?. A. De-roubin, D. Atanasov, K. Blaum, S. George, F. Herfurth et al., Nuclear deformation in the A ? 100 region: Comparison between new masses and mean-field predictions, Phys. Rev. C, vol.96, p.14310, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582782

?. A. Welker, N. A. Althubiti, D. Atanasov, K. Blaum, T. E. Cocolios et al., Binding Energy of 79 Cu: Probing the Structure of the Doubly Magic 78 Ni from Only One Proton Away, Phys. Rev. Lett, vol.119, p.192502, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645809

?. M. Mougeot, D. Atanasov, K. Blaum, K. Chrysalidis, T. Day-goodacre et al., Precision Mass Measurements of 58?63 Cr: Nuclear Collectivity Towards the N =40 Island of Inversion, Phys. Rev. Lett, vol.120, p.232501, 2018.

, Greifswald 17487, Germany. ? Present address: RIKEN Nishina Center for AcceleratorBased Science, pp.351-0198, 1211.

*. Present, , 2006.

C. Thibault, R. Klapisch, C. Rigaud, A. M. Poskanzer, R. Prieels et al., Direct measurement of the masses of 11 Li and 26-32 Na with an on-line mass spectrometer, Phys. Rev. C, vol.12, p.644, 1975.
URL : https://hal.archives-ouvertes.fr/in2p3-00001417

O. Sorlin and M. Porquet, Nuclear magic numbers: New features far from stability, Prog. Part. Nucl. Phys, vol.61, p.602, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00280392

M. Bernas, P. Dessagne, M. Langevin, J. Payet, F. Pougheon et al., Magic features of 68 Ni, Phys. Lett. B, vol.113, p.279, 1982.
URL : https://hal.archives-ouvertes.fr/in2p3-00016818

D. Steppenbeck, Evidence for a new nuclear 'magic number' from the level structure of 54 Ca, Nature, vol.502, p.207, 2013.

F. Wienholtz, Masses of exotic calcium isotopes pin down nuclear forces, Nature, vol.498, p.346, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00852189

A. Gade, Cross-shell excitation in two-proton knockout: Structure of 52 Ca, Phys. Rev. C, vol.74, p.21302, 2006.

R. F. Garcia-ruiz, Unexpectedly large charge radii of neutron-rich calcium isotopes, Nat. Phys, vol.12, p.594, 2016.

T. D. Morris, J. Simonis, S. R. Stroberg, C. Stumpf, G. Hagen et al., Structure of the Lightest Tin Isotope, Phys. Rev. Lett, vol.120, p.152503, 2018.

E. Leistenschneider, Dawning of the N ¼ 32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes, Phys. Rev. Lett, vol.120, p.62503, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01714789

M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Shellmodel description of neutron-rich pf-shell nuclei with a new effective interaction GXPF 1, Eur. Phys. J. A, vol.25, p.499, 2005.

S. M. Lenzi, F. Nowacki, A. Poves, and K. Sieja, Island of inversion around 64 Cr, Phys. Rev. C, vol.82, p.54301, 2010.

J. , Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?, Phys. Rev. C, vol.81, p.61301, 2010.

A. Gade, Collectivity at N ¼ 40 in neutron-rich 64 Cr, Phys. Rev. C, vol.81, p.51304, 2010.

T. Braunroth, Reduced transition strengths of lowlying yrast states in chromium isotopes in the vicinity of N ¼ 40, Phys. Rev. C, vol.92, p.34306, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01199242

T. Baugher, Intermediate-energy Coulomb excitation of 58;60;62 Cr: The onset of collectivity toward N ¼ 40, Phys. Rev. C, vol.86, p.11305, 2012.

H. L. Crawford, Quadrupole Collectivity in NeutronRich Fe and Cr Isotopes, Phys. Rev. Lett, vol.110, p.242701, 2013.

C. Santamaria, Extension of the N ¼ 40 Island of Inversion towards N ¼ 50: Spectroscopy of 66 Cr, 70;72 Fe, Phys. Rev. Lett, vol.115, p.192501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01156540

F. Nowacki, A. Poves, E. Caurier, and B. Bounthong, Shape Coexistence in 78 Ni as the Portal to the Fifth Island of Inversion, Phys. Rev. Lett, vol.117, p.272501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01469247

S. Naimi, Surveying the N ¼ 40 island of inversion with new manganese masses, Phys. Rev. C, vol.86, p.14325, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00750856

R. Ferrer, Penning trap mass spectrometry of neutronrich Fe and Co isotopes around N ¼ 40 with the LEBIT mass spectrometer, Phys. Rev. C, vol.81, p.44318, 2010.

H. Heylen, Changes in nuclear structure along the Mn isotopic chain studied via charge radii, Phys. Rev. C, vol.94, p.54321, 2016.

H. Heylen, Spins and magnetic moments of 58;60;62, p.64

, Mn ground states and isomers, Phys. Rev. C, vol.92, p.44311, 2015.

C. Babcock, Quadrupole moments of odd-A 53-63 Mn: Onset of collectivity towards N ¼ 40, Phys. Lett. B, vol.760, p.387, 2016.

M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi et al., The AME2016 atomic mass evaluation
URL : https://hal.archives-ouvertes.fr/hal-01645546

. Tables, graphs and references, Chin. Phys. C, vol.41, p.30003, 2017.

Z. , Time-of-flight mass measurements of neutron-rich chromium isotopes up to N ¼ 40 and implications for the accreted neutron star crust, Phys. Rev. C, vol.93, p.35805, 2016.

S. Gupta, E. F. Brown, H. Schatz, P. Moller, and K. Kratz, Heating in the accreted neutron star ocean: Implications for superburst ignition, Astrophys. J, vol.662, p.1188, 2007.

H. Schatz, Strong neutrino cooling by cycles of electron capture and ?-decay in neutron star crusts, Nature, vol.505, p.62, 2014.

G. Gamow and M. Schoenberg, Neutrino theory of stellar collapse, Phys. Rev, vol.59, p.539, 1941.

S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. Bogner et al., Nucleus-Dependent Valence-Space Approach to Nuclear Structure, Phys. Rev. Lett, vol.118, p.32502, 2017.

R. , The ISOLDE facility, J. Phys. G, vol.44, p.94002, 2017.

V. I. Mishin, V. N. Fedoseyev, H. Kluge, V. S. Letokhov, H. L. Ravn et al., Chemically selective laser ion-source for the CERN-ISOLDE on-line mass separator facility, Nucl. Instrum, Methods Phys. Res., Sect. B, vol.73, p.550, 1993.

T. Day-goodacre, K. Chrysalidis, D. V. Fedorov, V. N. Fedosseev, B. A. Marsh et al., The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility, Spectrochim. Acta B Atom. Spectros, vol.129, p.58, 2017.

M. Mukherjee, ISOLTRAP: An on-line Penning trap for mass spectrometry on short-lived nuclides, Eur. Phys. J. A, vol.35, p.1, 2008.

S. Kreim, Recent exploits of the ISOLTRAP mass spectrometer, Nucl. Instrum. Methods Phys. Res., Sect. B, vol.317, p.492, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00856253

F. Herfurth, A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of PHYSICAL REVIEW LETTERS 120, 232501 (2018) beams, Nucl. Instrum. Methods Phys. Res., Sect. A, vol.469, p.254, 2001.

R. Wolf, On-line separation of short-lived nuclei by a multi-reflection time-of-flight device, Nucl. Instrum. Methods Phys. Res., Sect. A, vol.686, p.82, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00703242

F. Wienholtz, S. Kreim, M. Rosenbusch, L. Schweikhard, and R. N. Wolf, Mass-selective ion ejection from multireflection time-of-flight devices via a pulsed in-trap lift, Int. J. Mass Spectrom, vol.421, p.285, 2017.

G. Savard, S. Becker, G. Bollen, H. Kluge, R. B. Moore et al., A new cooling technique for heavy ions in a Penning trap, Phys. Lett. A, vol.158, p.247, 1991.

M. König, G. Bollen, H. Kluge, T. Otto, and J. Szerypo, Quadrupole excitation of stored ion motion at the true cyclotron frequency, Int. J. Mass Spectrom, vol.142, p.95, 1995.

S. George, K. Blaum, F. Herfurth, A. Herlert, M. Kretzschmar et al., The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results, Int. J. Mass Spectrom, vol.264, p.110, 2007.

G. Audi, F. G. Kondev, M. Wang, W. J. Huang, and S. Naimi, The NUBASE2016 evaluation of nuclear properties, Chin. Phys. C, vol.41, p.30001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555161

G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. Maccormick et al., The Ame2012 atomic mass evaluation, Chin. Phys. C, vol.36, p.1287, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00814234

R. B. Cakirli, R. F. Casten, and K. Blaum, Correlations of experimental isotope shifts with spectroscopic and mass observables, Phys. Rev. C, vol.82, p.61306, 2010.

M. Kortelainen, T. Lesinski, J. More, W. Nazarewicz, J. Sarich et al., Nuclear energy density optimization, Phys. Rev. C, vol.82, p.24313, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-01079199

M. V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam et al., Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) hfbtho v2.00d: A new version of the program, Comput. Phys. Commun, vol.184, p.1592, 2013.

S. Perez-martin and L. M. Robledo, Microscopic justification of the equal filling approximation, Phys. Rev. C, vol.78, p.14304, 2008.

L. Gaudefroy, A. Obertelli, S. Peru, N. Pillet, S. Hilaire et al., Collective structure of the N ¼ 40 isotones, Phys. Rev. C, vol.80, p.64313, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00446888

T. R. Rodríguez, A. Poves, and F. Nowacki, Occupation numbers of spherical orbits in self-consistent beyond-meanfield methods, Phys. Rev. C, vol.93, p.54316, 2016.

T. Otsuka, R. Fujimoto, Y. Utsuno, B. A. Brown, M. Honma et al., Magic Numbers in Exotic Nuclei and Spin-Isospin Properties of the NN Interaction, Phys. Rev. Lett, vol.87, p.82502, 2001.

T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, and Y. Akaishi, Evolution of Nuclear Shells due to the Tensor Force, Phys. Rev. Lett, vol.95, p.232502, 2005.

N. A. Smirnova, B. Bally, K. Heyde, F. Nowacki, and K. Sieja, Shell evolution and nuclear forces, Phys. Lett. B, vol.686, p.109, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00483002

K. Tsukiyama, S. K. Bogner, and A. Schwenk, In-medium similarity renormalization group for open-shell nuclei, Phys. Rev. C, vol.85, p.61304, 2012.
DOI : 10.1103/physrevc.85.061304

URL : https://link.aps.org/accepted/10.1103/PhysRevC.85.061304

S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder et al., Nonperturbative Shell-Model Interactions from the In-Medium Similarity Renormalization Group, Phys. Rev. Lett, vol.113, p.142501, 2014.
DOI : 10.1103/physrevlett.113.142501

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.113.142501

S. R. Stroberg, H. Hergert, J. D. Holt, S. K. Bogner, and A. Schwenk, Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians, Phys. Rev. C, vol.93, p.51301, 2016.
DOI : 10.1103/physrevc.93.051301

URL : https://link.aps.org/accepted/10.1103/PhysRevC.93.051301

J. Simonis, S. R. Stroberg, K. Hebeler, J. D. Holt, and A. Schwenk, Saturation with chiral interactions and consequences for finite nuclei, Phys. Rev. C, vol.96, p.14303, 2017.
DOI : 10.1103/physrevc.96.014303

URL : http://arxiv.org/pdf/1704.02915

K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A. Schwenk, Improved nuclear matter calculations from chiral low-momentum interactions, Phys. Rev. C, vol.83, p.31301, 2011.
DOI : 10.1103/physrevc.83.031301

URL : http://arxiv.org/pdf/1012.3381

J. Simonis, K. Hebeler, J. D. Holt, J. Menendez, and A. Schwenk, Exploring sd-shell nuclei from two-and threenucleon interactions with realistic saturation properties, Phys. Rev. C, vol.93, p.11302, 2016.
DOI : 10.1103/physrevc.93.011302

URL : http://arxiv.org/pdf/1508.05040

G. Hagen, Neutron and weak-charge distributions of the 48 Ca nucleus, Nat. Phys, vol.12, p.186, 2016.

T. D. Morris, N. M. Parzuchowski, and S. K. Bogner, Magnus expansion and in-medium similarity renormalization group, Phys. Rev. C, vol.92, p.34331, 2015.
DOI : 10.1103/physrevc.92.034331

URL : https://link.aps.org/accepted/10.1103/PhysRevC.92.034331

H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tsukiyama, The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei, Phys. Rep, vol.621, p.165, 2016.

B. A. Brown and W. D. Rae, The Shell-Model Code NUSHELLX@MSU, Nucl. Data Sheets, vol.120, p.115, 2014.
DOI : 10.1016/j.nds.2014.07.022

J. M. Daugas, ?-decay measurements for N > 40 Mn nuclei and inference of collectivity for neutron-rich Fe isotopes, Phys. Rev. C, vol.83, p.54312, 2011.

J. Henderson, Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of 22 Mg

, PHYSICAL REVIEW LETTERS, vol.120, p.232501, 2018.

J. C. Hardy and I. S. Towner, Phys. Rev. C, vol.91, p.25501, 2015.

H. Vonach, Nucl. Phys. A, vol.278, p.189, 1977.

G. Savard, Phys. Rev. Lett, vol.95, p.102501, 2005.

T. Eronen, Phys. Rev. Lett, vol.97, p.232501, 2006.

T. Eronen, Phys. Rev. Lett, vol.100, p.132502, 2008.

A. A. Valverde, Phys. Rev. Lett, vol.114, p.232502, 2015.

P. Zhang, Phys. Lett. B, vol.767, p.20, 2017.

I. S. Towner and J. C. Hardy, Phys. Rev. C, vol.92, p.55505, 2015.

J. C. Hardy, Nucl. Phys. A, vol.246, p.61, 1975.

H. Bouzomita-zran, , 2015.

M. Aouadi, Proposal to the ISOLDE and Neutron Time-of-Flight Committee, 2016.

A. T. Laffoley, Phys. Rev. C, vol.92, p.25502, 2015.

G. F. Grinyer, Phys. Rev. C, vol.87, p.45502, 2013.

K. Blaum, Nuc. Phys. A, vol.764, p.305, 2004.

R. O. Bondelid and J. W. Bulter, Nuc. Phys, vol.53, p.618, 1964.

C. Rolfs, Nuc. Phys. A, vol.240, p.221, 1975.

M. Wang, Chinese Phys. C, vol.41, issue.3, 2017.

M. Mukherjee, Eur. Phys. A, vol.35, p.1, 2008.

S. George, Int. Jour. Mass Spec, vol.264, pp.110-201, 2007.

S. Eliseev, Appl. Phys. B, vol.114, p.107, 2014.

J. Karthein,

R. Garcia-ruiz,

W. Geithner, Phys. Rev. Lett, vol.101, p.252502, 2008.

G. Audi, The atomic mass evaluation, Chinese Phys. C, vol.36, p.1287, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00014428

B. P. Abbott, Multi-messenger Observations of a Binary Neutron Star Merger. The Astrophys, Jour. Lett, vol.848, issue.2, p.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01646052

B. P. Abbott, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett, vol.119, issue.16, p.161101, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645859

G. Audi, The NUBASE2016 evaluation of nuclear properties, Chinese Phys. C, vol.41, issue.3, p.30001, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01555161

S. Aoki, N. Hatsuda, and . Ishii, The nuclear force from Monte Carlo simulations of lattice quantum chromodynamics, Comp. Sci. and Disc, vol.1, issue.1, p.15009, 2008.

F. W. Aston, The Constitution of the Elements, Nature, vol.104, pp.393-393, 1919.

F. W. Aston, Lxxiv. a positive ray spectrograph. The London, Dublin Philosophical Magazine and Journal of Science, vol.38, issue.228, pp.707-714, 1919.

F. W. Aston and . Lix, The mass-spectra of chemical elements. The London, Journal of Science, vol.39, issue.233, pp.611-625, 1920.

F. W. Aston, Atoms and their Packing Fractions, Nature, vol.120, issue.3035, pp.956-959, 1927.

H. A. Bethe, Nuclear Physics A. Stationary States of Nuclei. Rev. Mod. Phys, vol.8, pp.82-229, 1936.

K. A. Brueckner, Two-Body Forces and Nuclear Saturation. I. Central Forces, Phys. Rev, vol.95, pp.217-228, 1954.

B. Banerjee, On the character of the Hartree-Fock-Bogoliubov solutions in a rotating frame, Nucl. Phys. A, vol.221, issue.3, pp.564-572, 1974.

M. Bernas, Magic features of 68 Ni, Phys. Lett. B, vol.113, issue.4, pp.279-282, 1982.
URL : https://hal.archives-ouvertes.fr/in2p3-00016818

W. Benenson, The masses of 51 Ca and 47 Ar, Phys. Lett. B, vol.162, issue.1, pp.87-91, 1985.

G. Bollen, First absolute mass measurements of short-lived isotopes, Hyperfine Interactions, vol.38, issue.1, pp.793-802, 1987.

G. Bollen, The accuracy of heavy-ion mass measurements using time of flight-ion cyclotron resonance in a Penning trap, Journal of Applied Physics, vol.68, issue.9, pp.4355-4374, 1990.

G. Bollen, Resolution of nuclear ground and isomeric states by a Penning trap mass spectrometer, Phys. Rev. C, vol.46, pp.2140-2143, 1992.
URL : https://hal.archives-ouvertes.fr/in2p3-00013115

Y. Bai, Mass measurement in the fp-shell using the TOFI spectrometer, AIP Conf. Proc, vol.455, issue.1, pp.90-93, 1998.

M. Bender, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys, vol.75, pp.121-180, 2003.

K. Blaum, Masses of 32 Ar and 33 Ar for Fundamental Tests, Phys. Rev. Lett, vol.91, p.260801, 2003.

K. Blaum, Recent developments at ISOLTRAP: towards a relative mass accuracy of exotic nuclei below 10 ?8, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.36, issue.5, p.921, 2003.

M. Bender, Global study of quadrupole correlation effects, Phys. Rev. C, vol.73, p.34322, 2006.

B. Bastin, Collapse of the N = 28 Shell Closure in 42 Si, Physical Review Letters, vol.99, issue.2, p.22503, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00124801

S. Bhattacharyya, Structure of Neutron-Rich Ar Isotopes Beyond N = 28, Phys. Rev. Lett, vol.101, issue.3, p.32501, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00291546

K. Blaum, Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N=20 and N=28, Nucl. Physics A, vol.799, issue.1, pp.30-45, 2008.

D. Beck, Electric and magnetic field optimization procedure for Penning trap mass spectrometers, Nucl. Instr. and Meth. A, vol.598, issue.2, pp.635-641, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00677729

G. Bertsch, Hartree-Fock-Bogoliubov theory of polarized Fermi systems, Phys. Rev. A, vol.79, p.43602, 2009.

T. Baugher, Intermediate-energy Coulomb excitation of 58, vol.60, p.62

, Cr: The onset of collectivity toward N = 40, Phys. Rev. C, vol.86, p.11305, 2012.

Y. Blumenfeld, Facilities and methods for radioactive ion beam production, Phys. Scr, issue.T152, p.14023, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00815897

K. Bogner, Nonperturbative shell-model interactions from the in-medium similarity renormalization group, Phys. Rev. Lett, vol.113, p.142501, 2014.

B. A. Brown, The Shell-Model Code NuShellX@MSU, Nucl. Data Sheets, vol.120, pp.115-118, 2014.

T. Braunroth, Reduced transition strengths of low-lying yrast states in chromium isotopes in the vicinity of N = 40, Phys. Rev. C, vol.92, p.34306, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01199242

C. Babcock, Quadrupole moments of odd-A 53?63 Mn: Onset of collectivity towards N = 40, Phys. Lett. B, vol.760, pp.387-392, 2016.

R. Barlow, Data Analysis in High Energy Physics, pp.1-26, 2013.

M. Bender, G. F. Bertsch, and P. Heenen, Collectivity-induced quenching of signatures for shell closures, Phys. Rev. C, vol.78, p.54312, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00339745

S. K. Bogner, R. J. Furnstahl, and A. Schwenk, From low-momentum interactions to nuclear structure, Prog. Part. Nucl. Phys, vol.65, issue.1, pp.94-147, 2010.

L. S. Brown and G. Gabrielse, Geonium theory: Physics of a single electron or ion in a Penning trap, Rev. Mod. Phys, vol.58, pp.233-311, 1986.

J. F. Berger, M. Girod, and D. Gogny, Time-dependent quantum collective dynamics applied to nuclear fission, Comp. Phys. Comm, vol.63, issue.1, pp.365-374, 1991.

K. Blaum, High-accuracy mass spectrometry with stored ions, Phys. Rep, vol.425, issue.1, pp.1-78, 2006.

O. Behnke and L. Moneta, Data Analysis in High Energy Physics, pp.27-73, 2013.

A. Bohr, Mat. Fys. Medd. K Dan. Vidensk. Selsk, vol.26, issue.14, p.1952

G. Bollen, Mass measurements of short-lived nuclides with ion traps, Nucl. Phys. A, vol.693, issue.1, pp.3-18, 2001.

R. Brun and F. Rademakers, ROOT-An object oriented data analysis framework, Nucl,. Instr. and Meth. A, vol.389, issue.1, pp.81-86, 1997.

J. Carlson, Three-nucleon interaction in 3-, 4-and ?-body systems, Nucl. Phys. A, vol.401, issue.1, pp.59-85, 1983.

E. Chabanat, A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities, Nucl. Phys. A, vol.635, issue.1, pp.231-256, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00164346

E. Caurier, Acta Phys. Pol. B, vol.30, p.705, 1999.

E. Caurier, The shell model as a unified view of nuclear structure, Rev. Mod. Phys, vol.77, pp.427-488, 2005.

C. M. Campbell, Measurement of Excited States in Si 40 and Evidence for Weakening of the N = 28 Shell Gap, Phys. Rev. Lett, vol.97, issue.11, p.112501, 2006.

R. B. Cakirli, Correlations of experimental isotope shifts with spectroscopic and mass observables, Phys. Rev. C, vol.82, p.61306, 2010.

H. L. Crawford, Quadrupole Collectivity in Neutron-Rich Fe and Cr Isotopes, Phys. Rev. Lett, vol.110, p.242701, 2013.
DOI : 10.1103/physrevlett.110.242701

URL : https://repositorio.uam.es/bitstream/10486/668752/1/Quadrupole_Crawford_prL_2013.pdf

S. Calinescu, Study of the neutron-rich isotope 46 Ar through intermediate coulomb excitation, vol.45, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00954485

E. Caurier, Merging of the islands of inversion at N = 20 and N = 28, Phys. Rev. C, vol.90, issue.1, p.14302, 2014.

R. Catherall, The ISOLDE facility, J. of Phys. G, vol.44, issue.9, p.94002, 2017.

E. Caurier, Antoine code, 1989.

E. Caurier, Shell model code antoine, 2010.

F. Comtec, FAST ComTec MCS6A documentation

H. G. Dehmelt, Bolometric" Technique for the rf Spectroscopy of Stored Ions, Phys. Rev. Lett, vol.21, pp.127-131, 1968.

M. Dufour, Realistic collective nuclear Hamiltonian, Phys. Rev. C, vol.54, pp.1641-1660, 1996.
DOI : 10.1103/physrevc.54.1641

URL : https://hal.archives-ouvertes.fr/in2p3-00005614

J. Dobaczewski, Pairing interaction and self-consistent densities in neutron-rich nuclei, Nucl. Phys. A, vol.693, issue.1, pp.361-373, 2001.
DOI : 10.1016/s0375-9474(01)00993-9

URL : http://cds.cern.ch/record/489539/files/0103001.pdf

. Skyrme-hartree-fock, Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.: (VI) hfodd (v2.40h): A new version of the program, Comp. Phys. Comm, vol.180, issue.11, pp.2361-2391, 2009.

P. , Merging the N = 20 and N = 28 Shell Quenching, Beam ?-Ray Spectroscopy of Mg, vol.34, p.212502, 2013.

T. Day-goodacre, The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility, Spect. Acta B, vol.129, pp.58-63, 2017.

P. Delahaye, F. Ames, and A. Kellerbauer, Study of the charge exchange process at low energy with REXTRAP, Proceedings of the Sixth International Conference on Radioactive Nuclear Beams (RNB6), vol.746, pp.604-607, 2004.

H. G. Dehmelt, Experiments with an isolated subatomic particle at rest, Rev. Mod. Phys, vol.62, pp.525-530, 1990.

L. Demortier, Data Analysis in High Energy Physics, vol.4, pp.107-151, 2013.

E. Epelbaum, Modern theory of nuclear forces, Rev. Mod. Phys, vol.81, pp.1773-1825, 2009.

A. Estradé, Time-of-Flight Mass Measurements for Nuclear Processes in Neutron Star Crusts, Phys. Rev. Lett, vol.107, p.172503, 2011.

J. Erler, The limits of the nuclear landscape, Nature, vol.486, issue.7404, pp.509-512, 2012.

S. Eliseev, A phase-imaging technique for cyclotron-frequency measurements, App. Phys. B, vol.114, issue.1, pp.107-128, 2014.

A. S. Eddington, The Internal Constitution of the Stars, Nature, vol.106, pp.14-20, 1920.

, Evaluated nuclear structure data file database, 2017.

F. Wegner, Flow-equations for hamiltonians, Annalen der Physik, vol.506, issue.2, pp.77-91

R. Ferrer, Penning trap mass spectrometry of neutron-rich Fe and Co isotopes around N = 40 with the LEBIT mass spectrometer, Phys. Rev. C, vol.81, p.44318, 2010.

C. Force, Prolate-Spherical Shape Coexistence at N = 28 in S 44, Phys. Rev. Lett, vol.105, issue.10, p.102501, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00506598

R. Ferrer, In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S3): Conceptual studies and preliminary design, XVIth International Conference on ElectroMagnetic Isotope Separators and Techniques Related to their Applications, vol.317, pp.570-581, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00857340

V. Fedosseev, Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE, J. of Phys. G, vol.44, issue.8, p.84006, 2017.

G. Gräff, A direct determination of the proton electron mass ratio, Zeit. für Phys. A, vol.297, issue.1, pp.35-39, 1980.

T. Glasmacher, Collectivity in 44S, Phys. Lett. B, vol.395, issue.3-4, pp.163-168, 1997.

A. Gade, Detailed experimental study on intermediate-energy Coulomb excitation of 46 Ar, Phys. Rev. C, vol.68, issue.1, p.14302, 2003.

S. Grévy, Beta-decay studies at the N=28 shell closure, Nucl. Phys. A, vol.722, pp.424-428, 2003.

A. Gade, Knockout from Ar 46 : l = 3 neutron removal and deviations from eikonal theory, Phys. Rev. C, vol.71, issue.5, p.51301, 2005.

C. Guénaut, Mass measurements of 56 57 Cr and the question of shell reincarnation at N = 32, Jour. Phys. G, issue.10, p.1765, 2005.

A. Gade, Cross-shell excitation in two-proton knockout: Structure of 52 Ca, Phys. Rev. C, vol.74, p.21302, 2006.

L. Gaudefroy, Reduction of the Spin-Orbit Splittings at the N = 28 Shell Closure, Phys. Rev. Lett, vol.97, p.92501, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00175705

S. George, Ramsey Method of Separated Oscillatory Fields for High-Precision Penning Trap Mass Spectrometry, Phys. Rev. Lett, vol.98, p.162501, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00153578

S. George, The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results, Int. J. Mass Spectrom, vol.264, pp.110-121, 2007.

L. Gaudefroy, Structure of the N = 27 isotones derived from the Ar 44 ( d , p ) Ar 45 reaction, Phys. Rev. C, vol.78, issue.3, p.34307, 2008.

L. Gaudefroy, Collective structure of the N = 40 isotones, Phys. Rev. C, vol.80, p.64313, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00446888

L. Gaudefroy, Shell Erosion and Shape Coexistence in S 27 16 43, Phys. Rev. Lett, vol.102, issue.9, p.92501, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00365309

A. Gade, Collectivity at N = 40 in neutron-rich 64 Cr, Phys. Rev. C, vol.81, p.51304, 2010.

L. Gaudefroy, Direct Mass Measurements of B 19 , C 22 , F 29 , Ne 31 , Na 34 and Other Light Exotic Nuclei, Phys. Rev. Lett, vol.109, issue.20, p.202503, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00752211

A. Gade, P. Adrich, D. Bazin, B. A. Brown, J. M. Cook et al., In-Beam ?-Ray Spectroscopy of Very Neutron-Rich Nuclei: Excited States in S 46 and Ar 48, Phys. Rev. Let, vol.102, issue.18, p.182502, 2009.

, Mass defect curve and nuclear constitution, Proc. Royal Soc. of London A, vol.126, issue.803, pp.632-644, 1930.

L. Gaudefroy, Shell model study of N 28 neutron-rich nuclei, Phys. Rev. C, vol.81, p.64329, 2010.

A. Gottberg, Target materials for exotic isol beams, Nucl. Instr. Meth. B, vol.376, pp.8-15, 2016.

R. F. Garcia-ruiz, Unexpectedly large charge radii of neutronrich calcium isotopes, Nature Phys, vol.12, p.594, 2016.

O. Haxel, On the "magic numbers" in nuclear structure, Phys. Rev, vol.75, pp.1766-1766, 1949.

F. Herfurth, A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams, Nucl. Instr. Meth. A, vol.469, issue.2, pp.254-275, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00010503

M. Honma, Shell-model description of neutron-rich pf-shell nuclei with a new effective interaction GXPF 1, Eur. Phys. J. A, vol.25, issue.1, pp.499-502, 2005.

K. Heyde, Shape coexistence in atomic nuclei, Rev. Mod. Phys, vol.83, issue.4, pp.1467-1521, 2011.

H. Hergert, In-medium similarity renormalization group with chiral two-plus three-nucleon interactions, Phys. Rev. C, vol.87, p.34307, 2013.

J. C. Hardy, Superallowed 0 + ? 0 + nuclear ? decays: 2014 critical survey, with precise results for V ud and CKM unitarity, Phys. Rev. C, vol.91, p.25501, 2015.

H. Heylen, Spins and magnetic moments of 58,60,62,64 Mn ground states and isomers, Phys. Rev. C, vol.92, p.44311, 2015.

G. Hagen, Neutron and weak-charge distributions of the 48Ca nucleus, Nature Phys, vol.12, p.186, 2016.

H. Hergert, The in-medium similarity renormalization group: A novel ab initio method for nuclei, Physics Reports, vol.621, pp.165-222, 2016.

H. Heylen, Changes in nuclear structure along the Mn isotopic chain studied via charge radii, Phys. Rev. C, vol.94, p.54321, 2016.

H. Hergert, In-medium similarity renormalization group for closed and open-shell nuclei, Phys. Scr, vol.92, issue.2, p.23002, 2017.

K. L. Heyde, The nuclear shell model. Springer series in nuclear and particle physics, 1994.

M. Hjorth-jensen, An Advanced Course in Computational Nuclear Physics: Bridging the Scales from Quarks to Neutron Stars. Lecture Notes in Physics, 2017.

C. Izzo, Precision mass measurements of neutron-rich Co isotopes beyond N = 40, Phys. Rev. C, vol.97, p.14309, 2018.

N. A. Jelley, ETP ion detect. ETP ion detect MAGNETOF detector documentation, Phys. Rev. C, vol.9, pp.2067-2070, 1974.

T. T. Kuo, Structure of finite nuclei and the free nucleon-nucleon interaction: An application to 18O and 18F, Nuclear Physics, vol.85, issue.1, pp.40-86, 1966.

T. T. Kuo, Reaction matrix elements for the 0f-1p shell nuclei, Nucl. Phys. A, vol.114, issue.2, pp.241-279, 1968.

R. Kirchner, Investigation of gaseous discharge ion sources for isotope separation on-line, Nucl. Instr. Meth, vol.133, issue.2, pp.187-204, 1976.

M. König, Quadrupole excitation of stored ion motion at the true cyclotron frequency, Int. J. Mass Spectrom, vol.142, issue.1-2, pp.95-116, 1995.

A. Kellerbauer, From direct to absolute mass measurements: A study of the accuracy of ISOLTRAP, Eur. Phys. J. D, vol.22, issue.1, pp.53-64, 2003.

M. Kortelainen, Nuclear energy density optimization, Phys. Rev. C, vol.82, p.24313, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-01079199

S. Kreim, Recent exploits of the ISOLTRAP mass spectrometer, Nucl. Instr. Meth. B, vol.317, issue.0, pp.492-500, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00856253

M. Knoop, Trapped Charged Particles. Advanced Textbooks in Physics. World Scientific, 2016.

D. Kasen, Origin of the heavy elements in binary neutronstar mergers from a gravitational-wave event, Nature, vol.551, issue.7678, p.80, 2017.

A. Klein, B. A. Brown, U. Georg, M. Keim, P. Lievens et al., Vermeeren, and ISOLDE Collaboration. Moments and mean square charge radii of short-lived argon isotopes, Nuclear Physics A, vol.607, issue.1, pp.1-22, 1996.

K. Lan, A hybrid of exponential and gaussian functions as a simple model of asymmetric chromatographic peaks, Jour. of Chrom. A, vol.915, issue.1, pp.1-13, 2001.

D. Lunney, Recent trends in the determination of nuclear masses, Rev. Mod. Phys, vol.75, pp.1021-1082, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00014057

D. Lunney, Masses of noble gases, 2009.

M. Lenzi, Island of inversion around 64 Cr, Phys. Rev. C, vol.82, p.54301, 2010.

J. , Onset of collectivity in neutron-rich Fe isotopes: Toward a new island of inversion?, Phys. Rev. C, vol.81, p.61301, 2010.

R. Luis, Optimization studies of the CERN-ISOLDE neutron converter and fission target system. The Euro, Phys. Jour. A, vol.48, issue.6, p.90, 2012.

E. Leistenschneider, Dawning of the N = 32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes, Phys. Rev. Lett, vol.120, p.62503, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01714789

L. Lyons, Statistics for Nuclear and Particle Physicists, pp.74-124, 1986.

W. Mayer, Spectroscopy of neutron-rich nuclei produced in 14 C induced reactions on 48 Ca, Phys. Rev. C, vol.22, pp.2449-2453, 1980.

F. G. Major, Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement. Charged Particle Traps, 2005.

M. Mukherjee, ISOLTRAP: An on-line Penning trap for mass spectrometry on short-lived nuclides, Euro. Phys. J. A, vol.35, issue.1, pp.1-29, 2008.

D. Mengoni, Lifetime measurements of excited states in neutronrich Ar 44 , 46 populated via a multinucleon transfer reaction, Phys. Rev. C, vol.82, issue.2, p.24308, 2010.

Z. , Time-of-flight mass spectrometry of very exotic systems, Int. Jour. of Mass Spectr, 2013.

Z. , Mass Measurements Demonstrate a Strong N = 28

, Shell Gap in Argon, Phys. Rev. Lett, vol.114, issue.2, p.22501, 2015.

T. D. Morris, Magnus expansion and in-medium similarity renormalization group, Phys. Rev. C, vol.92, p.34331, 2015.

Z. , Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust, Phys. Rev. C, vol.93, p.35805, 2016.

T. D. Morris, Structure of the Lightest Tin Isotopes, Phys. Rev. Lett, vol.120, p.152503, 2018.

M. Mougeot, Precision Mass Measurements of 58?63 Cr: Nuclear Collectivity Towards the N = 40 Island of Inversion, Phys. Rev. Lett, vol.120, p.232501, 2018.

R. Machleidt, High-precision, charge-dependent bonn nucleon-nucleon potential, Phys. Rev. C, vol.63, p.24001, 2001.

M. Matos, Isochronous mass measurements of short-lived neutron rich nuclides at the FRS-ESR facilities, 2004.

M. G. Mayer, On closed shells in nuclei. ii, Phys. Rev, vol.75, pp.1969-1970, 1949.

M. G. Mayer, Nuclear Configurations in the Spin, Orbit Coupling Model. II. Theoretical Considerations. Phys. Rev, vol.78, pp.22-23, 1950.

R. Machleidt and D. R. Entem, Chiral effective field theory and nuclear forces, Physics Reports, vol.503, issue.1, pp.1-75, 2011.

L. Meitner and O. R. Frisch, Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction, Nature, vol.143, issue.3615, pp.239-240, 1939.

S. Michimasa and O. , Magic Nature of Neutrons in Ca 54 : First Mass Measurements of Ca 55-57, Phys. Rev. Lett, vol.121, issue.2, p.22506, 2018.

S. Naimi, Surveying the N = 40 island of inversion with new manganese masses, Phys. Rev. C, vol.86, p.14325, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00750856

F. Nowacki, Shape Coexistence in 78 Ni as the Portal to the Fifth Island of Inversion, Phys. Rev. Lett, vol.117, p.272501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01469247

F. Nowacki and A. Poves, New effective interaction for 0¯ h? shell-model calculations in the sd ? pf valence space, Phys. Rev. C, vol.79, p.14310, 2009.

T. Otsuka, Magic numbers in exotic nuclei and spin-isospin properties of the NN interaction, Phys. Rev. Lett, vol.87, p.82502, 2001.

T. Otsuka, Evolution of Nuclear Shells due to the Tensor Force, Phys. Rev. Lett, vol.95, p.232502, 2005.

H. B. Pedersen, Ion Motion Synchronization in an Ion-Trap Resonator, Phys. Rev. Lett, vol.87, p.55001, 2001.

S. C. Pieper, Quantum Monte Carlo Calculations Of Light Nuclei, Annual Review of Nuclear and Particle Science, vol.51, issue.1, pp.53-90, 2001.

L. Penescu, Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE, Review of Scientific Instruments, vol.81, issue.2, pp.2-906, 2010.

S. Purushothaman, Hyper-EMG: A new probability distribution function composed of Exponentially Modified Gaussian distributions to analyze asymmetric peak shapes in high-resolution time-of-flight mass spectrometry, International Journal of Mass Spectrometry, vol.421, pp.245-254, 2017.

W. Paul, Electromagnetic traps for charged and neutral particles, Rev. Mod. Phys, vol.62, pp.531-540, 1990.

S. Perez-martin, Microscopic justification of the equal filling approximation, Phys. Rev. C, vol.78, p.14304, 2008.

A. Poves and F. Nowacki, The nuclear shell model, pp.70-101, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00023235

R. Ringle, Penning trap mass spectrometry of rare isotopes produced via projectile fragmentation at the LEBIT facility, Intern. Journ. of Mass Spectr, 2013.

M. Rosenbusch, Towards systematic investigations of spacecharge phenomena in multi-reflection ion traps, AIP Conference Proceedings, vol.1521, issue.1, pp.53-62, 2013.

E. M. Ramirez, Conception of PIPERADE: A high-capacity Penning-trap mass separator for high isobaric contamination at DESIR, Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), vol.376, pp.11-15, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01278446

R. Tomás and . Rodríguez, Occupation numbers of spherical orbits in self-consistent beyond-mean-field methods, Phys. Rev. C, vol.93, p.54316, 2016.

M. Rosenbusch, P. Ascher, D. Atanasov, C. Barbieri, D. Beck et al., Probing the N = 32 Shell Closure below the Magic Proton Number Z = 20 : Mass Measurements of the Exotic Isotopes K 52 , 53, Physical Review Letters, vol.114, issue.20, p.202501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165237

H. Raimbault-hartmann, A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams, International Conference on Electromagnetic Isotope Separators and Techniques Related to Their Applications, vol.126, pp.378-382, 1997.

P. Ring and P. Schuck, The nuclear many-body problem, 1980.

G. Savard, A new cooling technique for heavy ions in a Penning trap, Phys. Lett. A, vol.158, issue.5, pp.247-252, 1991.

H. L. Seifert, Mass measurement of neutron-rich isotopes from51ca to72ni, Zeit. für Phys. A, vol.349, issue.1, pp.25-32, 1994.

V. G. Stoks, Construction of high-quality NN potential models, Phys. Rev. C, vol.49, pp.2950-2962, 1994.

H. Scheit, New Region of Deformation: The Neutron-Rich Sulfur Isotopes, Phys. Rev. Lett, vol.77, pp.3967-3970, 1996.

F. Sarazin, Shape Coexistence and the N = 28 Shell Closure Far from Stability, Phys. Rev. Lett, vol.84, pp.5062-5065, 2000.
URL : https://hal.archives-ouvertes.fr/in2p3-00022099

O. Sorlin, Nuclear magic numbers: New features far from stability, Prog. Part. Nucl. Phys, vol.61, issue.2, pp.602-673, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00280392

M. Stoitsov, Large-scale mass table calculations, Intern. Journ. of Mod. Phys. E, vol.18, issue.04, pp.816-822, 2009.

N. Schunck, One-quasiparticle states in the nuclear energy density functional theory, Phys. Rev. C, vol.81, p.24316, 2010.

N. A. Smirnova, Shell evolution and nuclear forces, Phys. Lett. B, vol.686, issue.2-3, pp.109-113, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00483002

N. Schunck, Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.: (VII) hfodd (v2.49t): A new version of the program, Comp. Phys. Comm, vol.183, issue.1, pp.166-192, 2012.

M. V. Stoitsov, Axially deformed solution of the Skyrme-Hartree Fock Bogoliubov equations using the transformed harmonic oscillator basis (II) hfbtho v2.00d: A new version of the program, Comp. Phys. Com, vol.184, issue.6, pp.1592-1604, 2013.

P. Schury, A high-resolution multi-reflection time-of-flight mass spectrograph for precision mass measurements at RIKEN/SLOWRI, Nucl. Instr. Meth. B, vol.335, pp.39-53, 2014.

V. Somà, Chiral two-and three-nucleon forces along mediummass isotope chains, Phys. Rev. C, vol.89, p.61301, 2014.

S. R. Stroberg, Single-particle structure of silicon isotopes approaching Si 42, Phys. Rev. C, vol.90, issue.3, p.34301, 2014.

C. Santamaria, Extension of the N = 40 Island of Inversion towards N = 50: Spectroscopy of 66 Cr, 70,72 Fe, Phys. Rev. Lett, vol.115, p.192501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01156540

J. Simonis, Exploring sd-shell nuclei from two-and threenucleon interactions with realistic saturation properties, Phys. Rev. C, vol.93, issue.1, p.11302, 2016.

S. R. Stroberg, Ground and excited states of doubly openshell nuclei from ab initio valence-space Hamiltonians, Phys. Rev. C, vol.93, issue.5, p.51301, 2016.

J. Simonis, Saturation with chiral interactions and consequences for finite nuclei, Phys. Rev. C, vol.96, p.14303, 2017.

S. R. Stroberg, Nucleus-dependent valence-space approach to nuclear structure, Phys. Rev. Lett, vol.118, p.32502, 2017.

S. Schwarz, IonCool-A versatile code to characterize gas-filled ion bunchers and coolers (not only) for nuclear physics applications, Nucl. Instr. Meth. A, vol.566, issue.2, pp.233-243, 2006.

D. Santiago-gonzalez, Triple configuration coexistence in S 44, Phys. Rev. C, vol.83, issue.6, p.61305, 2011.

V. Somá, Self-consistent green-gorkov calculations. private communication

S. Schwartz and R. Ringle, Eva software and documentation, 2018.

C. Thibault, Direct measurement of the masses of 11 Li and 26?32 Na with an on-line mass spectrometer, Phys. Rev. C, vol.12, pp.644-657, 1975.
URL : https://hal.archives-ouvertes.fr/in2p3-00001417

X. L. Tu, Direct mass measurements of the neutron-rich isotopes of chlorine through iron, Zeit. fur Phys. A, vol.337, issue.4, pp.361-366, 1990.

R. C. Thompson, The motion of small numbers of ions in a Penning trap, Zeit. für Phys. D, vol.42, issue.4, pp.271-277, 1997.

S. Takeuchi, Well Developed Deformation in Si 42, Physical Review Letters, vol.109, issue.18, p.182501, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00721241

K. Tsukiyama, In-medium similarity renormalization group for open-shell nuclei, Phys. Rev. C, vol.85, p.61304, 2012.

J. J. Thomson, XL. <i>Cathode Rays</i>. The London, Edinburgh, and Dublin Philosophical Magazine and, Journal of Science, vol.44, issue.269, pp.293-316, 1897.

J. J. Thomson, LVIII. <i>On the masses of the ions in gases at low pressures</i>. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.48, issue.295, pp.547-567, 1899.

J. J. Thomson and . Xlvii, On rays of positive electricity. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.13, issue.77, pp.561-575, 1907.

J. J. Thomson and . Xix, Further experiments on positive rays. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.24, issue.140, pp.209-253, 1912.

U. Köster, Intense radioactive-ion beams produced with the ISOL method, Eur. Phys. J. A, vol.15, issue.1, pp.255-263, 2002.

M. Vladimir, BINDING ENERGY OF STRONGLY DEFORMED RADIONUCLIDES : penning-trap mass spectrometry and meanfield... theoretical studies, 2016.

R. V. Mau, The theory of the nucleon-nucleon interaction, pp.1-38, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00017680

R. B. Wiringa, Accurate nucleon-nucleon potential with chargeindependence breaking, Phys. Rev. C, vol.51, pp.38-51, 1995.

R. Winkler, Intermediate-Energy Coulomb Excitation of Ar 47, 48, Quadrupole Collectivity beyond N =, vol.28, issue.18, p.182501, 2012.

R. N. Wolf, On-line separation of short-lived nuclei by a multireflection time-of-flight device, Nucl. Instr. Meth. A, vol.686, pp.82-90, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00703242

F. Wienholtz, Masses of exotic calcium isotopes pin down nuclear forces, Nature, vol.498, pp.346-349, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00852189

R. N. Wolf, ISOLTRAP's multi-reflection time-of-flight mass separator/spectrometer, Intern. Journ. of Mass Spectr, 2013.

F. Wienholtz, Towards ultrahigh-resolution multi-reflection time-of-flight mass spectrometry at ISOLTRAP, Physica Scripta, issue.T166, p.14068, 2015.

M. Wang, The AME2016 atomic mass evaluation (II). Tables, graphs and references, Chinese Phys. C, vol.41, issue.3, p.30003, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645545

A. Welker, Binding Energy of 79 Cu: Probing the Structure of the Doubly Magic 78 Ni from Only One Proton Away, Phys. Rev. Lett, vol.119, p.192502, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645809

F. Wienholtz, Mass-selective ion ejection from multi-reflection time-of-flight devices via a pulsed in-trap lift, Int. J. of Mass Spectrom, vol.421, pp.285-293, 2017.

W. Verkerke and D. Kirkby, The roofit toolkit for data modeling, 2005.

C. F. Weizsäcker, Zur theorie der kernmassen, Zeit. für Phys, vol.96, issue.7, pp.431-458, 1935.

S. Weinberg, Phenomenological Lagrangians. Physica A: Stat. Mech. and App, vol.96, issue.1, pp.327-340, 1979.

S. Weinberg, Nuclear forces from chiral lagrangians, Phys. Lett. B, vol.251, issue.2, pp.288-292, 1990.

G. Werth, V. N. Gheorghe, and F. G. Major, Charged Particle Traps II: Applications. Springer Series on Atomic, Optical, and Plasma Physics, 2009.

E. Wigner, On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei, Phys. Rev, vol.51, issue.2, pp.106-119, 1937.

R. N. Wolf, G. Marx, M. Rosenbusch, and L. Schweikhard, Static-mirror ion capture and time focusing for electrostatic ion-beam traps and multi-reflection time-of-flight mass analyzers by use of an in-trap potential lift, Intern. Jour. Mass Spectr, vol.313, pp.8-14, 2012.

H. Wollnik and M. Przewloka, Time-of-flight mass spectrometers with multiply reflected ion trajectories, Intern. Journ. Mass Spectro. and Ion Proc, vol.96, issue.3, pp.267-274, 1990.

X. Xing, Direct mass measurements of neutron-rich 86 Kr projectile fragments and the persistence of neutron magic number N =32 in Sc isotopes, Chinese Phys. C, vol.39, issue.10, p.104001, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01246547

H. Yukawa, On the Interaction of Elementary Particles I, Proc. Phys. Math. Soc. Jap, vol.17, pp.48-57, 1935.