empirical risk might not always be a good idea. In Section[1.3 we
consider a theoretical standpoint and we address the problem of linking the empirical risk of
an hypothesis to its true risk. In Sections[1.4 and 1.6 we give some formal de nitions and
examples of several notions that will be used throughout this thesis.

1.2 Learning by Risk Minimization

In this rst section we address the problem of learning an hypothesish when we only have
access to a training setT and not to the whole distribution Dt. We rst propose to tackle

the problem by simply minimizing the empirical risk. We will see that this Empirical Risk

Minimization approach presents some drawbacks. We then turn our attention to two other
frameworks, namely Structural Risk Minimization and Regularized Risk Minimization, which

have been speci cally designed to alleviate these drawbacks.

1.2.1 Empirical Risk Minimization (ERM)

The idea of ERM is to select the best hypothesish 2 H minimizing the empirical risk over
the training set T. The objective is to solve the following optimization problem:

argmin (1 (h). (1.3)
h2H
This approach allows us to learn an hypothesis with a small empirical error. However we
have no information about its true risk. What can happen is that the hypothesis is very good
on the training set but do not generalize well to unseen examples, i.e. it has a big true risk
despite its small empirical risk. This is not a desirable property as we recall that our goal is
to learn an hypothesis with a small true risk.

The problem described above is called over- tting. It often arises when the considered
hypotheses are too complex for the problem at hand. Indeed they are more prone to noise
tting than simpler ones. To overcome this we can follow Occam's razor which says that
among a set of hypotheses able to explain a phenomenon, choosing the simplest one is better
Hence the idea is to limit the complexity of the hypothesis classH. However we also have to
be careful to not limit the hypothesis class too much as it may lead to a situation where the
empirical risk blows up. This second issue is called under- tting. To sum up, the best case
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Figure 1.1: lllustration of the bias-variance trade-o problem. On the left of the plot there is
a high risk of over- tting while one the right there is a high risk of under- tting.

scenario is to nd the correct trade-o between a small empirical risk and a simple hypothesis.
This trade-o is called the bias-variance trade-o and is illustrated in Figure 1.1]

In ERM the candidates are chosen uniformly from the spaceH. It implies that all the
hypotheses are considered to have the same complexity. Hence, to avoid over- ttindd must
be chosen very carefully. However this space is often de ned beforehand and does not depend
on the data. It implies that one has to resort to a costly trial and error procedure to select
H in a correct way. It makes ERM hard to use in practice and opened the door for new
frameworks that we present below.

1.2.2 Structural Risk Minimization (SRM)

In ERM the bias-variance trade-o is hard to satisfy since hypotheses are chosen uniformly
from H. In SRM instead of considering a single hypothesis spacd, we consider an in nite
number of hypothesis spaces of increasing complexity such thatl; H »; . The idea is
then to solve the following optimization problem:

argmin L1 (h) + pen(H;) (1.4)
h2H (;i2N

where penH;) is a term penalizing the complexity of the hypothesis spaceH;. In this case we
consider hypotheses by increasing complexity. We then select the one with the best trade-o
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between empirical risk and complexity. In other words, the goal is to minimize the empirical
risk while avoiding over- tting by selecting the simplest hypothesis.

1.2.3 Regularized Risk Minimization (RRM)

RRM takes the idea of ordering the hypothesis in terms of their complexity one step further
and considers the complexity of each hypothesis individually. The idea is to consider a single,
large hypothesis spaceH and to solve the following optimization problem:

argmin(Ct(h)+ khk (1.5)
h2H

where khk is a measure of the complexity of the hypothesih. Furthermore is an hyper-

parameter which controls the trade-o between low error and low complexity. Choosing the

value of can be dicult in practice. However several heuristics have been proposed to
cope with this problem. We can for example cite the leave-one-out or the cross-validation
approaches.

Most of the algorithms presented in this thesis build upon the last framework presented
in this section. As such in Section I.h we give a formal de nition of a loss function and a
regularization term. Furthermore we provide several examples which have been successfully
used in the literature. Note that using a slight abuse of language we will often say that
an optimization problem is an algorithm in itself since, in this thesis, we do not put much
emphasis on the problem of developing e cient solvers. Implicitly we refer to an algorithm
able to solve it. In the next section we propose to take a more theoretical point of view on
the problem of learning an hypothesis with small true risk.

1.3 Deriving Generalization Guarantees

In the previous section we have presented empirical solutions to learn an hypothesis with small
empirical risk and small true risk. In this section we consider a more theoretical point of view.
We will show that, under some conditions on the algorithm used to learn the hypothesis, it is
possible to derive what is called a generalization bound. The idea of these bounds is to show
that the true risk of an hypothesis is upper bounded by its empirical risk plus a small quantity
which usually depends on the complexity of the hypothesis and the number of examples in the
training set. Furthermore these bounds build upon the PAC-Learning framework (Valiant,
1984) and as such are probabilistic bounds which hold true almost everywhere. For> 0
they have the following form:

Pr Lt(h) Cq(h)+"(n;H; ) 1 . (1.6)

It means that deriving a probabilistic generalization bound boils down to showing that the
probability that the true risk is upper bounded by the empirical risk plus a small quantity
"(n;H; ) is greater than 1 . This is illustrated in Figure The key point is then to
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obtain the value of "(H;n; ). It can be seen as a measure of the generalization ability of
the learned hypothesis. As stated before this quantity should be small and depends on three
elements:

The number of examplesn: as the number of examples increases the value bfH;n; )
should decrease. Furthermore a desirable property is to hav% +Ii{n"(H ;n; )=0. In-

deed when we have access to all the examplés; (h) = L+ (h).

The hypothesis classH: to be more precis€'(H;n; ) depends on the complexity of the
hypothesis. As hinted by Occam's razor, the value of'(H;n; ) should increase if the
hypothesis is more complex. Note that depending on the framework we either consider
the complexity of the learned hypothesish or the overall complexity of the hypothesis
classH.

The probability : these bounds are generally based on concentration inequalities such
as McDiarmid's inequality (McDiarmid, 1989) or Bennett's inequality (Bennett,|1962).
They are probabilistic bounds which hold true with probability 1 . The value of
"(H;n; )increases when decreases. Indeed, if we want the bound to hold everywhere
we have to take more particular cases into account which loosen the result.

Several frameworks have been proposed to derive generalization bounds. The main dif-
ferences between these di erent frameworks is the concentration inequality considered and
how they handle the complexity of the hypothesis class. In this thesis we consider two frame-
works to derive generalization bounds, namely the uniform stability framework (Bousquet
and Elissee , [2002b) and the Rademacher complexity framework|(Bartlett and Mendelson,
2002). These two frameworks are presented below. Note that there is several other possible
approaches that we will not detail here as they are less relevant to this thesis. We can for
example cite the uniform convergence framework, the VC-dimension framework Vapnik ard
Chervonenkis (1971); Vapnik (1982) or the algorithmic robustness framework|(Xu and Man-
nor, 2010, 2012). Also see Boucheron et al. (2004) for a survey on concentration inequalities
and |Langford (2005) for a general tutorial on prediction theory.

1.3.1 Uniform Stability

We rst present the Uniform Stability framework introduced by [Bousquet and Elissee
(2002b). This framework is applicable to any algorithm which is uniformly stable, i.e. which
respects the following de nition:

De nition 1.3 (Uniform Stability (Bousquet and Elissee , 2002b| De nition 6)) . LetT D 7
be a training set of sizen and z D 1 be any example. LetT' be the training set obtained
by replacing examplei in T by z. Let A be an algorithm which returns hypothesisht when
learning with the training set T and hyi when learning with the training setT'. An algorithm
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A has uniform stability — with respect to its loss function| if the following holds:

8i2f1;:::;ng; sup | hr;z2° | hpi;z2® —. 1.7)
z°D t n

The idea is to say that an algorithm is uniformly stable if under small changes in the
training set, the di erence in the errors of the learned hypotheses is bounded. Furthermore
the term on the r.h.s. should decrease as the number of examples increases. Note that
this property should hold for all size n training sets and only the hypotheses e ectively
learned by the algorithm are considered, i.e. if some hypotheses iH are never learned by
the algorithm under any training set then these hypotheses do not impact the result. As a
consequence this framework has the nice property to focus on hypotheses that will really be
learned by the considered algorithm. The value of usually depends on the loss function and
the regularization term. In Chapters [3| [4 and[§ we use this framework and show that the
proposed algorithms are uniformly stable. Note that in their paper Bousquet and Elissee
(2002hb) consider several de nitions for the notion of stability. However they show that the
notion of uniform stability is the strongest one and that it implies all the others.

Using the McDiarmid's inequality (Theorem it is possible to show that a -uniformly
stable algorithm generalizes well:

Theorem 1.1 (Generalization bound (Bousquet and Elissee|,[ 2002b, Theorem 12)) Let A
be an algorithm with uniform stability — with respect to a bounded loss functiod | B,
forall z2 Z and all setsT. Then given a randomly drawn sampleT and given thathr is
the solution given byA, forany n 1, and any 2 (0;1), the following bound holds with

probability at least 1
s

Lt (h Cr(hi)+ —+(2 +B In(*) 1.8
1 (hT) T(T)H( ) o (1.8)

The bounds derived using this framework converge inO p% . Note that this rate is

standard for generalization bounds.

This framework has been shown to be applicable to a wide range of algorithms such as
Support Vector Machines or Regularized Least Square Regression (Bousquet and Elissee ,
2002b). Due to the proof techniques used to derive the bound, the main limitation of this
framework lays in the kind of regularization terms that it can handle. For example|[Xu et al.
(2012) have shown that algorithms based on sparsity inducing regularization terms are not
stable.

1.3.2 Rademacher Complexity

We now switch our attention to the Rademacher Complexityframework introduced by [Bartlett
and Mendelson (2002). This framework is based on the notion of Rademacher complexity
de ned as follows:
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De nition 1.4  (Rademacher Complexity (Shalev-Shwartz and Ben-David, 2014b, Equa-
tion (26.4))). Let T D 1 and let F be a function space such that : X | R. Let be a
vector of n Rademacher Variables, i.e. variables which can take a value of eithdror 1

with probability % The empirical Rademacher complexity is de ned as follows:

" #
1 X
Ro(F)= E sup = if(x)) X1 iXn . (1.9)
for N,
The Rademacher complexity is then de ned as:
R(F)= _ |D5T Rn(F) (1.10)

where the expectation is taken over siza sets.

The idea of empirical Rademacher complexity is to measure the capacity of the functions
in F at tting random noise. This noise is generated by the Rademacher variables and all the
possibilities are considered through the expectation. Note that the supremum is considered
over all the possible functions inF . It implies that instead of considering only the hypotheses
learned by the algorithm as for the uniform stability framework, the Rademacher complexity
framework considers the complexity of the whole hypothesis class, i.e. some hypotheses
which are never learned by the considered algorithm might impact the bound. Furthermore
Rademacher complexity is de ned in expectation with respect to all the training sets of size
n and is not speci ¢ to the training set T considered during the learning process.

Using the McDiarmid's inequality (Theorem it is possible to derive a generalization
bound based on the Rademacher complexity.

Theorem 1.2 (Generalization bound (Shalev-Shwartz and Ben-David, 2014b, Theorem 26.5))
Let A be an algorithm with Rademacher ComplexityR (F ) with respect to a bounded loss func-
ton 0 | B. NotethatF =ff =1 hgwith h2H. Then, forany n 1, any 2 (0;1)

and any h 2 H, the following bound holds with probability at leasf. over the random draw

of the sampleT:
s

Lr(h) Cr(h)+2R(F)+ B 2";(2). (1.11)

On the one hand this bound holds for any hypothesish 2 H and for a wide range of
regularization terms including several sparsity inducing ones. On the other hand the uniform
stability based bound only holds for the hypothesis learned by the algorithm and for a limited
number of regularization terms. The price paid by the Rademacher complexity framework
to obtain such a behaviour is the convergence of the complexity related term. Indeed in
the uniform stability framework this term was decreasing in O % while in the Rademacher

n
complexity framework it can often be shown that R(F) O p% . Note that overall both

bounds converge inO pl—ﬁ due to the probabilistic term. We make use of the Rademacher
complexity framework in Chapter [}
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In this section we presented two frameworks that can be used to derive generalization
bounds. In the next section we formally de ne several notions used throughout this thesis.
These include loss functions, regularization terms and metrics. These notions are accompanied
by several illustrating examples.

1.4 Loss Functions, Regularization Terms and Metrics

The performance of regularized risk minimization primarily depends on the chosen loss func-
tion and regularization term. In this section we present a formal de nition of these notions
along with some examples. We also introduce the notion of metric as a way to compare
learning examples. This is often a key component of machine learning methods.

1.4.1 Loss Functions and Regularization Terms

Loss functions and regularization terms are fundamental building blocks of regularized risk
minimization algorithms. We start by presenting the formal de nitions of what we consider
as a loss function and a regularization term. Note that both of these de nitions exhibit the
property of Hypothesis Ordering This is key to select the best hypothesis, i.e. an hypothesis
with low error (with respect to the loss function) and as simple as possible (with respect to
the regularization term). Hence given a training set, changing the loss or the regularization
can lead one to learn di erent hypotheses. After the formal de nitions we present several
examples used by state of the art approaches.

Loss Function: De nition

De nition 1.5  (Loss function). Let T be a domain corresponding to the spac& equipped
with the probability distribution Dt. Let H be an hypothesis space of candidates able to give
a solution to the problem associated with the domairm . A loss function is any function
l:H Z! R+ such that:

1.8h2H;8z22Z;l(h;z) 0 (Non-negativity),

2. 8h1;h 2H;8z2Z;1(hy;z) 1(hy;z) implies that hy gives a better prediction thanh,
on examplez (Hypothesis ordering).

A loss function can take its values in [Qu] rather than R, . It is then said to be upper
bounded or bounded.

Loss Function: Examples

Depending on the problem at hand di erent loss functions should be used. Here we pro-
pose to consider two di erent problems which have already been introduced before, namely
classi cation and regression.
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Figure 1.2: Graphical representation of commonly used loss functions for the classi cation
problem.

We rst propose several examples of loss functions mainly used in classi cation. These
are depicted in Figure[1.2.

0=1 loss This loss is probably the most intuitive one as the idea is simply to count the
number of errors of the hypothesis. This loss returns 1 if the hypothesis makes an incorrect
prediction and O otherwise:

0 ifh(x)=y,

8h2H;8z2Z;l(h;z)= .
1 otherwise.

(1.12)
The main drawback of this loss is that it is not convex and not di erentiable everywhere. As
such an optimization problem based on it is hard to solve and thus this loss is not used in
practice. One solution is to use a surrogate loss. The idea is to upper-bound the=0 loss with
a convex function which is easier to include in an optimization problem. To present several
examples of surrogate loss functions we start by de ning' 2 R as the degree of agreement
between the prediction h(x) and the ground truth y. The value of " mainly depends on the
con dence of the prediction, see Figurd 1.p.

Hinge loss It is de ned as follows:
8h2H;8z2z;l(h;z)=[1 "], =maxf0;1 "g (1.13)

This loss has, for example, been successfully used|in Cortes and Vaphk (1995).
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Figure 1.3: Graphical representation of commonly used loss functions for the regression prob-
lem.

Logistic loss It is de ned as follows:

log(1 +exp( "))

; ;1(h;z) = 1.14
8h2H;8222Z;l(h;2) 002) ( )
This loss has, for example, been successfully used|in Friedman et|al. (2000).
Exponential loss It is de ned as follows:
8h2H;8z222Z;l(h;z)=exp( ") (1.15)

This loss has, for example, been successfully used|in Freund and Schapire (1997).

We also propose some loss functions which can be used in regression. These are depicted
in Figure [I.3. Note that in this case the degree of agreemerit between the prediction and
the ground truth is de ned as the residual, i.e. " = h(x) .

Square loss It is de ned as follows:
8h2H:822Z;1(h;z)= "? (1.16)

This loss has, for example, been successfully used|in Tibshirani (1996).



32 Chapter 1. Preliminaries

Absolute loss It is de ned as follows:
8h2H;8z2Z;l(h;z)=j"] 2.17)

A survey on the use of this loss can be found in Dielman (2005). Note that this loss is not
di erentiable everywhere and as such can be harder to use in an optimization problem.

Huber loss It is parametrized by and de ned as follows:

(

8h2H;8z2Z;l(h;2)= (1.18)

2 otherwise.

12 it
J"]

This loss has been proposed by Huber (1964) and has been designed to be more robust to
outliers than the square loss while still being di erentiable everywhere.

We now turn our attention to regularization terms.

Regularization Term: De nition

De nition 1.6  (Regularization term). Let H be an hypothesis space. A regularization term
is any function kk: H! R4 such that:

1. 8h 2 H;khk 0 (Non-negativity),
2. 8h1;hy 2 H; khik k hak implies that h; is less complex tharh, (Hypothesis ordering).

A regularization term can take its values in [0;u] rather than R;. It is then said to
be upper bounded or bounded. As our notation suggests, most of the time we choose the
regularization term as a norm over the hypothesis space.

De nition 1.7 (Norm). Let X  RY be ad-dimensional vector space. A norm is any function
kk:X ! Ry such that:

1. 8x 2 X ;kxk 0 (Non-negativity),

2. 8x 2X;kxk=0, x = 0where0 is the zero vector (Separate points),
3. 8x 2X;8a2 R;kaxk | ajkxk (Absolute homogeneity),

4. 8x;x92 X ;kx + x% k xk+ kx% (Triangle inequality).

For the sake of simplicity we presented the de nition of a norm with respect to a vector
space. However it can be easily extended to the notion of metric or hypothesis as long as
the di erent properties are respected. Furthermore a norm can take its values in [Qu] rather
than R, . It is then said to be upper bounded or bounded.
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Figure 1.4: Two dimensional representation of the', norm for di erent values of p. Each ball
represents all the points with a norm of 1.

Regularization Term: Examples

As stated before regularization terms are often de ned as norms. This is for example true
when we consider that the hypothesis space is a vector space (as in linear classi cation or
regression). Hence we now propose several examples of norms.

"p norms  The ", norms are parametrised by a valuep:

o b
8x 2 RY kxk, = ixii® . (1.19)
i=1
For particular values of p we retrieve some well known norms depicted in Figur¢ T]4.

"y norm : If p=1 it corresponds to the "1 norm. The "1 norm has been widely used
for its sparsity inducing properties (Tibshirani, 1996). However, it is not di erentiable
everywhere and thus is harder to use in practice.

"2 norm : If p = 2 it corresponds to the ", norm. The ", norm is strongly convex
and di erentiable everywhere. As such it has been used in many practical applications
(Cortes and Vapnik, [1995). It tends to penalize large values.

Max norm or "; norm: If p= 1 it corresponds to max norm or ; norm.

Note that for p < 1 this norm is not convex and thus is hard to use in an optimization
problem.

“pg horm  The "p.q norm is a generalization to matrices of the vectors , norm. The idea is
to apply a "p norm on each row of the matrix and then to apply the " norm on the vector
composed of the values obtained for each row:

KMk = (KM (L)kys kM (d)ky) (1.20)
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When p = q = 2 we retrieve the Frobenius norm which is a natural extension to the matrix
case of the’, norm. Note that it is also possible to use this norm for vectors by separating
the di erent features into several groups. For example, the 2.1 norm has been used to induce
sparsity constraints on groups of features|(Yuan and Lin| 2006).

Schatten p norms The Schatten p norms are norms obtained by applying the , norms to
the vector of singular values of the matrix:

kMk, = k k. (1.21)

If p=2 it corresponds to the Frobenius norm. If p= 1 its the spectral norm and if p=1it
corresponds to the nuclear or trace norm. The latter norm has been used for its capacity in
producing low rank matrices (Wang et al., 2016).

We have presented a formal de nition of loss functions and regularization terms along
with several examples. We now turn our interest to the notion of metric.

1.4.2 Metrics

As mentioned before metrics are often a key component of machine learning algorithms as a
way to compare examples. Before switching to the formal de nition of what we consider as a
metric we cite several well known algorithms which heavily rely on this notion:

k-Nearest Neighbours (Cover and Hart, 1967): The idea behind this classi cation algo-
rithm is to consider that examples which are close to each other share the same label.
Hence to predict the label of a new example the algorithm considers it& nearest ex-
amples in the training set and chooses the majority label. Here the notion of metric is
critical as one has to compare any new examples to the training examples.

Support Vector Machines (Cortes and Vapnik, 1995): The idea behind this classi cation
algorithm is to assume that there exist an high dimensional space in which the problem
is linearly separable. This space is induced by a kernel which is a kind of metric.

k-Means (Lloyd, |[1982): The goal of this clustering algorithm is to partition the space
into k regions whose members share a similar meaning. To achieve this, the idea is
to randomly select k centres and to associate each example to its closest centre. The
centres are then updated and the algorithm proceeds iteratively until convergence. The
notion of closeness is controlled by a metric.

In this thesis we consider as a metric any similarity or dissimilarity which respect De -
nition [[.8] It includes but is not limited to the notion of Distance, De nition 1[9, Jand the
notion of Kernel, De nition 1.10]
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Metrics: De nitions

We start by presenting the general notion of similarity and dissimilarity that we consider in
this thesid]]

De nition 1.8  ((Dis)Similarity) . Let X  RY be ad-dimensional vector space. A (dis)similarity
is any pairwise function k : X X ! R. We say that a (dis)similarity is symmetric if
8x;x%2 X 1 k(x;x9 = k(x%x).

A similarity should return a large positive value when two examples are similar and a large
negative value otherwise. Conversely a dissimilarity should return a large negative value when
two examples are similar and a large negative value otherwise. A (dis)similarity is said to
be lower bounded, respectively upper bounded, if instead of taking its values iR it takes
its values in an interval [I; +1 [, respectively ]1 ;u], suchthat 1 <l,u< +1. When a
(dis)similarity is lower and upper bounded, with |  u, we simply say that it is bounded.

A particular kind of lower bounded dissimilarity is a distance.

De nition 1.9  (Distance). Let X RY be ad-dimensional vector space. A distance is a
lower bounded dissimilarity functiond: X X! Ry such that:

1. 8x;x%2 X :d(x;x% 0 (Non-negativity),

2. 8x;x%92 X ;d(x;x9 =0, x = x9(ldentity of indiscernible),

3. 8x;x92 X ;d(x;x9 = d(x%x) (Symmetry),

4, 8x;x%x%2 X :d(x;x9  d(x;x%9+ d(x%9x9 (Triangle inequality).

As in the case of (dis)similarities, a distance can take its values in [Qu] and is then said
to be upper bounded or bounded. Note the similarities between the de nition of a distance
and the de nition of a norm. These two notions are closely related:

Given a norm, the function x;x°7!kx x% is a distance.
Given a distance, if it further respects the two following properties:

1. 8x;x%x%2 X :d(x + x%9%x%+ x% = d(x;x9,

2. 8x;x%2 X :8a 2 R;d(tx;tx9 = jtjd(x;x9

then the function x 7! d(x;0) is a norm.

The notion of kernel is a particular kind of similarity.

IHere we only consider metrics for feature vectors. However there also exist some metrics for structured
data but this is beyond the scope of this thesis. We refer the interested reader to Bellet et al. |(2015).
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De nition 1.10  (Kernel). Let X  RY be ad-dimensional vector space andk be an Hilbert
space. A symmetric similarity function k() is a kernel if there exists a function : X 'K
such that:

8x;x%2 Xk x;x° = (x); x° . (1.22)

Equivalently, k(') is a kernel if it is positive semi-de nite:

XX
8X1; ‘Xnp 2 X ;8¢ Ch 2 R; cigk(xi;xj) O (1.23)
i=1 j=1

Note that K can be very high dimensional or even in nite. In this case () is intractable.
However it is still possible to compute the value of the kernel through the expression ok( ).
This is called the kernel trickﬂ This trick has for example been successfully used in Cortes
and Vapnik| (1995); |Schelkopf et al. (1997).

Metrics: Examples

We give several examples of well-known metrics.

Minkowski distances The Minkowski distances is a family of distances induced by the,
norms and as such parametrised by a valug:

dx;x% = xi x°P = x xO . (1.24)

For particular values of p we retrieve some well known distances.

Manhattan distance : If p=1 it corresponds to the Manhattan distance induced by
the "1 norm.

Euclidean distance : If p=2 it corresponds to the Euclidean distance induced by the
"5 norm.

Chebyshev distance : If p= 1 it corresponds to the Chebyshev distance induced by
the "1 norm or max norm.

Mahalanobis distances The Mahalanobis distances is a family of distances parametrised
by a matrix M such that:

q
dx;x° = (x x9TM(x x0. (1.25)

ZNote that even if the feature map is tractable it is most of the times more interesting to compute the value
of the kernel through the expression of k().
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To obtain a proper distance, the matrix M has to be positive de nite. If the matrix is pos-
itive semi-de nite (PSD)E] then it is a pseudo distance, i.e. the constraint on the identity of
indiscernibles is relaxed and it is only required that8x 2 X ;d(x;x) = 0. Note thatif M = |

the identity matrix, it corresponds to the Euclidean distance. In its original de nition (Ma-
halanobis,|1936) the Mahalanobis distance was using the inverse variance-covariance matrix
of the examples, i.e.M = . The intuition behind the Mahalanobis distance is to reweight
the features of the examples. As such using a Cholesky decomposition such thist = LTL,
one can see that the Mahalanobis distance corresponds to the Euclidean distance in a space
linearly dependent on X.

Bilinear similarities The bilinear similarities is a family of similarities parametrised by a
matrix M and which is strongly related to the dot product:

kx:x% = x;Mx 9% = MTx;x° (1.26)
If M =1 it corresponds to the dot product in the original space. Similarly if M = ml

it corresponds to the cosine similarity. While in general there is no constraints orM , we can
choose it to be positive semi-de nite and, using a Cholesky decomposition, one can see that
it corresponds to the dot product in a new space linearly dependent orX .

In Chapter P we propose a review of several metric learning methods whose goal is to
learn the parameters ofM , either for the Mahalanobis distance or the Bilinear similarity.

Kernels Kernels are de ned with respect to a function k( ) and sometimes it is possible to
explicitly compute the feature map ():

Linear kernel : It corresponds to the dot product in the original space

8x:x%2 X 1k x;x% = x"™x%= x;x°. (1.27)
Polynomial kernel : It is parametrized by its order p and a biasc
8x:x%2 X :k x;x% = x"Tx% ¢ P, (1.28)

It is possible to compute the feature map explicitly. For example, for two dimensional
vectors and p = 2 each example is implicitly mapped to a 6 dimensional vector:

_ _ _ T
(X)= x2 x3 P 2X1X2 P 2CX1 P 2cXo C . (1.29)

Note that small values of p are often preferred for this kernel as it becomes numerically
unstable whenp tends to in nity.

3To denote the fact that a matrix is positive semi-de nite we interchangeably use the notation M 0 or
M 2 S 9 whered is the dimension of the matrix.
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Gaussian kernel : It is parametrized by its width  and the feature map is in nite
dimensional and thus intractable.

!
kx  x%3

5 (1.30)

8x;x%2 X ;k x;x° =exp

When using the Gaussian kernel if one has access to a training sé@t of n examples a
standard heuristic is to set to the mean of all the euclidean distances between the
examples (Kar and Jain,|2011).

1.5 Other Notions

In this section we propose to consider other notions that will be used throughout the thesis

but do not fall in any of the previous sections. Hence we present the nearest neighbour
classi er and the domain adaptation setting. We use the former in our experiments as the

classi er making use of our metrics while we evaluate two of our contributions in the latter.

1.5.1 Nearest Neighbours Classi er

As mentioned in the introduction metric learning algorithms are often used as a preprocessing
step to improve the performance of another algorithm. In this thesis we propose to consider
the nearest neighbour classi er (Cover and Hart, 1967) as this subsequent approach. It is
probably one of the most intuitive method in classi cation. The idea stems from the saying
birds of a feather ock together, i.e. if two examples are close to each other they probably
share the same label. To formally present this approach we consider that we want to classify
z D 7 using the training set T and a measure of closeness between the examples under the
form of a distanced.

1 nearest neighbour ( 1-NN)  The idea behind the 1-NN classi er is to predict the class
¢ for z asy*= y; where z; is the closest example of in T, i.e. the examplez; satisfying:

zi =argmin d z;2° : (1.31)
z22T

k nearest neighbours ( k-NN)  The idea behind the k-NN classi er is that instead of only
considering the closest example ot as for the 1-NN, one can select thek closest examples
and sety‘as the majority class among thesek nearest neighbours.

The nearest neighbours algorithm is illustrated in Figure[1.5. Note that here we considered
that the closeness between the examples is determined by a distance. However this algorithm
can be used with any metric and, in particular, learned ones.
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(a) 1-NN. (b) 3-NN.

Figure 1.5: The goal is to classify the black point. The 1-NN algorithm,Figure| 1.5(a), selects
the closest example and classify the point as blue. The 3-NN classi er,Figurg 1.5(b), chooses
the majority class among the 3 closest examples and classi es the point as red.

1.5.2 Domain Adaptation Setting

Throughout this chapter we considered a supervised learning setting. If most of our contri-
butions in this thesis fall into this rst setting, we will also show that two of them are well
suited to solve domain adaptation problems (See Chapterg]4 anﬁ] 6). In this subsection we
propose to quickly introduce this setting.

Domain adaptation is a special case of transfer learning (Pan and Yand, 2010) where
the goal is to adapt a model learned on a source domain to a target domain. Formally
we consider that we have access to two domains, the source doma8 de ned as the space
Z5 = X3Y S equipped with the probability distribution Ds and the target domain T de ned
as the spacezt = X' Y ! equipped with the probability distribution Dt . These two domains
are considered to be di erent but related. Hence the tasks associated with the two domains
are the same but there is a sort of shift between the two distributions. For the adaptation to be
possible we further assume that this shift is not prohibitively large. As an illustrative example
we consider the O ce-Caltech dataset (Gong et al/,|2012) which is used as a benchmark in
the domain adaptation community. The task consists in classifying the images of 10 kind of
objects. The shift comes from the fact that the pictures come from 4 di erent domains:

Amazon: the objects are presented on a white background,
DSLR: the pictures are taken in an o ce environment with a high-end camera,
Webcam: the pictures are taken in an o ce environment with a low resolution webcam,

Caltech: the pictures of the objects come from the Caltech256 dataset (Grin et al.,
2007).

It de nes 12 di erent tasks where the domain are paired and alternatively used as the source
and the target.
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In domain adaptation we consider that we have access to two training sets. The rst one,
S, is labelled and comes from the source domdfhwhile the second one,T, comes from the
target domain. We then consider two di erent settings:

unsupervised domain adaptation: there is no supervision i,

semi-supervised domain adaptation: only a small amount of examples are labelled ih.

When solving a domain adaptation problem the goal is to estimate and overcome the shift
between the distributions (Ben-David et al., |2010). To this extent several di erent strategies
have been proposed in the literature. Among these we can cite for example the reweighting
approaches where the idea is to put more emphasis on the source examples which are mixed
with the target examples in the input space (See e.g. Mansour et al.l (2009)). We can also
cite iterative approaches where the idea is to learn a classi er on the source domain, label
the target domain and replace some examples in the source domain by the newly labelled
target examples. This process is repeated several times until a convergence criterion is met
(See e.g! Bruzzone and Marconcini (2010)). As a last example another strategy consists in
learning a common representation space for the source and the target where the shift between
the two domains does not exist (See e.g. Gong et al| (2012); Ho man et al, (2013)). This
last strategy is often the motivating idea behind the metric learning methods interested in
addressing the domain adaptation problem (See Sectio@.S).

1.6 Conclusion

In this chapter we presented several fundamental notions used throughout this thesis. We
started by introducing the risk minimization framework which will be used, in its regularized
form, in all of our contributions. Then we addressed the problem of deriving generalization
bounds. We presented two frameworks respectively based on the uniform stability principle
and the notion of Rademacher complexity. Next we proposed a formal de nition and some well
known examples of the notion of loss function and regularization term. We also clari ed the
notion of metric as we consider it in this thesis. Lastly we introduced the nearest neighbour
algorithm and the domain adaptation setting which will be used to assess the performance of
several of our contributions.

In the next chapter we propose a non exhaustive review of the eld of metric learning by
answering four fundamental questions on the problem.

4Sometimes we also consider that we have access to a second non labelled training set from the source
domain.
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Metric Learning

2.1

Abstract

In this chapter we propose a non exhaustive review of the eld of metric learning. In
particular we present several methods which are relevant in the context of this thesis. It
notably corresponds to approaches that learn the same kind of metrics as we do, consider
a similar way to perform the learning step, derive the same kind of generalization bounds
or learn a metric to solve the same kind of task.

Introduction

As mentioned before the idea behind metric learning is to automatically learn, from the data,
a metric adapted to the task at hand. This chapter is a hon exhaustive review of this eld
as we put the focus on the most relevant methods for this thesis. We propose to explore the
di erent existing approaches by answering four basic questions on metric learning.

What kind of metrics is it possible to learn? We will see that most of the methods
are interested in learning either a Mahalanobis distance or a bilinear similarity. The
most common approaches to include some non linearity in the process are to learn
multiple metrics across the space or to learn a linear metric in a kernel induced space.

How are the metrics e ectively learned? We will see that optimization problems

in batch learning setting are widely used in metric learning and that approaches mainly
varies in function of the kind of constraints used, the loss function considered and the
regularization term. Nevertheless several approaches also proposed to learn a metric in
an online fashion.

Are there any theoretical guarantees on the learned metrics? We presented two
frameworks used to derive generalization bounds in Chaptef]1. We will see that these
can be extended to the metric learning setting. Furthermore it is sometimes possible to
evaluate the impact of a metric on the subsequent algorithm.

41
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Figure 2.1: Metric learning in four questions.

In which tasks are the metrics used? We will see that many approaches are
interested in solving classi cation or semi-supervised clustering problems. However
some works also considered di erent tasks such as image retrieval, face recognition or
domain adaptation.

In Chapter [[] we were mainly focused on supervised learning problems. In this chapter,
and unless stated otherwise, we consider the setting consisting in learning a metric for a
classi cation problem. Formally we consider a domain T which corresponds to the space
Z = X Y equipped with the probability distribution Dt . We further consider that X ~ RY,
i.e. we are working with real valued vectors, and that we only have access to a training set
T = fzj = (xi;yi)g, of n training examples.

In Figure P.I we propose a diagram summarizing the outline of this review. In Sectioh 2|2
we present several works whose goal is to learn a speci ¢ metric. Next in Sectign 2.3 we review
di erent learning procedures applicable to metric learning. In Section[2.4 we consider the
problem of deriving theoretical guarantees. Finally in Sectior{ 2.5 we focus on the applications
making use of the learned metrics before concluding in Sectidn 2.6

2.2 Metrics

Several metrics have been considered in the eld. We present a short description of the most
popular ones here.
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2.2.1 Mahalanobis Distance

In their pioneering work Xing et al.|(2002) propose to learn the parameter matrix M of a
Mahalanobis distance. Popularized by Large Margin Nearest Neighbour (LMNN) (Weinberger
et al., [2005) and Information Theoretic Metric Learning (ITML) (Davis et al., 2007), it is
probably the most studied metric in the community. We presented it in Section[1.4 but we
recall it here for the sake of readability:

q
dv x;x% =  (x x9TM(x x9 with x;x°2X ;M 2 &¢ 9. (2.1)

Note that to avoid the di culties linked to the use of a square root, i.e. it is concave and
only de ned on R., a lot of approaches have focused on learning the quadratic version dfy ,
denoted dZ, .

To obtain a proper distance the matrix M has to be positive semi-de nite. This con-
straint can be hard to satisfy in practice as it often requires some costly projections on the
positive semi-de nite con@ (Yin et al.| 2009). However this constraints also provides a nice
interpretation of the metric. Indeed using a Cholesky decomposition one can write = LTL
with L 2 R® 9. 1t implies that the Mahalanobis distance is the standard euclidean distance
in a new space linearly dependent orX:

q
d x;x% = (Lx Lx9T(Lx Lx9with x;x°2X;L 2 R¥ 9. (2.2)

Following this idea and to avoid the positive semi-de nite constraint on M some approaches
propose to directly learn the matrix L (Goldberger et al.,|2004).

Another appealing property of the matrix M stemming from its positive semi-de niteness
is that it can be written as a combination of rank 1 matrices:

M= uul (2.3)

with the u; 2 RY are linearly independent vectorg| and k is the rank of M. Using this
property several approaches propose to learn either a weighted combination of given rank 1
matrices (Shi et al.,|2014) or the matrices themselves (Shen et al., 2009, 2012).

Depending on the form of the matrix M the Mahalanobis distance can have some appealing
properties. For example if this matrix is diagonal the distance can be seen as a reweigthing
of the input features (Xing et al., 2002). Similarly when M is low rank (k < d) then in
the decomposition presented above the matrixL is rectangular with d°< d. It implies that
the examples are projected in a lower dimensional space, i.e. it is equivalent to performing
some dimensionality reduction on the data. Following this idea some approaches have then
been interested in learning low rank matrices using some sparsity inducing norms such as the

1 A projection onto the positive semi-de nite cone requires an eigenvalue decomposition whose computational
cost is roughly in O d® making it intractable when d becomes large.

2These vectors can for example be the eigenvectors of the matrix times the square root of the corresponding
eigenvalue.



44 Chapter 2. Metric Learning

trace norm (Ying et al.| 2009), the capped trace norm |(Huo et al., 2016) or a Fantope based
norm (Law et al., 2014).

2.2.2 Bilinear Similarity

Apart from the Mahalanobis distance, the second most popular metric is probably the bilinear
similarity which is also parametrized by a matrix M . For example Qamar et al, (2008) consider
the following similarity:

xTMx 0

ky x;x% = ——=_ with x;x°2X:M 2 RY d (2.4)

N (x;x9
where M can be either diagonal, symmetric or simply a square matrix andN (x;x9 is a
normalization parameter.

Following this idea |Qamar and Gaussier (2009) propose to use a generalized cosine simi-

larity:

0 xTMx © . B q
kw x;x° = p P with x;x°2X ;M 2 & 9, (2.5)
xTMx  x9 Mx ©
However the positive semi-de nite constraint can be too restrictive in practice.
These two similarities can be seen as particular forms of the bilinear similarity presented

in Section[1.4 and recalled here for the sake of readability:

ky x;x°% = xTMx with x;x°2 X ;M 2 RY ¢ (2.6)

This more general form has for example been used |n Chechik et af. (2009, 2010); Kulis et|al.
(2011); Bellet et al| (2012).

2.2.3 Multiple Metrics

The two metrics presented above are linearly dependent on the input space. However it
is sometimes not su cient to capture the idiosyncrasies of the data. Hence learning a non

linear metric becomes necessary. One possible approach is then to learn multiple linear metrics
across the space. One basic strategy is local metric learning which consists in dividing the

between two examplesx;x°2 X as:

dvu x;x% = wyyo(i)du, x;x° (2.7)
i=1
wherew, yo(i) is the weight of the distancedy ; in the combination when considering the two
examplesx and x° Hence the methods interested in learning multiple metrics mainly vary on
the way they cluster the input space, the metric learned and the way they choose the weights
of the metrics with respect to the examples.
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In Multi-Metric Large Margin Nearest Neighbour (MM-LMNN) Weinberger and Saul
(2008) propose to either set one partition for each class or to use the-means algorithm.
In each partition they propose to use LMNN (Weinberger et all,|2005) to learn a Ma-
halanobis distance. Finally the distancedy (x;x9 between two examples only depends
on the cluster in which x°falls. It implies that the global distance is not symmetric if
x and x%do not fall in the same cluster.

Semerci and Alpayd n (2013) propose to learn a Mixture of LMNN (MoLMNN) by
alternatively learning the partition of the space and the transformation matrix of a
Mahalanobis distance. Furthermore they propose to use a soft partitioning of the space
where the transformation of one example depends on several local transformations.

In Large Margin Local Metric Learning (LMLML) Bohre et al. (2014) propose to learn
one Mahalanobis distance for each of th& components of a Gaussian mixture model.
For two examples x and x° the weight of each metric depends on the degree of mem-
bership of the two examples to each component.

In Parametric Local Metric Learning (PLML) Wang et al. (2012) propose to select
anchor points de ned as the means of clusters constructed by thd-means algorithm.
Then they express each example in the training set as a weighted combination of the
anchor points and they use these weights to learn one basis metric for each anchor point.
Note that the global metric is not symmetric.

Instead of partitioning the input space Chang and Yeung (2004, 2007) propose to learn
one linear transformation for each example but to compute their e ective transforma-
tions as a learned weighted combination of the transformations of their neighbours.

2.2.4 Other Non Linear Metrics

To include some non linearity in the model some approaches propose to consider intrinsically
non linear metrics. For example Kedem et al. (2012) proposed to build upon LMNN |(Wein-
berger et all,|200%) to learn two new metrics. The rst one, called 2_.LMNN, is well suited
for histogram data. The second one is called GB-LMNN and is based on Gradient Boosted
regression trees. As a last example of a method learning a non linear metric Xiong et al.
(2012a) propose the Random Forest Distance (RFD). This is a local metric learning method
based on random forests classi ers. The idea is to learn a classi er able to predict if two ex-
amples are similar or dissimilar, i.e. to predict 1 if two examples are similar and 0 otherwise.
Another possible approach to include some non linearity, used for example in Davis et al.
(2007), is to consider learning a linear metrics in a space non linearly dependent on the input
space using for example a kernel.

In this thesis we consider the problem of learning Mahalanobis distances in Chaptefd 4] 5
and[g. In Chapter [4 we also consider learning bilinear similarities while in Chaptef B we
propose to learn multiple Mahalanobis distances.
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(a) Pair based constraints. (b) Triplet based constraints.

Figure 2.2: lllustration of the notion of margin for pair based constraints and triplet
based constraints 2.2(b).

2.3 Learning Approaches

A classi cation problem becomes easier to solve when, in the data, the intra class variance is
low and the inter class variance is high. In other words it is desirable to have all the examples
of the same class close to each other and all the examples of di erent classes far from each
other. Building upon this idea most of the existing works in metric learning try to learn the
best metric such that the aforementioned constraints are respected.

2.3.1 Pair Based Constraints

Given a labelled training setT, a rst approach consists in considering the examples by pairs
and de ning similarity and dissimilarity constraints as follows:

A set of pairs of similar examples: Psim = f(z;29 s.t. z;2°2 T;y = y%,

A set of pairs of dissimilar examples:Pgis = f(z;29 s.t. z;2°2 T;y 6 y%.
Alternatively we can consider a single set of pairs of examples:

Ppair = (2;2% yyo) sit. ;202 T; ypo=1if y=y% yyo= 1ify6 y0.

A good metric should be able to bring closer to each other all the similar examples while
pushing far away all the dissimilar ones. For example, using empirical risk minimization
(Section ), learning a Mahalanobis distance could be done by solving one of the following
two optimization problems:

X X
argmin 1q,, (X9 40 + 1q,, (x:x% o0 + kMk
M2s ¢ (2;20)2>2’sim (z:292Pgis
arg min 1 odu(xx9 0,07 kM k

d
M 283 (z:2% yy0)2 Ppair
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where the margin yyo is a measure of closeness between the examples ahds the indicator
function whose value is 1 if the condition is true and O otherwisé. The idea is that similar
examples should be at a distance lower than yyo while dissimilar examples should be at a
distance greater than yyo (See Figure[2.2(a)). Note that yy0 depends on the examples and
can thus have a dierent value for each pair. In practice we often x a value &m when

y = y%and a value 4s wheny 6 y° Many approaches in metric learning are based on a
similar idea, i.e. they try to obtain a metric that approximates these constraints. However
the optimization problem presented here is non convex and non di erentiable and is thus hard
to optimize in practice. Most of the approaches then consider surrogate losses (Secti.4)
which are easier to handle. They also make use of various regularization terms to enforce
di erent properties on the metrics.

In their pioneering work (Xing et al., 2002) propose to learn a Mahalanobis distancely

by bringing similar examples close to each other while keeping dissimilar examples rea-
sonably far away. They use a gradient descent based approach with iterative projections
on the constraints to solve the following optimization problem:

argmin d2 x;x° (2.8)
M2s] ¢ (X;X9 2 Pgim

s.t. dv x;x° 1. (2.9)
(x;x92 P

Here the margin between similar examples is implicitly set to 0 while the margin between
dissimilar examples is set to 1.

Goldberger et al| (2004) proposed Neighbourhood Components Analysis (NCA). It is
a method based on a non convex optimization problem where the idea is to directly
learn the transformation matrix L of a Mahalanobis distance. To this extent they rst
propose to de ne for each example in the training sefT the probability that an example
X;j is in the neighbourhood of an examplex; as:
2 (v oy
oy = pOP__GL0x) (2.10)

22T €Xp dZ(Xi;Xk)
Zk 6 zZ;

From this, assuming that p; = 0, they compute the probability that the example x; is

correctly classi ed as:
X
pi = Pj - (2.11)
zj 2T
Yi=Yj
They then try to nd the metric which maximizes the probability of correctly classifying

the examples:
X
arg max pi. (2.12)
L2RI? d 757

*It is another way to write the 0 =1 loss presented in Sectior] 1.1.
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To solve this optimization problem, the authors propose to use a gradient based ap-
proach and precise that some care should be taken to avoid local maxima. In this work
the authors consider that all the examples of the same class should be similar while
all the examples of di erent classes should be dissimilar. There is no explicit notion of
margin.

Globerson and Roweis|(2005) proposed Maximally Collapsing Metric Learning (MCML)
where the idea is to learn a Mahalanobis distance able to collapse all the similar ex-
amples in a single point and to push the dissimilar examples in nitely far away. To
this extent the authors propose a convex optimization problem based on the Kullback-
Leibler divergence. As in NCA (Goldberger et al.,| 2004) they rst propose to consider
for each example in the training setT the probability that an example x; is in the
neighbourhood of an examplex; as:

exp dZ (Xi;Xj)

22T €Xp ARy (Xi;X)
2k 6 Z;

pj = P (2.13)

They also de ne the ideal probability that they want to achieve between two examples
as:

(
1 vyi=Yyj
0 yi6y.
Following this the authors propose to learn a metric minimizing the Kullback-Leibler
divergence between the empirical and the ideal probability distributions:

Py / (2.14)

argminKL pj p; - (2.15)
M2sd d
To solve this convex optimization problem the authors propose a gradient based ap-
proach with projections onto the constraints.

Information-Theoretic Metric Learning (ITML) (Davis et al., 2007) is among the most
famous Mahalanobis distance learning approaches. It is based on the log det divergence
and the idea is to learn a metric which is close to a known prior metricM s using the
following optimization problem:

argmin Tr MM ¢'  logdet MM ¢! n (2.16)
M2sd d

st. Tr M(x x9(x x9T sim (x:x% 2 Psim (2.17)

™ M(xx x%x x9T dis (x;x9 2 Pgis. (2.18)

The log det divergence is a particular Bregman divergence with the nice property that
if the divergence is nite and the prior matrix is positive semi-de nite then the learned
matrix is also guaranteed to be positive semi-de nite. It implies that this optimization
problem does not require projections on the semi-de nite cone.
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Jin et al.|(2009) propose to learn a Mahalanobis distance using the following optimiza-

tion problem:
. 2 X 1
argmin SO vy, 108 (xiixj) o+ S kM k2 (2.19)
M2s! Tr(M) () 2727

i<j
where (d) is shown to be sublinear ind, i.e. (d) O (d°) with p< 1.

Log-determinant regularized Distance Metric Learning (L-DML) (Zha et al., 2009) is

a Mahalanobis distance learning method which is able to make use of some auxiliary
knowledge in the form of given metrics. The idea is to use a variant of ITML (Davis
et al., 2007) to accommodate several prior metrics rather than a single one. Hence they
consider that they have access to a set of prior matriced 1; My 2 ¢ 9 and use
the following optimization problem:

XK
arg min iTr M, ™M logdet(M)
Ms? 9 0j=1
X X )
+  sim dwm X;XO dis dm X;X0 + k k2
(z:292Psim (2,292 Pgis
XK
s.t i=1

where the vector controls the impact of each prior matrix and the  parameters
control the trade-o between the di erent terms.

2.3.2 Triplet Based Constraints

Sometimes pair based constraints are not su cient to capture the relationships between the
constraints. Another common trend in metric learning is to consider triplet based constraints:

Pui = f(2;2%2% s.t. 2,229 T;y = yCy 6 yo}.

Using empirical risk minimization (Section [1.2), learning a Mahalanobis distance could be
done by solving the following optimization problem:

X
arg min Layxix9 dyxx9+ + KMK (2.20)

d
M2S] ¢ (2:2002092p,

where is the desired margin between the two distances and is the indicator function.

In practice this margin is often set to 1 (Weinberger et al|, 2005;| Ying et al.,| 2009] Shi
et al., [2014). The underlying idea is that similar examples should be closer to each other
than dissimilar ones (See Figur¢ 2.2(d)). Once again many approaches in metric learning are
based on a similar idea and make use of a variation of the previous optimization problem.
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Large Margin Nearest Neighbours (LMNN) (Weinberger et al|,|2005%; Weinberger and
Saul,|2009) is a popular metric learning method based on triplets constraints whose goal
is to learn a Mahalanobis distance speci cally tailored to improve k-nearest neighbours
classi cation. The idea is, for a given examplex, to learn a metric which brings closer
the k nearest neighbours of a similar class (target examples) and tries to push farther
away all the examples of di erent classes which are closer ta than the target examples
(impostors). The authors propose to use the following convex optimization problem:

X X
arg min a2 x;x°+@1 ) 1+dd x;x%  d x;x% |
M2S] % (xix92Pgm (X:x%x%92 Py

(2.21)

where is a parameter controlling the balance between the term which brings closer
the target examples and the term which moves the impostors with respect to the target
examples. Satisfying the positive semi-de niteness oM is costly and general solvers do
not handle this optimization problem e ciently. Hence the authors propose a gradient
based speci ¢ solver which makes use of the possible decompositidh = LTL. Several
metric learning approaches are based on the same formulation albeit in di erent contexts
such as local metric learning (Weinberger and Saul, 2008; Semerci and Alpayd n, 2013)
or learning intrinsically non linear metrics (Kedem et al., 2012).

Ying et al.|(2009) propose to learn a low rank Mahalanobis distance. The idea is to use
the trace norm as a regularization term in the following optimization problem:

X
argmin 1+dg x;x0  dZ x;x% _+ Tr(M)2. (2.22)
M2S] @ (2:202092p,

As seen in Sectiorj T} the trace norm corresponds to the sum of the eigenvalues of the
matrix. It implies that to obtain a small trace norm the eigenvalues should be minimized
and thus go to 0, i.e. the matrix becomes low rank.

Sparse Compositional Metric Learning (SCML) (Shi et all, |2014) is a Mahalanobis
distance learning method based on the idea that any positive semi-de nite matrix can
be decomposed as a set of rank 1 positive semi-de nite matrices. To learn a metric
the authors consider that they have access to a set of rank 1 matrices, the bas@&s =
bibiT s.t. bj 2 RY inll. This set can, for example, be obtained thanks to a Fisher
discriminant analysis. The goal is then to learn the vectorw which combines the bases.
In the general case the authors propose to solve the following optimization problem:

1 X
arg min — 1+d3 x;x%  dd x;x% _ + kwk, (2.23)
w0 (z;2%2992Py;

P , o .
whereM = ™ w(i)bjb]. The regularization term tends to promote sparse combi-
nation vectors in order to minimize the number of bases needed to compute the matrix.
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Note that instead of learning the d* parameters of the matrix M , this method only re-
quires to learn the sparse vectow of sizem. Hence it greatly reduces the computational
cost sincem will, most of the time, be smaller than d?.

2.3.3 Quadruplet Based Constraints

Introduced by [Law et al.|(2013) in Quadruplet-wise Metric Learning (Qwise) the underlying
idea is that in some particular cases pair or triplet based constraints are not su cient. As

a motivating example they propose the problem of smiling faces. They consider 4 examples
ordered as followsz®® z 20 z9%i.e. z%is not smiling at all, z°%s smiling a lot and z and
z%both smile a little. In this case pair or triplet based constraints cannot completely capture
the relations between the examples since they are not fully determined, e.g. it is unknown if
z is closer toz%or to z°%° To solve this problem[Law et al! (2013) propose to use quadruplet
based constraints of the form:

Pquad = (2;2%2%2°%s.t. z and z° are more similar to each other thanz®and z°%°

These constraints can also be extended to take into account a margin:
Pquad = (2;2%2%2°% ) s.t. z and z°are more similar than z%%and z®°by a margin

Quadruplet based constraints can accommodate the motivating example by considering that
z and z° should be closer to each other tharz®%and z°°&hould. These constraints have been
used in a several approaches.

Law et al.|(2014) introduce a Fantope regularization for Mahalanobis distance learning.
One of the limits of the trace norm regularization is the fact that it tends to reduce all
the eigenvalues of the matrix. However reducing the values of the highest eigenvalues
does not reduce the rank and might decrease the performance of the metric. Hence
Law et al.[| (2014) propose to consider a regularization of the form Tr(WM ) where W
is in the convex hull of the set of rank k projection matrices, called a Fantope. This
matrix can be built by rst computing the eigenvalue decomposition M = VT V  with

a diagonal matrix containing the eigenvalues andV containing the eigenvectors and
then by setting W = VT % where 0Ois obtained from by replacing the k smallest
eigenvalues by 1 and the others by 0. In other words, the idea is to consider that only
the k smallest eigenvalues should be minimized. Using this idea the authors propose to

solve the following optimization problem:

X
arg min +d2, x;x
M 28] ¢ (2,20,2002000 )2 Py g

0 d x

0x00 "+ Tr(WM). (2.24)

Note that one of the di culties when optimizing this kind of problem is that W depends
on the current value of M and as such it should be updated during the optimization
process. Hence the authors propose to consider a sub gradient descent approach and to
update W at each iteration.
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Huo et al| (2016) propose a Capped Trace norm regularlzatlo'g term for Mahalanobis
metric learning. This regularization term can be written as 2 i min( (i);C) where

is the vector of singular values ofM and C is a constant threshold. The idea is to
limit the impact of the highest singular values in the optimization problem and thus to
promote the minimization of the smallest singular values. The authors propose to use
the following optimization problem:

X X
arg min +d x;x0 dg x%9x%%0 + 5 min( ;C). (2.25)

M 28] ¢ (7:202007000 )2 Pquad [
In its original form the proposed optimization problem is not convex but the authors
tackle this issue by solving an equivalent convex optimization formulation. The Capped
Trace norm regularization is close in spirit to the Fantope regularization (Law et al.,
2014). However the authors show that it is less sensitive to hyper parameters.

2.3.4 Online Learning

In the previous subsections we considered a batch setting where all the examples are available
at the same time. However in some cases the examples arrive in a stream like fashion. Con-
trary to classi cation or regression where the examples can be considered independently from
each other, in metric learning most of the approaches work with pairs or triplet of examples.
Hence a natural assumption is that these pairs or triplets are given one after the other. The
goal is then to learn a metric which is able to change when more and more pairs or triplets are
available. Formally assume that we have a sequence of pairg {;x);:::; (Xt; X9); (Xt+1: X% )
and that from the rst t examples we were able to learn a Mahalanobls distancdy ,. The
goal is to learn a distancedy ,,, such that:

Ovr = F s (Xt 5 X k) (2.26)

where f is a function able to combine the current metric with the new pair to learn a new
metric.

Pseudo-Metric Online Learning Algorithm (POLA) ($halev-Shwartz et al., 2004) is
interested in learning a Mahalanobis distance and a parameteb corresponding to the
threshold between similar and dissimilar examples. It is assumed that pairs of examples
arrive one after the other. Given a new example Xt+1 ;X1 ; Veot y9+1) they propose
to update the matrix M and the threshold b successively solving the following two
optimization problems:

M, 1;b,1= argmn kM, MkZ +(h b?
2 2 M2Rd d;bZRh i

2 .0 -
St yaye, Ow, Xe+1i X h +1 =0,

2
Mu1;ber = argmink My,1 M +(b,: b2
M2t 9p 1 2 F 2
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(2.27)

The rst step consists in searching for the (matrix, threshold)-pair achieving a loss of 0
on the new pair of examples while staying as close as possible to the current solution.
The second step consists in projecting the new solution onto the set of admissible solu-
tions, i.e. positive semi-de nite matrix and threshold greater than 1. Note that a kernel
version of this approach is also proposed allowing one to learn non-linear metrics in an
online fashion.

LogDet Exact Gradient Optimization (LEGO) (Jain et al., |2009) is a Mahalanobis
distance learning approach. For a new pair of examplesx+1 ;X2 ; Viot ygﬂ) they
propose to use a formulation based on ITML (Davis et al.,[ 200[7) where they set the
prior matrix M g to the current matrix M at each iteration. Hence they obtain the
matrix M 41 by solving the following optimization problem:

Mg =argmin Tr MM ! logdet MM ,* d
mMast @ h .
i

0
Yi+1 yt0+1 dM Xt+1 1 Xt+l Yi+1 yt0+1 + *

Chechik et al| (2009, 2010) proposed Online Algorithm for Scalable Image Similarity
(OASIS) a bilinear similarity learning approach speci cally designed to handle large
datasets of images. In this work the authors work with triplet based constraints and
given a new triplet (x¢+1;x%,4 ;x99 ) they propose to update the metric in the following

way:

1 ,
Mg =argmin ZkM  MkE + 1 Ky, Xee1;X% + Km, X1 X0
M2Rd d

.- (2.28)
The idea is to update the matrix for each new triplet while staying close to the matrix
obtained during the previous iteration. This trade-o is controlled by a parameter
The initial matrix is selected as the identity matrix Mg = |I. The matrix M can be
either unconstrained, symmetric or PSD depending on the problem. This method has
been shown to be computationally e cient thanks to the speci cally developed solver.

2.3.5 Other Approaches

Other approaches than the one presented above have been considered to learn metrics. For
example, Shen et al.|(200¢, 201.2) propose to use the theory of boosting to learn a Mahalanobis
distance. The main idea is to notice that any positive semi de nite matrix can be decomposed
as a combination of rank 1 matrices which can be used and combined as weak learners. In
a subsequent work Bi et al. (20111) propose a substantial seep-up of the approach. Another
approach was proposed by Qamar et gl. (2008) who learn a similarity by using a variant of
the voted perceptron algorithm (Freund and Schapire, 1999).
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In this thesis we are mainly interested in batch optimization problems based on regularized
risk minimization. In Chapters BJand @]we consider pair based constraints. In Chapterf|5 and|6
we propose two approaches which are not based on standard metric learning constraints as
they are able to consider each example individually.

2.4 Theoretical Guarantees

Metric learning is most of the time used as a preprocessing step before other algorithms. As
such when considering theoretical guarantees for metric learning two questions may arise.
On the one hand studying the generalization ability of the metric is crucial to ensure that
distances computed between new examples will be correct. On the other hand considering the
impact of the metric on the subsequent algorithm is important as it is a way to theoretically
show the interest of learning it.

2.4.1 Generalization Bounds for Metric Learning

Generalization bounds for metric learning are harder to derive than in standard approaches.
Indeed one of the common assumptions when proving this kind of guarantees is that the ex-
amples are drawn i.i.d. from a probability distribution (See Section). However in metric
learning most of the time the loss functions are de ned with respect to pairs or triplets of
examples as presented above. One of the issue is then that even if the examples are drawn
i.i.d. from Dy there is no guarantee that this is also the case for the pairs or the triplets.
More precisely if the examples are drawn identically and independently fronD+, one can only
assume that the pairs are independent but not that they are identically distributed. Never-
theless the two particular frameworks presented in Sectiof 1|3 are based on the McDiarmid's
inequality (McDiarmid,|1989) that only needs to assume that the examples are independent.
Using adapted de nitions of uniform stability (Jin et al.,|2009) and Rademacher complex-
ity (Cao et al.| 2016) these two frameworks have been successfully extended to metric learning
with pair based constraints. Note that the robustness framework has also been considered for
metric learning (Bellet and Habrard| 2015) but we do not present it here.

Uniform stability for metric learning To extend the uniform stability framework to
metric learning, Jin et al.| (2009) propose to adapt the de nition of uniform stability as
follows.

De nition 2.1 (Uniform Stability for Metric Learning) . Let T D 1 be a sizen training set
andz D 7 be an example. LetT' be the training set obtained by replacing examplein T
by z. Let A be an algorithm which returns a metricht when learning with the training setT
and hyi when learning with the training setT'. An algorithm A has uniform stability — with
respect to its loss functionl () if the following holds:

8i2f1:::;ng; sup | hy;z%z%

z%z90D ¢

| hqi;z%2z% o (2.29)



2.4. Theoretical Guarantees 55

Given this de nition, they show that using the same proof technique that in Bousquet and
Elissee | (2002D) it is possible to obtain a generalization bound for metric learning similar,
up to some constants, to the one presented in Theorerp 1.1. As an example of a practical
use of the framework, Jin et al, (2009) show that their algorithm, presented in Sectiorj 23, is
uniformly stable and thus that the metric learned with their method generalizes well to new
pairs of examples.

Rademacher complexity for metric learning To extend the Rademacher complexity
framework, |(Cao et al| (2016) propose a new de nition of the Rademacher complexity specif-
ically tailored for metric learning. It corresponds to the expected value over sizen training
sets of the Rademacher averages of the dual norm (De nitiofi A4) of the regularization term.

De nition 2.2 (Rademacher Complexity for Metric Learning). Let T® D 1 be a set of size
n such that the pairs(z® z%ﬂcﬂ) are i.i.d.. Let be a vector ofn Rademacher Variables, i.e.
2

variables which can take a value of eithet or 1 with probability % Let k k be a norm and
k k its dual nornﬂ The Rademacher average is respectively de ned for Mahalanobis distance
learning and bilinear similarity learning:

&g—c

1

Rn(kk) = —E i(Xi Xpa e i)(Xi Xb%c+i)T (2.30)
2 i=1
LR

Rn(kk)= —E XiXpn gy (2.31)
2 i=1

The Rademacher complexity for Metric Learning is then de ned as:
R(kk)= _E i Rn(k k) (2.32)

where the expectation is taken over siza training sets.

Note that even if the i.i.d. property of the pairs is relaxed when using the McDiarmid
concentration inequality, it is still needed when computing the Rademacher complexity. How-
ever, using properties of U-statistics (See e.g. Cemercon et al{(2008)), Cao et al, (2016) show
that this is not an issue in practice since it is possible, in expectation over all the possible
training sets of sizen, to reduce a pair based approach to the case of i.i.d. random variable
blocks as required in this de nitionP] Using this new de nition of Rademacher complexity for
metric learning |Cao et al| (2016) derive a generalization bound which is close in spirit to the
one presented in Theorenj 1]2.

4See/ A.4 for a formal de nition.
5An example of this is given in Section where we use the Rademacher complexity to derive a general-
ization bound for metric hypothesis transfer learning.



56 Chapter 2. Metric Learning

2.4.2 Impact on a Subsequent Algorithm

As we have seen in Chaptef |1, metrics are used in a wide range of applications and choosing
a good metric through metric learning or other means can be seen as a preprocessing step
for classic problems such as clustering or classi cation. Hence the question of the impact of
the metric on the algorithm which makes use of it may arise. Such problems have been for
example addressed by Balcan et &l (2008) who propose to de ne the goodness of a metric as
its capacity to determine the similarity between the examples and a set of so called reasonable
examples. They then show that this can be directly related to the performance of a linear
classi er making use of the metric. Building upon this framework, several works propose
to learn a good metric (Bellet et al), 2011,/ 2012) or even to jointly learn the metric and its
associated classi er (Nicolae et al.| 2015). Using a di erent approach Guo and Ying| (2014)
propose to learn a metric speci cally designed to improve the performance of a linear SVM
(Vapnik, 1998). Building upon the Rademacher Complexity framework they show that the
true risk of the classi er is bounded by the empirical risk of the metric. Once again, the
problem of considering the impact of the learned metric on an algorithm making use of it is
beyond the scope of this thesis.

In this thesis we theoretically justify the approaches presented in Chapter$ |3, |4 anfl]5 by
deriving generalization bounds based either on the uniform stability or Rademacher complex-
ity frameworks.

2.5 Applications

If many approaches consider learning a metric for a clustering or classi cation task, some
methods are speci cally designed to help solve other kind of tasks such as image retrieval or
domain adaptation. We provide a quick non exhaustive overview here.

Semi-supervised clustering The idea behind semi-supervised clustering| (Xing et al.,
2002;| Chang and Yeung, 2004) is that instead of having the labels of the examples as in
classi cation, we have only access to similarity and dissimilarity constraints.

Classi cation A lot of approaches have been interested in learning a metric for classi ca-
tion (Semerci and Alpayd n, |2013; Davis et al., 2007} Nicolae et al., 2015). Similarly, Wein-
berger et al| (2005%); Wang et al. (2012); Goldberger et al. (2004); Qamar et al| (2008) propose
to put a special emphasis on learning a metric speci cally designed for a nearest neighbour
classi er (See Sectior{ 1.5). It results in methods where only a subset of the constraints are
considered as in LMNN (Weinberger et al.| 2005) presented in Sectign 2.3. Other approaches
consider the problem of learning low rank matrices to simplify the subsequent classi cation
algorithm (¥ing et al.,/ 2009; Shi et al., [2014) or learning a metric inducing a sparse classi-
er (Bellet et al., 2012).
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Image retrieval Metric learning has also been used to improve image retrieval algorithms

where the goal is, given a query image, to retrieve the most similar images in a given
set (Chechik et al!,|2010; Law et al., 2014; Chang and Yeung, 200/7; Huo et al., 2016). Sim-
ilarly the idea behind face recognition is to be able to recognize a query person in a set of
images (Jin et al|,| 2009 Bohre et al., 2014; Cao et al., 2013b; Zha et al., 2009).

Domain adaptation In domain adaptation we assume that we have access to two domains,
the sourceS and the target T, and that we want to adapt from the source to the target (See
Section). One way to perform domain adaptation is to bring the two domains closer to
each other, i.e. to align the source and target examples such that any classi er leaned on the
source can also be applied on the target. Several approaches in metric learning thus propose
to learn a metric to bring examples from the source closer to the examples from the target.

Saenko et al. (2010) propose to use ITML|(Davis et al., 2007) presented in Secti.3
to learn a Mahalanobis distance which brings closer the two domains. They consider
a semi-supervised domain adaptation problem, i.e. some of the target examples are
labelled. To generate the constraints they propose to randomly select examples from
the source and the target and simply consider them as similar if they share the same
label and as dissimilar otherwise. Learning a Mahalanobis distance might sometimes not
be su cient to overcome the shift between the two domains. Hence they also consider

the kernelized version of ITML in order to obtain a non linear metric.

In Asymmetric Regularized Cross-domain transformation (ARC-t) Kulis et al.|(2011)
propose to learn a bilinear similarity between the source and the target domain for a
semi-supervised domain adaptation task. The interest is that instead of modifying the
source and the target domain at the same time as in Saenko et al. (2010), they simply
move one domain closer to the other. They propose to use the following optimization

problem:
) X 2 X 2 2
arg min sm  km x%xb T+ ky xS x! dis ;. + EkM kg
M2Rd 4 (z%:2)2Psim (z%;2')2Pyis

where the two examples from the source and the target are similar if they share the same
label and are dissimilar otherwise. Also note that in this work the bilinear similarity

is considered to be oriented in the sense that the source example always multiply the
matrix M on the left while the target example always multiply M on the right. To
consider more complex transformations between the source and the target they propose
to kernelize their approach.

Geng et al| (2011) proposed Domain Adaptation Metric Learning (DAML) a Maha-

lanobis distance learning approach for unsupervised domain adaptation. They propose
to learn a metric able to well separate similar and dissimilar examples in the source
domain while keeping the source and the target domain close to each other. Hence they
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de ne the set of similar examplesPgim as all the pairs of source examples sharing the
same label. Similarly they de ne the set of dissimilar examplesPgis as all the pairs of
source examples with di erent labels. To keep the source and the target domain close
to each other they propose to use the Maximum Mean Discrepancy (MMD)|(Borgwardt
et al., |2006) where the idea is that the respective means of the source and target sam-
ples should be close even after the projection. They propose to learn the transformation
matrix L which minimizes the following optimization problem:

2
X 1 X 1 X
arg min d? x5; xS0 + = LzS = Lzt
0
L2Rd" d (25;2)5<0)2P5irn 7528 zt2T7 2
s.t. d. x5;x30 1.
(25,2592 Pgis

They also propose a kernelization of their approach based on a Kernel Principal Com-
ponent Analysis (KPCA) (Schelkopf et al.,| 1997) in order to learn a non linear metric.

Other tasks  As a last remark note that metric learning has also been used to improve

the performance of a kernel |(Weinberger and Tesaurg, 2007) where the idea is to consider
distance based kernels and to optimize the corresponding metric or in a multi-task set-

ting (Parameswaran and Weinberger, 2010) where the idea is to learn one metric for each
task under the constraint that all these metrics share a common basis.

In this thesis we demonstrate the interest of our algorithms in a wide range of applications.
In Chapter B|we propose to learn a metric for perceptual color di erences and we show the
interest of this metric in a segmentation task. In Chapter [4 we consider the problem of
learning a metric with auxiliary knowledge and we apply our framework to a semi-supervised
domain adaptation task. In Chapter B we propose a new framework for machine learning
and we demonstrate its good performances for classi cation problems. Lastly in Chaptef|6
the interest of the algorithm is demonstrated on two tasks, namely unsupervised domain
adaptation and seamless copy in images.

2.6 Conclusion

In this chapter we proposed a non exhaustive review of metric learning. We chose to consider
4 dierent questions and to study several approaches proposing di erent answers to these
problems. First we noticed that several kinds of metrics can be learned with metric learning
approaches. The most popular one is the Mahalanobis distance while the bilinear similarity
has also been widely studied. To include some non linearity several methods propose to learn
multiple metrics while others consider either learning a linear metric in a kernel induced space
or directly learning an intrinsically non linear metric. Second we presented many approaches
interested in learning a metric in a batch setting by using an optimization problem making use
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of pair, triplet or quadruplet based constraints. We also considered several methods addressing
the problem of learning a metric in an online fashion. Third we introduced two methods to
derive generalization guarantees in metric learning. These approaches are respectively based
on the uniform stability and the Rademacher complexity frameworks. We also recalled several
methods interested in the theoretical impact of a metric on the subsequent algorithm. Fourth
we considered di erent tasks that can be solved with the help of metric learning, namely
classi cation, clustering, image retrieval or domain adaptation.

This chapter concludes the rst part of this thesis that was dedicated to the presentation
of several notions which will be used throughout our contributions. In the next part we
address the problem of controlling the behaviour of a metric such that it either follow or stay
close to a reference metric. In our rst contribution we propose to learn a metric able to
approximate a reference distance from a limited number of examples.
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Metric Learning with a Reference
Metric
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Chapter 3

Metric Approximation Learning in
Perceptual Colour Learning

This chapter is based on the following publication

Micheael Perrot, Amaury Habrard, Damien Muselet, and Marc Sebban. Modeling perceptual color
di erences by local metric learning. In European Conference on Computer Vision (ECCV-15) pages
96{111. Springer International Publishing, 2014b

Abstract

In this chapter we are interested in the problem of estimating an unknown reference
metric from a set of pairs of examples. A solution to this problem could be to use metric
learning to automatically approximate the values of the reference metric. However most
of the algorithms proposed in metric learning are more interested in correctly estimating
the relative closeness of the examples rather than the actual distance. In this chapter we
propose a hew local metric learning algorithm to learn a Mahalanobis distance which cor-
rectly approximates a reference metric. Using the uniform stability framework we derive
generalization guarantees on the learned model showing that our method is theoretically
founded. Furthermore we evaluate our approach in a computer vision problem, namely
the computation of perceptual color di erences. Having perceptual di erences between
scene colors is key in many computer vision applications such as image segmentation or
visual salient region detection. Nevertheless, most of the times, we only have access to
the rendered image colors, without any means to go back to the true scene colors. There
are two main existing approaches to tackle this problem. On the one hand, one can com-
pute a complex perceptual distance between rendered image colors. However it makes
the distance dependent on the acquisition conditions and thus far from the scene color
di erences. On the other hand one can estimate the scene colors from the rendered image
colors and then evaluate perceptual distances. However it implies the knowledge of the
acquisition conditions which is an unreasonable assumption for most of the applications.
Our approach allows us to learn a metric which is invariant to the acquisition conditions

63
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and computed only from rendered image colors. Our experimental evaluation shows its
great ability (i) to generalize to new colors and devices and (ii) to deal with segmentation
tasks.

3.1 Introduction

In recent years, metric learning has mainly been interested in learning metrics able to estimate
the relative similarities between examples. This can be attributed to the fact that using
similarity and dissimilarity constraints is usually the way to go when learning a metric (See
Section[2.3). It implies that automatically learned distances are able to return a small value
when comparing similar examples and a large value when comparing dissimilar examples.
In this context the exact value is often out of interest. For example when using a nearest
neighbour algorithm what really matters is the ordering of the examples rather than the exact
distance. However there are some cases where learning a distance able to return a specic
value could be of interest. This is for example the case when one wants to approximate an
existing distance to simplify its computation or when one has access to pairs of examples
alongside their distances but no way to compute the distance between new examples. To sum
up here we are more interested in regressing the values of a metric than in learning the best
metric for a subsequent algorithm as it is often the case in metric learning (See Secti.5).

In this chapter we present a new algorithm to deal with the problem of learning a metric
able to approximate a reference distance. We propose to learn a Mahalanobis distance which
corresponds to a linear transformation of the input space (See Secti.2). However there
is no guarantee that the metric we want to approximate can e ectively be embedded in an
euclidean space. In other words a linear metric might not be su cient. Following previous
works in local metric learning (Section[2.2) we propose to learn several metrics across the
input space. More precisely we consider a hard partitioning of the space (Weinberger and
Saul, 2008) and learn one metric for each cluster. To deal with the problem of examples
which do not fall in the same cluster we also learn a so called global metric. Moreover we
show that our approach is theoretically founded. Indeed we build upon the framework of
uniform stability to show that the global and each local metric generalize well. Furthermore,
combining these generalization bounds we derive a global bound which holds for the whole
model.

We evaluate our method on the computer vision problem of learning perceptual color dif-
ferences, i.e. di erences between colors which are proportional to the color di erence perceived
by human observers. A metric with such a property is highly desirable for most of computer
vision applications and especially for visual saliency detection (Achanta and Sdsstrunk, 2010)
or image segmentation |(Bitsakos et al.; 201/0). The main drawbacks of existing methods for
computing perceptual color di erences is that they are either dependent on the acquisition
conditions or make unrealistic assumptions to be usable in a practical context. Using our
approach we propose to approximate a perceptual color di erence. Furthermore, we create a
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new dataset speci cally dedicated to the task. It allows us to go a step further by learning
a metric which is mostly invariant to acquisition conditions. This last point is empirically
demonstrated by showing the ability of the learned metric to generalize to new colors and to
new cameras, i.e. to new acquisition conditions. Furthermore we illustrate the good behaviour
of our distance in a standard segmentation task.

This chapter is organised as follows. First in Sectiofi 3]2 we present our local metric learn-
ing algorithm. Then in Section [3.3 we derive generalisation bounds which theoretically show
the good behaviour of our approach. Sectioh 3|4 is dedicated to the problem of learning color
di erences in computer vision and to our new dataset created to learn perceptual distances.
Finally in Section 3.5 we empirically evaluate our approach before concluding in Section 3.6.

3.2 Regressing the Values of a Reference Metric by Local Met-
ric Learning

In this section we present our metric learning framework whose objective is to approximate
a reference distance : X X ! RY. It aims at optimizing K local metrics plus one global
metric. Let T be the domain equipped with the distribution Dt over the spaceX X R
whereX 2 RY is a vector space ancR 2 R. is the set of values the reference metric can take.
We consider that we have access to a training set of pairs and their distance:

T= (xix( (xixd) o (3.)

For the sake of simplicity, when the examples are clear from the context we replace &i;x?)

by .
To learn a local metric we rst divide the space of examples, i.e.X, in K local parts using

over the possible pairs of examples, i.e. oveX X . A pair (x;x9 belongs to a regionC;,
1 j K ifboth x and x%belong to the same clustelj , otherwise it is assigned to regiorCo.
In other words, each regionC; corresponds to pairs related to clusterj, while Co contains
the remaining pairs whose points do not belong to the same cluster. It gives us a nite-size
training sample of n; pairs for each region:

T= (xisxX) . (3.2)

To approximate we independently learn a Mahalanobis distance in every Cj, | =
0;1;:::;K. We de ne a loss function| on any matrix M and any pair of examples as:

I M:(x;x%) = x x%TMx x% 2. (3.3)

Here we consider the non di erentiable absolute loss rather than a more classic loss based
on the "> norm. It makes the optimization problem harder to solve. However we will see in
Section[3.4 that in our application we are mainly interested in having a good metric for small
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input : A training set T of n pairs of examples; The number of cluster& 2
output : 1 global andK local Mahalanobis distances
begin
Run K -means to deduce, fromT, K + 1 training subsets T; = f(xi;xio; ) ginzjl,

j=0;1:::;K.

forj=0! K do

| Learn M1, by solving the convex optimization Problem (3.5) usingT;

end

end
Algorithm 1:  Local metric learning

values of the reference distance. In this case the absolute loss is more adapted as it penalizes
more small approximation errors which are more likely to happen when dealing with small
distances. We denote the empirical error over the seT; by:
1 X O
CTj('\/l)_ ni I M,(X,X,) . (34)
I (xix®) 2Tj

Finally we suggest to learn the matrix M 1, minimizing CTJ. via the following regularized
problem:

argminCy, (M) + jKMKZ . (3.5)
M 0

where ; > 0 is a regularization parameter. It is worth noting that our optimization problem
takes the form of a simple regularized least absolute deviation formulation. The interest of
using the least absolute deviation, rather than a regularized least square, comes from the fact
that it enables accurate estimates of small values.

The pseudo-code of our metric learning algorithm is presented in Algorithm[Jl. Note
that to solve the convex Problem (3.5), we use a classic interior points approach. Moreover,
parameter ; can be tuned by cross-validation.

3.2.1 Discussion about Local versus Global Metric

while the one learned for regionCy is rather a global metric considering pairs that do not fall

in the same region. Beyond the fact that such a setting will allow us to derive generalization
guarantees on our algorithm, it constitutes a straightforward solution to deal with examples
at test time that would not be concerned by the same local metric in the input space. In this
case, we make use of the matriM 1, associated to partition Co. Another possible solution
may consist in resorting to a Gaussian embedding of the local metrics. However, because
this solution would imply learning additional parameters, we suggest here to make use of this
simple and e cient (parameters-wise) strategy. In the segmentation experiments, we noticed
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that M 1, is used in only 20% of the cases. Finally, note that ifK =1, this boils down to
learning only one global metric over the whole training sample.

In the next section, we prove generalization guarantees for our approach.

3.3 Theoretical Analysis

We now provide a generalization bound justifying that the metrics learned with our approach
will generalize well. It is derived by considering (i) a multinomial distribution over the regions,
and (ii) per region generalization guarantees that are obtained with the uniform stability
framework presented in Sectiorj 1.3.

First of all we assume that the training sample T = [sz0 T; is drawn from an unknown
distribution Dt over a domainT such that for any (x;x%) D 7, max, With  max the
maximum distance value used in our context. We assume that given any two examplesand x°
we havekx x‘k2 1, i.e. the examples are normalize@ The K +1 regions Cy;:::;Ck de ne
a partition of the support of Dt where Pr(C;) is the probability that a pair of examples falls
inregion C;. In Cj, let Dr; be the marginal distribution and Dj = max xxo.) p 1 KX x%,
be the maximum distance between two examples.

de ne the true error associated toM 1 by:
X
LT(M T)= LT].(M TJ)PI’(CJ') (36)
j=0
where

LTj(M Tj)_ E I MTJ';(X;XO; ) (37)

- (x;x%) D 71
is the local true risk for region Cj. The empirical error over T of sizen is de ned as:
1 X
CrMr)= = nly(M1) (3.8)

n
j=0

where CTJ. (M 1,), Equation (, is the empirical risk over Tj, i.e. for region C;.

3.3.1 Generalization Bound per Region Ci

For any learned local matrix M 1;, we provide a bound on its associated local true risk
L+, (M 7,) in function of the empirical risk I'_‘TJ. (M 1,) over Tj. To this end we use the uniform

stability framework presented in Section[1.3. Note that this theoretical analysis is based on
the work of (Bousquet and Elissee|,2002b). Hence to show a generalization bound in each

Note that in the case of color di erences studied in Section we work in the RGB cube and any patch
belongs to [0; 255f. It is then easy to normalize each coordinate by 255 3 to meet the assumption.
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region C; we use the McDiarmid's inequality (Theorem) on the estimation error, i.e. the
di erence between the true risk and the empirical risk. Before that we need to show that our
algorithm to learn a metric in each region is uniformly stable which requires the loss to be
bounded andk-lipschitz (De nition

First of all, our loss function, Equation (B.3), is bounded andk-lipschitz as shown in the
two following lemmas.

Lemma 3.1 (Bounded loss function). Forany 0 j K, let M1, be the metric learned for
region C; with the training set T;, we have that for any examplgx;x%) D T

0 | My;(x;x%) Bj, (3.9)
with Bj = max pux; 2
J
Proof. The proof of this lemma can be found in Appendix[B.1. O

Lemma 3.2 (k-lipschitz continuity) . Let M1, and M % be two matrices for a regionC; and
(x;x%) be an example. Our los$ M;;(x;x% ) is k-lipschitz continuous with k = D?.

Proof. The proof of this lemma can be found in Appendix[B.2. O]

We can show that our approach is uniformly stable in the sense of De nition 1.B for each
region Cj .

Lemma 3.3 (Uniform stability per region Cj). Given two training samplesT; and TJ-i of n;
examples WhereTji is obtained by replacing example from T; by another example drawn in-
dependently fromD+ . Let M 1, and M T be the respective optimal solutions of Problen(3.5)

B . . . . . H 2D4
when learning with T; and T{". In region C; our problem is ; uniformly stable with ; = —-.

Proof. The proof of this lemma can be found in Appendix[B.3. O

Using Lemma[3.3 about the stability of our algorithm and McDiarmid's inequality (The-
orem ) we can derive our generalization bound. LeRy, = Ly, (M) CTJ. (M 1,) be the
estimation error for Problem @ when learning with training set Tj. To apply McDiarmid's
inequality we need to boundEr; p T Ry, and Ry, RTji . This is done in the two following
lemmas.

Lemma 3.4 (Bound on Ey;p ;; Ry; ). For any ;j uniformly stable learning method of
estimation error Ry, = L1, (M ;) CTj (M 1,) for a training set Tj, we have:

'E Ry (3.10)

Proof. The proof of this lemma can be found in Appendix[B.4. O
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Lemma 3.5 (Bound on Ry, Ryi). For any ; uniformly stable learning method of es-
J

timation error Ry, = Ly, (M) CTJ. (M 1,) for a training set T; and any B; bounded loss
function we have:

2 L+ B
Ry Ry —L—L (3.11)
] n;j
Proof. The proof of this lemma can be found in Appendix[B.5. O

We can now show that Problem [3.5) generalize well for each regio@;.

Lemma 3.6 (Generalization bound per regionC;). For any matrix M 1, learned with Prob-
lem (B.5) with the training set T; in region Cj, we have with probability1
S
2D 4aD# In(2)
Lt (M1) LM, 14+ 4B .
(M7) Lyy(MT) s J_ j o

(3.12)

Proof. Using the McDiarmid inequality (Theorem on Ry, = Ly(My)) CTJ. (M1,), the
estimation error, coupled with Lemma([3.5 for the ¢; values we have:

0 1
2 2
Pr R E Rt 2e
T; TjDTj Ti Xp% Pni 2 j+Bj 2
i=1 T,
22 '
2exp ——
@+ B))
Then, by setting:
I
2 2
=2exp 5
%(2 j + Bj)
we obtain:
S
_2 4B In 2
B J J 2n;
and:
Pr RTJ E RTJ < > 1

Then, with probability 1
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(Lemma[3.4.)
S
j In 2
) LT]-(M Tj) CTJ'(IVI Tj) < 7+(2 it BJ) - (313)
n; 2n;

Noting that Lemmas @ and also hold forR%_ = l'_\TJ. (M1,) Lt (M) and using similar
arguments than above we obtain with probability 1 that:

s
(M7) LyMe)< Ja@ ey 00 (3.14)
n; 2n;
From Equations (3.13) and (3.14) we deduce that with probability 1 we have:
. > In 2
Ly(M7) Cr(M1) <ﬁ+(2 j +Bj) 2,
Replacing ; by its value gives the lemma. O

This lemma shows that good generalization is achieved in each region with a convergence
rate in O p% . When the region is compact, the quantity D; is rather small making the
bound tighter. However we will see in the next section that for the generalization of Algo-
rithm []there is a trade-o between D;j and the number of regionsK .

3.3.2 Generalization Bound for Algorithm 1 []]

The generalization bound of our algorithm is based on the fact that the di erent marginals
Dt; can be interpreted as the parameters of a multinomial distribution. Then, e have that
(no;ny;:::;nk) is an i.i.d. multinomial random variable with parameters n = J-K:O nj and

tration inequality for multinomial distributions (Van Der Vaart and Wellner, 1996) which is
recalled in Proposition for the sake of completeness (this result has also been used in
other contexts (Xu and Mannor, 2012)).

considered, then for any set of metricsM 1 = fM 1;:::;M 1, g learned by Algorithm |1 from
a data sampleT of n triplets, we have with probability at leastl that
s

2(K +1)In2+2In 2

Lt(M7) Cy(M1)+ B -

2(KD4+1 AKD 4 +1 In( 4K*1).
L2AKDAHD) | AKDAD) o ()

3.15
n 2n ( )

where B = maxo j k Bj is a global bound on the loss functionD = max; ; k Dj is the
maximum euclidean distance in a region excepCo and = ming j x j is the minimum
regularization parameter among theK + 1 learning problems used in Algorithm[ 1.



3.3. Theoretical Analysis 71

Lr(M1) Cy(M7)

L, (M7,)Pr(C) Cr(My)

j=0
X n; X n;
= Ly, (M1,)Pr(Cy) Ly, (M TJ-)F*' Ly, (M TJ-)F Cr(MT)
]=0 J=0 ]=0
(Triangle inequality.)
X X n; X n;
L, (M1,)Pr(Cj) Ly, (M TJ)F + Ly, (M T,-)F Cr(M1)
]:O J=O ]:O
(Triangle inequality.)
X n; X n; X n;
LTj(M Tj) Pr(CJ) — + LTJ'(M Tj)? FCT,(M Tj)
j=0 j=0 j=0
(Lemma coupled with the de nition of B.)
X I i
B PI’(CJ) F] + FJ LTj(M Tj) CTJ'(IVI Tj)
j=0 j=0

(Proposition [A.1]with probability 1 5.)
s

2(K +1)In2+2In 2
n

r:Tj LTj(M Tj) CTJ'(IVI Tj)

i=0
. (Lemma Witf(]) probability 1 ms‘in each regi(in.)
| -
+ + 2 X o _2D4 4D# ' AK+H)
2(K +1)In2+2In N N @Pi . i + B, In( )A
n i=0 n i Nj j 2nj
(De nition of B, D, , Do =1 and noting that P ny P n.)
s
2(K +1)In2+2In 2
n
s
44 44 In( 2K +1)
+2(KD 1)+ 4(KD 1)+(K+1)B ( ).
n 2n
Finally, the union bound (Theorem gives the theorem with probability 1 . O

This result justi es that good generalization is achieved globally with a standard conver-

(i.e. D is signicantly smaller than 1), then the last part of the bound will not su er too
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much on the number of regions. On the other hand, there is also a trade-o between the
number/size of regions considered and the number of instances falling in each region. It is
important to have enough examples to learn good models.

3.4 Learning Perceptual Color Dierences

In computer vision, the evaluation of color dierences is required for many applications.
For example, in image segmentation, the basic idea is to merge two neighbour pixels in the
same region if the di erence between their colors is "small* and to split them into di erent
regions otherwise |(Bitsakos et a|., 2010). Likewise, for visual salient region detection, the color
di erence between one pixel and its neighbourhood is also the main used information (Achanta
and Susstrunk, 2010), as well as for edge and corner detection (Van de Weijer et al., 2006,
2005). Similarly, in order to evaluate the quality of color images, (Xue et al.,| 201B) have
shown that the pixel-wise mean square di erence between the original and distorted image
provides very good results. As a last example, the orientation of gradient which is the most
widely used feature for image description (SIFT (Lowe| 2004), HOG|(Dalal and Triggs, 2005))
is evaluated as the ratio between vertical and horizontal di erences.

Depending on the application requirement, the used color di erence may have di erent
properties. For material edge detection, it has to be robust to local photometric variations
such as highlights or shadows|(Van de Weijer et al.| 2005). For gradient-based color de-
scriptors, it has to be robust to acquisition condition variations (Burghouts and Geusebroek,
2009; Van De Sande et al., 2010) or discriminative| (Van de Weljer et al., 2006). For most
applications and especially for visual saliency detection|(Achanta and Sdsstrunk), 2010), im-
age segmentation |(Bitsakos et al., 2010) or image quality assessment (Xue et|al., 2013), the
color di erence has to be above all perceptual, i.e. proportional to the color di erence per-
ceived by human observers. As such a large amount of work has been done by color scientists
around perceptual color di erences (Wyszecki and Stiles, 2000; Huang et al., 2012; Sharma
et al., [2005), where the required inputs of the proposed distances are eithee ectance spec-
tra or the device-independent color component€IE XYZ (Wyszecki and Stiles, 2000). These
features are obtained with particular devices such as spectrophotometer or photoelectric col-
orimeter (Wyszecki and Stiles, 2000). It is known that neither the euclidean distance between
re ectance spectra nor the euclidean distance between XYZ vectors are perceptual, i.e. these
distances can be higher for two colors that look similar than for two colors that look di erent.
Consequently, some color spaces such as CIELAB or CIELUV have been designed to be more
perceptually uniform. In those spaces, speci ¢ color di erence equations have been proposed
to further improve perceptual uniformity over the simple euclidean distance (Huang et all,
2012). The Egpo (Sharma et al!,2005) distance is one nice example of such a distance. It
corresponds to the di erence perceived by a human looking at the two considered colors under
standard viewing conditions recommended by the CIE (illuminant D65, illuminance of 1000
Ix, etc.).
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However, it is worth noting that in most of the computer vision applications, the avail-
able information does not take the form of a re ectance spectra or some device-independent
components, as assumed above. Indeed, the classical acquisition devices are cameras that use
iterative complex transforms from the irradiance (amount of light) collected by each CCD sen-
sor cell to the pixel intensity of the output image (Kim et al.,(2012b). These device-dependent
transforms are color ltering, white-balancing, gamma correction, demosaicing, compression,
etc. (Xiong et al., 2012hb) which are designed to provide pleasant images and not to accurately
measure colors. Consequently, the available RGB components in color images do not allow us
to get back to the original spectra or XYZ components. To overcome this limitation, two main
strategies have been suggested in the literature: either by applying a default transformation
from RGB components toL a b (CIELAB space) or L u v (CIELUV space) assuming a
given con guration, or by learning a coordinate transform to actual L a b components under
particular conditions.

Using default transformations A classic strategy consists in using a default transforma-
tion from the available RGB components to XYZ andthentoL a b orL u v (Achanta and
Susstrunk| [2010;| Arbelaez et al., 2011} Bitsakos et al), 2010; Khan et al, 20[L3; Mojsilovic,
2005). This default transformation assumes an average gamma correction of2(Stokes et al|,
1996), color primaries close to ITU-R BT.709 (Union,[2000) and D65 illuminant (Daylight).
Finally, from the estimated L a b orL u v (denotedL\ ab andLl) u v respectively) of two
pixels, one can make use of the euclidean distance. In the caselofa b, one can usd) a b

to estimate more complex and accurate distances such asEgg via its estimate \ Eoo (Sharma

et al., )2005), that will be used in our experimental study as a baseline. This default approach
provides a perceptual distance between the colors in the rendered image (called image-wise
color distance) and not between the colors as they appear to a human observer looking at
the real scene (called scene-wise color distance). For some applications such as image quality
assessment, it is required to use the image-wise color distances since only the rendered image
colors need to be compared, whatever the scene colors. But for a lot of other applications
such as image segmentation or saliency detection, we claim that a scene-wise perceptual color
distance should be used. Indeed, in these cases, the aim is to be able to evaluate distances
as they would have been perceived by a human observing the scene and not after the camera
transformations. Note that some solutions exist (Kim et al.,|2012a) to get back to scene colors
from RGB camera outputs, thus avoiding using a default transformation, but they require
calibrated acquisition conditions (known illumination, known sensor sensitivities, RAW data
available, ...).

Learning coordinate transforms to L a b For applications requiring the distances be-
tween the colors in the scene, the acquisition conditions are calibrated rst and then the
images are acquired under these particular conditions (Larran et al., 2008; Leon et al/, 2006).
Therefore, the camera position and the light color, intensity and positions are xed and a set
of images of di erent color patches are acquired. Meanwhile, under the same exact condi-



74 Chapter 3. Metric Approximation Learning in Perceptual Colour Learning

tions, a colorimeter measures the actual. a b components (in the scene) for each of these
patches.|Leon et al. (2005) learn then the best transform from camera RGB to actual. a b
components with a neural network. |Larran et al.|(2008) rst apply the default transform
presented before from camera RGB td\ a b and then learn a polynomial regression (until
quadratic term) from the 1\ a b tothetrue L a b. However, it is worth mentioning that in
both cases the learned transforms are accurate only under these acquisition conditions. Thus,
these approaches can not be applied on most of the computer vision applications where such
an information is unavailable.

Using the metric learning method presented in Sectiori 3]2 we propose to estimate scene-
wise color distances from non calibrated rendered image colors. Furthermore, we go a step
further towards an invariant color distance. This invariance property means that, considering
one image representing two color patches, the distance is predicting how much di erence
would have perceived a human observer looking at the two real patches under standard xed
viewing conditions, such as the ones recommended by the CIE (Commission Internationale de
I'Eclairage) in the context of color di erence assessment|(Sharma et al, 2005). In other words,
whatever the acquisition device or the illuminant, an invariant scene-wise distance should
return stable values. To the best of our knowledge, no previous work has both underlined and
answered the problem of the approximations that are made during the estimation of perceptual
color di erences in the very frequent case of non calibrated acquisitions. It implies that no
suitable dataset exists for the problem at hand. Hence we propose a new dataset speci cally
designed to learn a perceptual distance which is invariant across acquisition conditions.

3.4.1 Creating the Dataset

Given two color patches, we want to design a perceptual distance not disturbed by the acqui-
sition conditions. So we propose to use pairs of patches for which we can measure the true
perceptual distance under standard viewing conditions and to image them under di erent
other conditions.

The choice of the patches is key in this work since all the distances will be learned from
these pairs. Consequently, the colors of the patches have to be well distributed in the RGB
cube in order to be able to well approximate the color distance between two new pairs that
have not been seen in the training set. Moreover, as we would like to learn a local perceptual
distance, we need pairs of patches whose colors are close from each other. According to Sharma
et al.[| (2005), Ego seems to be a good candidate for that because it is designed to compare
similar colors. Finally, since hue, chroma and luminance di erences impact the perceptual
color di erence (Sharma et al!,|2005), the patches have to be chosen so that all these three
variations are represented among the pairs.

Given these three requirements, we propose to use two di erent well-known sets of patches,
namely the Farnsworth-Munsell 100 hue test and the Munsell atlas (see Figurg 31). The
Farnsworth-Munsell 100 hue test is one of the most famous color vision tests which consists
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Figure 3.1: Some images from our dataset showing (rst row) the 84 Farnsworth-Munsell
patches and (second row) the 238 Munsell patches under di erent conditions.

in ordering 84 patches in the correct order and any misplacement can point to some sort of
color vision de ciency. Since these 84 patches are well distributed on the hue wheel, their
colors will cover a large area of the RGB cube when imaging them under an important range of
acquisition conditions. Furthermore, consecutive patches are known to have very small color
di erences and then, learning perceptual distances from such pairs is a good purpose. This
set is constituting the main part of our dataset. However, the colors of these patches rst,
are not highly saturated and second, they mostly exhibit hue variations and relatively small
luminance and chroma di erences. In order to cope with these weaknesses, we add to this
dataset the 238 patches constituting the Munsell Student Color Set|(Munsell| 1912). These
patches are characterized by more saturated colors and the pairs of similar patches mostly
exhibit luminance and chroma variations (since only the 5 principal and 5 intermediate hues
are provided in this student set).

To build the dataset, we rst use a spectroradiometer (Minolta CS 1000) in order to
measure the spectra of each color patch of the Farnsworth set, the spectra of the Munsell
atlas patches being available onIinﬂ Five measurements have been done in our light cabinet
and the nal spectra are the average of each measurement. From these spectra, we evaluate
the L a b coordinates of each patch under D65 illuminant. Then, we evaluate the distance

Eoo between all the pairs of color patches|(Sharma et al., 2005). Since we need patch
pairs whose colors are similar, following the CIE recommendations (CIE Standard DS 014-
6/E:2012), we select among theC3, + C3,4 available pairs only the 223 that are characterized
by a Euclidean distance in the CIELAB space (denoted Egp) less than 5.

Note that the available Egg have been evaluated in the standard viewing conditions
recommended by the CIE for color di erence assessment and we would like to obtain these
reference distances whatever the acquisition conditions. Consequently, we propose to use 4
di erent cameras, namely Kodak DCS Pro 14n, Konica Minolta Dimage Z3, Nikon Coolpix
S6150 and Sony DCR-SR32 and a large variety of lights, viewpoints and backgrounds (since
background also perturbs the colors of the patches). For each camera, we acquire 50 images

Zhttps://www.uef. /spectral/spectral-database
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of each Farnsworth pair and 15 of each Munsell pair (overall, 41800 imaged pairs). Finally,
after all these measurements and acquisitions, we have for each image of a pair, two image
rendered RGB vectors and one reference distance E .

In the next section, using this dataset, we evaluate the approach presented in Sectign 3.2.

3.5 Experiments

Evaluating the interest of a metric can be done in two ways:

assessing the quality of the metric itself,

measuring its impact once plugged in an application.

In the following, we evaluate the generalization ability of the learned metric on our dataset
and we measure its contribution in a color segmentation application but rst we give a brief
overview of how we learn a metric on our dataset.

3.5.1 Learning the Metric

From our dataset of 41; 800 pairs and their reference distance Egg we can draw training sets
T of varying size depending on our needs. Giveil we learn a set ofK + 1 local distances

correspond to 3 3 matrices. Furthermore, in all our experiments we consider a large amount
of the training pairs. It makes our algorithm rather insensible to the choice of . Therefore,
we chose to x =1.

The learned metric for a given training setT is denoted by 1. For two examplesx; x°it
is computed as follows:

(x x9™™ (x x9 if x and x°fall in the same clusterC;, 1 j K,
x x9T™Mr,(x x9 otherwise.

T(x;x9 =
(3.16)

3.5.2 Evaluation on our Dataset

To empirically evaluate the generalization ability of the metric, we conduct two experiments.
On the one hand we assess the behaviour of our approach when it is applied to new unseen
colors. On the other hand we consider the problem of patches coming from a new unseen
camera, i.e. of new acquisition conditions. All the results presented are averaged over 5 runs.
To estimate the performance of our metric we use two criteria that we want to make as
small as possible. These two criteria are computed over a test s&t®= f(x;;x% Eoo)gi”:O1
independent from the training set T. The rst criterion is the mean absolute di erence

between the learned metric 1 and the reference metric Eqo:
1 X _ .
mean = — i T Eooj - (3.17)
(x;x% Eqg)2TO
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(a) Generalization to new colors.

(b) Generalization to new cameras.

Figure 3.2: Generalization of the learned metrics to new colorg; 3.2(b) Generalization
of the learned metrics to new cameras. For 3.2(a) and 3.2(b), we plotted the Mean and
STRESS values as a function of the number of clusters. The horizontal dashed line represents
the STRESS baseline off Eqy. For the sake of readability we have not plotted the mean
baseline of\ Eqg at 1:70.

As a second criterion, we use the STREﬁmeasure (Melgosa et al.;, 2008) which is widely
used by the computer vision community as a way to compare color di erences. It is de ned
as follows:

v

P

P 2
E
(x;x% Ego)2TO 00

0 Eoo F 71)2
g Eanp27ol S " it F=p .
(xix® Eq)2T0F® 7 (xx% Ego)2T0 E00 T

(3.18)

u
STRESS = 100tj

Roughly speaking the STRESS evaluates quadratic di erences between the learned metricy

and the reference . We compare our approach to the state of the art where 1 is replaced
by \ Ego (Sharma et al.,|2005) in both criteria, i.e. transforming from rendered image RGB
to I\ a b and computing the \ Eqo distance.

3STandardized REsidual Sum of Squares.
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Generalization to Unseen Colors

In this experiment, we perform a 6-fold cross validation procedure over the set opatches
Thus we obtain, on average, 27927 training pairs and 13873 testing pairs. The results are
shown on Figure according to an increasing number of clusters (from 1 to 70). We can
see that using our learned metric T instead of the state of the art estimate\ Eqg (Sharma
et al., |2005) enables signi cant improvements according to both criteria (the baselines are:Z0
for the mean and 4805 for the STRESS). Note that from 50 clusters onward, the quality of the
learned metric declines slightly while remaining much better than\ Eqo. Figure shows
that K = 20 seems to be a good compromise between a high algorithmic complexity (the
higher K, the larger the number of learned metrics) and good performances of the models.
When K = 20, using a Student'st test over the mean absolute di erences and a Fisher test
over the STRESS, our method is signi cantly better than the state of the art with a p-value

< 1 19 Figure also emphasizes the interest of learning several local metrics. Indeed,
optimizing 20 local metrics rather than only one is signi cantly better with a p-value smaller
than 0:001 for both criteria.

Generalization to Unseen Cameras

In this experiment, our model is learned according to a 4-fold cross validation procedure such
that each fold corresponds to the pairs coming from a given camera. Thus we learn the metric
on a set of 31350 pairs and test it on a set of 10450 pairs. This task is more complicated than
generalizing to unseen colors. Indeed when generalizing to unseen colours even if the metric
has never seen a given colour before it has been learned on similar examples. Contrarily the
acquisition conditions highly depend on the kind of camera used and can vastly di er from
one camera to another|(llie and Welch; 2005). Given that we use a limited number of cameras
there is no guarantee that similar acquisition conditions have been seen before. The results
are presented in Figur. We can note that our approach always outperforms the state
of the art for the mean criterion (of baseline 170). Regarding the STRESS, we are on average
better when using between 5 to 60 clusters. Beyond 65 clusters, the performances decrease
signi cantly. This behaviour likely describes an over tting phenomenon due to the fact that

a lot of local metrics have been learned that are more and more specialized for 3 out of 4 cam-
eras, and unable to generalize well to the fourth one. For this series of experiment& = 20

is still a good value to deal with the trade-o between complexity and e ciency. Using a
Student's t test over the mean absolute di erences and a Fisher test over the STRESS, our
method is signi cantly better with p-values respectively < 1 10 and < 0:006. The interest

of learning several local metrics rather than only one is still con rmed. Applying statistical
comparison tests betweerK =20 and K =1 leads to small p-values< 0:001.

Thus for both series of experiments K = 20 appears to be a good number of clusters and
allows signi cant improvements. Therefore, we suggest to take this value in the next section to
tackle a segmentation problem. Before that, let us nish this section by geometrically showing
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Figure 3.3: Interest of learning local metrics. We took 27 points uniformly distributed on the
RGB cube. Around each point we plotted an ellipsoid where the surface corresponds to the
RGB colors lying at a learned distance of 1. In this case we used the metric learned by our
algorithm using K = 20.

the interest of learning local metrics. Figure[3.3 shows ellipsoids uniformly distributed in the
RGB space whose surface corresponds to the RGB colors lying at the corresponding learned
local distance of 1 from the center of the ellipsoid. It is worth noting that the variability of
the shapes and orientations of the ellipsoids is high, meaning that each local metric could
capture local speci cities of the color space. The experimental results presented in the next
section will prove this claim.

3.5.3 Application to Image Segmentation

In this experiment, we evaluate the performance of our approach in a color based image seg-
mentation application. We propose to use the approach proposed by Bitsakos et al| (2010)
that suggests a nice extension of the classic mean-shift algorithm (Fukunaga and Hostetler,
1975) by accounting for color information. Furthermore, the authors show that the more per-
ceptual the used distance, the better the results. Especially, by using the default transform
from the available camera RGB to thel\ u v space, they signi cantly improve the segmenta-
tion results over the simple RGB coordinates. Our aim is not to propose a new segmentation
algorithm but to use the exact algorithm proposed by|Bitsakos et al, (2010) working in the
RGB space and to replace in their code (publicly available) the distance between two colors
with our learned color distance 1. This way, we can compare the perceptual property of our
distance with this of the recommended default approach (euclidean distance in thé\ u v
space).

Therefore, we take exactly the same protocol as Bitsakos et al| (2010). We use the same
200 images taken from the well-known Berkeley dataset and the associated ground-truth that
is constituted by 1087 segmented images provided by humans. In order to assess the quality
of the segmentation, as recommended by Bitsakos et al. (2010), we use the average Boundary
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(a) Boundary Displacement Error. (b) Probabilistic Rand Index.

Figure 3.4: Boundary Displacement Error (lower is better) versus the average segment
size.|3.4(b) Probabilistic Rand Index (higher is better) versus the average segment size.

Displacement Error (BDE) and the Probabilistic Rand Index (PRI). Note that the better the
quality of the segmentation, the lower the BDE and the higher the PRI. The segmentation
algorithm proposed in |Bitsakos et al| (2010) has one main parameter which is the color
distance threshold under which two neighbour pixels (or sets of pixels) have to be merged in
the same segment. As in Bitsakos et al.|(2010), we plot the evolution of the quality criteria
versus the average segment size (see Figufes 3.4(a) and 3.4(b)). For comparison, we have run
the code from|Bitsakos et al. (2010) for the parameters providing the best results in their
paper, namely "CMS Luv/N.", corresponding to their color mean-shift (CMS) applied in the

L\ u v color space. The results of CMS applied in the RGB color space with the classical
euclidean distance are plotted as "CMS RGB/N." and those of CMS applied with our color
distance in the RGB color space are plotted as "CMS Local Metric/N.".

For both criteria, we can see that our learned color distance signi cantly improves the
quality of the results over the two other approaches, i.e. it provides a segmentation that is
closer to the one computed by humans. This is truer when the segment size is increasing
(right part of the plots). It is important to understand that increasing the average segment
size (moving to the right on the plots) is like merging neighbour segments in the images.
So by analysing the curves, we can see that for the classic approaches ("CMS Luv/N." and
"CMS RGB/N."), it seems that the segments that are merged together when moving to the
right on the plot are not the ones that would be merged by humans. That is why both criteria
are worst (BDE increases and PRI decreases) on the right for these methods. On the other
hand, it seems that our distance is more accurate when merging neighbour segments since
for high average segment sizes, our results are much better. This point can be observed in
Figure [3.5, where the segment size is high, i.e. when the number of clusters is low (50), the
segmentation provided by RGB or\ u v are far from the ground truth, unlike our approach
which provides nice results. To get the same perceptual result, both methods require about
500 clusters.
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Figure 3.5: Segmentation illustration. When the number of clusters is low (around 50), the
segmentation provided by RGB or\ u v are far from the ground truth, unlike our approach
which provides nice results. To get the same perceptual result, both methods require about
500 clusters.

We further illustrate the performance of our method in Figure [3.6. As explained before,
the number of segments in the resulting images is not a parameter of the algorithm, as a
consequence it is not easy to obtain images with the same number of segments for the three
algorithms (RGB, L u v and Metric learning). Thus, given an image, by modifying the
color distance threshold, we tried to obtain the same segment numbers as the corresponding
ground truth for the three algorithms. However, the color mean-shift algorithm provides some
very small segments, specially for the RGB and. u v color spaces. Consequently, for each
test, in Figure 3.6, we have mentioned between brackets, rst, the number of segments, and
second, the number of segments whose size is more than 150 pixels. For a fair comparison, we
use this last number as reference for each image, i.e. this number is almost constant and close
to the ground truth for each row. It is worth mentioning that the ground truth segmentation
has always very few segments. Thus, starting from a large number of small segments, the
algorithm is grouping them by considering their color di erences. Consequently, the used
color distance is crucial when we want to obtain small number of segments as provided by the
ground truth. We can see in Figure[3.6 that when working in the RGB orL u v color spaces,
some segments that are perceptually di erent are merged while some other similar segments
are not. Most of the time, the color mean-shift is working well when using our distance.

3.6 Conclusion

In this chapter, we presented a new local metric learning approach able to approximate a
reference distance. Based on a hard clustering of the space, the main idea is to minimize
the absolute di erence between the learned and the reference distances. Building upon the
uniform stability framework we proved that this method is theoretically founded. It is guar-
anteed to generalize well if a su cient number of examples is used. We have applied our
framework to the problem of perceptual color di erences where the idea is to have a metric
which is invariant to acquisition conditions but also which is proportional to the human per-
ception of color di erences. To this end we proposed a new dataset speci cally tailored for
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this problem. We have shown that with a su cient number of clusters our approach allows us
to learn a metric which is substantially better than the state of the art distances. Similarly
we have demonstrated the interest of the learned metric in a segmentation application.

Even though Figure[3.3 shows ellipsoids that tend to be locally regular leading to a certain
spatial continuity, our model does not explicitly deal with this issue. Hence one of the main
drawback of the proposed approach is that the learned metric might not be smooth across
the space. To deal with this problem we could consider a soft clustering of the space (Semerci
and Alpayd n| 2013) where each example is associated to several local metrics depending on
its degree of membership to each cluster. It would reduce the risk of having discontinuities in
the values of the metric across the space, notably near the borders of the clusters. Another
approach, explored for example in Zantedeschi et al.| (2016), would consist in learning a
smooth combination of the local metrics as an independent post processing step.

In our framework we only considered the Frobenius norm as a regularization term. One
interesting perspective would be to consider other regularization terms such as the mixed norm
or the nuclear norm. Indeed learning low rank matrices could reduce the computational cost of
the metrics, especially in case of a very high dimensional input spaces. One of the drawbacks
is that, as we have seen in Sectiof 1.3, algorithms which make use of sparse regularization
terms are not stable. It implies that our theoretical analysis would not hold and that other
frameworks, such as the Rademacher complexity one, would have to be considered.

In this chapter we have studied the problem of learning an approximation of a reference
metric. We assumed to have only access to this reference through its values over a limited
number of examples. In the next chapter we consider to have fully access to the reference
metric, i.e. we have the parameter matrix of a Mahalanobis distance or a Bilinear Similarity,
and we want to use this reference to help learning another metric. More precisely we consider
a transfer learning problem where the reference metric is either given or learned on a source
domain, i.e. a source metric, and we want to learn a metric on a di erent but related domain,
i.e. a target metric.
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Figure 3.6: lllustration of segmentation provided by the color mean-shift algorithm applied in
the RGB components (third column), on L u v components (fourth column) and by using
our learned distance directly in the RGB components ( fth column). First column represents
the original image and the second one the ground truth.
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Chapter 4

Metric Hypothesis Transfer
Learning

This chapter is based on the following publication

Michael Perrot and Amaury Habrard. A theoretical analysis of metric hypothesis transfer learning. In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15) pages 1708{1717,
2015d

Abstract

We consider the problem of transferring some a priori knowledge in the context of
supervised metric learning approaches. More precisely we consider biased optimization
problems which make use of a source metric coming from a di erent but related problem
to help learning in the presence of few data. While this setting has been shown to be
empirically successful, no theoretical evidence exists to justify it. In this chapter we pro-
pose to close this gap by providing a theoretical analysis of this framework based on three
di erent approaches. First we propose an on-average-replace-two-stability model allowing
us to prove on average fast generalization rates when an auxiliary source metric is used to
bias the regularization term. Second we consider a notion of algorithmic stability adapted
to the regularized metric learning setting and we prove probabilistic generalization bounds
which show the interest of considering biased weighted regularized formulations. We also
provide a solution to estimate the associated weight that we evaluate in two experimen-
tal tasks (i) standard metric learning and (ii) transfer learning with few labelled target
data. Third we derive a generalization bound related to the Rademacher complexity of
the metric class taking into account the source metric considered by the algorithm. This
vanishing bound underlines the interest of using a good source metric by showing that,
when the source metric perfectly solves the problem, learning is no longer a necessity. To
justify the interest of the framework we also provide several examples of loss functions
and regularization terms which fall under one or more of our theoretical analyses.
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4.1 Introduction

Recently, there is a growing interest for methods able to take into account some background
knowledge when learning a metric (Parameswaran and Weinberger, 2010; Cao et al., 2013a;
Bohre et al.; 2014). This is in particular the case for supervised regularized metric learning
approaches where the regularization term is biased with respect to an auxiliary metric given
under the form of a matrix. The main objective here is to make use of this a priori knowledge
in a setting where only few labelled data are available to help learning. For example, in
the context of learning a PSD matrix M plugged into a Mahalanobis-like distance, letl be
the identity matrix used as an auxiliary knowledge, kM 1k is a biased regularization often
considered. This regularization can be interpreted as follows: learmM while trying to stay
close to the Euclidean distance, or from another standpoint try to learn a matrix M which
performs better than |. Other standard matrices can be used such as ! the inverse of
the variance-covariance matrix (Mahalanobis, 1936). If we take theD matrix, we retrieve the
classic unbiased regularization setting.

Another useful setting comes when is replaced by any auxiliary matrix M s learned from
another task. It then corresponds to a transfer learning approach (See Sectign 1.5) where
the biased regularization can be interpreted as transferring the knowledge brought b g to
help learning M . This setting is appropriate when the distributions over training and testing
domains are di erent but related. Domain adaptation strategies (Ben-David et al., [2010)
propose to make use of the relationship between the training examples, called the source
domain, and the testing instances, called the target domain to infer a model. However, it is
sometimes not possible to have access to all the training examples, for example when some
new domains are acquired incrementally. In this context, transferring the information directly
from the model learned from the source domain without any other access to the source domain
is of crucial importance. We call this setting Metric Hypothesis Transfer Learning in reference
to the Hypothesis Transfer Learning model introduced in (Kuzborskij and Orabona,/2013) in
the context of classic supervised learning.

If metric hypothesis transfer learning has been shown to work well empirically, it has, to the
best of our knowledge, never been investigated from a theoretical standpoint. In this chapter,
we propose to bridge this gap by providing a theoretical analysis showing that supervised
regularized metric learning approaches using a biased regularization are well-founded. This
analysis is based on three di erent theoretical frameworks which allows us to underline the
di erent properties of biased regularization based algorithms and to derive three measures of
goodness of the source metric. The latter quantities are important in the sense that they give
a founded way of estimating the interest of a source metric for a particular problem.

On average stability: The rst theoretical framework that we consider is derived from a
notion of stability called on-average-replace-one-stability (Ben-David and Urner, 2013).
As in other stability frameworks the idea is to verify that small changes in the training
does not signi cantly change the output of the algorithm. The main di erence is that
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this property is considered on average over all the size training sets. This approach
allows us to derive a bound showing that on average the metric learned with a biased
regularization will be better than the source metric with a convergence rate inO 1+ .
It also implies a rst theoretical notion of goodness of the source metric.

Uniform stability for metric learning: The second theoretical framework that we con-
sider has been proposed by Jin et &l.| (2009). It corresponds to the uniform stability
framework presented in Sectiorj 1.3 but adapted to the case of metric learning as shown
in Section[2.4. It allows us to derive a probabilistic generalization bound. The main
interest of this bound is that, in some cases, it involves an empirical quantity related to
the source metric. It implies a natural notion of goodness of the source metric which can
be optimized. We empirically con rm the interest of this measure in two experiments.

Rademacher complexity for metric learning: The third theoretical framework that we
consider is a slight adaptation of the one proposed by Cao et al[ (2016) (See Section[2.4).
The latter is in itself an adaptation to metric learning of the Rademacher complexity
framework presented in Section 1.3. It allows us to derive a vanishing bound with
respect to the source metric. It means that if the source metric is a perfect t for the
problem at hand the bound shows that learning is no longer necessary. It also gives a
theoretical measure of goodness of the source metric.

This chapter is organized as follows. First we present the metric hypothesis transfer
learning setting considered here in Sectiof 4]2. Then we present our theoretical analysis
based on three frameworks in Sectiong 4.3, 4.4 ald 4.5. We summarize the di erent bounds
in Section[4.6. In Sectior{ 4.} we propose several examples of loss functions and regularization
terms that can be used in our framework. Next, in Sectiorj 4.B, we empirically demonstrate the
interest of using a good source metric as de ned in Sectioh 4.4. We conclude in Sectipn 4.9.

4.2 Metric Hypothesis Transfer Learning with Biased Regu-
larization

In this section we present the framework of metric hypothesis transfer learning considered in
this chapter.

First of all, let T be a domain equipped with a probability distribution Dt de ned over
X Y ,whereX RYandy is the label set. Our goal is to learn a metric (as considered
in Section ) parametrized by ad d matrix M. Let M be a metric class. Using a slight
abuse of notations we denote the fact that a metric is inM by M 2 M . Here, M can
simply be the set of real matrices of dimensiond d or can be more restrictive and only
consider symmetric positive semi-de nite matrices. To learn we consider that we have access
to T = fzi =(Xi;yi)g., a setofn examples drawn i.i.d. fromD+t. We also assume that we
have access to some additional information under the form of an auxiliaryd d matrix M s.
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We call this additional information source metric or source hypothesis to denote the fact that,
in a transfer learning setting, this metric can come from a di erent but related source domain
S.

We consider all the algorithms learningM by solving the following optimization problem:

argminCr(M)+ kM M gk? (4.1)
M 2M

wherekM M sk? is a biased regularization term which ensures that there is a transfer of
informations between M and M s. In Section [4.7 we consider several regularization terms
allowing the transfer of di erent properties of the metric.  is a trade-o0 parameter between
risk and regularization. The empirical risk of a metric M over a training set T is:

X X
Cr(M) = - L

"D | M;z2° (4.2)

22T 2027

26 20
wherel (M ; z; 29 is a pairwise loss quantifying the error of the metricM when presented with
the examplesz and z° In Section[4.7 we present several loss functions which can be used in
metric hypothesis transfer learning. The true risk of M over the distribution D is:

Lr(M)= E | M;z;2°. (4.3)
2:29D 1

In this chapter we consider a theoretical analysis of this framework of metric hypothesis
transfer learning using three di erent theoretical approaches. As mentioned before several loss
functions and regularization terms can be considered. However depending on the theoretical
framework considered some assumptions have to be made on these and may di er from one
approach to another. Similarly here we only considered a general framework able to handle any
metric parametrized by a matrix M but it might sometimes be necessary to further restrain
the range of metrics considered. For the sake of readability we postpone the de nition of
these di erent constraints to the beginning of each section.

4.3 On Average Stability Analysis

To derive our rst bound for metric hypothesis transfer learning we propose a new notion of
stability which is an adaptation to metric learning of the notion of on-average-replace-one-
stability (Shalev-Shwartz and Ben-David, 2014a) that we recall in De nition or the sake
of completeness.

Assumptions  In this section we make the following assumptions. We only consider met-
rics as Mahalanobis distances parametrized by a matriXM positive semi de nite. The loss

function has to be positive, convex inM (De nition A.6)Jand k-lipschitz (De nition As

a last constraint we consider that the regularization term is the Frobenius norm (Sectior] 1.4).
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We now turn our attention to the derivation of the bound. First of all we introduce our
new notion of on-average-replace-two-stability. Indeed De nition[A.5 allows one to perform
an on average analysis over the expected loss, however its formulation is not tailored to
metric learning approaches that work with pairs of examples. Thus we propose an adaptation
allowing us to derive sharp bounds for metric learning.

De nition 4.1  (On-average-replace-two-stability). Let n be the number of examples consid-
ered during the learning step. Let : N ! R be monotonically decreasing with respect to

on-average-replace-two-stable with rate(n) if for any distribution D

TDET I M zisz [(MT;2i;2)) (n) (4.4)
i U(1;n)
2:2°D ¢
where M 1, respectivelyM j , is the optimal solution when learning with the training setT,
respectively T . T" is obtained by replacingz;, the i"" example ofT, by z to get a training

setT' and then by replacingz;, the j ™" example of T', by 2°

This property ensures that, given two examples, learning with or without them will not
imply a big change in the hypothesis prediction. Note that the property is required to be
true on average over all the possiblg, training sets of sizp. Furthermore note that when
this de nition holds, itimplies Eyp ;, Lt (M) Cr(M7) (n). Using this de nition we
derive a bound on the expected true risk of our algorithm. Before that we show, in the next
theorem, that our algorithm is on-average-replace-two-stable.

Lemma 4.1 (On-average-replace-two-stability). Given n the number of training examples,
drawn i.i.d. from D+, considered and ak-lipschitz loss function, any algorithm solving Prob-
lem (4.1)) is on-average-replace-two-stable with(n) = Snﬁ

Proof. The proof of this lemma can be found in Appendix[C.1. O
We can now bound the expected true risk of our algorithm.

Theorem 4.1 (On average bound) For any positive, convex, k-lipschitz loss and forM 1
optimal solution of Problem @) when learning with the training setT, we have:

E [Lr(M7)] L7(M )+87k2 (4.5)
o, T T(Ms = :

where the expected value is taken over sizetraining sets.

Proof. Let T be any training set of sizen, we have:
h i h [
[Lr(MT)I+ E Cr(MT) E Cr(MT)
"h [ h [
CrM7) + ELr(Mr) Cr(MT)

TDET [LT(MT)] .

E
D
E
TD 7
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h i ,
(Ero, Lr(M7) Cr(Mr) % (Lemmal4.d))
TDET Cr(M) "‘T
CrM1) CrM7)+ kMt Mski Cr(Ms)+ kMs MskZ)
TDE Cr(Ms) +T-

:
h i
Noting that Etp . C+(Ms) = Lt (Ms) gives the theorem. O

This bound shows that with a su cient but rather reasonable number of examples, i.e.
with a convergence rate inO(1=n), we will on average obtain a metric which is at least as
good as the source hypothesis. It underlines the interest of having a good source metric.
However this notion of goodness depends on the true risk of the source metric on the target
domain:

Gi(Ms) = Lt (Ms).

This quantity can not be computed as it depends of the unknown distribution Dt and thus
it cannot be used to explicitly choose a good metric. Furthermore the stability condition
considered here is in expectation over all the possible training sets. It implies that it will
probably not be possible to obtain an empirical measure of goodness in this particular setting.
In the next section we propose to address this problem and we consider the di erent but
related framework of uniform stability to derive a generalization bound where the goodness
of the source metric is empirical and thus can be estimated.

4.4  Uniform Stability Analysis

The second framework that we propose to use to analyse metric hypothesis transfer learning
is the uniform stability framework adapted to metric learning presented by |Jin et al.| (2009)
(Section[2.4). In this section we will show that this framework allows us to derive a probabilis-
tic generalization bound where, depending on the loss function, the goodness of the source
metric can be empirically estimated.

Assumptions  We make the following assumptions. First we only consider metrics as Ma-
halanobis distances parametrized by a metricM positive semi de nite. Second the loss
function has to be convex inM (De nition positive, k-lipschitz (De nition A.I)|and
(;m )-admissible (De nition A.2)} Third the regularization term is the Frobenius norm (Sec-

tion [L.4).

We can now present our generalization bound. We divide this section as follows. First
we present the bound for general losses. Then we consider a particular example where we
show that the goodness of the source metric can be empirically estimated and we deduce
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an approach to weight the importance of the source hypothesis in order to obtain a tighter
generalization bound.

441 Generalization Bound for General Loss Functions

We now derive our generalization bound for general loss functions based on the work of (Jin
et al, [2009). To this extent we use the McDiarmid's inequality (Theorem[A.T) on the esti-
mation error, i.e. the di erence between the true risk and the empirical risk. Before that we
show that our algorithm is uniformly stable with respect to De nition Z.1 in the next lemma.

Lemma 4.2 (Uniform stability) . Given a positive, convex,k-lipschitz loss and a training
sample T of n examples drawn i.i.d. from Dr, an algorithm solving Problem (4.1) has a
uniform stability in = 4

Proof. The proof of this lemma can be found in Appendix[C.2. O

Using Lemma[4.2 about the stability of our algorithm and McDiarmid's inequality (The-
orem ) we can derive our generalization bound. LetRt = Lt (M) CT(M 1) be the
estimation error for Problem (4.1) when learning with training set T. To apply McDiarmid's
inequality we need to boundEt p ; [Rt] and jRt Ryij. This is done in the two following
lemmas.

Lemma 4.3 (Bound on Etp ; [R7]). For any uniformly stable learning method of esti-
mation error Rt = Lt(M 1) [1(M 1) and any training set T, we have:

2
. E . [Rt] - (4.6)
Proof. The proof of this lemma can be found in Appendix[C.3. O

This lemma shows that the expected value of the estimation error over all the possible
training sets of sizen is bounded. In the next lemma we show that the di erence in estimation
error between two training sets which only vary by one example is also bounded.

Lemma 4.4 (Bound on jRt Ryij). For any uniformly stable learning method of estima-
tion error Rt = Ly(M 1) CT(M 1), for any training set T and any (; m )-admissible loss
function we have:

2 +4 +2m

JRT Ry -

4.7)
Proof. The proof of this lemma can be found in Appendix[C.4. O

Using the fact that our algorithm is uniformly stable, we can now derive generalization
guarantees as stated in the following theorem.
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Theorem 4.2 (Generalization bound). For any matrix M 1 learned with Problem (4.1)) with
the training set T and any positive, convex,k-lipschitz and ( ; m )-admissible loss function,

we have with probabilityl
S

In 2

o (4.8)

LrMr) CrMn)+ 24@ +4 +2m)

Proof. Using McDiarmid's inequality (Theorem on the estimation error Rt = Ly (M 1)
C+(M 1) coupled with Lemma for the estimation of the constantsc; we have:

0 1

22

Pr R E [R 2ex
T TDT[T] p%Pn 2 +4 +2m Zg
i=L — n

!

2

2exp 2

12 +4 +2m)?

Then, by setting:

22
=2exp I 5
(2 +4 +2m)
we obtain:
S
=(2 +4 +2m n *
B ) 2n
and thus:

Pr Rt E [Rr] < > 1
T

Then, with probability 1

RT<_TET[RT]+ (4.9)
, Lt(MT) I,—\T(MT)<TDET[RT]+ (4.10)
(Lemmaf4.3.)

2
) LrM7) Cr(Mr)< Zs@ +4 +2m) T (4.11)
0

This bound shows that with a convergence rate inO % the true risk of our algorithm

is bounded above by its empirical risk. In the next section, we consider a particular example
of loss function where we show that the goodness of the source metric can be empirically
estimated. This extension allows us to introduce a natural weighting of the source metric in
order to improve the proposed bound.
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4.4.2 Re nement with Weighted Source Hypothesis

In this section we propose to study the problem of weighting the source metric to improve
the generalization bound. However in its current form the generalization bound does not
explicitly include any information about the source metric. In the following we notice that,
for a particular loss, the goodness of the source metric appears in the; (n )-admissibility of
this loss.

First of all we consider the loss presented in Exampl¢ 4]|1) instantiated with the hinge
function. For any metric M and any two labelled examplesz;z° D t we have:

I M;z;2% = ypo (x x9TM(x x9 o (4.12)

+

where o = 1if y = y®and 1 otherwise and yyo is the desired margin between the
examples. In Example[4.1, given that the hinge loss is 1-lipschitz, we show that this loss is
positive, convex, k-lipschitz with:

02

k= sup Xx Xx,

z:29D 1

and (; m )-admissible with:

= Ssup yyO
z:29D 1

O0s 1
m=2 sup x x°.@ w+kMskFA.

z;29D 1

Using this we can now apply Theorenj 4.2, to obtain a generalization bound which includes
a measure of the goodness of the source metric.

Theorem 4.3 (Generalization bound with Loss (4.12) ). For any matrix M 1 learned with
Problem (@.1)) with the training set T and Loss (4.12), we have with probability1

8D2
Lr(M1) Cr(Mq)+ o
0 O0s 11s
2 In £
s @0 14 sup  yy0+4D @ 7£T(MS)+ kM ske AA
z;2°D ¢ 2n

where D = sup,,op , kx  x%5.

Proof. This theorem comes from the application of Theoren| 42 with speci ¢ values ok,
and m. O

This theorem is a re nement of Theorem[4.2 in the case of a specic loss. Hence the
convergence rate is still inO p% and one of the most important di erence is the presence
of the term:

Os 1

C+(Ms)

GyMg)= @ + kM gke A
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This term can be seen as a measure of the goodness of the sourge metric. It mainly depends
on the quality of the source hypothesisM 5. The product G»(M s) % which appears in
the bound implies that as the number of examples available for learning increases, the quality
of the source metric is of decreasing importance. A similar result has already been stated in
domain adaptation or transfer learning in Ben-David et al.| (2010);|Kuzborskij and Orabona
(2013) where they show that as the number of target examples increases, the necessity of
having source examples decreases.

Given a source hypothesisM g, it is possible to optimize it with respect to the bound
derived in Theorem|4.3. Indeed, note thatG,(M s) corresponds to a trade-o between the
complexity of the source metric and its performance on the training set. The lower the value
of this term, the tighter the bound.

Following this, we propose a way to minimize the right hand side of the generalization
bound and more speci cally G2(M g) by adding a weighting parameter 0 !t 1 on the
source metricM s. This parameter is a simple way to control the trade-o between complexity
and performance of the source metric thanks to a reweighting. It can be assessed by means
of the following optimization problem:

It =argmin C(! Mg) (4.13)
0! 1

Note that the bound derived in Theorem[4.3 holds whatever the value oM s. Thus replacing
it with ! +M s does not impact the theoretical study proposed in this section.

Interpretation of the value of I+ We can distinguish three main cases. First if the
source hypothesis performs poorly on the training set at hand we expedty to be as small as
possible to reduce the importance oM s. In a sense, we tend to go back to the classical case
wereM s = 0. Second if the source hypothesis is complex and performs well, we expéct to
be rather small to reduce the complexity of the hypothesis while keeping a good performance
on the training set. Third if the source hypothesis is simple and performs well, we expecit 7

to be closer to one sinceM g is already a good choice. Note that we chooskt 1 to limit
the potential increase in complexity of the learned matrix.

Learning !t Problem ) is highly non di erentiabIeE] and non convex. However, it re-
mains simple in the sense that we have only one parameter to estimate and we used a classical
sub-gradient descent to solve it. Even if it is not convex, our empirical study (Sectio
shows no need to perform many restarts to output a good solution: we always found almost
the same solution. As a consequence, we applied only one optimization procedure in our
experiments. Note that! 1 is in uenced by both the values of the margin and the regulariza-
tion parameter and thus should be tuned accordingly each time. However, computind + by
solving Problem (4.13) is not too costly. The process can even be sped up by computing the
value of the source metric between the examples beforehand.

170 avoid this problem, we can use the classic relaxation with slack variables.
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In this section, using the uniform stability framework for metric learning we have shown
that our approach generalizes well with a convergence rate i© pl—ﬁ . Furthermore, given a
speci c loss, we have shown that the use of a weighting parameter to control the importance
of the source metric is theoretically founded. Indeed it boils down to optimizing a notion of
goodness of the source metric for the problem at hand. However the right hand side of the
bound derived in Theorem[4.3 does not go to 0 when the source metric is a perfect t for the
problem at hand, i.e. it is not a vanishing bound. It implies that even with the perfect source
hypothesis we might learn a metric which performs slightly worse than the source metric in
terms of generalization to new examples. In the next section we consider the Rademacher
complexity framework to derive a vanishing generalization bound when the source metric is
a perfect t.

4.5 Rademacher Complexity Analysis

The third theoretical framework that we consider in this chapter is the Rademacher complexity
framework adapted to metric learning by|Cao et al| (2016). More precisely we further adapt
this approach to take into account the source metric. It allows us to obtain a vanishing
generalization bound which implies that when the source metric is a perfect t, learning is
no longer necessary.

Assumptions  In this section instead of only considering the Mahalanobis distance we con-
sider all the metrics parametrized by a matrix M 2 M , and denoted by the function ky, ,
such that given two vectors x and x°the metric can be written as:

kv x;x% = g(x;x9;M (4.14)

where g is a function over a pair of examples andh; i is the Frobenius producﬁ If this
de nition seems restrictive, it is in fact ful lled by the main metrics used in Metric Learning
(See Sectior] 2.]1) such as the squared Mahalanobis distance:

x x9"Mix x%= x x%x x3T;m (4.15)

or the bilinear similarity:

D - E
xTMx %= xx%;M . (4.16)
The loss function has to be positive, convex (De nition[A.6) and k-lipschitz with respect to
the metric (De nition 4.2)] which is a slight adaptation of the k-lipschitzness presented in
De nition A.1.] The regularization term has to be convex and must have a well de ned dual

norm (De nition

We can now derive our generalization bound based on the Rademacher complexity frame-
work. First of all we present our notion of k-lipschitz continuity with respect to the metric.

2hA;Bi =Tr( ATB)
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Then we present the notion of Rademacher complexity considered here along with a re nement
of the metric classM considered. These de nitions allow us to state our generalization bound
linked to the Rademacher complexity of the metric class. Next we bound this Rademacher
complexity showing that the bound depends on the source metric. We then discuss the im-
plications of the bound and we show that if the source metricM s is a good t then the rate
of convergence is improved.

De nition 4.2 (k-lipschitz continuity with respect to the metric) . A loss function | (M ; z; z9
is k-lipschitz continuous with respect to the metric if for any two matricesM ;M °2 M and
any two examplesz; z0 there existsk 0 such that:

| M;z;2° I M%z;2° Kk ky x;x%  kpo x;x° (4.17)
This k-lipschitz continuity property ensures that given two metrics the di erence in losses
is bounded by the di erence between the metrics. If the loss is di erentiable with respect
to the metric it can also be seen as a bound on the magnitude of the rst derivative Srebro
et al. (2010a). Note that the k-lipschitz property is usually considered with respect to the
parameters of the metric rather than the metric as it is the case here. However our def-
inition lipschitzness implies the standard de nition when metrics of the form presented in
Equation (%.14)) are considered.
The Rademacher complexity used here is an adaptation of the de nition given irj Lei and

Ying|(2015) to the case of metric hypothesis transfer learning. The idea is to take into account
the source metric.

De nition 4.3 (Rademacher Complexity). Let M be ametricclassand ;:i=1; ; 3
be a sequence of independent Rademacher variables, thatis( i =+1)=Pr( = 1)= %
Let fx;:i=1; ;ng be an ii.d. sequence of examples. Then the empirical Rademacher

complexity of M is de ned as:

;1 _
IQn(M): ?EMS;J’\[/.I') . ikM Mg Xi’Xb%C*'i (418)

and the Rademacher Complexity oM as:

Ro(M)= ET Rn(M). (4.19)

Instead of considering the complexity of a metric class with respect to its ability to t
random noise Lei and Ying (2015), this de nition measures the complexity of the metric class
with respect to its ability to di er from the source metric.

We now de ne formally the re nement of the metric class considered in our analysis and
taking into account the source metric.

De nition 4.4  (Metric class and source metric) We de ne a metric class dependent orM g
as follows:
( r

)
Mg= M2M kM Msk M

(4.20)
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where G3(M s) = sup,,0p ; | (Ms;2;29 and M is the metric class used in Problem(&.T)).
We now prove that any metric M 1 learned by Problem (4.1) belongs toM s.

Lemma 4.5 (Metric class and optimal solution). Let M 1+ be the optimal solution returned
by Problem (4.1) with training set T. We haveMt 2 M s where M s is de ned as in

De nition 4.4.]

Proof. By the convexity of the loss and the optimality of M + we have:

Cr(M7)+ kM1 Msk® [r(Ms)
(Positive loss.)
) kMt Mgk® C7(Ms)
S

) Kk Mt Mgk m
dH(MS% sup,.0p ; | (Ms;2;29.)

) kM7 Mk 3Ms)

with G3(M s) = sup,.,op ; | (M s; z;29. Noting that M1 2 M gives the lemma. O

To prove our generalization bound based on the Rademacher complexity of the source
metric, we use the McDiarmid's inequality {Theorem ang follow a similar strategy as
in Cao et al| (2016). LetRt = supyov ¢ LT(M) Cr(M) be the estimation error for
Problem ) when learning with training set T. Note that this estimation error is di erent
from the one used in the previous sections. Indeed here we consider the worst error over the
whole metric class rather than the error of the learned hypothesis. To apply McDiarmid's
inequality we need to boundEt p ; [Rt] and jRt Ryij. This is done in the two following
lemmas.

Lemma 4.6 (Bound on Etp , [Rr]). For any positive, convex andkgipschitz (De ni-
tion » loss function and any algorithm with estimation error Rt = sup  Lt(M) [C1(M)

M2M s
we have:

. DET [RT]  2kRn(Ms).
Proof. The proof of this lemma can be found in Appendix[C.5. O

This lemma shows that the expected value of the estimation error over all the possible
training sets of sizen is bounded. In the next lemma we show that the di erence in estimation
error between two training sets which only vary by one example is also bounded.
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Lemma 4.7 (Bound on jRt Ryij). For any positive, convex andk-lipschitz continuous
(De nition loss function, any, metric satisfying; Equation (¢.14) and any algorithm of
estimation error Rt =supyay o Lt(M) Cr(M) we have:

q
2G3(Ms) +28Up,.0p , kkg(x;x9k — SdMs)
jRT RTij

n
wherek k is the dual norm of the regularization term (De nition

Proof. The proof of this lemma can be found in Appendix[C.6. O

We can now present our generalization bound.

Theorem 4.4 (Generalization bound). With probability 1  , for any matrix M 1 learned
with Problem (@.1), for any positive, convex, andk-lipschitz continuous (De nition loss
function and any metric satisfying Equation (4.14) we have:
" r_ # S —

Gg(Ms) |I’1g
Lr(M7) Cr(M7)+2kRa(Ms)+ 2Gs(Ms)+2 sup  kkg(x;x9k =322 TR
z;2°D 1

Proof. Coupling Lemma[4.7 with McDiarmid's ingquality (Theorem applied on the es-
timation error Rt =supyv ¢ LT(M) (+(M) we have with probability 1

r #]1 S 72
In ¢
Rr E [Rr]+ 26sMe)+2 sup kkgoxOk 3Ms)  In®
TD T 2:29D 1 2n
(Lemma[4.5.)
r # S ——
In 2
Lr(M7) Cr(Mr) E [Rr]+ 2G3(Ms)+2 sup  kkg(x;x9k Gs(Ms)
TD 1 2:29D 1 2n
(Lemmal[4.g.)
" ‘ #S —
In2
Lr(M7) Cr(M7) kRo(Ms)+ 265(Ms)+2 sup  kkgixixhk X)L
2;2°D 1
L]

This generalization bound shows that the generalization ability of a metric learned with
Problem @) depends on the Rademacher complexity of the source metric class and on
G3(M ), its worst possible error over the distribution. In the next subsection we show that
the Rademacher complexity of the source metric class also depends @g(M s). This value
is thus a good candidate to measure the goodness of the source metric.

4.5.1 Rademacher Complexity and Source Metric

One of the critical quantities in the bound presented in Theorem[4.4 is the Rademacher
complexity of the source metric classM s which depends on the source metridM s. In the
next lemma we show that the Rademacher complexity of the source metric class depends on
G3(M ).
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Lemma 4.8 (Bounding the Rademacher complexity ofM g). Let M s be a metric class which

depends on a source metridVl s as in De nition 4.4 then we have that:
r

RaMs)  2Ms)g ki)
with:
, %
Rk )= B E 0o (4.21)

wherek k is the dual norm of the regularization term (De nition

Proof. We consider the empirical Rademacher complexity of the metric clas$/ s:

1 %
Ra(Ms)= —E sup iKM Mg XiiXpncei
3 M2M s 2

(Equation (§.14).)
Bc D E

1
—— E sup i 9(Xi;XpneeisM M
n M2M s ' b b5 cri

(Trace linearity.)
* 0 +
1 %°
—— E sup i9XisXpnceiiM - Ms
i=1

(Cauchy-Schwarz's inequality (Theorem[A.3).)

&g—c

1
——E sup ig(xi;xbgcﬂ) kM Mk

(M 2M s (Lemmal[4.4).)

r %C
G3(Ms) 1 é
M i) E ig(xiixb%c.,.i)

2 i=1

Taking the expectation over all sizen training sets on both sides of the last inequality gives:

r Q%C
w 1 E ig(xi;Xb%CH)

Rn(M S)

kec
E ig(xi;xb%0+i) gives the lemma. O
i=1

Setting Rp(kk ) = ; 1'35

T

I\)\:}‘ =
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Rademacher complexity and source metric M s. We have that Ms 2 M g and the
metric class is centre around M s with the radius being dependent on the worst case per-
formance ofM g, i.e. G3(M g). It means that changing M s will impact the metric class and,
consequently, its Rademacher complexity. On the one hand if the source metric is good, i.e.
if G3(M g) is low, then the considered metrics cannot go too far away from the source and
thus the Rademacher complexity will be small. On the other hand if the source metric is bad,
i.e. if G3(M g) is high, then the considered metrics can go far away from the source and thus
the Rademacher complexity will be higher.

We have shown how the source metric impacts the Rademacher complexity of the metric
class and that G3(M s) is a measure of goodness of the source metric. We now study the
impact of the source metric on the rate of convergence of the bound presented in Theordm #.4.

45.2 Goodness of M g

In this subsection we propose to study the bound presented in Theorern 4.4 with respect to
the source metricM s. We show that when this source metric is good then it has a positive
impact on the rate of convergence of the bound. In some case it might result in a faster rate
of convergence inO % . We also study the impact of the source metric on the number of
examples needed to obtain a true risk at most equal to the empirical risk plus.

First of all note that the key quantity related to the source metric in the bound is:

Gs(Ms)= sup I(Ms;z;29.
z;29D 1
We will use this quantity to de ne the goodness of a source metric. If it is small, respectively
large, then the metric is good, respectively bad, for the problem at hand. This quantity
represents the worst case loss of the source metric over all the examples.

Source metric and convergence. We consider the case where we wanLt (M 1)
C+(M1)+ and we seekn the number of examples needed to obtain such an convergence.
Letm 1suchthat G3(Ms) % anddene 2 RsuchthatRn(kk ) = thenthe bound
in Theorem gives:

0 q_— 11
2 In2 : '
= pl: @%k& + —p— 1+ sup 2kkg XLX%k A (4.22)
nm 2 z;29D 1
which implies:
0 q — 112
2 In¢ :
nm = iz @ngkg + ﬂoé— 1+ sup 2kkg XLXC)k A (4.23)
z;29D 1

3with respect to the norm considered.
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The quantity in the out-most brackets is a constant with respect to n, m and . It shows that
a smaller can be obtained by increasing the number of examples or by using a better source
metric. We can then consider several cases:

m n: In this case the source metric is a good t sinceGz(M s) % and the bound
exhibits a fast rate of convergence with O % . However this result is not fully
informative in the sense that the constraint imposed on the source metric can be stronger
than the bound, i.e. it might be better to directly use the source metric than to learn

a new metric.

m!1 : Inthis case the source metric is a perfect t, i.e. G3(M s) = 0 and by convexity
of the loss, the metric learned by Problem [(4.1) is the source metric. It implies that the
empirical risk is equal to 0 and since ! 0 the right hand side of the bound also tends
to 0 which implies that the bound is vanishing and translates the fact that no learning
iS necessary.

m < n: In this case we haveG3(M s) > % the bound is not worse than classic general-
1

ization bounds for metric learning as it exhibits a convergence rate in O p= .
Note that here we chose to bound the goodness of the source metric by a quantity which
depends on the number of examples. It might be surprising in the sense that this measure
is a constant with respect to M s. However it re ects the fact that when one has access to a
su cient number of examples, it is harder to obtain a meaningful source metric.

Comparison with similar bounds. Albeit not in the context of metric learning, the work
presented in| Kuzborskij and Orabona (2014) presents a generalization bound which is close
to oursf_[]. However, the condition obtained to derive a fast rate is di erent. In this work, they
propose to bound byO % the true risk of the source hypothesis rather than the worst case
loss. It might seem less restrictive as it considers the whole distribution and, thus, makes
it easier to have a good source hypothesis. However it is important to note that, besides
the fast rate, our condition allows us to guarantee that the empirical risk of the learned
metric will be small. Indeed our condition implies that the error of the source metric will be
low on the training set, then by convexity of the loss, the learned metric will have a better
performance than the source metric. Such an analysis is not possible if we link the goodness
of the source hypothesis to its true risk as it might happen that we have access to a training
set where the empirical risk of the source hypothesis is greater than its true risk. Note
also that their framework is more restrictive than ours since we allow to deal with possibly
non smooth lispschitz functions and relaxes the strong convexity. While their result uses
standard supervised learning losses, one question is to know if we can derive similar results
for metric learning with pairwise losses. We cannot provide a clear answer but this issue is

4To the best of our knowledge it is the only work with a fast rate in an Hypothesis Transfer Learning
setting.
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Table 4.1: Summary of the di erent bounds.

On Average . . Rademacher
. Uniform Stability _
Bound Stability (Section[42) Complexity
(Section[4.3) (Section[4.5)
Nature of the
Exact Probabilistic (1 ) | Probabilistic (1 )
bound
Impact of the
complexity of the 87k2 87k2 1
metric class n
1 1 1
Convergence rate O o @] p—ﬁ @) %
Goodness Theoretical Empirical Theoretical
S sup |(Ms;z;29
GI(M S) LT(M S) CT(M s) + kMSkF 2:20D 1 Sy 4,

not straightforward. Recall that if the examples are drawn i.i.d. from a distribution, pairs

of examples are not i.i.d. and as such the proof techniques have to be adapted to take this
problem into account. Their analysis is based on a generalization of Bennett's concentration
inequality Bousquet (2002) which requires to have some informations about the variance of
the studied random variable. Its application to pairwise losses seems dicult and would
require a speci ¢ study. In our framework, we used the McDiarmid's concentration inequality
which does not require any information about the variance of the studied random variable
but rather about the impact of a small change in the training set that is easier to consider in
a metric learning context.

In this section we have presented a vanishing generalization bound showing that a good
source metric is bene cial and can signi cantly increase the rate of convergence of the bound.
Furthermore when the metric is a perfect t the bound shows that learning is not neces-
sary. In the next section we propose a comparison of the bounds and a discussion on their
implications.

4.6 Summary of the Bounds

In this section we propose a summary of the bounds derived in the previous sections. We
recall their main characteristics in Table [41.

Nature of the bound In the average stability case the bound obtained is an exact one
since its derivation does not rely on any concentration inequality. In the uniform stability
and Rademacher complexity cases the bounds are probabilistic since they come from the
application of the McDiarmid inequality (Theorem A.1)



4.7. Examples 103

Impact of the complexity of the metric class In the Rademacher complexity case the
impact of the complexity of the metric class is in O pl—ﬁ while this impact is improved

to O pl—ﬁ for the two stability based bounds. It can be explained by the fact that the
Rademacher complexity bound measures the complexity of the metric class with respect to
all the possible metrics in the class, even the ones which might never be learned by the
algorithm. Hence it is a worst case result. On the other hand the stability based approaches
only consider the metrics which can be learned given a training set. Hence it is closer to an
exact result.

Convergence rate In the average stability case the goal is to bound the expected true
risk of the algorithm over all the possible training sets while in the uniform stability and
Rademacher complexity case the goal is to bound the true risk of a metric learned on any
particular training set, in other words these bounds should also hold in the worst case scenario.
It explains why the convergence rate is better in the average stability case.

Goodness of the source metric On the one hand in the average stability and the
Rademacher complexity cases the measure of goodness of the source metric is theoretical
and cannot be computed in practice making it unt to derive an algorithm to choose a good
source metric. On the other hand in the uniform stability case, the quantity involving the
source metric is empirical. Following this we derived an algorithm to weight the importance

of the source metric with respect to its goodness.

Applicability of the bound The three bounds require di erent assumptions on the metric,
the loss function and the regularization. The Rademacher complexity bound is the least
constrained of the three approaches as it is applicable to several kind of regularization terms
and can be used with di erent kind of metrics. The two stability bounds are more constrained
as they only hold for a Mahalanobis distance learned with a Frobenius norm regularization
term.

In the next section we propose several examples of loss functions and regularization terms
which can be used in one or several of our frameworks.

4.7 Examples

In this section we present several examples of popular loss functions and regularization terms
in metric learning. We show that each example falls in one or more of the theoretical frame-
works presented here. It demonstrates the wide range of applicability of the metric hypothesis
transfer learning framework proposed here.

First of all note that in Sections and we only consider learning a Mahalanobis
distance and this distance respects the assumption made on the metric of Sectipn #.5 (Equa-
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tion (4.14)). Hence in this section we only consider metrics which satisfy this property.
Furthermore we always consider positive and convex losses. It implies a bound on the regu-
larization term presented in the next lemma.

Lemma 4.9 (Bounded regularization). Let M 1 be the optimal solution returned by Prob-
lem (4.1) with training set T and a positive and convex loss. We have:
s

Mr Mok CT(Ms)

Proof. The proof of this lemma can be found in Appendix[C.7. O

4.7.1 Examples of Loss Functions

Overall we successively considered the following properties for the loss function:

Positive: [On Average Stability Analysis| [Uniform Stability Analysis,|Rademacher Com-
[plexity Analysis|

Convex (De nition A.6)] On Average Stability Analysis,|Uniform Stability Analysis, |
[Rademacher Complexity Analysis

k-lipschitz continuous with respect to the metric (De nition RRademacher Com-|
[plexity Analysis]|

k-lipschitz continuous (De nition A.1)| ®n Average Stability Analysis, [Uniform Stablil- |

(; m )-admissible (De nition A.2); Uniform Stability Analysis |

First we propose to considerl -lipschitz functions for dissimilarity and similarity learning.
For each example we prove that all the previous properties hold.

Example 4.1 (Positive, convex, L -lipschitz functions for dissimilarity learning) . Let f (a) be a
positive, convex,L -lipschitz function. Given a dissimilarity (De nition 1 kv parametrized
byM 2M and any two examples;z° D 1 we de ne a loss as:

| M;z;2% = yyo km x;x% yyo (4.24)

where yyo=1if y=y%and 1 otherwise and yyo is the desired margin between examples.
This loss is:

Positive,
Convex,

k-lipschitz continuous with respect to the metric withk = L,
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k-lipschitz continuous with k = L sup,.,op . kg(x;x%k ,

8
< =SUPzzop ; yy©

_ o q
-ad bl th
(;m )-admissible with, = 2L sup,p0p . kg(ix9k  CTMS) 4 kM gk

Proof. The proof of this example can be found in AppendiX C.8. O

This loss has, for example, been successfully used|in Jin et |al. (2009). Similarlyfif{a) =
[a]. then it corresponds to the loss used in Sectioh 4% As a last example iff (a) = jaj we
retrieve a loss function close to the one used in Chaptdrf3

Example 4.2 (Positive, convex, L-lipschitz functions for similarity learning) . Let f (a) be a
positive, convex, L -lipschitz function. Given a similarity (De nition 1[8) | ky parametrized by
M 2M and any two examplesz;z° D 1 we de ne a loss as:

okM (x;x9

e 50 _
I M;z;z2 =f 1y -
yy

(4.25)

where o =1 if y=y%and 1 otherwise and yyo is the desired margin between examples.
This loss is:

Positive,
Convex,
k-lipschitz continuous with respect to the metric withk = ——-
inf.20p ] wo
k-lipschitz continuous withk = ——L——— sup,.,op . kg(x;x9k ,
inf.;0p ] wa ' T
8
< =0 q
( ym )-admlSSlbIe W|th: m=2 ﬁ sup, ,0p kg(x; Xo)k Cr(Ms) + kM sk
z;20D T yy0 !
Proof. The proof of this example can be found in Appendi{ C.9. O

This loss has, for example, been successfully used before witlja) = [a], in Bellet et al.
(2012); Nicolae et all (2015) albeit in a slightly di erent context.

We now turn our interest to H -smooth (De nition B-bounded functions as de ned
in Srebro et al! (2010b). Note that the results are close in spirit to the one obtained for
L -lipschitz functions.

5The hinge loss is positive, convex and 1-lipschitz.
®The absolute value is positive, convex and 1-lipschitz.
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Example 4.3 (Positive, convex, H-smooth, B -bounded functions for dissimilarity learning).

Let f (a) be a positive, convex,H -smooth, B -bounded function. Given a dissimilarity (De -

nition km parametrized byM 2 M and any two examplesz;z° D 1 we de ne a loss
as:

| M;z;2% = o km x;x° 0 (4.26)

where yyo=1if y=y%and 1 otherwise and yyo is the desired margin between examples.
This loss is:

Positive,
Convex,
k-lipschitz continuous with respect to the metric withk = P 12HB,

k-lipschitz continuous with k = P 12HB sup,.,0p , kg(x;x9k ,
(

(; m )-admissible with

m=B"
Proof. The proof of this example can be found in AppendiX C.ID. O

Example 4.4 (Positive, convex, H -smooth, B -bounded functions for similarity learning). Let

f (a) be a positive, convexH -smooth, B -bounded function. Given a similarity (De nition 1.8)]

km parametrized byM 2 M and any two examples;z° D 1 we de ne a loss as:

K (% x5 (4.27)
yy°

where o =1 if y=y%and 1 otherwise and yyo is the desired margin between examples.

This loss is:

N
I M;z;z2 =f 1y

Positive,
Convex,

p____
k-lipschitz continuous with respect to the metric withk = ——22HB____
inf,.,0p Tj vy 9)

P
k-lipschitz continuous withk = —228 ___ sup, .o, _ kg(x;x9k ,

inf,.,0p Tj v Ol

(; m)-admissible with

m=B"
Proof. The proof of this example can be found in AppendiX C.I]. O

Smooth losses have, for example, been successfully used witta) = ( a)? in Srebro et al
(2010a);|Kuzborskij and Orabona (2014) albeit in the di erent context of classi cation.

We have presented several loss functions which can be used in our framework. In the next
subsection we turn our attention toward several regularization terms.
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4.7.2 Examples of Regularizations

Due to several technical issues we have to use the Frobenius norm when considering the two
stability frameworks. However in the Rademacher complexity framework the only constraint

is that the dual norm of the regularization should be well de ned, i.e. its Rademacher average
should be bounded above by a term which decreases @ pl—ﬁ . |Cao et al| (2016) have shown
that this condition is ful lled by several norms that we recall in Table 4.2f] These norms
have been successfully used before as non biased regularization terms (Jin et al., 2009; Ying
et al.l [2009; Bellet et al|,|2012; Shen et al., 2012; Nicolae et al., 2015) but also as biased
regularization terms (Parameswaran and Weinberger, 2010; Cao et all, 2013a; Bohre et al.,
2014).

We now propose to discuss the impact of the regularization term on the transfer taking
place between the source metricM g and the learned metric M 1. First of all note that this
di er with the kind of metric considered as the interpretation of the values of the matrix may
change. Here we consider that we are learning a Mahalanobis distance or a Bilinear similarity
where each entry of the matrix can be seen as a measure of the importance of the relation
between two features. Hence it gives us the following possible interpretations for the di erent
norms.

Frobenius norm: The Frobenius norm will encourage small element-wise changes in the
values of the matrix M 1t with respect to the matrix M g. It implies that the relations
between the features will keep the same order of magnitude and only slightly change.

“1-norm: The “1-norm is an element-wise sparsity inducing norm. It implies that from
the source metric to the learned metric only a limited number of entries in the matrix
will change. It means that some of the relations between features will be kept the same
while the other relations will be able to change more than with a Frobenius norm.

“2:1-norm: The ",.1-norm is a column wise sparsity inducing norm. It implies that this
norm will encourage the learned metricM 1 to keep intact whole rows (and columns if
the matrix is symmetric) of M s. In other words, for some features, the relationships
between this feature and the others as encoded by the source metric will be kept in the
learned metric.

Trace norm: The interest of using a trace norm is mainly to obtain low rank matrices.
In the case of biased regularization it translates into obtaining a low rank di erence
between Mt and Ms. However it does not always imply that the rank di erence
between the learned metric and the source metric will be small. It seems that, in a
biased regularization case, the trace norm is less interesting than the other norms.

"Note that Cao et al. (2016) also proved tighter results (with respect to the constants) than the one presented
here but this is beyond the scope of this analysis.
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Table 4.2: Examples of regularization terms.

Rademacher AverageR,(kk )
Norm k k Dual Norm k k i
(See Appendix c.1}z for a proof)
K Kg K Kg
Kk, Kk, Ru(kk ) 2sup,.,0p pT7I<g(x;x°)k;§
K k2;1 k k2;l :
k kTr k I<Spec

In this section we have presented several examples of loss functions and regularization
terms which can be used in our framework. In the next section we propose to empirically
study it in several experiments. On the one hand we propose to evaluate the interest of
optimizing the goodness of the metric as de ned in Sectiorf 4]4. On the other hand we
demonstrate that using our approach in a semi-supervised domain adaptation task leads to
state of the art results.

4.8 Experiments

In Section[4.4, instantiating Problem (4.1)) with the hinge loss (Example[4.]) and the Frobe-
nius norm, we have derived an empirical measure of the goodness of a metric. It leads to
the development of an optimization problem to learn the weight of the source metric (Equa-
tion (). In this section we consider two empirical studies depending on the choice of
the source metric. First, using some well-known distances as a source metric, we show that
our framework performs well on classic supervised metric learning tasks of the UCI database
and we empirically demonstrate the interest of learning the! parameter. Second, we apply
our framework with weighted source metric in a semi-supervised Domain Adaptation task.
We show that, using only source information through a learned metric, our method is able
to compete with state of the art algorithms which have access to the examples of the source
dataset.

Setup In all our experiments we use limited training dataset, making it di cult to apply
any kind of cross-validation to set the parameters. Thus we propose to x them as follows.
First the positive and negative margin are respectively set to the 8 and 95" percentile of
the training set possible distances computed with the source metric as proposed in DavVis
et al. (2007). Next we set such that the two terms of Equation ) are equals, i.e. we
balance the complexity and performance importance with respect to the source metric. The
| parameter is then learned using Problem|[(4.13). In all the experiments we plug our metric
in a 1-nearest neighbour classi er to classify the examples of the test set. Furthermore, the
signi cance of the results is assessed with a paired samplégest considering that an approach
is signi cantly better when the p-value is lower than G05.
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Table 4.3: Results of the experiments conducted on the UCI datasets. Each value corresponds
to the mean and standard deviation over 10 runs. For each dataset we highlight the best result
using a bold font. Approaches with the sux -! 1 do not learn! but x it to 1.

Baselines Our approach
Dataset 1-NN ITML LMNN IDENTITY IDENTITY- ! 1 | MAHALANOBIS | MAHALANOBIS- ! 1
Breast | 95.31 1.11| 9540 1.37 | 9560 0.92|96.06 0.77 | 95.75 0.87 95.71 0.84 94.76 1.38
Pima 6792 195| 68.13 1.86 | 67.90 2.05| 67.87 157 67.54 1.99 68.37 2.00 66.31 2.37
Scale | 78.73 1.69| 87.31 2.35 | 86.20 2.83| 80.98 151 80.82 1.27 81.35 1.17 80.88 1.43
Wine 9340 2.70| 93.82 2.63 | 93.47 1.80| 95.42 1.71 95.07 1.68 9431 2.01 80.56 5.75

4.8.1 Classic Supervised Metric Learning

First we start by conducting experiments on several UCI datasets Lichman |(2013), namely
breast, pima, scale and wine. We propose to consider three source metrics:

Zero : No source hypothesis,
Identity : Euclidean distance,

Mahalanobis : Inverse of the variance-covariance matrix computed on the training set
(Mahalanobis, |1936).

For the last two source metric we propose two experiments, one where we sét = 1 and
one where we learn! using Problem (4.13). The goal of this experiment is to show the
interest of automatically setting ! . We consider a 1-nearest neighbour (1-NN) classi er using
the Euclidean Distance as the baseline and also report the results of two well known metric
learning algorithms, namely ITML (Davis et al., 2007) and LMNN (Weinberger et al.| 2005).
The results averaged over 10 runs are reported in Table 4.3. For each run we randomly draw
a training set containing 20% of the data available for each class and we test the metric on
the remaining 80% of data.

These experiments highlight the interest of learning the! parameter. When we consider
the performance of our approach with and without learning! , we mainly notice the following
facts. First, learning ! always leads to an improvement on all the datasets and the nal result
is better than the 1-NN classi er. Second, learning! when considering the identity matrix
as the source metric seems to be of limited interest as the di erences in accuracy are only
signi cant for the wine dataset. This can be justi ed by the fact that, in this case, it only
consists of a rescaling of the diagonal of the matrix and it does not change much the behaviour
of the distance. Finally, learning! when considering the variance-covariance matrix as the
source metric leads to a signi cant improvement of the performance of the metric except on
the breast dataset. This is particularly true for the wine dataset with a gain of nearly 14% in
accuracy. It can be explained by the fact that, for this dataset, we are learning with less than
40 examples. Thus the original Mahalanobis distance does not carry as much information as
in the other datasets and is thus of a lower quality. Learning! allows us to compensate this
drawback and to obtain results which are even better than ITML or LMNN.
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4.8.2 Metric Learning for Semi-Supervised Domain Adaptation

In this section we consider a semi-supervised domain adaptation task with the O ce-Caltech
dataset. This dataset consists of four domains: Amazon (A), Caltech (C), DSLR (D) and
Webcam (W) for which 10 classes are considered. This leads to consider 12 di erent adap-
tation problems when we alternatively take each domain as the source or the target dataset.
The results are averaged over 20 runs. In each run the training set is composed of 8 labelled
source examples (20 if the source is Amazon) and 3 labelled target examples for each class.
The testing set corresponds to the remaining target examples. In these experiments we use
the same splits as the ones considered in Ho man et al, (2013) since they are freely available
from the authors website and we follow their experimental setup. The data is normalized
thanks to the zscore and the dimensionality of the examples is reduced to 20 thanks to a
simple PCA. The results are presented in Tabld 4} where we compare the performance of
our method to 6 baselines:

1-NNs: a 1-NN using the source examples,
1-NNt: a 1-NN using the target examples,

LMNN t: a 1-NN on the target examples using the metric learned by LMNN on the
source examples,

ITML t: a 1-NN on the target examples using the metric learned by ITML on the source
examples,

MMDT: a domain adaptation method Ho man et al. (2013),
GFK: another DA approach Gong et al. (2012).

The last two methods need the source sample while in our case we only use a source metric
learned from the source instances. For our biased regularization framework we consider 3
possible metrics learned on the source examples, namely Mahalanobis, ITML and LMNN.
These source metrics are weighted by + which is learned using Problem ).

These results show that metric hypothesis transfer learning can perform well in a semi-
supervised domain adaptation setting. Indeed, we perform better than directly plugging the
metrics learned by LMNN and ITML in a 1-NN classi er. Moreover, we obtain accuracies
which are competitive with state of the art approaches like MMDT or GFK while using less
information. If we compare our approach using LMNN as the source metric with MMDT,
we note that MMDT is signi cantly better than our approach on 4 out of 12 tasks while we
are signi cantly better on 3 and 5 end as a draw. Hence we can conclude that our method
presents a similar level of performance than MMDT. Similarly, if we compare our approach
using LMNN as the source metric with GFK, we obtain that GFK is signi cantly better than

8Note that we also report the mean accuracy over the 12 tasks. Even if we are conscious that the problems
are di erent, it gives a rough idea of the global performance of the compared approaches.



4.9. Conclusion 111

Table 4.4: Metric Learning for Semi-Supervised Domain Adaptation. For the sake of read-
ability we design the considered domains by their initials. S ! T stands for adaptation
from the source domain to the target domain. Each time we consider the mean and standard
deviation over 20 runs. For each task, the best result is highlighted with a bold font.

Baselines Our approach

Task 1-NNs 1-NNt LMNN 1 ITML 1 MMDT GFK MAHALANOBIS ITML LMNN

Al C | 3595 130 | 3192 3.24|3242 3.03| 3256 4.17 | 39.76 225 | 3781 185 32.65 3.76 3293 4.60| 34.66 3.66
A! D | 3358 4.37 | 5331 4.31|4996 353| 4433 8.18 | 5425 4.32 5154 355 54.69 3.96 5154 4.03|54.72 5.00
Al W | 3368 3.60 | 66.25 3.87|62.62 4.49|5817 10.63| 6491 571 59.36 4.30 67.11 5.11 64.09 5.20| 67.62 5.18
cC! A 37.37 295 | 47.28 4.15| 4297 3.76| 45.16 7.60 | 51.05 3.38 | 46.36 2.94 50.15 4.87 49.89 5.25| 50.36 4.67
C! D | 3189 577 | 5417 4.76|46.02 6.54| 48.07 898 | 52.80 4.84 | 58.07 3.90 56.77 4.63 53.78 7.23| 57.44 4.48
C! W | 2860 6.13 |65.06 6.27|55.79 5.09| 59.21 9.71 | 62.75 5.19 | 63.26 5.89 64.64 6.44 64.00 6.08|65.11 5.25
D! A | 3359 177 |4781 3356|4057 3.79| 45.06 6.78 | 50.39 3.40 | 40.77 255 49.48 4.41 49.11 4.09| 49.67 4.00
D! C | 31.16 1.19 | 3222 298|27.96 3.03| 29.93 4.84 | 3570 3.25 | 30.64 1.98 3290 3.14 3299 358| 33.84 2.99
D! W | 76.92 2.18 | 66.19 4.60| 65.36 3.82| 66.74 7.16 | 7443 3.10 74.98 2.89 65.57 4.52 66.38 6.04| 69.72 3.78
W! A| 3219 3.04 |4825 3522|4169 3.71| 4511 572 | 50.56 3.66 | 43.26 2.34 50.80 3.63 50.16 4.32|50.92 4.00
W! C| 27.67 258 | 30.74 3.92|2860 341| 28.99 431 |3486 3.62 | 29.95 3.05 3154 3.60 31.40 4.29| 32.64 3.52
W! D | 6461 430 |54.84 5.17|56.89 5.06| 57.76 7.03 | 6252 4.40 | 71.93 4.07 57.17 6.50 56.85 5.51| 61.14 5.78
Mean 38.93 3.26 | 49.84 4.20| 4590 4.11| 46.76 7.09 | 52.83 3.93 | 50.66 3.28 51.12 455 50.26 5.02| 52.32 4.36

our approach on 3 tasks, we are signi cantly better on 7 and 2 lead to a draw. Hence, we can
conclude that our approach performs better than GFK.

If we compare the performances of both ITML and LMNN as metrics used directly in a
nearest neighbour classi er one can intuitively expect ITML to be a better source hypothesis
than LMNN since its results are better. However, in practice, using the metric learned by
LMNN as the source hypothesis yields better results. This suggests that using a learned
source model that tends to over-t reasonably the learning source sample can be of potential
interest in a transfer learning context. Indeed LMNN does not use a regularization term in its
formulation is thus prone to over- tting. Since the parameter ! penalizes the source metric
with respect to its complexity it may limit the impact of the source metric to what is needed
for the transfer. Nevertheless, this point deserves further investigation.

4.9 Conclusion

In this chapter we formalised and theoretically analysed the metric hypothesis transfer learn-
ing framework. This framework takes into account a source hypothesis information to help
learning by means of a biased regularization. This regularization can be interpreted into two
ways: (i) when the source metric is an a priori known metric such as the identity matrix, the
objective is to infer a new metric that performs better than the source metric, (ii) when the
source metric has been learned from another domain, the formulation allows one to transfer
the knowledge from the source metric to the new domain. This last interpretation refers to a
transfer learning setting where the learner does not have access to source examples and can
only make use of the source model in the presence of few labelled data.

In our theoretical analysis we considered three di erent frameworks. First the on average
stability framework allowed us to derive an exact bound showing that with a convergence rate
in O % the learned metric will, on average over all the sizen training sets, be as good as the
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source metric. Second the uniform stability framework leads to a probabilistic generalization
bound where, given a speci ¢ loss, an empirical measure of the goodness of the source metric
can be obtained. From this we proposed an algorithm to optimally weight the source metric

in order to optimize the bound in a theoretically sound way. Third we used the Rademacher
complexity framework to address both problems of considering di erent regularization terms
and obtaining a vanishing bound, i.e. a bound which implies that learning is no longer
necessary when the source metric is the perfect t.

To further demonstrate the interest of metric hypothesis transfer learning we proposed
several examples of loss functions and regularization terms which can be used with our the-
oretical analysis. We also discussed the impact of the di erent regularization terms on the
transfer of informations between the learned metric and the source metric. Lastly we pro-
posed an empirical evaluation of our source metric weighting method. On the one hand we
considered a classic metric learning task where we showed that weighting the source metric
to minimize the bound is indeed bene cial. On the other hand, in a semi-supervised domain
adaptation task we demonstrated the good behaviour of the metric hypothesis transfer learn-
ing framework. Indeed we obtained results comparable to state of the art approaches which
fully make use of the source examples while we only have access to the source metric.

As stated in |[Kuzborskij and Orabona (2014) in another context, our results stress the
importance of choosing a good source hypothesis. Perspectives of this work include further
empirical investigations on the interest of using metric hypothesis transfer learning. In par-
ticular empirically studying the impact of the regularization on the transferred informations
between the source and learned metric could be of interest. Here we considered the case
where we have a single source metric. One interesting perspective could be to consider more
complex strategies to learn! and, for example, to study the multi-source case where several
source metrics are available at once. Note that one of the main limitations of this work is the
fact that we did not manage to obtain a vanishing bound highlighting an empirical goodness
criterion for the source metric. Indeed in Section[ 4.4 we obtained an empirical criterion but
the bound is not a vanishing one while in Sectiorj 46 we obtained a vanishing bound but the
associated goodness criterion is theoretical in the sense that it cannot be computed. Hence a
perspective could be to develop a vanishing bound with empirical goodness. It would imply
obtaining a theoretically sound way to choose the source metric. Furthermore it would prob-
ably give further insights on the trade-o between goodness of the source metric and number
of examples.

In the rst part of this thesis we have been interested in learning in the presence of an
auxiliary metric serving as a reference during the learning process. On the one hand in
Chapter [3 we studied the case where this metric is only available through its values and we
want to learn a good approximation. On the other hand in Chapter[4 we considered that this
metric is accessible through its parameters matrix and that it can help us learning a better
metric for a given task. In other words in this rst part we constrained the learned metric to
have a behaviour similar to the reference metric. Hence we implicitly, through the reference
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metric, controlled the behaviour of the learned metric. In the next part of this thesis we
propose to address the problem of explicitly controlling the behaviour of a metric. To this
end in Chapter [§ we propose a new metric learning framework based on virtual points. In
other words instead of learning a metric based on similarity constraints between examples we
propose to explicitly control the target position of the examples by bringing them closer to
these virtual points.
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Chapter 5

Regressive Virtual Metric Learning

This chapter is based on the following publication

Michael Perrot and Amaury Habrard. Regressive virtual metric learning. In Advances in Neural
Information Processing Systems (NIPS-15) pages 1810{1818, 2015c

Abstract

In this chapter we are interested in supervised metric learning of Mahalanobis like
distances. Existing approaches mainly focus on learning a new distance using similarity
and dissimilarity constraints between examples. Here instead of bringing closer examples
of the same class and pushing far away examples of di erent classes we propose to move
the examples with respect to virtual points. Hence, each example is brought closer to an
a priori de ned virtual point reducing the number of constraints to satisfy and explicitly
controlling the expected behaviour of the metric for each example. We show that our
problem admits a closed form solution which can be kernelized. We provide a theoretical
analysis proving the generalization ability of the metric learned with our approach and
establishing some links with other classic metric learning methods. Furthermore we pro-
pose an e cient solution to the di cult problem of selecting virtual points based in part
on recent works in optimal transport. Lastly, we evaluate our approach on several state
of the art datasets.

5.1 Introduction

Most of the existing approaches in metric learning use constraints of type must-link and
cannot-link between learning examples (See Sectidn 2.3). For example, in a supervised clas-
si cation task, the goal is to bring closer examples of the same class and to push far away
examples of di erent classes. The idea is that the learned metric should a ect a high value
to dissimilar examples and a low value to similar examples. Then, this new distance can be
used in a classi cation algorithm like a nearest neighbour classi er. Note that in this case the

117
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(a) classic must-link cannot-link approach. (b) Our virtual point-based regression formulation.

Figure 5.1: Arrows denote the constraints used by each approach for one particular example
in a binary classi cation task. The classic metric learning approach in Figure uses
O(n?) constraints bringing closer examples of the same class and pushing far away examples
of dierent classes. On the contrary, our approach presented in Figur) moves the
examples to the neighborhood of their corresponding virtual point, in black, using onlyO(n)
constraints.

set of constraints is quadratic in the number of examples which can be prohibitive when the
number of examples increases. One heuristic is then to select only a subset of the constraints
but selecting such a subset is not trivial.

In this chapter, we propose to consider a new kind of constraints where each example is
associated with an a priori de ned virtual point. It allows us to consider the metric learning
problem as a simple regression where we try to minimize the di erences between learning
examples and virtual points. Figure [5.1 illustrates the dierences between our approach
and a classic metric learning approach. It can be noticed that our algorithm only uses a
linear number of constraints. However de ning these constraints by hand can be tedious and
di cult. To overcome this problem, we present two approaches to automatically de ne them.
The rst one is based on some recent advances in the eld of optimal transport while the
second one uses a class-based representation space.

Moreover, thanks to its regression-based formulation, our approach can be easily kernelized
allowing us to deal e ciently with non linear transformations which is a nice advantage in
comparison to some metric learning methods. We also provide a theoretical analysis showing
the generalization ability of the metrics learned with our approach and establishing some
relationships with a classic metric learning formulation.

This chapter is organised as follows. In Sectiof 5|2 we present our framework to learn a
metric when the virtual points are known. Then in Section [5.3 we address the problem of
selecting these virtual points. In Sectior{ 5.4 we theoretically analyse our approach by deriving
a generalization bound and by showing some links with a classic metric learning approach.
In Section [5.5 we empirically demonstrate the interest of our approach. We conclude in
Section[5.6.

5.2 Learning a Metric Using Virtual Points

The main idea behind our algorithm is to bring closer the learning examples to a set of virtual
points. Here we assume that we have access to a set wflearning pairs (x,v) where x is a
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learning example andv is a virtual point associated to x. We present both the linear and
kernelized formulations of our approach called Regressive Virtual Metric Learning (RVML).
It boils down to solve a regression in closed form, the main originality being the introduction
of virtual points.

Given a probability distribution Dt dened over X Y whereX RYandY is a nite
label set, let T = f(xi;yi)glL; be a set of examples drawn i.i.d. fronDy. Letfy : X Y !V
whereV  R® is the space of virtual points, be the function which associates each example
to a virtual point. We consider the learning set V = f(x;vi)gL,; wherev; = fy(x;;y;). We
denote by Dy the probability distribution de ned on X V obtained from the distribution
Dt after applying fy, i.e. Prp,(X;v) = Prp, (X;yjv = fy(x;y)). Thus it is equivalent to
obtain the set of examplesV = f(x;;vi)gL, from T after applying fy and to draw V i.i.d.

matrices containing respectively one example and its associated virtual point on each line.

We consider that the function fy is known. We come back to its de nition in Section[5.3.
Our goal is to learn a Mahalanobis distance through its linear transformation interpretation
(Section[1.4). More precisely we want to learn the linear transformation matrix L such that
M = LL T. We consider the following optimisation problem:

argminCy (L) + kLK2 (5.1)
L2Rd d°

where 'y (L) is the empirical risk de ned as follows:

1

Cvv)= = L(L;(x;v))
(x;v)2Vv
with 1 (L;(x;v))= x'L vT ; Note that we can also write the empirical risk in matrix
form:
Cy(L)= © 2
v(L) = ﬁkXL Vkg . (5.2)

We also de ne the true risk of a matrix L as:

Lv(L) = E I(L;(x;Vv)). (5.3)

(x;v)D v

The idea is to learn a new space of representation where each example is close to its
associated virtual point. Note that L is ad d°matrix and if d® < d we also perform
dimensionality reduction.

Theorem 5.1 (Optimal solution of Problem (5.1)) . The optimal solution of Problem (5.1)
can be found in closed form. Furthermore, we can derive two equivalent solutions:

XTX + nl 'XxTv (5.4)

XT xxT+n1 'v. (5.5)

Lv
: Lv



120 Chapter 5. Regressive Virtual Metric Learning

Proof. The proof of this theorem can be found in AppendixD.]. O

From Equation (b.4) we deduce the matrix M y :

1

My =LyLl = XTX+ ni *XTWTX XTX+ nl (5.6)

Note that My is PSD by construction:

2

x"Myx =xTLyLyx= Lyx , O
So far, we have focused on the linear setting. We now present a kernelized version,

showing that it is possible to learn a metric in a very high dimensional space without an

explicit projection.

Let (x) be a projection function and k(x;x9 = (x)T (x9 be its associated kernel
(Section[1.4). For the sake of readability, letk x = x % where x =( (x1);:::; (Xa)".

We also de ne V the kernelized version ofV. Given the solution matrix Ly presented in
Equation (b.5), we have:

My=XT XXT+nl *WT xxT+nl 'X.
Then, My, the kernelized version of the matrixM v is de ned such that:

My, = xKx+nlD)*WT(Kg+nl)?! x.

k
The squared Mahalanobis distance can be written as:
d x;x% = xTMx + xTMx © 2xTMx © (5.7)
Thus we can obtain:
i, 00: X% = 00TMy 0+ x° ™y, x° 2()TMy X° (5.8)

the kernelized version by considering that:

)My, )= )7 TKx+nl) 'WTKx+nl) ' x x) (5.9
= ki (Kx + n 1) "W T (Kx + nl) Tkxx (5.10)

to k.
Note that it is also possible to obtain a kernelized version ofLy, :

Lv, = X (Kx+nl)tv.

This result is close to a previous one already derived ih Cortes et al| (2005) in a structured
output setting. The main di erence is the fact that we do not use a kernel on the output
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(the virtual points here). Hence, it is possible to compute the projection of an examplex of
dimensiond in a new space of dimensiord®

Ly = ()T kX (Kx+ nl) tv
kxx (Kx + nl) tv.

to k. Recall that we are interested in learning a distance between examples and not in the
prediction of the virtual points which only serve as a way to bring closer similar examples
and push far away dissimilar examples.

In this section we presented our linear and kernelized metric learning approaches when the
virtual points are given. If these points could be chosen by hand, we believe that an automatic
solution would be preferable. We propose to address this problem in the next section.

5.3 Choosing the Virtual Points

Previously, we assumed to have access to the functioih, : X Y 'V . In this subsection, we
present two methods for generating automatically the set of virtual points and the mapping

fv.

5.3.1 Using Optimal Transport on the Learning Set

In this rst approach we propose to generate the virtual points associated to the examples of a
training set T as follows. First we use a variation of the landmark selection method proposed
in Kar and Jain|(2011) to choose inT a setT%of n°landmarks. Then we use a recent variation

of the optimal transport problem proposed by|Courty et al.|(2014b) to associate each example

X
W (ij) = 1. (5.11)

i
The virtual points are then de ned as a weighted combination of the landmarks. Let X °be
the matrix form of TC for an examplez; 2 T we de ne fy as:

fu(xisyi) = W (i; )X° (5.12)

In the following we present our landmark selection method based on the work of Kar and
Jain| (2011) and the variation of the optimal transport problem (Courty et al.,| 2014b) that
we consider.

Landmark Selection

To select the setT°we propose an adaptation of the selection method of Kar and Jain (2011)
allowing us to take into account some diversity among the landmarks. Our approach is a
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fully automatic procedure and is summarized in Algorithm [2 and works as follows. First
we assume without loss of generality that the examples are centred i and we select as
the rst landmark the example z 2 T furthest from 0. Each new landmark is selected as
the examplez 2 T with the largest minimum distance with the landmarks in T% To avoid
explicitly choosing the number of landmarks we propose to stop the selection process under
two conditions:

the number of landmarks is greater than the number of classes,

the maximum distance between an example and a landmark is lower than the mean of
pairwise distances between all the examples of .

input T = f(Xj;yi)gL; a set of examples)Y the label set.
output : T%a subset of T

begin

= mean of distances between all the examples of

Xmax = argmax kx 0k,
x2T

TO= fXmax9
T=TnT®

"=max min x x° )
x2T x02T0O

while jTY < jYjor g do

Xmax = arg max X X
X2T  yop70

TO= TO[f XmaxQ

T=TnTO

"=max min x x° X
x2T x0270

0
2

end

end
Algorithm 2:  Selecting T®from a set of examplesT .

Optimal Transport

Assume that you have an input distribution and an output distribution, the goal of optimal
transport (Villani, 2008) is to align the two distributions at a minimal cost. We come back
to this general problem in Section[6.2 and instead we consider a particular case of discrete
optimal transport where the idea is to transport the examples of an input setT toward the
examples of an output setT®at a minimal cost. Here we start by presenting the solution to
this problem proposed by, Courty et al. (2014b) before explaining how we use it to associate
the training examples to the landmarks.

In the particular case of discrete optimal transport we assume that each example inm
has a mass of% where n is the number of examples inT. Similarly each example inT® has
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a mass Ofﬁlg. We also consider that we have a cost matrixC 2 R "® where each entry
C(i;j ) represents the cost of moving examplex; 2 T toward example x? 2 T% For example

we can setC(i;j ) =  X; xj0 , The goal is then to learn a weight matrix 2 R? " which
minimizes the transport costh ;Ci. between the two sets. Note that this matrix should take

into account the mass associated with each example, i.e. it has to respect the constraints:
: 1
8xi 2 T; (i;)1lho= o

, 1

8/ 2T5 GD)ln= 5

(5.13)

where 1,0 and 1,, are vectors of 1 of sizen®and n respectively. To learn the matrix  [Courty
et al. (2014hb) propose to use the following regularized optimization problem:

1 X X
argmin h ;Cip  =h( )+ k (yi = ¢;j)kg
2R "° i c
. 1
s.t. 8% 2 T; (i;)1lpo= o
. 1
8x)2 TS (;j)1n= o
The two regularization terms have di erent objectives.

L1h( )whereh( )= ij (i:7)log( (i;])) is the entropy of gamma: this regular-
ization term has been proposed by Cuturi (2013b). It allows one to solve the trans-
portation problem more e ciently by using the Sinkhorn-Knopp algorithm (Knight,
2008). Furthermore by setting the value of the parameter it is possible to control the
sparsity of the matrix . On the one hand if the matrix is sparse it implies that each
example from T will be associated to a small number of examples iT% On the other
hand if the matrix is full it implies that each example from T will be associated to each
example in T2

P
j K o(yi = c;j)kg where (yi = c;j) corresponds to the lines of thej " column

of where the class of the input isc: this term has been proposed by Courty et al.
(2014b). Its goal is to prevent input examples of di erent classes to move toward the
same output examples by promoting group sparsity in the matrix . This is done thanks
to the functions k kg corresponding to a’ q-norm to the power of p used here withq=1
andp= % (See the p,g-norm in Section ).

Once the matrix has been learned it is possible to compute the image; of an input example
X; 2 T as follows:

Ri = n® (i;)x° (5.14)
where X %is tiﬂ)e matrix form of TPwith one example per line. In this case multiplying by n°

ensures that j (i;j ) =1 and thus the image R; can be seen as a linear combination of the
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output examples. Note that the transport might imply non linear transformations of the input
space. Indeed there is no guarantee that there exists a matriX such that 8x; 2 T;%; = TX;.

Here we propose to use this optimal transport approach to learn the matrix between
the learning examplesT and the landmarks T® We then obtain the weight matrix used to
compute the virtual points as W = n® . Note that in this case our metric learning approach
can be seen as a an approximation of the result given by the optimal transpoﬁ

5.3.2 Using a Class-based Representation Space

For this second approach, we propose to de ne virtual points as the unit vectors of a space
of dimensionjYj, i.e. the number of classes in the problem. Let; 2 R be such a unit
vector (1 j jYj ), i.e. a vector where all the attributes are O except for one attribute j
which is set to 1, to which we associate a class label frond. In this case the e vectors can
also be seen as the vertices of a standargY(j 1)-simplex. For any learning example &;; Vi),
we de ne fy(Xi;yi) = exy, where #y; = | if g is mapped with the classy;. Thus, we have
exactly jYj virtual points, each one corresponding to a unit vector and a class label.

We call this approach the class-based representation space method. If the number of
classes is smaller than the number of dimensions used to represent the learning examples,
then our method will also perform dimensionality reduction. Furthermore, our approach will
try to project all the examples of one class on the same axis while examples of other classes
will tend to be projected on di erent axes. The underlying intuition behind the new space
dened by Ly is to make each attribute discriminant for one class. The interest of this
approach is illustrated in Figure [5.2.

In this section we proposed two methods to de ne the virtual points but other approaches
could be considered. For example Kusner et al.| (2014) proposed a solution to compress
a dataset by considering only a small number of examples in order to speed up nearest
neighbours classi cation. Using this compressed dataset could be a way to de ne virtual
points which summarize well the behaviour of the examples in each class. In the next section
we show that our approach is theoretically founded.

5.4 Theoretical Analysis

In this section, we propose to theoretically show the interest of our approach by proving that
the learned metric generalizes well, Sectiofi 5.4.1, and that it is possible to link it to a more
classic metric learning formulation, Section[5.4.P.

5.4.1 Generalization Bound

In this section we show that a metric learned with Problem (5.1) generalizes well. To this
extent we use the uniform stability framework presented in Sectior{ 1.B. In the following we

YIn Chapter Ewe elaborate upon this idea by jointly learning the metric and the optimal transport.



5.4. Theoretical Analysis 125

assume thatkxk, By and kvk, B,. Before proving that our approach is uniformly
stable we start by presenting two lemmas showing that our loss is bounded ané-lipschitz

continuous (De nition

Lemma 5.1 (Bounded loss function). Let Ly be the metric learned with Problem(5.1) with
training set V, we have that for any examplgx;v) D y:

I(Lv;(x;v)) B

2
with B = BZ 1+ Fx
Proof. The proof of this lemma can be found in Appendix[D.2. O

Lemma 5.2 (k-lipschitz continuity) . Our loss is k-lipschitz with k = 2B, By 1+ Bx .

Proof. The proof of this lemma can be found in Appendix[D.3. O
We can now show that our algorithm is uniformly stable (De nition 1.3).

Lemma 5.3 (Uniform stability) . Our algorithm has a uniform stability in = 852755 1+ Bx

Proof. The proof of this lemma can be found in Appendix[D.4. O

We can now prove our generalization bound.

Theorem 5.2 (Generalization bound). Let kvk, By for any v 2 V and kxk, By for
any x 2 X . Let Ly be the optimal solution of Problem(5.1). With probability 1 we have:
1 S
"~ Int

o

By 2 16B2 2

Lu(Ly)  By(Lv)+ 1+ B+ +1 B2 1+ pE

8B2B2
n

Proof. This theorem is a direct application of Theorem[1.1 (Bousquet and Elissee | 2002b)
using the bound on the loss presented in Lemm@a 51 and the uniform stability of our algorithm
proven in Lemmal[5.3. O

We obtain a rate of convergence inO p% which is standard with this kind of bounds.

Kernelized case Recall that in the linear case we assumed thakxk, By. In the ker-
nelized case, we only have to boundt (x)k, where is the projection function associated to
the used kernel. A common assumption|(Audi ren and Kadri, 2013) when studying kernels
isthat 9 such that 0 < < 1 and k(x;x) 2. Hence, we havek (x)ki 2. Thus
setting Bx =  allows us to use the same proof than in the linear case leading us to the same
generalization bound (the only di erence being the value ofBy).
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5.4.2 Link with a Classic Metric Learning Formulation

In this section we show that it is possible to bound the true risk of a classic metric learning
approach with the empirical risk of our formulation. Most of the classic metric learning
approaches make use of a notion of margin between similar and dissimilar examples. Hence,
similar examples have to be close to each other, i.e. at a distance smaller than a margin

1, and dissimilar examples have to be far from each other, i.e. at a distance greater than a
margin 1. Let (x;y) and (x%y9 be two examples fromX Y , using this notion of margin,
we consider the following loss|(Jin et al., 2009):

LLs 06 y); (X%y9) = yyo(d? LT;LTXO o), (5.15)

where yo=1if y = y®and 1 otherwise, yyo= 1 if y = y?and i otherwise andd
is the standard euclidean distance. The latter is the desired margin between examples. As
introduced before, we consider that o takes a big value when the examples are dissimilar,
i.e. when yyo= 1, and a small value when the examples are similar, i.e. when,o = 1.

In the following we set, up to some constants, the margin between similar examples as the
maximum distance between two virtual points associated to the same class and the margin
between dissimilar examples as the minimum distance between two virtual points associated
to di erent classes. Then we show that it is possible to bound, up to a constant factor, the
true risk associated with the previous loss by the empirical risk of our approach.

Theorem 5.3 (Link with a classic metric learning approach). Let Dt be a distribution over
X Y .LetV R%pea nite set of virtual points and fy is dened asfy(x;y)= v, v 2V.
Letkvk, By foranyv 2V andkxk, By foranyx 2X. Let 1 =2maxXyoy=yokv v(kg
and 1= %minx;xo;yg yo kv v‘kg. Let Ly be the optimal solution of Problem@), we have
with probability 1

2 1 Ty.| TyO
(x;y);(xgyO)D T yye(d” LyxiLyx o) .
0 e
ByBY By 16B% B, 2 Inl
S@Cv(LV)+8;,] X 1+p= + 6x+l B2 1+ p= E)A

Proof. First of all, let us consider two examplesx and x°and their associated virtual points
v and v°
Using the fact that distances respect the triangle inequality, one can obtain:

dLyx;LIx® dLyx;v +dv;v® +dveL{x?.
Then squaring both sides of the inequality gives:
d? LUx;LYx%  d? Lix;v +d? v;v0 + d? veL]xO
+2(d Lyx;v +dveLIx%)d v;v® +2d L{x;v d v&LIxO .
Finally, using Legendre identityE] twice, we obtain:

d? Lyx;Lyx%  4d? Lix;v +2d? v;v0 +4d? veLIxO .

2| egendre identity is (a+ b)> (a b)? = 4abfrom which we deducea® + ¥  2ab.
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Similarly, switching the role of d L{,x;L{x° and d(v;v9 we have:
d? v;v?  ad? Lyx;v +2d? LIx;L{x° +4d? veL]x°
1
, d Lyx;LIx%  2d? Lix;v +2d? veLIx®  Z=d? v;v®
1
, d? Lyx;LIx%  4d? Lix;v +4d2 veLIx?  Z=d? v;v°
Now, let us considerx and x°two examples of the same class, i.e.yy0 = 1, we have:
wo(d® LUX;Lyx® o) , = d? Lyx;LIx® 1,
A4d? LV x;v +4d? veLIx% +2d? v;v° 1,
(1 2d?(v;v9.)
4d? LIx;v +4d? veLTx0 . (5.16)
Similarly, we considerx and x°two examples of di erent classes, i.e. yyo= 1, and we
obtain:
wo(d LYx;Lyx? o), = 2 LixLIx®+ 1,
1
ad? LY x;v +4d? veL]x° éd2 vivl +

+
(1 3d%(v;v9)
Ad? Ly x;v +4d? veLIxO . (5.17)

Noting that we obtain the same inequality for similar and dissimilar examples and taking
the expectation on both sides gives:

h

i
E d?® LY x; LT x° 518
(xy)i(x%y9 D 7 el v v yy") + ( )
oo p o A LUV +Ad VELYX
X;y)i(X®y T
= 4 Lyx;v o+ E 4 veL]xO
(:y)i(x%y9) D 1 (Xy):(x%9) D 1
=8 E dLixyv
(xy)D 1
=8Lv(Lv).

Applying Theorem 5.2 to the last inequality gives the theorem. O

In Theorem [5.3, we can notice that the margins are related to the distances between
virtual points and correspond to the ideal margins, i.e. the margins that we would like to
achieve after the learning step. In practice, we can also de ne{*and ~ ; the observed margins
obtained after the learning step. All the similar examples are in a sphere centred in their
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corresponding virtual point and of diameter A, = 2max ..oy X'Ly VT . Similarly, the
distance between spheres of dissimilar examples is £ = min .yoygyokv v(k2 . As a
consequence, even if we do not use cannot-link constraints, our algorithm is able to push
reasonably far away dissimilar examples by minimizing the diameter of the sphere around
similar examples.

In this section we have shown that the metrics learned by our algorithm generalize well
and that our method can be theoretically linked to a classic metric learning approach. In
the next section we empirically show the interest of our approach for several classi cation
problems.

5.5 Experiments

In this section we propose an empirical evaluation of our method. On the one hand in
Subsectiorf 5.5.1 we compare it to several methods on a task of metric learning for classi cation
and we provide some graphics showing 2D projections of the space learned by RVML-Lin-
Class and RVML-RBF-Class on one dataset illustrating the capability of these approaches to
learn discriminative attributes. On the other hand in Subsection[5.5.2 we further study the
interest of explicitly choosing the virtual points using the methods presented in Sectiorj 5]3.

In all these experiments we consider 13 di erent datasets coming from either the UCI
Lichman| (2013) repository or used in recent works in metric learning Kedem et al.|(2012);
Shi et al| (2014); |Bellet et al, (2012). For isolet, splice and svmguidel we have access to
a standard training/test partition, for the other datasets we use a 70% training/30% test
partition, we perform the experiments on 10 di erent splits and we average the result. We
normalize the examples with respect to the training set by subtracting for each attribute its
mean and dividing by 3 times its standard deviation. We set our regularization parameter

with a 5-fold cross validation on the training set. After the metric learning step, we use
a l-nearest neighbour classier to assess the performance of the metric and we report the
accuracy obtained. Note that we also report the mean accuracy over the 13 tasks. Even if
we are conscious that the di erent datasets consider di erent classi cation problems, it gives
a rough idea of the global performance of the compared approaches.

5.5.1 Metric Learning for Classi cation

Here we consider the problem of learning a metric for a classi cation task. We consider two
sets of experiments. In the rst set we consider our linear formulation used with the two
virtual points selection methods presented in this chapter, namely RVML-Lin-OT based on
optimal transport (Section and RVML-Lin-Class using the class-based representation
space method (SectioZ). We compare our two approaches to three baselines:

1-NN: A 1-nearest neighbour classi er without metric learning,
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LMNN (Weinberger et al., 2005),
SCML (Shi et al.} 2014).

In a second set we consider the kernelized versions of RVML, namely RVML-RBF-OT and
RVML-RBF-Class, based respectively on optimal transport and class-based representation
space methods with a RBF kernel with the parameter xed as the mean of all pairwise
training set euclidean distances|(Kar and Jain| 2011). We compare them to non linear methods
using a KPCA with a RBF kernel[f] as a pre-process. The number of dimensions is xed as the
one of the original space for high dimensional datasets (more than 100 attributes), to 3 times
the original dimension when the dimension is smaller (between 5 and 100 attributes) and to
4 times the original dimension for the lowest dimensional datasets (less than 5 attributes).
We also consider some local metric learning methods. Hence we compare our approach with
4 non-linear baselines:

1-NN-KPCA: A 1-nearest neighbour classi er in the KPCA space without metric learn-
ing,

LMNN-KPCA: LMNN in the KPCA-space,

GB-LMNN: A non linear version of LMNN(Kedem et al., 2012),

SCMLLOCAL: The local version of SCML(Shi et al.| 2014).

For all the baselines (linear and non linear), we use the implementations available online
letting them handle hyper-parameters tuning.

The results for linear methods are presented in Tabl¢ 5]1 while Tablg 5]2 gives the results
obtained with the non linear approaches. In each table, the best result on each line is high-
lighted with a bold font while the second to best result is underlined. A star indicates either
that the best baseline is signi cantly better than our best result or that our best result is
signi cantly better than the best baseline according to classic signi cance tests (the p-value
being xed at 0:05).

We can make the following remarks. In the linear setting, our approaches are very com-
petitive with state of the art approaches and RVML-Lin-OT tends to be the best on average
even though SCML also performs very well on some datasets (the di erence is not signi cant).
RVML-Lin-Class performs slightly less on average. Considering now the non linear methods,
our approaches improve their performance and are signi cantly better than the others on
average, RVML-RBF-Class has the best average behaviour in this setting. These experiments
show that our regressive formulation is very competitive and is even able to improve state of
the art performances in a non linear setting.

Considering the virtual points selection, we can observe that the OT formulation performs
better than the class-based representation space one in the linear case, while it is the opposite

Swith the  parameter xed as previously to the mean of all pairwise training set euclidean distances.
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Table 5.1: Comparison of our approach with several baselines in the linear setting. The best
result is highlighted with a bold font while the second to best result is underlined. A star
indicates that the best result for the baseline is signi cantly better than our best result or

that our best result is signi cantly better than the best baseline result.

| I Baselines I Our approach ‘
| Base | 1-NN [ LMNN [ SCML | RVYML-Lin-OT [ RVML-Lin-Class |
Amazon 4151 3.24 65.50 2.28 71.68 1.86 71.62 1.34 73.09 2.49
Breast 95.49 0.79 95.49 0.89 96.50 0.64 * 9524 1.21 95.34 0.95
Caltech 18.04 2.20 49.68 2.76 52.84 1.61 5251 241 55.41 2.55*
DSLR 29.61 4.38 76.08 4.79 65.10 9.00 7471 5.27 75.29 5.08
lonosphere | 86.23 1.95 88.02 3.02 90.38 2.55* 87.36 3.12 82.74 281
Isolet 88.97 95.83 89.61 91.40 94.61
Letters 94.74 0.27 | 96.43 0.28 * 96.13 0.20 90.25 0.60 95,51 0.26
Pima 69.91 1.69 70.04 2.20 69.22 2.60 70.48 3.19 69.57 2.85
Scale 78.68 2.66 78.20 191 93.39 1.70* 90.05 2.13 87.94 1.99
Splice 71.17 82.02 85.43 84.64 78.44
Svmguidel 95.12 95.03 87.38 94.83 85.25
Wine 96.18 159 98.36 1.03 9691 1.93 98.55 1.67 98.18 1.48
Webcam 4290 4.19 85.81 3.75 90.43 2.70 88.60 3.63 88.60 2.69
mean 69.89 82.81 83.46 83.86 83.07

Table 5.2: Comparison of our approach with several baselines in the non linear case. The
best result is highlighted with a bold font while the second to best result is underlined. A
star indicates that the best result for the baseline is signi cantly better than our best result

or that our best result is signi cantly better than the best baseline result.

‘ H Baselines | Our approach

| Base | INN-KPCA | LMNN-KPCA | GBLMNN [ SCMLLOCAL | RVYML-RBF-OT | RVML-RBF-Class |
Amazon | 20.27 2.42] 53.16 3.73 | 6553 2.32] 69.14 1.74 | 7351 0.83 76.22  2.09*
Breast | 92.43 2.19| 9539 1.32 | 9558 0.87| 96.31 0.66 | 9573 0.97 95.78  0.92
Caltech | 20.82 8.29] 29.88 10.89 | 4991 2.80| 5056 1.62 | 54.39 1.89 57.08 2.22*
DSLR | 64.90 581| 7392 757 | 76.08 4.79| 6255 6.94 | 70.39 4.48 76.67 4.57
lonosphere| 75.57 2.79| 85.66 2.55 | 87.36 3.02| 90.94 3.02 | 90.66 3.10 93.11 3.30*
Isolet 68.70 96.28 96.02 91.40 95.96 96.73
Letter | 95.39 0.27]97.17* 0.18] 9651 0.25| 96.63 0.26 | 91.26 0.50 96.09 0.21
Pima | 69.57 2.64| 69.48 2.04 | 69.52 227| 6840 275 | 69.35 2.95 70.74 2.36
Scale | 78.36 0.88| 88.10 2.26 | 77.88 2.43| 93.86 1.78 | 9519 1.46* 94.07 2.02
Splice 66.99 88.97 82.21 87.13 88.51 88.32
Svmguidel| 95.72 95.60 95.00 87.40 95.67 95.05
Wine 92.18 1.23| 9582 298 | 98.00 1.34| 9655 2.00 | 98.91 1.53 98.00 1.81
Webcam | 7355 4.57| 8452 3.83 | 8581 3.75| 88.71 2.83 | 88.71 4.28 88.92 2091
mean 70.34 81.07 82.72 83.04 85.25 86.74
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in the non linear case. We think that this can be explained by the fact that the OT approach
generates more virtual points in a potentially non linear way which brings more expressiveness
for the linear case. On the other hand, in the non linear one, the relative small nhumber of
virtual points used by the class-based method seems to induce a better regularization.

To illustrate the capability of RVML-Lin-Class and RVML-RBF-Class to learn discrimi-
native attributes we propose to select two dimensions out of the 26 of the space learned by
these approaches on the isolet dataset. We selected 3 pairs of axis and the images obtained
are presented in Figurg 5.2. On the same line, we plot two images corresponding to the same
axis pair: on the left column for RVYML-Lin-Class and on the right column for RVML-RBF-
Class. Note that for each axis, there is only one class for which the value of the attribute
tends to be 1, for all the other classes this feature tends to be 0. Furthermore, we can note
that the kernelized version of our metric outputs a more discriminative space: the examples
are brought closer to their corresponding virtual point than in the linear version.

5.5.2 Interest of Explicitly Choosing Virtual Points

In the previous subsection we have seen that our approach is very competitive. Here we
demonstrate the interest of explicitly choosing the virtual points.

Class based virtual points In Globerson and Roweis |(2005) the authors propose to col-
lapse similar examples on a single point, an implicit virtual point, while pushing far away
dissimilar examples. This behaviour can, in fact, be achieved by any margin based metric
learning approach by setting the margin between similar examples to 0 and the margin be-
tween dissimilar examples to a high value. Thus to illustrate the interest of using explicit
virtual points, we propose to compare our approach to Information Theoretic Metric Learning,
ITML (Davis et al.,| 2007), when considering the aforementioned margins (ITML-Collapse).
For the sake of completeness we also consider ITML with tuned margins (ITML). The results
are presented in Table[5.B and show that, on average, ITML-Collapse and ITML are less
accurate than RVML-Lin-Class hinting that considering explicit virtual points is better than
considering implicit ones but also that learning a metric where each axis is discriminative is
indeed bene cial for classi cation.

Optimal transport based virtual points To further assess the interest of using our OT
based formulation to select virtual points and associate them to examples, we propose to
compare it with a random based approach (Random). In this latter setting, we randomly
select a subset of examples for each class to act as virtual points and we randomly associate
each example of this class to these virtual points. The results in the linear case are presented
in Table 5.4 while the results in the non linear case are presented in Tablg 5.5. Overall,
randomly selecting the virtual points is less accurate than using the OT based formulation.
This is especially true in the linear case where the metric is less expressive than in the
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Figure 5.2: In the learned space from the isolet dataset, we randomly select 2 attributes three
times and plot the 2D projection on each pair. The rst line corresponds to features 1 and

20, the second line to features 7 and 14 and the third line to features 2 and 23. The left
column corresponds to the space learned by RVML-Lin-Class (linear) and the right column

to the one learned by RVML-RBF-Class (non linear).
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Table 5.3: Comparison between a method with explicit virtual points (RVML-Lin-Class) and
a method with implicit virtual points (ITML-Collapse). The best result is highlighted with
a bold font.

Base | RVML-Lin-Class | ITML-Collapse |  ITML |
Amazon 73.09 249 5797 3.36 | 6591 264
Breast 9534 0.95 | 9456 141 [9549 115
Caltech | 5541 255 | 37.34 201 | 47.31 275
DSLR 7529 508 | 7725 415 | 77.25 491

lonosphere| 82.74 281 | 8575 623 |88.11 168

Isolet 94.61 74.53 92.88
Letters 9551 0.26 | 9567 0.30 | 95.00 0.64
Pima 69.57 285 | 71.08 213 | 70.26 1.38
Scale | 87.94 199 | 8751 439 | 87.67 271
Splice 78.44 66.80 71.49

Svmguidel 85.25 94.62 95.00

Wine 98.18 148 | 8591 3.74 | 9691 1.93
Webcam | 88.60 2.69 | 97.64 243 | 86.56 2.88
mean 83.07 78.97 82.30
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Table 5.4: Comparison of our OT based formulation to a random selection approach when
learning a linear metric. The best result is highlighted with a bold font.

] \ OT based approach| Random \

’ Base \ RVML-Lin-OT \ 1 VP per class| 2 VP per class| 5 VP per class‘
Amazon 7162 1.34 7423 215 | 7292 231 | 7031 2.82
Breast 9524 1.21 95.34 0.95 | 9529 132 | 9490 1.92
Caltech 5251 2.41 55.09 2.38 | 53.63 2.12 | 4959 1.69
DSLR 74.71  5.27 7059 6.06 | 6353 5.08 | 52.16 8.68
lonosphere 87.36 3.12 82.74 281 | 88.40 4.05 | 90.28 3.33
Isolet 91.40 92.75 94.16 92.43
Letters 90.25 0.60 89.90 1.02 | 9054 1.24 | 91.13 0.74
Pima 70.48 3.19 69.57 2.85 | 69.35 244 | 69.26 2.60
Scale 90.05 2.13 88.10 257 | 89.47 299 | 89.21 2.68
Splice 84.64 78.44 78.94 80.87
Svmguidel 94.83 85.25 86.90 94.70
Wine 98.55 1.67 9855 1.43 | 97.64 243 | 98.00 1.34
Webcam 88.60 3.63 88.92 3.21 | 86.24 295 | 81.18 3.56
mean 83.86 82.27 82.08 81.08

kernelized case and thus requires more meaningful virtual points. Hence, selecting virtual
points and correctly associating them to the examples is key to obtain a good performance.

5.6 Conclusion

In this chapter we presented a new metric learning approach based on a regression and
aiming at bringing closer the learning examples to some a priori de ned virtual points. The
number of constraints has the advantage of growing linearly with the size of the learning set
in opposition to the quadratic grow of standard must-link cannot-link approaches. Moreover,
our method can be solved in closed form and can be easily kernelized allowing us to deal
with non linear problems. Additionally, we proposed two methods to de ne the virtual
points: one making use of recent advances in the eld of optimal transport and one based
on unit vectors of a class-based representation space allowing one to perform directly some
dimensionality reduction. Theoretically, we have shown that the metrics learned with our
approach generalize well and that we are able to link our empirical risk to the true risk of a
classic metric learning formulation. Finally, we empirically show that explicitly choosing the
virtual points is important and that our approach is competitive with the state of the art in

the linear case and outperforms some classic approaches in the non linear one.
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Table 5.5: Comparison of our OT based formulation to a random selection approach when

learning a non linear metric. The best result is highlighted with a bold font.

|

\ OT based approach|

Random

] Base \ RVML-RBF-OT \ 1 VP per class| 2 VP per class| 5 VP per class\
Amazon 73.51 0.83 75.74 235 | 72.68 2.02 70.07 2.86
Breast 95.73 0.97 95.73 1.07 | 95.83 0.80 | 95.58 1.38
Caltech 54.39 1.89 58.33 2.05 | 5398 3.18 | 50.35 1.89
DSLR 70.39 4.48 65.29 7.51 | 58.24 7.79 | 48.82 8.03
lonosphere 90.66 3.10 90.57 3.05 | 89.25 3.73 | 90.38 3.26
Isolet 95.96 96.99 96.54 95.25
Letters 91.26 0.50 91.77 043 | 9187 0.52 | 92.04 0.62
Pima 69.35 2.95 70.82 4.60 | 71.26 2.84 | 70.00 2.56
Scale 95.19 1.46 93.39 219 | 9196 1.69 91.32 1.95
Splice 88.51 88.37 88.46 87.22
Svmguidel 95.67 95.03 95.55 95.88
Wine 98.91 153 97.82 188 | 97.27 196 | 97.82 1.67
Webcam 88.71 4.28 87.31 299 | 8301 328 | 76.67 4.78
mean 85.25 85.17 83.53 81.65
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We think that this work opens the door to design new metric learning formulations, in
particular the de nition of the virtual points can bring a way to control some particular
properties of the metric (rank, locality, discriminative power, ...). As a consequence, this
aspect opens new issues which are in part related to landmark selection problems but also to
the ability to embed expressive semantic constraints to satisfy by means of the virtual points.
Other perspectives include the development of a speci ¢ solver, of online versions, the use of
low rank-inducing norms or the conception of new local metric learning methods. Another
direction would be to study similarity learning extensions to perform linear classi cation with
generalization guarantees on the classi er such as in Bellet et al| (2012); Balcan et al. (2008).

In this chapter we have addressed the problem of explicitly controlling the behaviour of
a metric by introducing the notion of virtual points. It allows us to design metrics with a
behaviour well tailored to the task at hand, for example classi cation. However choosing these
virtual points can be di cult and the methods proposed in Section §.3]might not always be
satisfactory. In the next chapter we propose to build upon RVML and the optimal transport
based virtual points to design a new algorithm able to learn a transformation which brings
closer two distributions in a principled way.



Chapter 6

Mapping Estimation for Discrete
Optimal Transport

This chapter is based on the following publication

Michael Perrot, Nicolas Courty, Remi Flamary, and Amaury Habrard. Mapping estimation of discrete
optimal transport. In Advances in Neural Information Processing Systems (NIPS-16)2016

Abstract

In this chapter we propose to address the problem of learning a transformation from
a Mahalanobis distance which follows some particular geometric transformations. Such
a metric could be very bene cial for domain adaptation problems where the goal is to
align the source and the target domains. Here we propose to consider geometric trans-
formations which come from the result of an optimal transport problem. Indeed it is
a reasonable procedure to align distributions and it has been shown to perform well in
domain adaptation. Most of the computational approaches of optimal transport use the
Kantorovich relaxation of the problem to learn a probabilistic coupling  between the
training examples but do not address the problem of learning the transport mapf sit
linked to the original Monge problem. Consequently, the fact that the coupling can only
be used to transform training examples and not for out of samples ones lowers the poten-
tial usage of such methods. In this chapter we propose to combine the most interesting
features of each method and we propose a new framework to estimate the transport map,
also called the mapping, of a coupling. This estimation takes the form of a matrixL
which corresponds to a new metric in the source domain. In this case we show that our
approach is similar to RVML, presented in Chapter[5, where we de ne the transformation
of the examples induced by the coupling as the virtual points for each example. However
instead of considering that this coupling is de ned a priori, we jointly learn it along the
metric. It results in a jointly convex formulation which can be e ciently optimized and
has the bene cial e ect of smoothing the result of optimal transport. Empirically, we
show the interest and the relevance of our method in two tasks, namely unsupervised
domain adaptation and image editing.

137
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6.1 Introduction

Many metric learning approaches have focused on learning a linear transformation in the
form of a Mahalanobis distance or a bilinear similarity (See SectioZ). One can notice
that these methods do not try to control this transformation with respect to some particular
geometric transformations but rather try to bring closer similar examples and push far away
dissimilar ones. However considering other kind of transformations might be relevant for some
problems. This is for example the case in domain adaptation (See Secti.5) where one has
to estimate and overcome the shift between a source and a target distribution. In this context,

a few works in metric learning have proposed to learn a metric in order to move closer source
and target instances (Saenko et al., 2010; Kulis et al|, 2011). However these methods often
require some sort of supervision to associate the examples with each other and, as mentioned
before, remain limited by the kind of constraints considered.

Among approaches able to align distributions, an interesting solution is to consider optimal
transport based methods which have recently shown their interest in domain adaptation. The
idea is to learn a transformation of the source examples such that the source and the target are
aligned. This transformation takes the form of a coupling of minimal cost between source and
target where the cost function is for example the euclidean distance between the examples.
One of the main drawbacks of using this coupling in optimal transport is that it can only
be used to map source examples which have been seen during the training process and it
is not applicable to out-of-sample examples. Hence, despite showing good performances in
practice (Courty et al.| 2014b) this approach cannot be used when new examples have to be
mapped from source to target domains.

In this chapter we propose to consider the best of both worlds by learning a transformation
whose behaviour is controlled by the transport map implied by the coupling of a discrete
optimal transport problem. Our formulation is based on a jointly convex optimization problem
which admits two appealing interpretations. One the one hand it can be seen as learning
a linear mapping regularized by an optimal transport ma;ﬂ On the other hand we can
also see the approach as the computation of the optimal transport map regularized with
respect to the de nition of a mapping. Furthermore under some mild conditions on the
set of transformations considered we will show some ties between this approach and RVML
developed in Chapter[%. This formulation can be e ciently solved thanks to an alternating
block-coordinate descent and actually bene ts the two models. On the one hand we obtain
smoother optimal transport maps which are compliant with a linear mapping usable as an
out-of-sample transformation. This learned transformation is able to take into account some
geometrical information captured by optimal transport. Another important aspect of our
contribution is that it is in fact not limited to linear mappings as it can be kernelized. In this
case it conveniently expresses non linear and out-of-sample transformations, thus enhancing
the faithfulness to the true optimal transport map. See Figure[6.1 for an illustration of our

1This optimal transport map is implied by the coupling but cannot be computed.
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Figure 6.1: lllustration of our approach on the clown dataset when learning a linear trans-
formation (top) and a non linear transformation obtained by kernelization (bottom). In both
cases we considered the same original data, depicted in the rst column, where the blue crosses
correspond to the source examples and the red crosses to the target examples. The second and
third column respectively show the couplings and the transformations jointly learned by our
approach. The fourth column demonstrates the generalization ability of the transformations

on new examples. Note that the couplings cannot be used on these examples that have not
been seen during the learning process.

method. We also provide a brief discussion on the theoretical challenges behind our approach
and we provide some empirical evidence of its interest in domain adaptation and in image
editing.

The remaining of this chapter is organized as follows. Sectioh 6.2 is dedicated to a pre-
sentation of the problem of optimal transport. In Section [6.3 we present our approach to
jointly learn the coupling and the corresponding general transformation. Sectiorj 64 presents
the optimisation scheme used to solve our formulation. Here we consider several possible
transformations showing that our approach is close to RVML. In Section 6.5 we discuss some
theoretical aspects of this work. In Sectior] 6.5 we show the good behaviour of our approach
in several experiments before concluding in Sectioh 6.7.

6.2 Optimal Transport

In this section we present the problem of optimal transport. We start by recalling several
recent approaches which successfully make use of it before formalising the problem.

In recent years optimal transport (Villani,| 2009) has received a lot of attention in the
machine learning community (e.g. (Canas and Rosasco, 2012; Cuturi, 2013a; Solomon et al.,
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2014; Frogner et al.; 2015)). This gain of interest comes from several nice properties of optimal
transport when used as a divergence to compare discrete distributions. On the one hand
it provides a sound and theoretically grounded way of comparing multivariate probability
distributions without the need of estimating parametric versions. On the other hand by
considering the geometry of the underlying space through a cost metric, it can encode useful
informations about the nature of the problem. Optimal transport is usually expressed as
an optimal cost functional but it also enjoys a dual variational formulation (Villani, 2009,
Chapter 5).

Optimal transport has been proven to be useful in several settings. As a rst example
it corresponds to the Wasserstein distance in the space of probability distributions. Using
this distance it is possible to compute means and barycentres (Cuturi and Doucet, 2014,
Benamou et all,|2015) or to perform a PCA in the space of probability measures| (Seguy
and Cuturi, 2015). This distance has also been used in subspace identi cation problems for
analysing the di erences between distributions (Mueller and Jaakkola,| 2015), in graph based
semi-supervised learning to propagate histogram labels across nodes (Solomon et al., 2014) or
as a way to de ne a loss function for multi-label learning (Frogner et al|, 2015). As a second
example optimal transport enjoys a variety of bounds for the convergence rate of empirical to
population measures which can be used to derive new probabilistic bounds for the performance
of unsupervised learning algorithms such ak-means (Canas and Rosasco, 2012). As a last
example optimal transport is a mean of interpolation between distributions (McCann,|1997)
that has been used in Bayesian inference (Reich, 2013), color transfer (Ferradans et|al., 2014)
or domain adaptation (Courty et al., 2014a).

On the computational side, one of the major gain for optimal transport is the recent
development of regularized versions that lead to e cient algorithms|Cuturi |(2013al); [Benamou
et al.| (2015);|Cuturi and Peye|(2016). Most of optimal transport formulations are based on
the computation of a (probabilistic) coupling matrix that can be seen as a bipartite graph
between the bins of the distributions. This coupling, also denoted transportation matrix
su ers from some drawbacks: it is always restricted to the data samples used to compute
this map. In other words when a new dataset (or sample) is available, one has to recompute
an optimal transport problem to deal with the new instances which can be prohibitive from
some applications in particular when the task is similar or related. From a machine learning
standpoint, this also means that we do not know how to have a good approximation of an
optimal transport map computed from a small sample that can be generalized to unseen data.
This is particularly critical when one considers large scale applications, or even medium-scales
such as image editing problems. In this chapter, we bridge this gap by learning an explicit
transformation that can be interpreted as a good approximation of the transport. As far
as we know, this is the rst approach that addresses directly this problem of out-of-sample

mapping.
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6.2.1 Formalisation

In this subsection we propose a more formal presentation of the problem of optimal transport.
We present Monge's and Kantorovich's formulations which answer the problem of nding a
map of minimal cost. We also present the notion of Barycentric mapping which corresponds
to the transformation implied by the coupling of Kantorovich's formulation. First of all let S
and T be the source and target domains respectively de ned as the distributionDg on the
spaceX S and the distribution Dt over the spaceX!. In this chapter we upper-script with s
any element associated with the source domain and witht any element associated with the
target domain.

Monge problem Let XS 2 R¥ and X! 2 RY be two separable metric spaces such that
any probability measure on XS (or X!) is a Radon measure. By considering a cost function
c: XS X U1 [0;1[, Monge's formulation of the optimal transport problem is to nd
a transform map fgr : XS ! X ! (also known as a push-forward operator) between two
probability measuresDs on X and Dt on X! realizing the in mum of the following function
z
inf c(x5;fsir (x3)) dDs(x®); fsir #Ds = Dt : (6.1)
Xs

When reaching this in mum, the corresponding map fsir is an optimal transport map. It
associates one point fromX $ to a single point in Xt. Therefore, the existence of this map
is not always guaranteed, as when for exampl®s is a Dirac and Dy is not. As such, the
existence of solutions for this problem can in general not be established whelds and Dt
are supported on a di erent number of Diracs. Yet, in a machine learning context, data
samples usually form discrete distributions, but can be seen as observations of a regular,
continuous (with respect to the Lebesgue measure) underlying distribution, thus ful lling
existence conditions (see| (Villani, 2009, Chapter 9)). As such, assuming for the existence of
fsit calls for a relaxation of the previous problem.

Kantorovich relaxation The Kantorovitch formulation of the optimal transportation Kan-

torovich| (1942) is a convex relaxation of the Monge problem. Let us de ne as the set of
all probabilistic couplings 2 P (X% X 1) the space of all joint distributions with marginals
Ds and Dt. The Kantorovitch problem seeks for a general coupling xsx + 2 between XS

and X! solving the following problem:
z

arg min c xSxt dysy ¢ x5 xt (6.2)
fysy t2  XSX
The optimal coupling always exists (Villani| 2009, Theorem 4.1). This leads to a simple
writing of the optimal transport problem in the discrete case, i.e. wheneverDs and Dt are
only accessible through discrete sampleS = fx?gl., and T = fx-tgi”tl (designed by X* and
X' in matrix form with or“g example on each |Inﬁ) The corresponding empirical distributions
can be written asBs = {L; p¥ xs and By = ) pf xt Where  is the Dirac function at
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location x 2 X . p° and p! are pi;obablllty n&asses associated to the-th sample and belong

to the probability simplex, i.e. L, pP= L pf = 1I. Let “be the set of probabilistic
couplings between the two empirical distributions de ned as:
n 0
"= 2 (R)™ ™j 1 =Bs; "1y = By (6.3)

where 1, is a n-dimensional vector of ones. Problem[(6]2) becomes:

argmin  h ;Cig (6.4)
2/\
where h; i is the Frobenius dot producﬂ and C  Oisthen® n' cost matrix related to
the function c.

Barycentric mapping Once the probabilistic coupling has been computed one needs
to perform the transformation of examples from XS to X!. This transformation can be
conveniently expressed with respect to the set of exampleX! as the following barycentric
mapping Reich (2013); Courty et al. (20144a); Ferradans et al.|(2014):
)(lt
%5 = argmin (i:j )c x5 xt
xs2X s iy

! (6.5)

where &7 is the image of examplex? with coupling . When the cost function is the squared
euclidean distanc@, this barycentre corresponds to a weighted average and the sample is
mapped into the convex hull of the target samples. For all source samples, this barycentric
mapping can therefore be expressed as:

gs=1f (XS =diag( 1 ) 1X (6.6)

In the rest of the chapter we will focus on an uniform samplin@ henceXs = n®X . The
main drawback of the mapping ((6.6)) is that it does not allow the projection of out-of-sample
examples which do not have been seen during the learning process of It means that to
transport a new examplex® D s one has to compute the coupling matrix again using this
new example. Also, while some authors consider speci ¢ regularization of |Cuturi|(2013al);
Courty et al.|(2014a) to control the nature of the coupling, inducing speci c properties of the
transformation fsir (i.e. regularity, divergence free, etc.) is hard to achieve.

In the next section we present a relaxation of the optimal transport problem, which
consists in jointly learning and fs;t . We derive the corresponding optimization problem,
and show its usefulness in speci ¢ scenarios.

2|f we consider that the examples are drawn i.i.d. we have p; = nl for every example.

*M;Bi. =Tr(ATB)
fox;xY = kx X%
®In other words the examples are drawn i.i.d. from Ds and Dr .
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6.3 General Framework

In this chapter we propose to solve the problem of optimal transport by jointly learning
the matrix  and the transformation function fgt . First of all we denote H the space of
transformations. Let XS and X! be matrices where each line is an example drawn frorDg
and Dy. We propose the following optimisation problem:

2

S S t
fsr (X°) n>X 4+ max(C)

h;Cip + I _R(fsir )

argminf ( ;fsir )= sdt &

fsir 2H sdt
2 AN

(6.7)

where fsit (X %) is a short-hand for the application of fsit on each example inXS, R is
a regularization termonfsir and ; ¢, are hyper-parameters controlling the trade-o
between the di erent terms in the optimization problem. The constants in front of each term
normalize their values to be of the same order of magnitude. The rst term in Problem [6.7)
depends on bothfgit and and controls the closeness between the transformation induced
by fsir and the barycentric interpolation obtained from . The second term only depends
on and corresponds to the standard optimal transport loss. The third term regularizes
fsir to ensure a better generalization of the learned transformation.

In the next section we propose an e cient solution to optimize Problem (6.7) and we
discuss several possible choices for the set of transformatioii, in particular we show a link
with RVML (Chapter

6.4 Optimisation

A standard approach to solve Problem ) is to use a block-coordinate descent (Tseng,
2001) where the idea is to alternatively optimize forfsir and . In the next theorem we
show that under some mild assumptions on the regularization termR and the function space
H this problem is jointly convex. In this case we are guaranteed to converge to the optimal
solution if the formulation is strictly convex with respectto fsit and respectively. While
this is not the case for in our formulation, our algorithm works well in practice and a small
regularization term can be added if theoretical convergence is requirét

Theorem 6.1. Let H be a convex space an® be a convex regularization. Problem(g.7) is
jointly convex in fsir and

Proof. First of all recall that a sum of jointly convex functions is jointly convex. Hence it is

su cient to show that the three terms of Problem (§.7)] are jointly convex. We note:

1
nsdt

®For example this regularization term could be the Frobenius norm.

2

fsr (X%) nsX ' [,

fi( ;fsm )=
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fa )= W(C)h ;Cip,

fa(fsir )= ;igt R(fsir ).

Note that by construction f, and f 3 are jointly convex in  and fgir . We will show that
f1 is also jointly convex. Letg( ;fsit )= fsit (X5) nSX ! £ We want to show that:

gt +(t 1) %tfsr +(1 0fSr tg( ;fsr )+(1 t)g °%fdr
We have:

(tfsr +@ B3y NX?) 0t +(t 1) X' ¢

(Triangle inequality and de nition of H.)

@ 0fdr X% @ e X',
(t 2 [0;1].)

tfng (Xs) tns X t E

t for (X5) nSX ' _+@ t) £ (X5 n® X!

F F

Furthermore noting that g is convex and positive we have:

gt +(t 1) %tfgr +(1 FYr

(8x 2 R*;x ! x2is non decreasing.)

tg( ;fsr )+ tg %fYr 2
(8x 2 R;x ! x?is convex.)

tlo( ifsr NP+@ 1 g Sf%r 2
Noting that f1( ;fsr )= ~r0( ;fsr )? concludes the proof. O

As discussed above we propose to solve Proble.?) using a block-coordinates approach.
As such we derive an e cient way to solve the problem for whenfsir is xed and for
fsir when is xed.

Solving for with ~ fsir xed In this case Problem [6.7) becomes:

2
+ ———h;
F max(C)

Cip + T R(fsir )

fsr (X%) nSXx'! asdt

. 1
argrrAnnf( fsir )= nsdt

2
(6.8)

wheref gt is the current transformation. To solve such an optimization problem a common
approach is to use the Frank-Wolfe algorithm Ferradans et al. (2014); Frank and Wolfe|(1956).
It is a procedure for solving any convex constrained optimization problems with a convex
and continuously di erentiable objective function over a compact convex subset of any vector
space. This algorithm can nd an approximation of the optimal solution in O(1=) iterations
Jaggi (2013). The approach is detailed in Algorithm[3.
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input : The current values of andfgr
output : The new value of .

begin
Initialize k=0and o=
repeat D E
Solve k+ 1 :argmirl ke 13T f( k;fs ) . with
k+ %2
2

2 T
f( f = for (XS)XT + Zpsx Xt
rf¢ ;fsim ) max(C)C g s (X*) dtn

Find the optimal step  satisfying the Armijo rule that minimizes

f @ )kt esifsr

Update ¢+ =(1 k) kTt k+%andk= k+1.

until convergence

end
Algorithm 3:  Updating  with the Frank-Wolfe algorithm.
Solving for fgir with  xed In this case Problem [6.7) becomes:
. 1 s s t 2 . fsir
. = — + - . + !
falsr!grg:?f( fsir ) s fsmr (X)) n>X ° [ max(C)h ;Cig &d R(fsit )

(6.9)

where is the current mapping between the examples. The solution to this optimization
problem depends onH and R. This is discussed in detail in the next subsection.

6.4.1 Choosing H

In the previous subsection we presented our method when considering a general set of functions
H. We now turn our attention toward several possibilities for the choice ofH. On the one
hand we propose to de neH as a set of linear transformations fromX S to Xt. On the other
hand using the kernel trick, we propose to consider non-linear transformations. Furthermore
in both cases we consider the biased and non biased settings. In this case our approach boils
down to learn a transformation matrix L. It can then be seen as using RVML (Chapterﬂi)
where the virtual points are de ned thanks to the barycentric mapping associated to the
current coupling.

Linear transformations A rst way to dene H is to consider linear transformations
induced by ads d' real matrix L:
n o 0
H= fS!T :9L 2 Rd d s.t. 8x52 X S;fS!T (XS) = XSTL . (610)

Furthermore, we de ne R(fsit ) = kL Ikﬁ where | is the identity matrix. We choose to
bias L toward | in order to ensure that the examples are not moved too far away from their



146 Chapter 6. Mapping Estimation for Discrete Optimal Transport

initial position. In this case we can rewrite optimization problem (6.7) as:

XL onSX ' e
,n NSt F " max(C)

i h:Ci.+ —= kL IK2. 11
oo Cle Fa F (611

According to Algorithm 4 ja part of our procedure requires to solve optimization problem (6.11)
when is xed. One solution is to use the following closed form forL:
1 L Yo L

sTvy s sT s t
sa Xt e’ X Ga

L = | (6.12)
where () 1is the matrix inverse (Moore-Penrose pseudo-inverse when the matrix is singular).
In the previous de nition of H, we considered non biased linear transformations. However it
is sometimes desirable to add a bias to the transformation.

Biased linear transformations In the biased linear caseH becomes:
( ] )
H= for :9L2RYT 9;902 R st 852X Sfgr (x)= xSTL+bT = xsT 1 o7
(6.13)
In this case, Problem [6.7) becomes:
1 L | 2
arg min XS 1 nSX' + _—_h:Ci.+--KkL IK2.
, 819 nsdt bT max(C) FY o F
%L§2Rd5+l dat. o~ F
bT |
(6.14)

As in the non biased case, it is possible to nd a closed form solution for BT when is

xed:
! ! I 1 I I
L 1 XS L (] 1 XS L |
= — s + — — nsXx b+
bT nsdt 1T X 1 dsdt OT 0 nsdt 1T dsdt OT
(6.15)
Non-linear transformations In some cases a linear transformation is not su cient to

approximate the optimal transport. Hence, we propose to consider non-linear transformations.
To do this, let be a non-linear function associated to a kernel functionk : X5 X S!I R
such that k(x%;x39 = h (x%); (x%i,. We can then de ne H for a given set of examplesX $
as:

n (o}
H= for :9L2R™ @ st 8x52XS;fgr (x5 = kyxs x5T L (6.16)
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where kys xST is a short-hand for the vector k(x%;x5) k(x;x3) k(xS;x5s) where
X3;  ;X5s are the rows of X 3. In this case optimization problem ) becomes:
. 1 2 : L 2

—— kxs(X3)L SX ' 24+ ———h ;Cip+ —kkyxs()Lks . (6.17

ng:gr(pl.nzﬂ nsdt ) " F max(C) 'F T st X Otke. (617)

whereky s () is a short-hand for the vector k( ;x3) K(;x5s) = (X3) (X3s) -

As in the linear case there is a closed form solution fot. when is xed:

_ 1 L ! t
L= @kxs(xsw ﬁl nsdtnSX . (6.18)

As in the linear case it might be interesting to use a bias.

Biased non-linear transformations In the biased non-linear caseH becomes:
( )

. L
H= fgr :9L2R™ %:0p2 RY sit. 8x32XS;fgr (X5)= kys xST 1 o7

(6.19)

Optimization problem (f.7) can be rewritten as:
!

. 1 L .
., argmin g (X 15 nsX ! +W(C)h ;C|F+ns—;tkkxs()Lk§.
%bLTEZR”S*l at; 2" F
(6.20)
!
As in the non biased case, it is possible to nd a closed form solution for bT when is
xed:
! ! oo !
L 1 KXSXS L szxs 0 1 KXSXS s t
= SY s + n> X
bT nsdt 1T Kxsxs 1% q o7 o nsdt 1T
(6.21)

where K xsxs = kxs(x S).

A summary of our approach can be found in Algorithm[4.

6.5 Discussion on Theoretical Aspects

In this section we propose to discuss some theoretical considerations about our framework
and more precisely on the quality of the learned transformation denoted byf, to show its
dependence on the matrixL. To assess this quality we consider the Frobenius norm between
fL and the true transport map, denoted f «xs1x t, that we would obtain if we could solve the
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input  : XS; X' source and target examples and ; | hyper parameters.

output : L;

begin

Initialize k=0, o2 "and Lo = |

repeat
Learn 4+ with xed Ly using a Frank-Wolfe approach (Algorithm EI)
Learn Ly+1 using Equations (6.12), (6.1%), (6.18) or [(6.21L) with xed k41 .
Setk = k+1.

until convergence

end
Algorithm 4:  Joint Learning of L and

Monge problem. Letf be the empirical barycentric mapping using the probabilistic coupling

learned betweenX s and X!. Similarly let fysyx « be the theoretical barycentric mapping
associated with the probabilistic coupling learned onDg; Dt the whole distributions and
which corresponds to the solution of Kantorovich's problem. Using a slight abuse of notations
we denote byf (x%) and fyxs x t(x5) the projection of x5 2 XS by these barycentric mappings.
We have the following simple theorem on the quality of the learned transformation.

Theorem 6.2 (Bound on the quality of the learned transformation). With high probability
we have:

X
E KIL(X®) fxsix ((X)KE 4 kfL(xS) f (xSk&+ O plj
x*D s x52>$2 s
+4 ki (x5) fxsx 1 (xS)kZ
XS2Xs
+2 B Kiysx (x%)  fex ((x%)k2 (6.22)
XS S

Proof.
E kfL(X%) fyxsix t(x5)k2
xSD g
(Triangle inequality.)
E ka(Xs) fxsx I(XS)kF + kfxsx t(XS) fxsgx t(XS)kF 2
XS S
(a+ b? 2a%2+217)
2 E ki (x%) fxsx «(x®)kZ +2 E kfxsx «(x5) fxsix t(x5)kZ
x$D g XsD g

Furthermore considering that H is as proposed in Sectior] 6]4 and using Theorefn 5.2 in
Chapter [5 we have with high probability that:

X
E KfL(X?) fxox (xXSKE 2 KfL(xS) fxsx ((xS)kZ + O p%
XS s S
XS2XS

+2 E kfxsx «(x%) fxsix t(xS)KZ.
xSD g
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X (Triangle inequality.)
2 kfL(x®) f (XS)kg + kf (X®)  fxsx ((x¥)ke 2

XS2Xs
1

+0 p== +2 E kixsx t(x%) fysx «((x5)kZ .
I’]S xSD g

(a+ b? 2a%2+217)
X

4 kfL(xS) f (x5)k&+ O plj

xs2X3 Ns

+4 kf (x5) fxsx t(xS)k2
XS2XS

+2 B Kiysx (X% fex (xS)k2 (6.23)
xS S

O]

From Inequality (6.22) we deduce that there are three key quantities related to the quality
of the learned transformation f :

woaxs KIL(xS) f (x)kZ + O pi- : This rst quantity is the di erence between
the transformation and the empirical barycentric mapping with respect to the Frobenius
norm. Itis the one that we minimize in Problem (6.7) and should be as small as possible
to obtain a better approximation f . Furthermore, by de nition, the coupling used to

compute the empirical barycentric mapping of this term also appears in Problem ).

=]
wsoxs KB (X%)  fxsx t(xs)kﬁ: This second quantity is the di erence between the

learned barycentric mapping and the theoretical one which could be obtained by learning
on the whole distribution. We expect this quantity to decrease uniformly with respect
to the number of examples as it corresponds to a measure of how well a mapping learned
on a limited set re ects the true mapping.

Exsp ¢ Kfxsx t(X%) fxsix t(XS)kIZ:: This third quantity is the di erence between the
theoretical barycentric mapping and the true transformation. We expect this quantity
to be small as it characterizes that a barycentric mapping using a coupling learned on
the whole distributions is a good approximation of the true transport map.

Note that we only expect the second and third term to be small but we do not prove it.
Indeed these quantities are di cult to bound because of a lack of theoretical results related
to these in the literature. Nevertheless we think that this discussion opens the door for new
theoretical perspectives to use OT in a Machine Learning setting but these are beyond the
scope of this thesis.

6.6 Experiments

In this section we propose to experimentally validate our approach on two tasks. The rst
one is an unsupervised domain adaptation one while the second one deals with the problem
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of seamless copy in images.

6.6.1 Application in Unsupervised Domain Adaptation

In this rst experiment we show the interest of our approach in an unsupervised domain
adaptation task.

Datasets We consider two domain adaptation datasets namely the Moons dataset Bruzzone
and Marconcini (2010) and the O ce-Caltech dataset (Gong et al. (2012). The Moons dataset

is a binary classi cation task which consists of 2 domains. The source domain corresponds to
two intertwined moons, each one representing one class. The target domain is built by rotating
the source domain. The rotation angle ranges from 10 to 90 degrees leading to 9 di erent
adaptation tasks of increasing di culty. In this dataset the examples are of dimension 2
and we consider 300 source examples and 300 target examples for training and 1000 target
examples for testing. The O ce-Caltech dataset is a 10 class image classi cation task which
consists of 4 domains. These domains are amazom (A), dslr (D), webcam (W) and Caltech10
(C) and corresponds to images coming from di erent sources. Following this, there are 12
adaptation tasks where each domain is in turn considered as the source or the target (denoted
source! targetin the results). During the training process we consider all the examples from
the source domain and half of the examples from the target domain, the other half being used
as the test set. To represent the images we use deep learning features of size 4096 named
decaf6 Donahue et al.|(2014). Note that we also used this dataset in Chapt¢l 4 but with the
original SIFT features (Gong et al/,[2012).

Methods  We consider 6 di erent baselines. The rst one is a simple 1-Nearest-Neighbour
(1-NN) using the original source examples only. The second and third ones are two widely
used domain adaptation approaches, namely Geodesic Flow Kernel (GFK) Gong et al. (2012)
and Subspace Alignment (SA) Fernando et al. (2013). The fourth to sixth baselines are OT
based approaches: The classic OT method (OT), OT with an entropy based regularization
(OTE) Cuturi (2013a) and OT with a 1.2 regularization (L1L2) Courty et al. |(2014a). We
present the results of our approach with the linear (OTLin) and kernel (OTKer) versions of
the transformation. We also consider their biased counterparts (*B). For all the baselines the
idea is to apply the learned transformation on the source and then to use a 1-NN classi er
on the labelled source examples to classify the target examples.

Experimental setup We consider the following experimental setup for all the methods
and datasets. All the results presented in this section are averaged over 10 trials. For each
trial we consider three sets of examples, a labelled source training set denoteds;ys, an
unlabelled target training set denoted X 1"™" and a labelled target testing setX {"®S; yttest,
The model is learned onX $;ys and X ™" and evaluated onX "*'; yt*" with a 1-NN learned
on X 3;ys. All the hyper-parameters are tuned according to a grid search from the source and
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target training instances from a reverse validation procedure close to Bruzzone and Marconcini
(2010);/Zhong et all {2010) and presented in Algorithm| 5. We use this approach to a ect a
score to all the possible instantiations of hyper parameters and we then select the best among
these. As a score we compute an average accuracy of a two fold method. The idea is to split
the source training set in two halves. From one half we learn a moddl that is used to label
the target training set. These new labels are then used to label the second half of the source
training set to obtain a rst accuracy. The role of the two halves are then reversed to obtain a
second accuracy. The model is learned with an algorithm A using some hyper parameters
and is able to bring closer the source and the target examples. For example, with our linear
mapping learned from our regularized OT formulation, we havef X! = X! and f (X®) =
fL(X3) = XSL. For the hyper parameters of the compared methods we use the following

we choose | ; 2110 3;10 %;:::;10°g.

In this algorithm f is any model able to bring closer the source and the target. For
example, with our linear mapping learned from our regularized OT formulation, we have
f Xt =Xbtandf(XS)= f_(XS)= XSL.

input  : (XS;y%) source examples and their labelsX ! target examples,A a learning
procedure using hyper-parameters .

output : Average accuracy ofA .

begin

Split (X 3;y®) in two halves (X 51;ys?) and (X 52;ys?).

Learnfl= A (Xs%;ys:Xt) and sety!' the pseudo-labels of 1(X!) obtained from a 1NN

learned on ¢ XSt ;ysh).

Set st the accuracy of a INN learned on {1(X!);yt") and evaluated on 1 X2 ;ys?) .

Learnf2 = A (X32;ys2;X!) and sety!? the pseudo-labels of 2(X ) obtained from a 1NN

learned on 2 X 32 ;ys?).

Set s? the accuracy of a 1NN learned on {2(X!);y'%) and evaluated on 2 XSt ;ysl).

return

st+s?
=,

end
Algorithm 5:  Circular validation.

The results on the Moons dataset are presented in Tablg 6/1 and those for O ce-Caltech
are given in Table[6.2. A rst important remark is that for both datasets the results obtained
by using the barycentric mapping with f and the results obtained by directly using the
transformation f| are almost the same. It shows that our method allows us to learn a
function f that is a good approximation of f and that f is well adapted to the class of
transformations H. In terms of accuracy, our approach tends to give the best results in most
of the cases which shows that we are e ectively able to move closer the distributions in a
relevant way. For the Moons datasets, the last four approaches (including ours) based on OT
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Table 6.1: Accuracy on the Moons dataset. The best result for each angle is highlighted with
a bold font.
Angle | 1-NN | GFK | SA | OT |L1L2 | OTE

OTLin OTLInB OTKer OTKerB
fL f fL f fL f i f
10 | 99.99| 99.86| 99.99| 97.88| 99.56| 99.95 | 100. | 100. | 100. | 100. | 100. | 100. | 100. | 100.
20 | 93.08| 95.75| 93.08| 94.96| 98.74| 100. | 100. | 99.96 | 100. | 99.97 | 100. | 100. | 100. | 100.
30 | 83.98|92.55| 83.98| 90.62| 98.36| 100. | 99.82| 99.9 | 99.78| 99.86 | 99.99| 100. | 99.99| 100.
40 | 77.07|90.85| 74.41| 83.73| 95.8 | 99.98 | 98.32| 98.65 | 98.1 | 98.46 | 99.65| 99.73 | 99.63| 99.74
50 | 61.73|90.22| 73.13| 77.75| 87.69| 87.29 | 97.8 | 97.56 | 97.48| 97.5 | 99.12| 99.23 | 99.11| 99.14
60 | 41.21|79.37|72.35| 71.0 | 88.3 | 86.35 | 96.42| 97.22 | 95.84| 97.04 | 96.59| 96.8 | 96.62| 96.81
70 | 23.08| 61.05| 72.27 | 64.48| 89.03| 77.46 | 88.04| 94.66 | 88.21| 94.32 | 80.77 | 81.54 | 82.45| 83.06
80 | 20.72| 36.16| 72.31| 57.34| 73.6 | 58.79 | 76.91| 81.01 | 76.58| 80.74 | 73.96 | 74.13 | 73.94| 74.24
90 19.4 | 43.08| 34.16 | 50.97| 58.1 | 51.31 | 67.88| 67.96 | 67.13| 68.06 | 56.32| 55.77 | 57.57 | 55.42

Table 6.2: Accuracy on the O ce-Caltech dataset. The best result for each task is highlighted
vith a bold font.

Task 1-NN | GRK SA oT L1L2 | oTE OTLin OTLIinB OTKer OTKerB
fL f fL f fL f fL f
D! W |8947| 93.31| 9556 | 76.95| 95.7 | 95.7 | 97.28 | 97.28 | 97.28 | 97.28 | 98.41 | 98.48 | 98.48 | 98.48
D! A | 6252| 77.23 | 88.5 | 70.83| 74.9 | 74.85| 85.73 | 85.73 | 85.75 | 85.75| 89.92 | 89.9 | 89.54 | 89.54
D! C |51.81| 69.73 | 78,99 | 68.09| 67.85| 68.03| 77.15 | 77.15 | 7743 | 77.43 | 69.1 | 69.17 | 69.27 | 69.31
W ! D |99.25|99.75 | 99.63 | 74.13| 94.38 | 94.38 | 99.38 | 99.38 | 99.75 | 99.75 | 97.25 | 97.25 | 96.88 | 96.88
W! A | 625 | 7238 | 79.25| 67.6 | 71.33| 71.35| 81.46 | 81.46 | 81.38 | 81.38 | 78,5 | 78.35| 7852 | 78.81
W! C | 59.5| 63.74 | 55.02 | 63.1 | 67.78| 67.78| 75.87 | 75.87 | 75.41 | 75.41 | 72.71 | 72.7 | 65.12 | 63.26
A! D | 65.25| 75.88 | 83.75 | 64.63| 70.13| 70.5 | 80.63 | 80.63 | 80.38 | 80.5 | 65.63 | 655 | 71.88| 715
A! W | 56.75| 68.01 | 74.57 | 66.82| 67.15| 67.28 | 74.64 | 74.64 | 74.37 | 74.37 | 66.36 | 64.77 70. 68.87
A! C | 70.09| 75.71| 79.2 | 70.43| 74.06| 74.31| 81.81 | 81.81 | 81.6 | 81.63 | 84.38 | 84.43 | 84.49 | 84.47
C! D | 75.88| 795 85. 66. | 69.75| 70.25| 87.13 | 87.13 | 87.25 | 87.25 | 70.13 70. 78.63 | 78.63
C! W | 65.17| 70.66 | 74.44 | 59.21| 63.77| 63.77| 78.28 | 78.28 | 78.48 | 78.48 | 80. 80.4 | 73.51 | 73.38
C! A |8579| 87.13 | 89.33 | 75.25| 76.63| 76.67 | 89.94 | 89.94 | 89.71 | 89.71 | 82.38 | 82.15 | 83.56 | 83.48
Mean | 70.33| 77.75 | 81.94 | 68.59 | 74.45| 74.57 | 84.11 | 84.11 | 84.07 | 84.08 | 79.56 | 79.43 | 79.99 | 79.72

obtain similar results until 40 degrees while other DA methods fail to obtain good results at
20 degrees. Beyond 50 degrees, our approach tends to obtain signi cantly better results (more
than 10 points of accuracy) and is more stable when the di culty of the problem increases.
For O ce-Caltech, our results are signi cantly better than other approaches which clearly
illustrates the potential of our method for di cult DA tasks. As a conclusion, forcing the OT

to learn a smoother mapf_ allows the approach to get a better robustness.

6.6.2 Seamless Copy in Images with Gradient Adaptation

We propose here a direct application of our mapping estimation in the context of image edit-
ing. While several papers using optimal transport are focusing on color adaptation Ferradans
et al. (2014); Solomon et al. (2015), we explore here a new variant in the domain of image
editing: the seamless editing or cloning in images. In this context, one may desire to import
a region from a given source image to a target image. As a direct copy of the region leads
to inaccurate results in the nal image nearby the boundaries of the copied selection, a very
popular method, proposed by Rerez and co-workers Rerez et al.|(2003), allows to seamlessly



6.6. Experiments 153

blend the target image and the selection. This technique, coined aRoisson Image Editing
operates in the gradient domain of the image. Hence, the gradients of the selection oper-
ate as a guidance eld for an image reconstruction based on membrane interpolation with
appropriate boundary conditions extracted from the target image.

Let f be an unknown scalar function (usually a component of the color space of the image)
de ned on a given region of the image . Let f! be the target image de ned everywhere apart
from the interior of . The Poisson editing method operates by solving for f as the following

variational optimization problem with Dirichlet boundary conditions:
ZZ

min jrf vj?2 with fjg = fljg: (6.24)
Here, v is the guidance eld, which is usually given as the gradient from the source imagé ®
over the domain , i.e. v = r f5 . One can show that the unigue solution to this problem
is the solution of the following Poisson equation Rerez et al. (2003):

f =divv over ; with fjg =fljg: (6.25)

Using appropriate rst order discretization of the Laplacian operator, solving for this problem
amounts to solve a big sparse linear system, which can be performed e ciently with multigrid
solvers.

Though appealing, this technique is prone to errors due to local contrast change or false
colors resulting from the integration. While some solutions combining both gradient and color
domains existDeng et al. (2012), this editing technique usually requires the source and target
images to have similar colors and contrast. Here, we propose to enhance the generality of this
technique by forcing the gradient distribution from the source image to follow the gradient
distribution in the target image. As a result, the seamless cloning not only blends smoothly
the copied region in the target domain, but also constraints the color dynamics to that of
the target image. Hence, a part of the style of the target image is preserved. We start by
learning a transfer function f| : R® I R® with our method, where 6 denotes the vertical
and horizontal components of gradient per color. Following our method which aligns the
distribution of gradients in the source image to the target one, we then solve for the following
system:

f =div fL(v) over ; with fjg =fljg: (6.26)

When dealing with images, the number of source and target gradients are largely exceeding
tens of thousands and it is mandatory to consider methods that scale appropriately. As
such, our technique can readily learn the transfer functionf over a limited set of gradients
and generalizes appropriately to unseen gradients. Several illustrations of this method are
proposed in a context of face swapping in Figurd 6]2. As one can observe, the original
method of Poisson image editing Rerez et al. |(2003) (3rd column) tends to preserve the color
dynamic of the original image and fails in copying the style of the target image. Our method
was tested with a linear and kernel version off |, that was learned with only 500 gradients
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sampled randomly from both sources (. = 10 2, | = 102 for respectively the linear and
kernel versions, and = 10 ’ for both cases). As a general qualitative comment, one can
observe that the kernel version off | is better at preserving the dynamics of the gradient, while
the linear version tends to atten the colors. In this low-dimensional space, this illustrates
the need of a non-linear transform. We also illustrate one case of failure of our approach in
Figure [6.3 where it is not possible to produce the same vast swaths of colors as in the target
image since our method does not modify the spatial arrangement of the gradient. Regarding
the computational time, the gradient adaptation is of the same order of magnitude as the
Poisson equation solving, and each example are computed in less than 30s on a standard
personal laptop.

6.7 Conclusion

In this chapter we proposed a solution to learn a transformation from a Mahalanobis distance
whose behaviour is controlled by the geometric transformation induced by a transport map.
We considered a jointly convex approach to learn both the coupling and the transformation
fL. From an optimal transport point of view this transformation can be seen as an approx-
imation of the transport map given by  and allows us to project out-of-samples examples
not seen during the learning process. Furthermore, jointly learning the coupling and the
transformation allows us to regularize the transport by enforcing a certain smoothness on the
transport map. We presented some theoretical considerations on the generalization ability
of the learned transformation f . Hence we discussed that under the assumption that the
barycentric mapping generalizes well and is a good estimate of the true transformation, then
fL learned with our method should be a good approximation of the true transformation. We
have shown that our approach is e cient in practice on two di erent tasks, namely domain
adaptation and image editing. On the one hand, in the domain adaptation task, we obtained
better results than standard optimal transport based approaches. Furthermore the results
obtained by the coupling and the transformation f| are almost identical validating the
approach. On the other hand, in a Computer Vision task, we have shown that the transfor-
mation f| can be e ciently used on out-of-samples examples leading to visually smoother
and better results than the standard approaches.

The framework presented in this chapter opens the door to several perspectives. First,
from a theoretical standpoint the bound proposed raises some questions on the generalization
ability of the barycentric mapping and on the estimation of the quality of the true barycentric
mapping with respect to the target transformation. On a more practical side, note that in
recent years regularized optimal transport has encountered a growing interest and several
methods have been proposed to control the behaviour of the transport. As long as these
regularization terms are convex, one could imagine use them in our framework. Another
perspective could be to use our framework in a mini-batch setting where instead of learning
from the whole dataset we can estimate a single functiorfsir from several couplings
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Figure 6.2: lllustrations of seamless copies with gradient adaptation. Each row is composed
of the source image, the corresponding selection zone described as a binary mask, and the
target image. We compare here the linear (4th column) and kernel (5th column) versions of

the map f_ with the original method of Rerez et al. |(2003) (3rd column).
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Figure 6.3: lllustration of failure of style adaptation.

optimized on di erent splits of the examples. We also believe that our framework could allow
the use of the notion of optimal transport in deep architectures as, contrary to the coupling

, the function f| can be used on out-of-samples examples. As a last perspective we think
that our framework could be used to learn some metrics in some other contexts such as
unsupervised learning.



Conclusion and Perspectives

In this thesis we addressed the problem of learning a metric with a controlled behaviour. We
considered two kinds of control on the learned metric. On the one hand we addressed the
problem of learning with respect to a reference metric available either under the form of a
given distance between a limited number of pairs or directly through its model. On the other
hand we considered the problem of learning the underlying transformation of a Mahalanobis
distance either able to precisely move the examples toward a set destination or controlled
by a geometric transformation. Our contributions have taken the form of algorithmic and
theoretical solutions.

Summary of the Contributions

Most of metric learning algorithm are interested in learning metrics able to bring closer
similar examples and to push far away dissimilar ones. However, in some cases, one might
be interested in predicting an exact value between two examples. This is for example the
case when one has access to a limited number pairs for which the value of a reference metric
is known. In our rst contribution we addressed the problem of learning an approximation

of this reference metric. We proposed a local metric learning algorithm and we theoretically
analysed it showing that with a su cient number of examples the learned model generalizes
well. Furthermore we evaluated our approach on the computer vision problem of perceptual
color di erences. To this end we created a new dataset speci cally designed for the problem
at hand. Our empirical results showed the good behaviour of our approach and its ability to
correctly approximate a reference metric. The dataset and the perceptually uniform distance
that we learned are freely distributed (Perrot et al., 2014a).

Several approaches in metric learning empirically demonstrated the interest of using side
information in the form of a source metric without theoretically proving that it was indeed
bene cial. In the second contribution we proposed to bridge this gap. Hence we formalised
the metric hypothesis transfer learning framework where the idea is to take into account
a source metric in a biased regularization term. We proposed a theoretical analysis of this
framework and, considering several theoretical approaches, we derived three di erent measures
of goodness for the source metric. These measures are ways to evaluate the interest of a
source metric for the problem at hand. Two of these measures are theoretical and thus
are hard to use in practice. The third one, however, is empirical which means that it can
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be computed and used to select the best source metric among a set of candidates. As an
illustration it allowed us to propose an algorithm to weight the importance of the source
metric. We demonstrated the wide range of applicability of the metric hypothesis transfer
learning framework by proving that several loss functions and regularization terms fall into
our theoretical analysis. Furthermore we empirically evaluated it on metric learning and
semi-supervised domain adaptation tasks.

Most of metric learning approaches use similarity and dissimilarity constraints to learn a
metric but do not explicitly control the behaviour of the underlying transformation. In our
third contribution we addressed this problem by proposing a new approach where the desired
destination of the examples is explicitly chosen through so-called virtual points. It allowed us
to carefully control the learned metric and thus to design more problem speci ¢ models. For
example for classi cation we proposed class based virtual points where the metric is learned
such that each axis is discriminative for a particular class. We showed that our approach
can easily be kernelized making it able to learn very expressive metrics. We also proposed
a theoretical study demonstrating that our approach can be tied to a classic metric learning
method. Lastly we empirically demonstrated its good performance on several well known
datasets.

In our fourth contribution we addressed a problem similar to the third one. However
instead of explicitly controlling the behaviour of each example individually we proposed to
force a metric to follow a particular geometric transformation. Hence we considered trans-
formations implied by the coupling learned by a discrete optimal transport problem which is
particularly relevant for domain adaptation tasks. We proposed a solution to jointly learn
this coupling and an associated metric through its underlying transformation. We derived an
e cient optimization scheme and we showed that this approach could be further interpreted
as a modi cation of our third contribution where the transformation and the virtual points
are jointly learned. We empirically demonstrated the good behaviour of our approach on
unsupervised domain adaptation and seamless copy tasks.

Perspectives

We have already presented speci ¢ perspectives for each of our contributions. In this part,
we rather try to discuss more general future works that can represent some new research
directions from the work presented in this thesis.

From an algorithmic standpoint our contributions are mainly based on batch optimization
problems. A rst perspective would be to extend the concepts presented here to the online
learning setting. Following this idea it could be interesting to develop some mechanisms able
to detect a potential drift in the distribution of the examples and to automatically change
the behaviour of the metric accordingly. Such an approach could for example be used when
learning a metric to solve a problem of tracking of objects in videos where the variations in
the scene might call for di erent behaviours. Another perspective would be to consider active
learning to improve the control over the metric. For example when learning a transformation
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it could be interesting to obtain some feedback from the user to verify that the examples
are moving in the correct direction. A motivating example could be the problem of domain
adaptation, where active learning has already proven to be useful (Berlind and Urner, 2015),
where obtaining some carefully selected feedbacks could ensure that the metric is correctly
estimating the shift between the distributions.

On a more theoretical standpoint we can notice that in this thesis we were mainly inter-
ested in the generalization ability of the learned metric and not in its impact on the subsequent
application. Following the latter idea Balcan et al.| (2008) have demonstrated that the er-
ror of a linear classi er is tied to a measure of goodness of the similarity used to learn it.
This goodness is related to the capacity of a metric at bringing closer similar examples and
pushing far away dissimilar ones. However when learning a metric with controlled behaviour
this measure might not be adapted. For example when learning a metric with respect to a
reference metric (Chapters 8 and 4) one would probably be more interested in considering a
measure telling if the learned metric is better than the reference one. Similarly when learning
a transformation for a domain adaptation task (Chapter 4] and[6) one would probably put its
focus on the ability of the metric at aligning the source and target distributions. It implies
that a measure of the goodness of the metric is task dependent. An interesting perspective
would be to consider some theoretical frameworks able to take into account a measure of
goodness related to the task at hand and to prove that a good metric is indeed bene cial.

Another theoretical perspective would be to derive generalization bounds with a fast
rate of convergence in the presence of additional informations. In Chaptef|4 we proposed
a rst solution to this problem using the Rademacher complexity framework along with the
additional information that is the goodness of a source metric. However this solution is not
satisfying in the sense that the constraint on the source metric was somehow stronger than
the result obtained on the learned metric. Nevertheless this is still encouraging in the sense
that it shows that under strong assumptions it is possible to obtain a fast rate of convergence.
Thus, if one manages to obtain weaker assumptions (See e.g. Srebro et al. (2010c)) it might
be possible to obtain more meaningful results.
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Appendix A

Theorems, Lemmas and De nitions

We present here several Theorems, Lemmas and De nitions used throughout the thesis but
not presented in the main text for the sake of readability.

A.1 Properties of Loss Functions

De nition A.1  (k-lipschitz continuity) . A loss function | (h; z) is k-lipschitz with respect to
its rst argument if, for any hypotheses h;g 2 H and any examplez, there existsk 0 such
that:

jl(h:2) 1(g;2)j kkh gk. (A.1)

The k-lipschitz property ensures that the loss deviation does not exceed the deviation
between two hypothesesh and g with respect to a positive constant k.

De nition A.2 (( ;m )-admissibility) . A loss function for metric learning 1(M;z;z9 is
(;m )-admissible, with respect toM, if it is convex with respect to its rst argument and
if for any two pairs of examplesz; z° and z°9z°®we have:

| M:z:2° | M ;Zz092000 yO  yOy00 + M (A.2)
where yyo=1if y=y%and 1 otherwise, i.e. yypo  yogo0 2 f0;2g.

This property bounds the di erence between the losses of two pairs of examples by a value
only related to the labels plus a constant independent from the matrixM .

De nition A.3  (H-smooth loss (Srebro et al.| 2010c¢)) A function f : R! R is H-smooth
if it is twice di erentiable and its rst derivative is H -lipschitz continuous (De nition

Lemma A.1 (Srebro et al| (2010b, Lemma B.1)) For any H-smooth non-negative function
f :R! Randtr 2 R we have that:

(f(t) ()% 6H@E®+ F)(t r)2 (A.3)
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A.2 Properties of Norms

De nition A.4  (Dual norm). Let kk be a norm over a normed spacé/ . The dual norm
kk is dened as:

M® =max M®M :kMk 1. (A.4)
M

A.3 Properties of Algorithms

De nition A.5  (On-average-replace-one-stability (Shalev-Shwartz and Ben-David, 2014a))
Let n be the number of examples considered during the learning step. Let: N ! R be
monotonically decreasing with respect ton and let U(1;n) be the uniform distribution over

DTZ
. E ] [l (hyisz) I(hr;zi)] (n) (A.5)

i U(;n)
zD T

where ht, respectively hti, is the optimal solution when learning with the training setT,
respectively T'. T' is obtained by replacingz;, the i" example ofT, by z.
A.4  Concentration Inequalities

Theorem A.1 (McDiarmid's inequality (McDiarmid, 1989)) . Let X4;:::; X, ben independent
random variables taking values inX and letZ = f (Xq;::;;Xy). Ifforeach 1 i n, there
exists a constantc; such that

sup f(Xyiin X Xn)  FoXqpiin X iin Xn ¢:8 i n (A.6)

then for any > 0,

2
Pr(jz E[Z]] ) 2exp F’nzic2 . (A.7)
i=1 G
Proposition A.1  (Van Der Vaart and WeIInerP(:L996)). Let (no;n1;:::;nk) an i.i.d. multi-
nomial random variable with parametersn = ,-K:o nj and (P(Co);P(Cy1);:::;P(Ck)). By
the Breteganolle-Huber-Carol inequality we have:
1
X n 2
pr@ M Pr(Cj) A 2€exp g , (A.8)
j=0 "
hence with probability at leastl
S
X n 2K In(2) +2In(
%’ Pr(C;) (2)*+2In( 7). (A.9)

n
j=0
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A.5 Other Theorems

Theorem A.2 (Union bound). Given a countable set of event&1; Eo;E3;::::
|
[ X
Pr Ei Pr(E;). (A.10)
i i
Theorem A.3 (Cauchy-Schwarz inequality). Let X be a vector space equipped with an inner
product h; i de ning a norm kk. Let x;x92 X, then:

x:x%2 hx:xi2 x®x0?2 (A.11)
, x:x%  k xk x9 . (A.12)
De nition A.6  (Convexity). A function f is convex if for all w, u, and 2 [0; 1] we have:

f(w+@  Hu) f w)+@ )f(u). (A.13)

De nition A.7  (c-strong convexity). A function f is c-strongly convex if for all w, u, and
2 [0; 1] we have:

fCw+@  Ju) f @)+@ )i(u) 2(1 ykw  uk?. (A.14)

Theorem A.4 (Jensen's inequality). For any convex functionf of a random variable X we
have:

f EX]  E[f(X)]. (A.15)
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Appendix B

Proofs of Chapter 3| |

B.1 Proof of Lemma 3/1 |

Lemma (Bounded loss function) For any 0 ] K, let M+, be the metric learned for
region C; with the training set T;, we have that for any examplgx;x% ) D Tj

0 | Mr;(x;x%) Bj, (B.1)

with Bj = max pu; 2
j

max

Proof. First of all note that the absolute value is always positive which gives the rst inequal-
ity. Furthermore M 1, is an optimal solution of Problem (3.5). Hence we have:

Lr,(M7)+ | My - Cr(0)+ jKOKZ
1 X Q 2 1 X o 2
, = ' M7;06x5 ) + ) My ¢ o I 0;(x;x5 ) + j kOkg
n; (x;x%) 2T, ] (x;x%) 2T;
(Positive loss function and kOk. = 0.)
2 1 X 0.
) i My o — I 0;(x; x5 )
] (x;x%) 2T;
(1(0; (x;x% ) Pax-)
2
) j MTj F 2max
) Mt o =, (B.2)
i
We can now prove the second inequality of the lemma:
I M7;06x%) = (x x9TMp(x x9 2

(Di erence between two positive values.)
max (x x3TMy(x x9; 2

(Cauchy-Shwartz inequality (Theorem|[A.3).)

167
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2
max x x°5 Mr,

.2
F

(Equation (@, kx x%, 1and max.-)
max pr=. 2
j
(B.3)

Setting Bj =max p==; 2 gives the lemma. O
]

B.2 Proof of Lemma 32|

Lemma (k-lipschitz continuity) . Let M1, and M % be two matrices for a regionC; and
(x;x%) be an example. Our los$ M1;;(x;x% ) is k-lipschitz continuous with k = D?.

Proof.
I M1 ;(x;x%) I M%;(x;xa,)
= x x9Mrx x9 2 x xITMY(x x§ 2
(Triangle inequality.)
x x9TMrx x) (x x9T™ME(x x9
= (x x3TM7, M%)x x9
(Cauchy-Shwartz inequality (Theorem|[A.3).)
X Xo; Mt M% _
(Dj =max(xe) b 1, KX x%,.)
D? Mr, M% _
Setting k = D gives the lemma. O

B.3 Proof of Lemma 33

To prove Lemmal[3.3 we need the following technical lemma.

Lemma B.1. Let Fr(M)= Ly (M)+ jkMkZ and Fri(M) = CTji(M)+ i kM k2 be the

functions minimized in Problem (B.5) whereT; and T are two training samples ofn; exam-

ples. Tji is obtained by replacing example from T; by another example drawn independently

from Drj. Let My, and M i be their respective minimizers, and ; be the regularization
]
parameter used in our algorithm. Let m, = Mt M i, then, we have, for anyt 2 [0; 1],
]

J

2 2 2 2 2kt
: . + [ i+ - . :
i F Mzt oy F MTJ‘ F MTJ tom, F i nj M, (B4)

J I F
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Proof. CTji is a convex function, thus, for anyt 2 [0; 1], we can write:
CTji(MTj t mo) CW(MH) t CW(MW) CW(MH), (B.5)
CW(M1?+-t M) CW(M1?) t Cw(Mqu) CW(M1?) . (B.6)
By summing Inequalities and we obtain
LMzt wg) CpMa)+ CpMp+t we) CoMp) 0. (B7)

SinceM 1, and M i are minimizers of Fy; and F+i, we can write:
J ]

Fr, M7, F Myt wmy 0, (B.8)
By summing Inequalities and (B.9), we obtain:
) 2
Cr,(M7) Cr(My M)+ j Mmoo ) Myt
2 2
+ CTji(M Tji) CTji(M T +t MTj)+ i |\/|-|-J_i . i |V|-|-ji +t M, . 0.
(B.10)
We can now sum Inequalities [(B.T) and [B.10) to obtain:
Cr(MT,) CTJJ M7) LM t o 0t CTJJ M7t my)
2 2 2 2
My g Mgty ) My Mg+t 0.
(B.11)
From Inequality (B.11), we can write:
5 2 2 2
j MTJ- F j MTJ- t MTJ- F+ j MTJ-i . j MTji+t MTJ . C (812)

with
C= CTJJ(MTJ-) CrMr)+ LMyt M1, ) CTj.i(MTj tomy)
We are now looking for a bound onC:
c [CrMy t M1, ) Cr,(M1,)+ CTji(MTj) CTji(MT,» t ms)
1 X
= = | Myt MTJ_;(X;XO,) I M ;(x;x%)
n; (x;x%) 2T;
+ I M (xhx'5) I Mgt omg (X5
(xi:xi%) 2Tji
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(T; and Tji only di er by one pair.)

1
= =0 Myt s | M (xiixD
j
iyl iyl
+ | Mij(Xi!Xiv) I IVITJ- t MTJ-!(Xi1Xi’)
(Triangle inequality.)

1
Myt axR) L M)

j

1 . ) i i0
+n—_| M ({5 ) I Mgt MTJ.J(XE?XEJ)

(k-lipschitz continuity (Lemma 8.2).)

1 1

ak |\/|-|'j t M, |\/|-|'j I:+ak MTJ- MTJ- t M,

1 1
= —kt + —k t

n; M1, n; M1

(De nition of kkg.)

_ 2kt
—_ 7nj MTJ F .

Combining this bound on C with Equation (B.12) and dividing both sides by ; gives the
lemma. O

We are now ready to prove Lemmd 3.3.

Lemma (Uniform stability per region C;j). Given two training samples Tj and TJ-i of n;
examples WhereTji is obtained by replacing example from T; by another example drawn in-
dependently fromD;. Let M1, and M T be the respective optimal solutions of Problen(3.5)

i 4
when learning with Tj and T}’ In region C; our problem is j uniformly stable with ; = %.
Proof. By setting t = % in Lemma , one can obtain for the left hand side:

2 2
2 1 2 1 1 2
M ¢ M, 5 Mm F+ MT; F 'V'Tji+§ M1, F—E Mt o
and thus
1 2 23
- 2 , B.13
2 M, F in M, F ( )
which implies
2k
M. —. (B.14)
RN
Since our loss isk-lipschitz (Lemma [3.9) we have:
I M7 Gx8) 1 M (6x%) K wmr (B.15)
J
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= (B.16)

In particular, since k = Dj2,

2D#
sup | M (x;x%) I Mqi;(xx%) —L. (B.17)
(xix%) D 7 ) inj

The last inequality matches the de nition of uniform stability, De nition 1.B. Thus setting
4
i = g gives the lemma. O

B.4 Proof of Lemma 34 ]

Lemma (Bound on Et, p 1 Ry ). For any  uniformly stable learning method of estima-
tion error Ry, = Ly (M1,) I'_\T]. (M 1,) for a training set Tj, we have:

E Ry . B.18
LE RL o (B.18)
Proof. First of all note that:
h i X
1
E [ (M71) = = E | My;(xi;x%)
be i (xix%) 2T TP
1 X h i
= = E | Mqi;(x;x%)
n; o Tj:(x;x%) D 1 J
(Xix7h) 2T; h i
= E I MTji;(X;XO,' )

Tii(x;x%) D 1

The second to last equality comes from the fact that the pairs are drawn independently from
Dt; and thus changing one example with another does not change the expectation. From
this equality we deduce:

h i

E Ry = E Lr(Mt) Cr(Mr,
0. 0 TD g T ( hTJ) (M) i
= E I M5 (x;x% I Mgi;(x;x%
Ti(x;x%) D 1 i ) Tj ( )
E I M1 ;06x%) 1 M (xx%)
]

Tji(x;x%) D 1

(Uniform stability (Lemma 3.3).)
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B.5 Proof of Lemma 35 |

Lemma (Bound on Rr, RTji ). Forany ; uniformly stable learning method of estimation
eror Ry, = Lty (M1,) I'_‘TJ. (M 1,) for a training set T; and any B; bounded loss function we
have:

2i+8Bj (B.19)

Py
=
[

LyM7) CrMr)  LyMy) CriMq)

LyM7) Cr(M7) LyMe)+ CpMy)  Cry(Mp)+ Oy (M)
(Triangle inequality.)

Ly(M7) LyMp) + CrMy) CyMr) + CrMr) Cy(My)

(De nition of Ly, and triangle inequality.)
[

h
E I M5 (x;x%) I MTji;(X;XO;)

(x;ix%) D 1
+ O, M) Cr (M) + CTji(MTji) CTj(MTJ_i)

(Uniform stability (Lemma 3.3).)
L+ CyMp) CrMy) + CoMr)  Cr (M)

i
(De nition of CTJ. and triangle inequality.)
. 1 X
L+ = I M7iiGxS) 1 Mp(xx8)
" " (x;x%) 2T l

+ CTji(M ) Ly (M )
(Uniform stability (Lemma 3.3).)
She Ly LMy

(T; and T/ only di er by one pair.)

2,1 ey © (O
=t M) M
(Bounded loss function (Lemma|[3.1).)
2 . B
— 14 1
nj n;
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Proofs of Chapter 4| |

C.1 Proof of Lemma 41 ]

Before proving the lemma we show that the biased Frobenius norm is strongly convex (De -
nition A.7).

Lemma C.1 (Strong convexity of the biased Frobenius norm) The biased Frobenius norm
is 2-strongly convex.

Proof.

M)+ MY Ms ;
— 0 2
= (M Mg)+(1 )M* Ms)
(2-strong convexity of the non biased Frobenius norm.)

2
E

2

kM Mski+@1 ) M° Mg @ )M Ms M% Mg

MmN T
NINNIN

2
= kM Mskli+@ ) M% Ms @ )M M%7

We can now prove Lemmg 4.]L.

Lemma (On-average-replace-two-stability). Given n the humber of training examples, drawn
i.i.d. from D, considered and ak-lipschitz loss function, any algorithm solving Problem(4.1)
is on-average-replace-two-stable with(n) = Snﬁ.

Proof. Let M 1, respectivelyM . , be the optimal solution when learning with the training set
T, respectively T . Let z;z};zl respectively be thek! examples of training setsT; T'; T" .
We have:

Cr(Mp)+ Mo Ms 2 (Cr(M1)+ kMt Msk?)
1 X X

= — I M

. .50 )
nn 1) Mrt;z;2 | Mt;z;2

173
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(Adding and removing the same quantity.)

=0y M)+ Moy Ms?2 (CrMr)+ kMt Msk)
X | MTi,-;zi;zio | Mr;z:2"° X | MTi;;zi;ziO | Mr:22°
2i%Ti nn 1) zi2Ti n(n 1)
z}ézio ZiGZE
.\ X1 Mz 2° I(MT;zi;z")*_X I M, i:z;2 1(M1;2;2))
L0 T n(n 1) JoT n(n 1)
2,62° 26 20
(Adding and removing the same quantity.)
2
= CTii(MTii)"' MTii Ms E (CTH(MT)+ kKM 1 MSk|2:)
X | MT,j;z};zio | My;z:2"° X | Mle;zi;ziO | Mr:22°
o n(n 1) _ n(n 1)
i0y i z'2T!
i:@zio ziézg
. X1 Mz 2° I(MT;zi;zO)+X I M i:;z;2° 1(M1;2;2))
Loyt nin 1) - nn 1)
zi62° Z§Zi0
L i 0 i i 0 i i 0 i i 0
X | MTij;sz;z'J I My;z' ;2" X MTij;z'J;z}J I Mr;2" ;2!
GO0 n(n l) i i n(n 1)
z! 2T_'0 il i
z}JSZ'J zijﬁzJJ
X | MTij;Z};Zio I MT;z};ziO X | MTi,-;zi;z}o I MT;zi;zJiO
+ +
ol n(n 1) . n(n 1)
07 2i2Ti
i}&z'o Zi62°

i

(Triangle inequality and K-lipschitz continuity.)

CoiMpi)+ Moy Ms 2 (L. (Mr)+ kM7 Msk?)
. 8k M, M _
n
(Convex loss and optimality of M [;; when learning with T J)
8k My M _
n

Furthermore, from the 2-strong convexity of the biased Frobenius norm used as a regulariza-
tion term (Lemma we deduce that Problem (4.1) is 2 -strongly convex (De nition
Given M 1 the optimal solution of Problem (%.1) when learning with T, we have:

2 2

Ms ¢ (Cr(Mr)+ kMt Mski) 5 My My 7.

CT(M Tij)+ M 2

Til
Combining the two inequalities we obtain:

, 8k M Mt .

M _ M
il TF n
8k
8k?
) | M;i;2,2° | M1;2,2°  k M My c —
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(C.1)

The last inequality is obtained thanks to the k-lipschitzness of the loss. Taking the expectation
on both sides gives the lemma. O

C.2 Proof of Lemma 4[2—]

Lemma (Uniform stability) . Given a positive, convex,k-lipschitz loss and a training sample
T of n examples drawn i.i.d. from Dy, an algorithm solving Problem @) has a uniform
stability in = %2,

Proof. Let p» = M1 My where Mt is the optimal solution when learning with set T
and M 1 is the optimal solution when learning with set T'. The empirical risk is convex by
sum of convex functions, thus

CrMr t wm) CrMr) (M) Cri(MT))
CrMr+t m) CrMp) t(CrMr) Cri(Mp)
Summing up the two inequalities gives:
CrMr t ) CrMn)+ CriMp+t w) CrMp) O (C2)
Problem (4.1)) is convex by sum of convex functions, thus:
Cr(M7)+ kM7 Mski Cr(Mt t m) kMt t v MgkZ

+Cri(Mqi)+ kM Mgk? CriMpi+t m) KkMqi+t w Mgk O
(C.3)

Summing Inequalities {C.2) and (C.3) gives:
CrM7) CriMo)+ LMt t w) Cr(Mt t ou)
+ kMt Msk'Z: kMt t m MskIZ:
+ kM Mgk?  kMpi+t v Mskid 0. (C.4)
From Inequality (C.4)] we have:
kMt Mgk kMt t m Mgk?
+ kMt Mgk?  kMpi+t v Msk®d C. (C.5)

whereC = Lt M71) CrM1)+ CrMt t m) Cri(Mt t m). We are now looking
for a bound on C:

c CrMr t m) CrMp)+LrM7) Lri(Mr t wm)

1 X X

= Mt t m;z22% I(M7;2,29
n(n 1) 22T 2%T
26 z°
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X X o o
+ I My;2;2 | Mt t u;z;7
Z'2T'zi02Ti
7'627'°
(T and T' only di er by one example.)
1 X X
= D Myt m;z:2%) IM1;2;29+ 1Mt t mizz) 1(M7;2,2)
2%2T 22T
z162° 26 70
+ | M+;z;2 I Mt t wm;z;Z + | M+1;2Z';z I Mt t wm;2;7
z1%Ti Z 27!
z6z'° 2621°
(Triangle inequality.)
1 X .
:m TMT t mszisZd) 1 (M;zi;29)
2%T
2,62°
1 X .
+m Mt t m;zZ) 1(Mt;2;2)]
22T
2620
1 X o S
femn N MmZZt Mt
zi_OZTL
2,672
1 X . .
+m [ MT;Z';z}O | Mt t M;z';z}O
z_i2T_i0
7' 6 z]
(k-lipschitz continuous loss.)
4n 1
HkkMT Mt +t MkF
(De nition of kkg.)
4kt
K ke

Furthermore, setting t = % in the left hand side of Inequality (, we have:

1 2
kMt M gk2 Mt = w Ms
2 F
1 2
+ kMqi  MgkZ Mpi+= m Ms ==k wkZ.
2 e 2
Following this we have:
4k
Sk w k2 o K mke
4k
: k wmke —. (C.6)
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Using the k-lipschitz continuity of the loss, we have:

. 5. 50 . 5. 50 4k2
sup | Mrt;z;2 | M+i;z;z kk mkpe —.
z;20D T n
Setting = 42 concludes the proof. O

C.3 Proof of Lemma 4[3]

Lemma (Bound on Erp ; [Rt]). For any uniformly stable learning method of estimation
error Rt = Lt(M1) LC1(M7) for a training set T, we have:

2
E [R —_.
TD [Rr] n
Proof. First of all note that:
E hC (M )I 1 E [I(M1:2;z)]
TD 1 T T n(n 1)Zi2TZj2TTDT Ty 4iy 4
zi 6z
I E I M 0
= i1z:z
n(n 1) o7 g o7 122D T T
I ZiJQZJ'
_ ._..0
= oD . [ MTi,,z,z

The second to last equality comes from the fact that the examples are drawn independently
from Dt and thus changing one example with another twice does not change the expectation.
From this equality we deduce:

i
E Lt(M7) Cr(M7)

E [Ry]=
TD 1 Rrl= . § T
= | M1;,2° | M_;;2;2°
T;Z;ZOD T T:4, T|l1 ’
= E I M1;22° I M1;2° +1 M1i;2,2° | M_y;2,2°
T:2;20D 1 T T T T
(Triangle inequality.)
| M7;2,2° | M1i;z2° + E I M1i;22° | M;2,2°
T;z;29D 1 T T T;2;2°D 1 T T
(Uniform stability (Lemma 4.2))
2
n

C.4 Proof of Lemma 4[4 ]

Lemma (Bound on jRt Ryij). For any uniformly stable learning method of estimation
error Rr = Lt(M 1) CT(M 1) for a training set T and any ( ; m )-admissible loss function
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we have:
, .2 +4 +2m
Rt Rpj = (C.7)
Proof.
Rt Rrj= Lr(M1) Cr(M71) (LrMr) Cri(M7)
= Lt(M7) LyM)+ CrMp) LM+ CriM1)  Cr(M 1)
(Triangle inequality.)
jLrMr) LrMp)i+ CriMr)  CriMr) + Cri(M7)  Cr(M7)
(Uniform stability (Lemma 4.2).)
2
T CriM1) Cr(M7)
X X o X X
-2, 1 | Mt;2;2° | Mt;z;2°
n n(n o
ZI2Ti ZIOZTI 22T ZOZT
716710 26 2°
(T and T' only di er by one example, 8j 6 i;z; = z} and 2 = z| %)

X

X

| Mt;2z;2° | M1:z:2°
22T
zi62°
X 0
| MT;2;7
22T
2620
(Triangle inequality.)
| Mt1;2;2° | M1;2;2°
Ti
Igz0
| Mtz i0 | M+:2z 0
leazi Tazvz|

((;m )-admissible loss (De nition A2).)

yy® 990904 m

2:20:2002000D

SUPZ;20,2002000p ; iyy® y%°P+ m

2
"t 1)
n n(n ) oo
zl6 20
X .
+ | M1;2;2°
z2Ti
26220
2 1 X
- 4+ 71)
: n(n 22T,
2162%z
1 X
+ nn D
n(n Z2T;Ti
z@z?;zéz}o
2 2n 1)
n n(n 1)
2 2
=+
n

Noting that by de nition sup ;0,000 ; jyY

n

0 09090 2 gives the lemma.



C.5. Proof of Lemmal4.§ 179

C.5 Proof of Lemma 46|

Lemma (Bound on Etp ; [Rt]). For any positive, convex andk-liggchitz (De nition

loss function and any algorithm with estimation error Rt = sup Lt(M) [1(M) we
M2M g

have:

5 [Rr]  2kRn(Ms).

Proof. Using standard properties on Rademacher variables Bartlett and Mendelsan| (2002);
Shalev-Shwartz and Ben-David (2014a) and U-statistics Cao et al. (2016) we have that:

h

i
E sup Lr(M) Cr(M)
TD 1t M2M ¢ > 3

= E sup 4Lt (M) !

S — [(M:zi:z)°
TD 1 M2M n(n 1) ( 7))

i=1 j=1;6i
(U-Statistics, Lemma 7 in |Cao et al! (2016).)
3

B e s, €
2
] 1 ¥¢ :
E s E (oM | M:2Zi;Zpn
TD ¢ MZLI\J/IpS TOD 7 To(M) 2 i=1 ’Zl’zbic“
2 3
g 1 ¥¢ :
E Cro(M | M2 Zpa
T;TOD 1 Mséllzlllps To(M) % ’Z"Zb§C+I

i=1
(U-Statistics, Lemma 7 in |Cao et al! (2016).)
3

, e

E  sup 8= 7 I M:2%2% | M:iziizem. b
TTD rM2M s 5 i=1 byt b3cti

(Equation (26.9) in Shalev-Shwartz and Ben-David (20144a).)

o
— E sup i1 ™Mz z%n o Mszizp
2 TTDrmMaM s 2C+i 2

[EnN

C+i

(End of the proof of Lemma %6.2 in| Shalev-Shwartz and Ben-David|(2014a).)
3

n
p@c
5 TD1i M2M ¢ i1 2

N

(k-lipschitzness and Lemma 26.9 in Shalev-Shwartz and Ben-David (2014a).)
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3

2
e

2
— E su iKKM  Xii Xpn ey % C.8
2 TDT;MZMps i=1 M T Tbg e (C8)
P n - -
Note that 8b 2 R"; E -1 ib =0. Itimplies that 8a2 A R" we have:
X0 X0 X
E sup iag=E ib+ Esup i 8
a2A i i=1 a2A =
(b does not depend orA.)
X
= Esup i(a+ by). (C.9)
a2A
Applying (€.9) to (€.8) with b = ku, XiiXpyco; QIVES:
2 3
h A i, 9%0
TDET Mszlld/lps Lr(M) (M) 3 TDET; MSZlI;I/Ips i=1 R XisXbgcri
(De nition
2kRn(M s).
O

C.6 Proof of Lemma 4[7 ]

Lemma (Bound onjRt Ryij). For any positive, convex andk-lipschitz continuous (De ni-
tion loss function,any metric satisfyjng Equation (.14) and any algorithm of estimation
error Ry =supyow ¢ L17(M) Cr(M) we have:

2G3(Ms) +2sup,0p , kkg(x;x9k — StMs)
JRT  Ryij

n

wherek k is the dual norm of the regularization term (De nition

Proof. First of all note that from De nition 4nd Equation (4/14)|we have that for any two
examplesz;z° D t:

| M;z;2° | Mg;z;2°  k gx;x3:M Mg
(Cauchy-Schwartz's inequality (Theorem[A.3).)
) | M;z;2° | Mg;z;2% + k g(x;x9 kM Mgk

(M 2M s)
r

) | M;z;2° | Ms;z;2° + k g(x;x9 Gs(Ms)
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(Taking the supremum over z;#z0 D 1.
r

G3(Ms)

| M;z;2° G3zMg)+ sup  k g(x;x9 (C.10)

z;2°D 1

wherek k represents the dual norm of the regularization term (De nition and G3(Ms) =

Sup;.;0p T

jRT

RTJ

| (Ms;z;29.

h i h i
sup Ly(M) Cr(M)  sup Lt(M) Cqi(M)
M2M g M2M g
sup Cr(M) C1i(M)
M2M g
1 X X X X o
- Ty Sup | M:z;Z° | M:z':Z
(n VEIGE 72T 227 ZI2Ti Zi0Ti
26 20 716 710
(T and T' only di er by one example, 8j 6 i;z; = z} and z = z| 0y
X o X i.0
sup | M;zi;z I M;z;z
nn Dwmams o, ot
zi62° zi6 20
X X .
+ | M;z; 20 | M;zz
22T 22Ti
262) ZSZEO
5 (Triangle inequality.)
1 sup § X | M;z:z° | M;z;2°
1 & ) ’
n(n L)mom s o
zi62%z162°
3
X "
+ | M;zZ | M;z; 20
Z2T;Ti
z§zi0;z§z§O

(Positive loss and Inequality (C.10))

2G3(M 5) + Zsupz;zOD T k kg(X; X%k G3y(Ms)

n
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C.7 Proof of Lemma 49 ]

Lemma (Bounded regularization). Let M 1 be the optimal solution returned by Problem(4.1)
with training set T and a positive and convex loss. We have:
S

Mr Mok CT(Ms)

Proof. By the convexity of the loss and the optimality of M + we have:

Cr(M7)+ kMt Msk® Cr(Ms)
(Positive loss.)
) kMt Msk® [Cr(Ms)
s

) k Mt Mgk LrMs).

C.8 Proof of Example 4.1 |

Example (Positive, convex, L-lipschitz functions for dissimilarity learning) . Let f (a) be a
positive, convex,L -lipschitz function. Given a dissimilarity (De nition 1 kv parametrized
byM 2M and any two examplesz;z° D 1 we de ne a loss as:

| M;z;2% =1 yyo km x;x% yyo (C.11)

where yyo=1if y=y%and 1 otherwise and yyo is the desired margin between examples.
This loss is:

Positive,

Convex,

k-lipschitz continuous with respect to the metric withk = L,
k-lipschitz continuous with k = L sup,.,op . kg(x;x%k ,

8
S TSUPzzop ¢ yy°

_ o q.
:m )-admissible with
(:m )-admissible with m = 2L sup, yop - kg(x: X9k LrMs) 4 kM sk

Proof. First the loss is positive and convex by construction.
Then we prove that the loss function is k-lipschitz. Given two metrics ky and ky o we
have:

| M:z22° | M%z 20 foyyolkm x;x% oy f o yyolkmo X;x© gyl
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(f is L-lipschitz.)
L yyolkm x;x% oyl yyolkmo x;x0 yyd]
(yo2f 1;1g)

L ky x;x%  kyo x;x° (C.12)
(Equation (f.14) and Cauchy-Schwartz's inequality (Theorem[A.3).)
L sup gx;x% M MO (C.13)

2;29D 1

Inequalities (C.17) and (C.13) respectively prove the lipschitzness with respect to the metric
and the matrix.

Lastly we show that the loss is (;m )-admissible. Given four examplesz; z% z%9z°° D
and M t the learned metric when learning with T we have:

| Mt1;2;2° | Mp;2%920%
f o yyolkm ¢ x;x° ywol  f yogoofKy ; x 00 000 y08/00d
(f is L-lipschitz.)
L yyo[kMT X;XO yyO] yoq,oo{kMT XO(,JX000 yo%,ood

(Triangle inequality.)

.0 00,,000
L yyokm, X;X yog/00Kp XX +  yy0 yy0  y0G,000 08,000

(yyo; yogooo2 f 1;1g.)

2L sup km, X;X0 4+ o yogooo  SUP  yyo
2;2°D ¢ 2:2°D 1

(Equation (#1.14) and Cauchy-Schwartz's inequality (Theorem[A.3).)
2L sup  g(x;x% kM k+ yyO  yog000 SUp

yy°
;29D 1 ;29D 1
(Triangle inequality.)

2L sup g(x;x9 (kM1 Msk+ kMsk)+ o  yogooo SUP  yyo

z;2°D 1 z:29D 1

0 (Boundeld regularization (Lemma[4.9).)
s
Cr(M
2L sup g(x;xy @ Lr(Ms) | kKMskA + o yogooo SUP  yyo
z;29D 1 z;29D 1
a ¢

Setting = SUP,.0p , yyo and M = 2L sup,op . kg(x;x9k  ETMs) 4 kM sk gives
the example. O

C.9 Proof of Example 42 |

Example (Positive, convex, L-lipschitz functions for similarity learning) . Let f (a) be a pos-
itive, convex, L-lipschitz function. Given a similarity (De nition 1[8)] ku parametrized by



184 Appendix C. Proofs of Chapter|4

M 2M and any two examples;z° D 1t we de ne a loss as:

km (x;x9

0 =
I M;z;z2 =f 1y -
yy

(C.14)

where o =1 if y = y%and 1 otherwise and yyo is the desired margin between examples.
This loss is:

Positive,
Convex,
k-lipschitz continuous with respect to the metric withk = ——Lt———
inf,.,0p Tj vy 9)
k-lipschitz continuous withk = ——-——— sup,.,op . kg(x;x9k ,
inf,.200 1] yyol ' T
8
< =0

. ) - . q
(; m )-admissible Wlth: m=2—— L sup,ep . kg(x;x9k Cr(Ms) 4 kM gk

inf 2200 ] yyo

Proof. First the loss is positive and convex by construction.
Then we prove that the loss function is k-lipschitz. Given two metrics ky and ky o we
have:

| M:z22° | M%z 20 f 1 yyoM f 1 yyoM
yy© yy©0
(f is L-lipschitz.)
L1 yyokM (x;x9 1 yyOkM o(x; x9
yy© yy©
(pwo2f 1;1g)
L km ;X% kyo x;x° (C.15)

infz;ZOD - yyO0
(Equation (#.14) and Cauchy-Schwartz's inequality (Theorem[A.3).)

L
_ sup g(x;x% M MP° (C.16)
inf,20p 1 yyo 220D ¢

Inequalities (C.15) and (C.18) respectively prove the lipschitzness with respect to the metric
and the matrix.

Lastly we show that the loss is (;m )-admissible. Given four examplesz; z% z%9z°° D
and M 1 the learned metric when learning with T we have:

k . k 0040
| Mt1;2;2° | M7;2%92%° 1 yyoMT(XO’XC) f 1 g0 (): (;OZ(OP
yy yoy
(f is L-lipschitz.)
km ; (x;x9 km ; (x%9x0%
L yin oQ,000——mMm

yy 0 y 0(%/000



C.10. Proof of Example[4.3 185

(yyo; yogooo2 f 1;1g.)

L
2- sup  kw, x;x°
infzz00 + yyo 220D ¢

(Equation (f.14) and Cauchy-Schwartz's inequality (Theorem[A.3).)

L
. sup g(x;x% kMtk
infz.20p + yyo 220D 1

(Triangle inequality.)
2. L sup g(x;x% (kM1 Msk+ kM sk)
infzz20p 1 yyo 220D ¢

(Bounded regula(;ization (Lemma).%
s

2- L sup g(x;xy @ m+ kM skA .
infz..0p + yyo 22D 1
a ¢
Setting =0and m = mepz;zm . kg(x; x99k ErMs) 4 kM sk gives the
z;z°D vy
example. ! O

C.10 Proof of Example 43 |

Example (Positive, convex, H-smooth, B -bounded functions for dissimilarity learning). Let
f (a) be a positive, convex,H -smooth, B-bounded function. Given a dissimilarity (De ni-

tion km parametrized byM 2 M and any two examplesz;z° D 1 we de ne a loss
as:

| M;z;2% = yyo km x;x%  yyo (C.17)
where yyo=1if y= y®and 1 otherwise and yyo is the desired margin between examples.
This loss is:

Positive,
Convex,

. : : . o P
k-lipschitz continuous with respect to the metric withk = ° 12HB,

k-lipschitz continuous with k = P 12HB sup,.,0p , kg(x;x9k ,
(

(:m )-admissible with .
m=B

Proof. First the loss is positive and convex by construction.
Then we prove that the loss function is k-lipschitz. Given two metrics ky and ky o we
have:

| M:z22° | M%z 20 foyyolkm x;x% oy f o yyolkmo x;x© yyo]
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(Lemmal|A.1] with f which is H-smooth and B bounded.)
12HB  yyo[ yyo km ;X1 yyo[ yyo  kmo x;x°]
(yo2f 1;1g)

p12HB km x:x%  kmo x;x° (C.18)
(Equation (f#.14) and Cauchy-Schwartz's inequality (Theorem[A.3).)
P e sup g(x;x% M MO (C.19)

2;29D 1

Inequalities (C.18) and (C.19) respectively prove the lipschitzness with respect to the metric
and the matrix.

Lastly we show that the loss is (;m )-admissible. Given four examplesz; z& z°9z0° D |
M 1 the learned metric when learning with T and the fact that the loss function is positive
and B-bounded we have:

| M1:2;2° | M¢;2%929° B,

Setting =0 and m = B gives the example. O

C.11 Proof of Example 44 |

Example (Positive, convex, H-smooth, B-bounded functions for similarity learning). Let
f (&) be a positive, convexH -smooth, B -bounded function. Given a similarity (De nition ]ﬂ
km parametrized byM 2 M and any two examplez;z® D 1 we de ne a loss as:

km (x:x9

| M;z;2° =f 1y
yy°

(C.20)

where yyo=1 if y= y®and 1 otherwise and yyo is the desired margin between examples.
This loss is:
Positive,

Convex,

| O —
k-lipschitz continuous with respect to the metric withk = ﬁ
z;2°D 1) yy

|
k-lipschitz continuous withk = —22HB___sup, o _ kg(x;x9k ,
inf2.200 ] yyo) ' T
(

(; m )-admissible with

m=B"
Proof. First the loss is positive and convex by construction.
Then we prove that the loss function is k-lipschitz. Given two metrics ky and ky o we
have:
km (x;x9 K o(x; x9)
o— f 1 yin

| M:z22° | M%z2Z° f1l
yy© yy©
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(Lemmal|A.1] with f which is H-smooth and B bounded.)

Ple 1, Xd kmixd
yy° yy°
(ywo2f 11g)
P
12HB kmy x:x°  kmo x;x° (C.21)

ian;ZOD T yyO0
(Equation (f.14) and Cauchy-Schwartz's inequality (Theorem[A.3).)
0

12HB
_ sup g(x;x% M MO (C.22)
infz,20p + yyo ;20D 1

Inequalities (C.21)) and (C.23) respectively prove the lipschitzness with respect to the metric
and the matrix.

Lastly we show that the loss is (;m )-admissible. Given four examplesz; z% z%9z°° D
M 1 the learned metric when learning with T and the fact that the loss function is positive
and B-bounded we have:

| M1;2;2° | M1;2%929° B

Setting =0 and m = B gives the example. O

C.12 Proofs of Table 4[2]

Example (Bound on the Rademacher Average) The dual norms of k kg, kk,;, kk,; and
k ky, are respectivelyk kg, kk; , kky; and k kg, whose Rademacher Average is bounded:

25Up, z0p ;. kg0 X9kE
Pi .

Rn(kk ) =

(C.23)

Proof. The results presented here have already been proven in (Cao et al., 2016) in a slightly
less general setting wherg(x;x9 = (x x9(x x9T. We recall the proof below for the sake
of completeness.

For the Frobenius norm, from the de nition of Rademacher Averages we have:

%c

Rokke)= B 7 E  10KiiXpge.)
2 i=1 -
(Jensen's inequality (Theorem[A.4).)
1 u %C
- EI)ET ?{‘J E » |9(X|,Xb%c+i)

(De nition of kkg.)
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Y 0 1
1 TS &
gt E B ki R
’ ) jik
(Standard properties on Rademacher Variables.)
v
u n
1 ﬁ RfCX 2
E —UE iO(Xis X ey
D, % - Ig( i b§C+|) ik
(De nition of kkg.)
v
u
L j e :
5.y, el
S .
1 In¥ )
E — — sup kg(x;x9k
TDr 1 2 Z;ZonT 90 XYk

2sup,;0p . kg(x; x ke
Vﬁ .

Noting that the "1 norm, the "1 norm and the spectral norm are always smaller than the
Frobenius norm and that the Rademacher Average is increasing when the value of the norm
is increasing gives the example. O
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Proofs of Chapter 5] |

D.1 Proof of Theorem 5.0 ]

Theorem (Optimal solution of Problem (5.1)). The optimal solution of Problem (6.1) can
be found in closed form. Furthermore, we can derive two equivalent solutions:

XTX+ nl 'XTv ()
XT XXT+nl 'V, ©5)

Lv

: Lv

Proof. Problem ) is a classic regularized regression problem admitting a closed form so-
lution Cortes et al.| (2007). We recall the derivation here for the sake of completeness. Let
Fv(L)= Cy(L)+ kL kﬁ be the function optimised in Problem ). First we consider its
derivative with respect to L:

@F(L) _, 1
Q n

Then we set this derivative to zero to obtain:

2
XTX+ | L ﬁxTv.

1

Ly= XX+ nl ~“XTV.

Finally Equation ($.5) comes from using Taylor expansions as proposed in Cortes et al.
(2007). O

D.2 Proof of Lemma 5/1 ]

Before proving Lemma[5.] we need the following technical lemma showing that the Frobenius
norm of the optimal solution of Problem (b.1) is bounded.

Lemma D.1 (Bounded Frobenius norm). Let Ly be an optimal solution of Problem (5.1),
we have:

KLy ke FFL

189
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Proof. SincelL is an optimal solution of Problem (5.1) and by convexity of the loss we have:

Cy(Ly)+ kLyk® Cy(0)+ kOk2

X X
, LT ey r kv 2T o)+ koK
n (x;v)2Vv (x;v)2V
(Positive loss.)
X
) KLy k2 1 kvks
n(x;v)2V
(kvk, By.)
) kLyké B2
B
) kLVkF plf
O

Lemma (Bounded loss function). Let Ly be the metric learned with Problem (5.1) with
training set V, we have that for any examplgx;v) D y:

I(Lv;(x;v)) B

2
with B = B2 1+ Bx |

Proof.
[(L;(x;v)= x'L v' ;
(Triangle inequality and standard norm properties.)
xT JkLke + vT ?
(kvk, By, kxk, By and Lemma[D.1.)
By 2
Bxp=+ By
B 2
B2 1+ p=
2
Setting B = B2 1+ Bx  gives the lemma. O

D.3 Proof of Lemma 5[2_]
Lemma (k-lipschitz continuity) . Our loss is k-lipschitz with k =2ByBy 1+ Bx .

Proof.
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= x'L v, xTLO vT , X'L vl o+ xTLO vT X
(Triangle inequality.)
xTL vl xTLO%+ vT X xTL vT ,+ xTLO vT )

(Bounded loss (Lemma 5.1).)
L L°_2B,Bx 1+ P

Setting k =2ByBy, 1+ B gives the lemma. O

D.4 Proof of Lemma 53]

To prove Lemmal5.3 we need the following technical lemma.

Lemma D.2. Let Fy(L)= Cy(L)+ kLkZ andF(L)= Cy(L)+ KkLk2 be the functions
minimized in Problem @) whereV and V' are two training samples ofn examples. V' is

obtained by replacing example from V by another example drawn independently fronDy .

Let Ly and Ly be their respective minimizers, and be the regularization parameter used in
our algorithm. Let | = Ly Ly, then, we have, for anyt 2 [0; 1],

Bx

kLvk? k Ly t (K& +KkLyik?d Kk Lyi+t |k 1+p= k ke. (D.1)

4B By
n

Proof. This proof is similar to the proof of Lemma 20 in Bousquet and Elissee (2002a) which
we recall here for the sake of completeness. First, note thafy is a convex function, thus,
for any t 2 [0; 1], we have:

Cvitlv t 1) Cyiby) t€yi(byi) Cyi(ly)) (D.2)
Cvilbvi+t ) Cuitv)  tCyity) Lyt (D-3)

Summing Inequalities {D.Z) and (D.3) gives:
Cvitbv t 1) Luibw)+ Cyibvi+t 1) Lyibyi) 0 (D-4)

Ly and Ly, respectively minimize Fy and Fyi (L), we have:

Fv(Lv) Fv(Lv t ) O (D.5)
Fvi(Lvi) Fyi(byi+tt () O (D.6)

Summing Inequalities (D.4), (D.5) and gives:

Cyitkyv t 1) Cyibv)+ Cy(ty) Cyu(ty t L)
+ kLykZ  kLy t _kZ+ kLyik?  kLyi+t (k& 0. (D.7)

From Equation (D.7), we can write:

kLvkZ  kLy t (k&E+ kLyik®  kiLyi+t (k& C (D.8)
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with
C=Cyi(Lv) t )+ Cvty t L) Cy(Ly)
Using Lemma[5.2 we can boundC:
C Cuity) Cuitty t )+ Cyty t 1) Cyu(Ly)
1 X X o
= = I(Lv t L;(x;V)) I Lyt L;(x";vh)
n (x;v)2V (xivi)2vi
1 X .
+ = I Lv;(x"';v") I (Lv;(x;V))
n (xi;vi)2vi (x;v)2V

= % I(Lv t Li(Xi3vi))

(V and V' only di er by one example.)

toLxhv]) +1Lysxhvl) Ly (xi5vi))

(Triangle inequality.)

1. 1 O P
ﬁJI(LV t oL (Xi;vi)) I(LV;(xi;vi))j+ﬁI Lv;(xj;vi) | Lv t ;(xj;v))
(Loss k-lipschitz (Lemma [5.2).)
4B, B B
r: X 1+ pX k ke
O
We can now prove the lemma.
2R2 2
Lemma (Uniform stability) . Our algorithm has a uniform stability in = BB% 1+ Fx
Proof. By setting t = % in Lemma , one can obtain for the left hand side:
|
kLvkZ Ly +kLyikZ  Lyi+ > L =Sk LK
2 2
and thus:
2B,B B
k k2 :]X 1+ p=X k ke
4B, B B
) Lk|: ; ! 1+pi—
From LemmalG5.2 we have:
. . B
jI(Lyv;(x;v)  T(Lyis(xsv)j 2ByBx 1+ p= Kk ke
2
BIBE 1, B
n
2
Setting = %BBX 1+ B  gives the lemma, O
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E.1 Introduction

L' Apprentissage Automatique est un domaine de lintelligence Articielle dont le but est
d'acqierir de nouvelles connaissancesa partir de donrees. Ces nouvelles connaissances pren-
nent gereralement la forme d'un mockele, apprisa partir d'un nombre limie d'exemples ob-
senes et capable de bien greralisera de futures requétes. En d'autres termes, le but est
d'apprendre comment esoudre un probeme de facon automatiquea partir d'un nombre ni
d'observations. Par exemple, I'objectif de la detection de spams est d'utiliser la boite mail
annoee d'un utilisateur pour apprendre comment eparer les emails desies des autres; en
suivi d'objets le probeme est de suivre uneement donre dans une viceo; en reconnaissance
de visages le but est d'identi er une personne dans un ensemble d'images.... La diversie des
probemes poss en apprentissage automatique a attie beaucoup d'attention dans le pass et
nerite que I'on continuea s'y ineresser activement.

Dans cette ttese nous sommes principalement ineresss par les probemes épprentissage
Supervig. L'icke derrere ce paradigme est que les exemples sont accompagres d'uneetiquette.
Celle-ci peut &tre une valeur ou une classe et corresponda la solution du probeme pour
I'exemple assoce. Pour illustrer cela, nous consicerons le probeme de pediction du prix des
habitations et celui de la reconnaissance de champignons empoisonres. Dans le premier cas,
le but est de pedire le prix d'une maison, chaque exemple correspond alorsa un ensemble
de caraceristigues du batiment tandis que letiquette corresponda son prix. Dans le second
cas, le but est de reconnaitre,a partir d'images, les champignons mangeables de ceux qui sont
empoisonres. Chaque exemple est alors la photo d'un champignon tandis que letiquette cor-
responda sa classe, i.e. empoissonre ou pas. De ces exemples, nous remarquons l'importance,
en apprentissage supervig, de la gereralisation aux nouvelles donrees. En e et, lesetiquettes
des exemples d'apprentissage etant donrees, l'inerét d'un mockle qui n'est pas capable de
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pedire la bonne etiquette pour un nouvel exemple est limie. Notons que les deux exem-

ples pe@dents correspondenta des probemes largementetudes en apprentissage supervise :
la egression et la classi cation. La dierence entre les deux est que le but du premier est

de pedire une valeur continue tandis que l'objectif du second est de determiner une classe
discete.

L'apprentissage supervie n'est pas le seul paradigme existant en apprentissage automa-
tique. Il peut, en fait, &tre oppoea celui de I'apprentissage non supervie ai les exemples
ne sont pas assocesa desetiquettes. Par exemple un probkme largementetude est celui du
partitionnement de donrees au l'objectif est d'obtenir une paration sensee de l'espace, c'est
a dire de regrouper les exemples qui partagent des proprees communes. La performance
des algorithmes d'apprentissage non supervie est di cile aevaluer en pratique. En e et,
contrairementa l'apprentissage supervig, il n'y a pas detiquettes donnant un retourevident
sur le mockle appris.

S'inspirant de ces deux paradigmes, l'icee derrere Apprentissage Semi-Supervieest de
consicerer deux ensembles d'apprentissage, le premier estetiquet tandis que le second ne I'est
pas. Dans ce cas, le but est souvent d'utiliser les exemples etiquees pour aidera esoudre
une tache d'apprentissage non supervise ou d'utiliser les exemples nonetiquees pour aidera
esoudre une tAche d'apprentissage supervis.

Jusque & nous avons consicee que le but des dierentes approches d'apprentissage au-
tomatique est de esoudre une tache unique. Prenant un point de vue dierent, l'icee derrere
I' Apprentissage par Transfert est de transerer la connaissance apprise sur un probeme source
a un probeme cible. De facon similaire, l'idce derrere I' Adaptation de Domaine est de
transkrer le mockle appris sur une tAche source pour esoudre un probeme cible qui est
dierent mais rele. Par exemple, dans le probeme de la cetection de spams, les deux taches
peuvent étre de cetecter les mails non cesies dans les botes de deux utilisateurs dierents.
Ces deux utilisateurs rencontrent le méme probeme mais la distribution de leurs mails diere,
e.g. ils ne sont pas abonres aux mémes listes de di usion. Dans ce cas le but est d'adapter
le mockle appris pour un des utilisateursa l'autre.

Dans ce manuscrit nous verrons que méme si Nous nous inkressons principalement a
des probemes d'apprentissage supervig, plusieurs de nos contributions sont aussi lees aux
dierents paradigmes pesenes ici.

Lors de la pesentation du paradigme de I'apprentissage supervie nous avons insise sur
le fait qu'un mockle, appris en utilisant un nombre limie d'exemples d'apprentissage, de-
vrait pouvoir gereralisera de nouveaux exemples. Une facon de \eri er cette propree est
devaluer le mocele appris sur un nouvel ensemble d'exemples de test independants des ex-
emples d'apprentissage et pour lesquels la solution au probeme est connue. Cependant, le
nombre d'exemples qui peuvent étre obtenus est souvent limie. Cela implique que cette ap-
proche ne sut bien souvent pasa assurer que le mocele gereralise bien. D'autres nethodes
sont alors recessaires. Pour cela, notons d'abord qu'une supposition commune en apprentis-
sage automatique est que la tache que nous cherchonsa esoudre est compktement ce nie
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par une distribution inconnuea partir de laquelle les exemples d'apprentissage sont ties. Par
suite, une solution possible est d'utiliser une proedure de validation croie a1 l'icee est de
gparer I'ensemble d'apprentissage erk parties. Le moctle est alors appris surk 1 parties
et tese sur la dernere. Cette proedure est alors epee k fois, i.e. jusqua ce que chaque
partie estet utili’ee comme partie de test, et la pecision est obtenue comme moyenne des
dierentes epetitions. Cette proedure requiert aussi un nombre signi catif d'exemples pour
étre pertinente. Une autre possibilie qui suit de la suppositionevoqlee peedemment con-
siste a proedera une analyse theorique de l'algorithme d'apprentissage et de ceriver des
bornes appekes bornes en cereralisation. L'icke de ces bornes est de montrer que l'erreur
eelle du mockele appris, i.e. son erreur sur la distribution inconnue, est borree par son er-
reur empirique, i.e. son erreur sur I'ensemble d'apprentissage, a laquelle s'ajoute un terme
qui cecroit avec l'augmentation de la taille de I'ensemble d'apprentissage. L'obtention de
telles bornes est une garantie que les moctles appris par l'algorithme concerre gereralisent
raisonnablement bien.

De nombreuses approches ontet proposes pour esoudre les probemes poses par l'appren-
tissage supervie. Parmi celles-ci plusieurs cependent fortement d'une notion de distance ou
de similarie entre les exemples pour apprendre un moctle. Un exemple tes repesentatif
est le classi cateur des plus proches voisins qui est bas sur l'icce que deux exemples simi-
laires devraient partager la mémeetiquette. Un autre exemple est l'algorithme des machines
a vecteurs de support qui propose de classer les exemples en fonction de leur similarie a
des points speci ques nomnes vecteurs de support. Dans ces deux exemples la notion de
similarie utilie est d'une importance critique. Cependant des tAches dierentes requerent
souvent des mesures de similarie dierentes. Par exemple, consicerant les exemplesevoqies
peedemment dans cette introduction, il semble mal venu de comparer les habitations et les
champignons de la méme facon. Manuellement choisir une mesure de similarie appropree
peut &tre fastidieux et di cile. Cependant il devrait étre possible de l'inerer de facon automa-
tiqguea partir des donrees. C'est l'icee derrere I' Apprentissage de Metriqgues qui correspond
au probeme auquel nous allons nous ineresser dans cette these.

Nous identi ons plusieurs limites des approches actuelles en apprentissage de netriques.
Tout d'abord plusieurs rrethodes proposent d'utiliser des informations suppementaires pour
aider durant le processus d'apprentissage. Cependant il n'y a pas de compehension treorique
de l'impact de ces informations sur la rmetrique apprise. Ensuite les proprees intrineeques
des netriques apprises sont souvent les mémes. En e et celles-ci sont gereralement apprises
avec l'icee de rapprocher les exemples similaires et deloigner les exemples dissimilaires. Dans
certains cas il pourrait étre ineressant de consicerer d'autres types de contraintes. Un exemple
est I'obtention d'une netrique dont le comportement n'est pas limie aux exemples mais est
plus global dans le sens ai elle est, par exemple, capable de bouger des blocs d'exemples
en tant que tels. Enn, une troiseme limite des approches actuelles est qu'elles ne sont,
bien souvent, pas justiees treoriquement, i.e. aucune garantie n'est propose concernant la
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capaciea gereraliser des netriques apprises.

Contributions: Apprendre des Metriques avec un Comportement Contréé

Dans cette tlese nous proposons plusieurs approches pour apprendre des netriques dont le
comportement est controk. Dans une premere partie hous proposons d'utiliser une informa-
tion suppkmentaire qui prend la forme d'une netrique de etrence ou netrique source pour
guider de facon stricte ou plus relackee la nmetrique apprise. Ainsi, dans notre premere con-
tribution, nous nous ineressons au probkme de la egression des valeurs d'une netrique de
ekrence uniquement accessiblea travers un ensemble d'apprentissage de taille limie. Dans
notre seconde contribution nousetudions de facon theorigue comment utiliser une netrique de
ekrence venant d'un probeme le mais dierent peut aider lors du processus d'apprentissage.

En particulier nous cerivons plusieurs mesures de l'apport de la nmetrique source pour le
probeme consicee. Dans une seconde partie nous proposons deux approches capables de
consicerer de nouvelles formes de contraintes pour I'apprentissage de netriques. Ainsi, dans
notre troiseme contribution, nous consicrons que les exemples d'apprentissage ne devraient
pas bouger les uns par rapport aux autres mais plutdt par rapporta des points virtuels qui
se trouvent cep dans l'espace induit par la nmetrique apprise. Cette methode nous permet
de contréler de manere pecise le mouvement de chaque exemple. Dans notre quatreme
contribution nousetendons notre troiseme contribution et consicerons de ecentes avanees
dans le domaine du Transport Optimal pour proposer une nouvelle approche pour appren-
dre une netrique capable de bouger des blocs d'exemples dans l'espace. En n, remarquons
gque dans cette these nous proposons, autant que possible, des approches qui sont justiees
treoriquement.

Plan greral

Dans la premere partie de cette ttese nous pesentons plusieurseements peliminaires. Dans
le premier chapitre nous introduisons des concepts qui seront utilises tout au long de ce
manuscrit tandis que dans le second chapitre nous proposons une revue de letat de l'art en
apprentissage de netriques.

Chapitre 1[ ] Le premier chapitre de cette tfese est cedea la pesentation de plusieurs no-
tions et outils utilies dans celle-ci. La preméere partie de ce chapitre pesente le cadre de
travail de la minimisation du risque sur lequel sont bases toutes nos contributions algorith-
miques. La seconde partie est cedeea I'analyse treorique des algorithmes. Plus pecisment
nous pesentons deux cadres theoriques utilises pour ceriver des bornes en cereralisation et
bases respectivement sur la stabilie uniforme et la complexie de Rademacher. La troiseme
partie s'ineressea la notion de fonction de perte et de terme de egularisation qui sont des
ebements cks de I'apprentissage par minimisation du risque. Au travers de plusieurs exemples
nous montrons qu'il existe de nombreux choix avec des proprees dierentes. Cette troiseme
partie s'ineresse aussia la pesentation d'une ¢ nition formelle de la notion de netrique
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comme terme gereral pour cesigner une similarie, une dissimilarie ou une distance. De la
méme facon que pour les fonctions de perte et les termes de egularisation plusieurs exemples
sont pesenes. La dernere partie de ce premier chapitre introduit plusieurs autres notions
utiles telles que le classi cateur des plus proches voisins, que nous utiliserons souvent avec les
netriques que nous apprenons, et le probeme de I'adaptation de domaine que nous utilisons
pourevaluer deux de nos contributions.

Chapitre 2[ | Le second chapitre de cette trese corresponda une revue de letat de I'art en
apprentissage de netriques. Dans celle-ci nous pesentons les approches principales qui ont
fait le suces de ce domaine. Nous proposons de diviser cette revue en quatre parties qui
correspondent aux eponsesa quatre questions basiques sur les probemes de l'apprentissage
de netriques. Dans la premere partie nous consicerons les dierentes sortes de mnetriques
pouvant étre apprises. Ensuite, dans la seconde partie, nous epondons a la question de
savoir comment ces mnetriques peuvent &tre apprises en pratique. Dans la troiseme partie
de ce chapitre nous pesentons plusieurs approches qui s'ineressent aux questions treoriques
leesa l'apprentissage de netriqgues. En n, dans la dernere partie, nous pesentons plusieurs
travaux qui s'ineressenta l'utilisation de I'apprentissage de netriques dans des applications
qui vont de la classi cation au partitionnement en passant par I'adaptation de domaine.

Dans la seconde partie de cette these nous pesentons nos deux premeres contributions.
Elles s'ineressenta l'utilisation d'une netrique de etrence comme aide lors du processus
d'apprentissage.

Chapitre 3[] Dans le troiseme chapitre de cette trese nous pesentons notre premere
contribution. Elle correspond a une nethode d'apprentissage capable d'approximer une
netrique existante. La premere partie de ce chapitre est cedeea la pesentation du probeme
d'optimisation qui correspond a une egression des valeurs d'une rnetrique. De plus nous
montrons que quand la rmetrique de ekrence est trop complexe, il est possible d'utiliser une
approche locale pour obtenir une meilleure approximation. Dans la deuxeme partie nous
analysons theoriguement notre approche dans le cas global mais aussi dans le cas local. Cela
montre que les nmetriques apprises par notre approche gereralisent bien. Dans les troiseme et
gquatreme parties de ce chapitre nous consicerons le probeme de I'apprentissage de distances
couleur perceptuelles pour montrer l'inerét de notre approche dans une application eelle.

Chapitre 4[| Le quatreme chapitre de cette ttese est dedea notre seconde contribution.

Comme dans le troiseme chapitre il s'agit d'une approche d'apprentissage de netriques capa-
ble de prendre en compte la connaissance donree par une netrique de egérence. La principale
dierence est que, dans ce chapitre, le but n'est pas d'approximer cette netrique mais plutdt

de l'utiliser pour aider au cours du processus d'apprentissage. Cette contribution est ainsi
fortement lee aux domaines de l'apprentissage par transfert et de I'adaptation de domaine.
Ce chapitre est divie en sept parties. Dans la premere nous pesentons le cadre de travail
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de l'apprentissage de netriques par transfert d'hypotheses qui corresponda un probeme de
minimisation avec terme de egularisation biaiee. Dans les deuxeme, troiseme et quatreme
parties nous proposons une analyse treorique du cadre de travail propos en utilisant trois ap-
proches treoriques dierentes. Cela nous permet de ceriver plusieurs mesures de I'apport de
la metrique de etrence. Dans la cinqueme partie de ce chapitre nous esumons les dierentes
bornes et dans la sixeme partie nous pesentons plusieurs fonctions de perte et termes de
egularisation pouvant étre utilies dans notre cadre de travail. Dans la dernere partie nous
montrons que ce cadre peut étre utiliee en pratique pour obtenir des esultats competitifs sur
plusieurs taches d'apprentissage par transfert.

Dans la dernere partie de cette these nous introduisons nos deux derneres contributions
al nous proposons de nouvelles facons de contréler le comportement des netriques apprises.

Chapitre 5[] Dans ce cinqueme chapitre nous pesentons notre troiseme contribution. Dans
celle-ci, plutét que d'utiliser les contraintes classiques de similaries et dissimilaries nous pro-
posons de consicerer que la metrique devrait rapprocher les exemples d'apprentissage de points
virtuels e nisa priori. Cela nous permet d'apprendre une netriquea l'aide d'une egression

et de eduire le nombre de contraintes consiceees. Dans la premere partie de ce chapitre
nous pesentons notre algorithme. Dans la seconde nous adressons le probeme de slectionner
les points virtuels et de ¢ nir les contraintes. Dans la troiseme partie nous proposons une
analyse treorique de l'algorithme propos et nous montrons, d'une part, qu'apprendre une
netrique avec notre approche est fonce et, d'autre part, qu'il est possible de ceriver des liens
avec une approche plus classique d'apprentissage de netriques. Dans la dernere partie nous
validons empiriquement l'inerét de notre approche.

Chapitre 6 ] Le sixeme chapitre de cette ttese introduit la dernere contribution de celle-

ci. Il s'agit d'une nouvelle methode capable d'apprendre une netrique pouvant bouger des
blocs d'exemples en approximant la transformation correspondanta la solution d'un probeme
de transport optimal. Dans la premere partie de ce chapitre nous introduisons de manere
formelle le probeme du transport optimal. Dans la deuxeme partie nous pesentons notre for-
mulation tandis que dans la troiseme nous proposons une approche e cace pour l'optimiser.
Dans la quatreme partie de ce chapitre nous proposons une discussion treorique qui montre
que si les suppositions classigues faites dans le domaine du transport optimal sont correctes
alors notre approche est fondee. Dans la dernere partie nous proposons une validation em-
pirique de notre methode sur des probemes d'adaptation de domaine et dedition d'images.

E.2 Resune du Chapitre 1 [ ]

Dans ce chapitre nous pesentons plusieurs notions essentielles a la bonne compehension
de cette trese. En particulier nous formalisons le cadre de travail de l'apprentissage par
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minimisation empirique du risque sur lequel sont bases nos dierentes contributions algo-
rithmiques. De la méme facon nous pesentons deux cadres theoriques qui permettent de
ceriver des bornes en gereralisation pour la minimisation du risque. Comme nous le verrons
dans le second chapitre ces deux cadres theoriques onteketendus avec suces au probeme
de l'apprentissage de netriques. Dans ce manuscrit nous les utiliserons pour cemontrer que
nos algorithmes sont capables d'apprendre des netriqgues qui gereralisent bien. D'un point
de vue plus pratique nous pesentons plusieurs fonctions de perte et termes de egularisation
pouvant etre utilises dans le cadre de la minimisation du risque. Nous proposons aussi une
e nition formelle de la notion de netrique consickee dans cette these. Pour nir nous
pesentons l'algorithme de classi cation des plus proches voisins et le probeme de I'adaptation
de domaine qui seront utilises pour empiriquement cemontrer l'inerét de la plupart de nos
contributions.

E.3 Resune du Chapitre 2 []

Dans ce chapitre nous proposons une revue, non exhaustive, de letat de I'art en apprentissage
de netriques. Ainsi nous nous ineressons tout particulerement aux nmethodes proches de nos
contributions. Cela corresponda des approches qui apprennent le méme genre de netriques,
consicerent des facons similaires d'e ectuer letape d'apprentissage, cerivent le méme genre
de bornes en greralisation ou apprennent une netrique pour esoudre les mémes taches.

E.4 Resune du Chapitre 3 []

Dans ce chapitre nous nous ineressons au probeme de I'estimation d'une netrique de etrence
inconnuea partir d'un ensemble de paires d'exemples. Une solutiona ce probeme est d'utiliser
I'apprentissage de mnetriques pour approximer de fecon automatique les valeurs de cette
netrique de etrence. Cependant, la plupart des algorithmes d'apprentissage de netriques
s'ineressenta I'estimation de la proximie relative des exemples d'apprentissage plutdt qua

la distance e ective qui les pare. Dans ce chapitre nous proposons un nouvel algorithme
d'apprentissage de nretriques locales nous permettant,a I'aide d'une distance de Mahalanobis,
d'approximer de facon pecise une netrique de etrence. En utilisant le cadre treorique de

la stabilie uniforme nous cerivons des bornes en gereralisation sur le mockele appris qui mon-
trent que notre nethode est foncee treoriquement. De plus nous evaluons notre approche
sur un probeme de vision par ordinateur consistanta calculer des dierences de couleurs qui
soient perceptuellement uniformes. Avoir des distances qui reetent la perception humaine
des couleurs de la sene est essentiel dans les applications de vision par ordinateur comme
la segmentation d'images ou la cetection d'objets saillants. Cependant, dans la plupart des
cas, il est uniquement possible d'avoir aces aux couleurs de l'image sans aucun moyen de
revenir aux couleurs de la sene. Il existe deux approches principales permettant de esoudre
ce probeme. D'un cog, il est possible de calculer directement une distance perceptuelle entre
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les couleurs de l'image consiccee. Cependant cette distance est colteusea calculer et cepend
des conditions d'acquisition ce qui implique qu'elle est bien souvent loin des dierences entre
couleurs de la sene. D'un autre cog, il est possible d'estimer les couleurs de la senea partir
de celles de I'image puis de calculer une distance perceptuellement uniforme. Cependant, cela
impligue une connaissance sur les conditions d'acquisition qui n'est pas raisonnable pour la
plupart des applications. Notre approche nous permet d'apprendre une netriqgue qui esta

la fois invariante aux conditions d'acquisition et calculablea partir des couleurs des images.
Nousevaluons l'inerét de cette dernere en montrant sa capaciea (i) gereralisera de nou-
velles couleurs et de nouveaux appareils photographiques et (ii) aider dans un probeme de
segmentation.

E.5 Resune du Chapitre 4 []

Nous consicerons le probeme du transfert de connaissances a priori dans le contexte de
I'apprentissage supervige de netrigues. De fecon plus pecise nous consicerons des probemes
a egularisation biaisee qui utilisent un netrique de egrence, une netrique source, venant
d'un probeme dierent mais rele et pouvant potentiellement aider lors de I'apprentissage
d'une netrique avec peu de donrees. Si ce cadre a cepet applige avec suces de manere
empirique, il n‘existe pas de cadre theorique justi ant une telle approche. Dans ce chapitre,
nous proposons de esoudre ce probeme en proposant une analyse tteorique base sur trois
approches dierentes. Tout d'abord nous pesentons une nouvelle ¢ nition de la stabilie,
on-average-replace-two-stability, qui nous permet de montrer des bornes en greralisation en
moyenne avec un taux de convergence rapide lorsqu'une netrique source auxiliaire est utiliee
pour biaiser le terme de egularisation. Ensuite nous considerons une notion de stabilie algo-
rithmigue adapte au cadre de I'apprentissage de netriques egulari®e et nous prouvons une
borne en gereralisation probabiliste montrant I'inerét d'utiliser un terme de egularisation bi-
ai®e avec ponceration de la rretrique source. Nous proposons une solution algorithmiquea ce
probeme de ponderation que nousevaluons (i) dans un probeme d'apprentissage de nmetriques
classique et (i) dans un probeme d'apprentissage par transfert avec peu de donrees cibles.
En n nous cerivons une borne en gereralisation baske sur la complexie de Rademacher de
la classe de netriques consiceee en prenant notamment en compte la netrique de egrence.
Cette borne souligne l'inerét d'utiliser une bonne netrique source en montrant que, lorsque
celle-ci est une solution ickale au probeme, l'apprentissage n'est plus recessaire. Pour justi-
er l'inerét de ce cadre de travail nous proposons plusieurs exemples de fonctions de perte
et de termes de egularisation qui peuvent étre utilies dans le cadre d'une ou plusieurs des
approches theoriques consicees.
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E.6 Resune du Chapitre 5 []

Dans ce chapitre nous nous ineressonsa l'apprentissage supervie de distances de type Ma-
halanobis. Les approches existantes cherchent principalementa apprendre un nouvel espace
de repesentation en fonction de contraintes prenant en compte des informations de similarie

et de dissimilarie entre les exemples. Ici, au lieu de rapprocher a1 deloigner les exemples
selon ce type de contraintes, nous proposons d'introduire le concept de points virtuels nous
servant de supports pour le ceplacement des exemples d'apprentissage. Ainsi, les exemples
d'apprentissage sont rapproctes d'un point virtuel qui leur aet a ecka priori permettant

alors de eduire le nombre de contraintes a satisfaire et de contréler de facon explicite le
comportement de la netrique pour chaque exemple. Nous montrons que l'approche proposee
peut étre esolue en forme close et qu'il est alors possible de travailler dans I'espace induit
par un noyau. Nous proposons deux analyses theoriques, la premere prouvant la capacie de
cereralisation des netriques apprises avec notre methode et la seconde etablissant des liens
avec une approche d'apprentissage de netriques classique. De plus nous proposons deux solu-
tions e caces au di cile probeme de la ®lection des points virtuels, I'une d'elleetant base

sur de ecentes avanees dans le domaine du transport optimal. Pour nir, nous evaluons
notre approche sur plusieurs jeux de donrees classiques en apprentissage de netriques.

E.7 Resune du Chapitre 6 [ ]

Dans ce chapitre nous proposons d'adresser le probeEme de I'apprentissage d'une transforma-
tion, induisant une distance de Mahalanobis, qui approxime une transformation geonetrique
particulere. Une telle metrique pourrait étre tes kere que dans le contexte de l'adaptation

de domaine au le but est d'aligner les domaines sources et cibles. Ici nous proposons de con-
sicerer des transformations geonetriques induites par la esolution d'un probeme de transport
optimal. En e et, il s'agit d'une proedure raisonnable pour aligner des distributions et sa
capaciea esoudre des probemes d'adaptation de domaine a ccpee cemontee. La plu-

part des approches en transport optimal utilisent la formulation donree par Kantorovich et
apprennent un couplage probabiliste entre les dierents exemples d'apprentissage. Cepen-
dant elles n'abordent pas le probeme de l'apprentissage de la transformatiorf sit  lee au
probeme de Monge. En consquence le couplage appris ne peut-&tre utili® que sur les ex-
emples d'apprentissage et pas sur de nouveaux exemples ce qui eduit l'inerét potentiel de
telles approches. Dans ce chapitre nous proposons de combiner I'apprentissage de netriques
et le transport optimal dans un nouveau cadre de travail nous permettant d'apprendre con-
jointement le couplage et une approximation de la transformation correspondante. Cette
approximation prend la forme d'une matrice L correspondanta une nouvelle netrique dans

le domaine source. Dans ce cas nous montrons que notre approche est leea RVML, pesene
dans le Chapitre [§, ai les points virtuels assocesa chaque exemple sont & nis comme le
esultat du couplage induit par le transport. Cependant, plutdt que de consicerer que le
couplage est ¢k ni a priori, nous proposons de I'apprendre en méme temps que la netrique.
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Ainsi, nous obtenons une formulation jointe et convexe pouvant étre optimiee de facon e -
cace et ayant le kere ce de lisser le esultat du transport optimal. En pratique nous montrons
I'inerét de notre methode pour deux taches, I'une en adaptation de domaine et l'autre en
edition d'images.

E.8 Conclusion

Dans cette these nous avons adress le probeme de l'apprentissage de netriquesa comporte-
ment controk. Nous avons consicee deux types de controle sur la netrique apprise. D'une
part, nous avons consicte le probeme de l'apprentissage par rapporta une netrique de
ekrence donree soit sous la forme d'une distance pour un nombre limie de paires d'exemples
soit directement sous la forme d'un mocele. D'autre part, nous avons consicee le probeme
de l'apprentissage de la transformation induite par une distance de Mahalanobis soit pour
controler de facon pecise le mouvement de chaque exemple soit pour approximer une transfor-
mation georretrique. Nos dierentes contributions sonta la fois algorithmiques et theoriques.

Resune des Contributions

La plupart des algorithmes d'apprentissage de netriques s'ineressenta l'obtention de netriques
capables de rapprocher les exemples similaires tout eneloignant les exemples dissimilaires.
Cependant, il peut parfois etre ineressant de pedire une valeur pecise entre deux exem-
ples. C'est par exemple le cas lorsque I'on a acesa un nombre limie de paires d'exemples
pour lesquelles la valeur d'une netrique de ekrence est connue. Dans notre premere con-
tribution nous avons adress le probeme de I'approximation de cette netrique de e&rence.
Nous avons propos une approche d'apprentissage de netriques locales que nous avons analys
treoriquement pour montrer que si le mockle aet appris avec un nombre su sant d'exemples,

il gereralise bien. De plus nous avonsevalle notre approche sur le probeme de vision par or-
dinateur qu'est I'estimation de distances couleur perceptuelles. Pour cela nous avons cee un
nouveau jeu de donrees specialement dedea cette tAche. Nos esultats empiriques ont monte

le bon comportement de notre approche ainsi que sa capaciea approximer la netrique de
ekrence. Le nouveau jeu de donrees ainsi que la distance perceptuellement uniforme apprise
sont distribles gratuitement (lPerrot et al.,|2014a).

Plusieurs approches d'apprentissage de netriques montrent de facon empirique l'inerét
d'utiliser une information suppkmentaire, sous forme d'une netrique source, mais ne prouvent
pas ces lere ces de facon treorique. Dans notre deuxeme contribution nous avons propose
de esoudre ce probeme. Ainsi, nous avons formalis le cadre de travail de I'apprentissage de
netriques par transfert d'hypotlese ai l'idee est de prendre en compte une netrique source
dans un terme de egularisation biai®. Nous avons propos une analyse treorique de ce cadre
nous permettant de ceriver trois mesures dierentes de l'apport d'une netriqgue source. Ces
mesures repesentent dierents moyens devaluer l'inerét de la nmetrique de ekrence pour
le probeme consicce. Deux de ces mesures sont treoriques et donc di cilesa utiliser en
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pratique. La troiseme, cependant, est empirique ce qui signie qu'elle peut étre utiliee

pour wlectionner la meilleur retrique source dans un ensemble. Pour illustrer cela nous
avons propog un algorithme de ponceration de I'importance de la netrique source. Nous
avons de plus cemonte l'inerét de notre cadre de travail en montrant que de nombreuses

fonctions de perte et termes de egularisations pouvaient étre utilies. Enn nous l'avons

empiriguementevalle sur un probeme d'apprentissage de netriques classique mais aussi sur
une tAche d'adaptation de domaine semi-supervise.

La plupart des approches d'apprentissage de netriques utilisent des contraintes de simi-
larie et dissimilarie pour apprendre une nretriqgue mais ne contrélent pas de facon explicite
le comportement de la transformation induite. Dans notre troiseme contribution nous avons
adres® ce probeme en proposant une nouvelle approche al la destination des exemples, apes
projection par la transformation, est choisie de manere explicitea l'aide de points virtuels.
Cela nous a permis de contréler de manere pecise la netrique apprise et donc d'apprendre
des mockles plus adapesa la tache consiceee. Par exemple, pour un probeme de classi -
cation, nous avons propos des points virtuels bass sur les dierentes classes de telle facon
que chague axe de l'espace de projection de la netrique apprise soit discriminant pour une
classe particulere. Nous avons monte que notre approche peut facilement apprendrea par-
tir de I'espace induit par un noyau et donc apprendre des netriques tes expressives. Nous
avons aussi propos uneetude theorique montrant des liens entre notre methode et une ap-
proche classique d'apprentissage de netriques. En n, nous avons cemonte empiriquement
ses bonnes performances sur plusieurs jeux de donrees classiques.

Dans notre quatreme contribution nous avons aborce un probeme similaire a celui de
notre troiseme contribution. Cependant, au lieu de contrbler de facon explicite le comporte-
ment de chaque exemple individuellement, nous avons propos de forcer la netriquea suivre
une transformation geonetrique particulere. Ainsi, nous avons consicee des transformations
induites par le couplage appris par un probeme de transport optimal discret, ce qui est d'un
inerét tout particulier pour des taches d'adaptation de domaine. Nous avons propos une
solution pour apprendre de facon jointe ce couplage et la transformation induite par une
netrique. Nous avons cerive une nmethode d'optimisation e cace et nhous avons monte que
cette approche pouvait étre releea notre troiseme contribution ai les points virtuels et la
transformation sont appris de facon jointe. Nous avons empiriguement cemonte le bon com-
portement de notre approche pour un probeme d'adaptation de domaine non supervig ainsi
que pour une tache dedition d'images.

Perspectives

Nous avons tep pesene des perspectives speci ques pour chacune de nos contributions. Dans
cette partie, nous proposons plutdt de consicerer des travaux futurs gereraux qui peuvent
repesenter de nouvelles directions de recherche decoulant desekments pesenes dans cette
trese.

D'un point de vue algorithmique nos contributions sont principalement bases sur des
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probemes d'optimisation directs. Une premere perspective serait detendre les concepts
pesenes dans ce manuscrit au contexte de l'apprentissage en ligne. Ainsi, il pourrait étre
ineressant de cevelopper des necanismes capables de cetecter de potentiels changements
dans la distribution des exemples et d'alors changer automatiquement le comportement de la
netrique consiceee. Une telle approche pourrait, par exemple, étre utiliee dans un contexte
de suivi d'objets dans des videos au les variations dans la sene peuvent potentiellement
appeler a des comportements dierents de la netrique. Une autre perspective serait de
consicerer I'apprentissage actif pour aneliorer le contréle de la netriqgue. Par exemple, lorsque
I'on apprend une transformation, il pourrait tre ineressant d'obtenir un retour de 'utilisateur
pour \eri er que les exemples sont correctement ceplaes. Un domaine d'application pourrait
étre celui de lI'adaptation de domaine, ai I'apprentissage actifa cep fait ses preuves (Berlind
and Urner, [2015), au obtenir des retours sur des exemples bien choisis pourrait assurer que
la metrique estime de facon correcte les dierences entre les distributions.

D'un point de vue plus treorique notons que dans cette these nous nous sommes princi-
palement ineressesa la capacie de gereralisation des netriques apprises et pasa leur impact
sur l'application dans laquelle elles sont utilisees. Partant de cette dernéere idee,/Balcan et al|
(2008) ont monte que l'erreur d'un classi cateur lireaireetait leea une mesure de l'apport
de la similarie utilie pour I'apprendre. Cette mesure de l'apport d'une netrique est relee
a sa capacit a rapprocher les exemples similaires et a eloigner les exemples dissimilaires.
Cependant, lors de l'apprentissage d'une netriquea comportement contrée cette mesure ne
sera pas forement adapee. Par exemple, lors de l'apprentissage d'une netrique a l'aide
d'une netrique de etrence ( Chapitres 8]et fi]) il serait probablement plus ineressant de
consicerer une mesure prenant en compte cette information suppementaire. De la méme
facon, lors de l'apprentissage d'une transformation pour une tache d'adaptation de domaine
( Chapitres [4 et[g ) il serait probablement plus ineressant de se focaliser sur la capacie de
la netrique a aligner la source et la cible. Cela implique que la mesure de l'apport de la
netrique cepend de la tAche consiccee. Une perspective ineressante pourrait étre de con-
sicerer des cadres treoriques capables de prendre en compte une notion d'apport releea la
tache consiceee et de montrer qu'une bonne netrique est en e et kere que.

Une autre perspective threorique est la cerivation de bornes a convergence rapides en
pesence d'informations suppementaires. Dans le Chapitrd 4 nous avons propos une premere
solutiona ce probeme en utilisant la complexie de Rademacher et I'information suppementaire
gu'est la mesure de l'apport de la netrique source cerivee. Cependant, cette solution n'est
pas satisfaisante dans le sens a la contrainte impose sur la netrique sourceetait plus forte
que le esultat obtenu sur la netrique apprise. Dans tous les cas, cela reste un esultat encour-
ageant puisqu'il montre qu'en utilisant des suppositions fortes il est possible d'obtenir un taux
de convergence rapide. Ainsi, s'il est possible d'obtenir des suppositions plus faibles ( Voir
e.g.|Srebro et al. |(2010c) ) il pourrait étre possible de deriver des esultats plus signi catifs.
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Abstract Many Machine Learning algorithms make use of a notion of distance or similarity between examples to
solve various problems such as classi cation, clustering or domain adaptation. Depending on the tasks considered these
metrics should have di erent properties but manually choosing an adapted comparison function can be tedious and
dicult. A natural trend is then to automatically tailor such metrics to the task at hand. This is known as Metric
Learning and the goal is mainly to nd the best parameters of a metric under some specic constraints. Standard
approaches in this eld usually focus on learning Mahalanobis distances or Bilinear similarities and one of the main
limitations is that the control over the behaviour of the learned metrics is often limited. Furthermore if some theoretical
works exist to justify the generalization ability of the learned models, most of the approaches do not come with such
guarantees. In this thesis we propose new algorithms to learn metrics with a controlled behaviour and we put a
particular emphasis on the theoretical properties of these algorithms. We propose four distinct contributions which can
be separated in two parts, namely (i) controlling the metric with respect to a reference metric and (ii) controlling the
underlying transformation corresponding to the learned metric. Our rst contribution is a local metric learning method
where the goal is to regress a distance proportional to the human perception of colors. Our approach is backed up by
theoretical guarantees on the generalization ability of the learned metrics. In our second contribution we are interested
in theoretically studying the interest of using a reference metric in a biased regularization term to help during the
learning process. We propose to use three di erent theoretical frameworks allowing us to derive three di erent measures
of goodness for the reference metric. These measures give us some insights on the impact of the reference metric on the
learned one. In our third contribution we propose a metric learning algorithm where the underlying transformation is
controlled. The idea is that instead of using similarity and dissimilarity constraints we associate each learning example
to a so-called virtual point belonging to the output space associated with the learned metric. We theoretically show
that metrics learned in this way generalize well but also that our approach is linked to a classic metric learning method
based on pairs constraints. In our fourth contribution we also try to control the underlying transformation of a learned
metric. However instead of considering a point-wise control we consider a global one by forcing the transformation to
follow the geometrical transformation associated to an optimal transport problem. From a theoretical standpoint we
propose a discussion on the link between the transformation associated with the learned metric and the transformation
associated with the optimal transport problem. On a more practical side we show the interest of our approach for
domain adaptation but also for a task of seamless copy in images.

Resune De nombreux algorithmes en Apprentissage Automatique utilisent une notion de distance ou de similarie
entre les exemples pour esoudre divers probemes tels que la classication, le partitionnement ou l'adaptation de
domaine. En fonction des tAches consiceees ces metriques devraient avoir des proprees dierentes mais les choisir
manuellement peut-&tre fastidieux et di cile. Une solution naturelle est alors d'adapter automatiquement ces netriques

a la tache consiceee. |l s'agit alors d'un probéme connu sous le nom d'Apprentissage de Metriques et a1 le but est
principalement de trouver les meilleurs parametres d'une netrique respectant des contraintes sgeci ques. Les approches
classiques dans ce domaine se focalisent habituellement sur I'apprentissage de distances de Mahalanobis ou de similaries
Bilireaires et l'une des principales limitations est le fait que le contr6le du comportement de ces metriques est souvent
limie. De plus, si des travaux treoriques existent pour justi er de la capacie de gereralisation des mockles appris, la
plupart des approches ne pesentent pas de telles garanties. Dans cette these nous proposons de nouveaux algorithmes
pour apprendre des netriquesa comportement contréé et nous mettons I'accent sur les proprees treoriques de ceux-ci.
Nous proposons quatre contributions distinctes qui peuvent étre ®paees en deux parties: (i) controler la netrique
apprise en utilisant une netrique de eérence et (ii) contréler la transformation induite par la metrique apprise. Notre
premere contribution est une approche locale d'apprentissage de netriques ai le but est de egresser une distance
proportionnellea la perception humaine des couleurs. Notre approche est justiee tfeoriquement par des garanties en
gereralisation sur les metriques apprises. Dans notre deuxeme contribution nous nous sommes ineres®esa l'analyse
treorique de l'inerét d'utiliser une netrique de eerence dans un terme de egularisation biai® pour aider lors du
processus d'apprentissage. Nous proposons d'utiliser trois cadres treoriques dierents qui nous permettent de ceriver
trois mesures dierentes de I'apport de la netriqgue de eérence. Ces mesures nous donnent un apercu de I'impact de la
netrique de eérence sur celle apprise. Dans notre troiseme contribution nous proposons un algorithme d'apprentissage
de netriques ai la transformation induite est controte. L'icee est que, plutét que d'utiliser des contraintes de similarie

et de dissimilarie, chaque exemple est assocea un point virtuel qui appartient cegaa I'espace induit par la netrique
apprise. D'un point de vue theorigue nous montrons que les metriques apprises de cette facon gereralisent bien mais
aussi que notre approche est leea une nethode plus classique d'apprentissage de netriques bage sur des contraintes de
paires. Dans notre quatreme contribution nous essayons aussi de contréler la transformation induite par une retrique
apprise. Cependant, plutét que consicerer un contréle individuel pour chaque exemple, nous proposons une approche
plus globale en forcant la transformationa suivre une transformation gonetrique assoceea un probéme de transport
optimal. D'un point de vue tteorique nous proposons une discussion sur le lien entre la transformation assoceea la
netrique apprise et la transformation assocee au probeme de transport optimal. D'un point de vue plus pratique nous
montrons l'inerét de notre approche pour I'adaptation de domaine mais aussi pour ledition d'images.
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