
�>���G �A�/�, �i�2�H�@�y�k�y�R�e�9�9�k

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�k�y�R�e�9�9�k

�a�m�#�K�B�i�i�2�/ �Q�M �R�j �6�2�# �k�y�R�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�A�M�7�2�`�`�B�M�; �J�Q�/�2�H�b �7�`�Q�K �*�H�Q�m�/ ���S�A�b ���M�/ �_�2���b�Q�M�B�M�; �Q�p�2�`
�h�?�2�K�, �� �h�Q�Q�H�2�/ ���M�/ �6�Q�`�K���H ���T�T�`�Q���+�?

�a�i�û�T�?���M�B�2 �*�?���H�H�B�i��

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�a�i�û�T�?���M�B�2 �*�?���H�H�B�i���X �A�M�7�2�`�`�B�M�; �J�Q�/�2�H�b �7�`�Q�K �*�H�Q�m�/ ���S�A�b ���M�/ �_�2���b�Q�M�B�M�; �Q�p�2�` �h�?�2�K�, �� �h�Q�Q�H�2�/ ���M�/
�6�Q�`�K���H ���T�T�`�Q���+�?�X �a�Q�7�i�r���`�2 �1�M�;�B�M�2�2�`�B�M�; �(�+�b�X�a�1�)�X �l�M�B�p�2�`�b�B�i�2 �G�B�H�H�2 �R�- �k�y�R�3�X �1�M�;�H�B�b�?�X ���i�2�H�@�y�k�y�R�e�9�9�k��

https://tel.archives-ouvertes.fr/tel-02016442
https://hal.archives-ouvertes.fr

Inferring Models from Cloud APIs

and Reasoning over Them:
A Tooled and Formal Approach

P H D T H E S I S
to obtain the title of

PhD of Science

Specialty : Computer Science

Defended on Friday, December 21, 2018 by

Stéphanie Challita

prepared at Inria Lille-Nord Europe,Spirals Team

Thesis committee:

Supervisor: Philippe Merle - Inria (Lille)
Reviewers: Benoit Combemale - University of Toulouse & Inria (Rennes)

Christian Perez - Inria (Lyon)
Examiner: HélèneCoullon - IMT Atlantique (Nantes)
Chair: Laetitia Jourdan - University of Lille
Invited: Faiez Zalila - Inria (Lille)

�Everything you can imagine is real.�

�Pablo Picasso

To my parents for their constant support and endless sacri�ces.
To Benjamin for his unlimited patience and love.

v

Acknowledgments

PhD is the biggest achievement but also the most challenging experience in my life,
so far. Therefore, I would like to express my utmost gratitude to the people who
helped me during this journey.

Foremost, I am truly grateful to my supervisor, Philippe Merle for many
reasons. Thank you for taking my application for this thesis into consideration
three years ago and for believing that I am a perfect �t for the job since our very
�rst interview. Thank you for your guidance, which taught me the ropes of research,
and for plenty of brilliant ideas, which were an inspiration for me. Thank you for
helping me hone my skills and pushing me forward to be the best version of myself.
I was determined to succeed to be worthy of the trust you placed in me. Our
relationship made of taste for research, professionalism and kindness meant a lot to
me. I highly admire your passion for your work, and I sincerely believe that you
are an excellent researcher and a genuine person. And as I told you once before, I
could not have imagined having a better mentor during my PhD. Thank you from
the depths of my heart!

Next, I would like to thank the members of my thesis committee for de-
voting their time to read the manuscript and for their constructive feedback.
Benoit Combemale and Christian Perez , thank you for accepting to review
my manuscript. I would also like to thank Hélène Coullon for accepting to be
part of my committee and Laetitia Jourdan for accepting to chair it.

Further gratitude is due to the members of the Spirals team at Inria research
center, who I met since October 2015. Actually, during the last three years, I had
the chance to be part of Spirals and it was a pleasure meeting many wonderful
people there. Everyone was friendly and open for discussions, which made my stay
extremely pleasant. I sincerely thank the team leader,Lionel Seinturier , for his
e�ective direction, for providing a very motivating environment for preparing PhDs
and for empowering my ambitions and helping me achieving them. I acknowledge
your support and the support of Laurence Duchien when I came to you with my
proposition to apply for the L'Oréal-UNESCO For Women In Science award. Also,
thanks to Laurence for being a role model for many young female researchers like me
and for your sincere advises for my career. I will always remember them. I would
like to thank Walter Rudametkin , not only for your insightful comments, but
also for your everyday friendship, for giving me access to your precious media server
and for going out and drinking beers together. Besides, thank you andMarcia for
receiving me in�Chez Rudametkin� and for those unforgettable tacos. I con�rm that
the 5 star on Google is well-deserved! ;) I saluteClément Quinton for his ambition
and love of life. I enjoyed swimming with you on Fridays. Thank you as well for
sharing with me your experience of becoming an associate professor. My warm
wishes to you and your beautiful family. Thanks to Simon Bliudze with whom I
shared the o�ce for the last year. Thanks for working late so often, it helped me
keeping focused and feeling well-surrounded. :) Also, thanks for giving me valuable
feedback and propositions regarding my work, at each time I asked you. I hope we
will work together sometime soon since many ideas emerged from these inspiring
discussions. I would also like to thank my two former o�ce mates, Christophe
Gourdin and Gustavo Sousa . Thanks to Christophe for teaching me some �Chti�

vi

language and for technical support when I started the implementation work in the
OCCIware project. Here's to the prosperity of your startup! Thanks to Gustavo
for the tips and recommendations when I �rst arrived to Lille and for the enriching
conversations in the initial stage of my PhD. You were the �rst friend I made in
the team and in Lille in general. Big thanks to Faiez Zalila for attending and
e�ciently participating to the weekly meeting with Philippe and me and for being
the technical leader in the OCCIware project. I acknowledge your assistance with
the modeling techniques, which allowed me to go further with my contributions. I
would like to mention Yahya Al-Dhuraibi who started his PhD at the same time
as me and under the supervision of Philippe too. I shared good moments with you
when we attended the conference in Madeira and I admire your kindness, modesty
and generosity. I wish you all the best for your future, you deserve it! Thanks to
Maxime Colmant for helping me preparing my courses when I started teaching
at the University of Lille.

I thank the OCCIware French project and the �Hauts-de-France� regional council
for providing scholarships and appropriate facilities to pursue my doctoral studies.
I also thank L'Oréal foundation for awarding me and providing research grants.

Thanks to my friends in Lille, Tonie and Jad . Tonie, I am so happy that I
met you. I've always had fun with you and I really enjoyed our little tradition of
Saturday lunch, although I missed some Saturdays because I needed to work. Jad,
it was great news for me when I knew that you will be preparing a PhD also at
the University of Lille, after we graduated together from the Antonine University.
Thanks for the �Ree�ex� evenings, for bringing me souvenirs when you visited a new
city and for the catch up over co�ee when you were at Inria. Who knows, maybe
we will be colleagues again one more time!

Thanks to my cousinYara and to my friends in Lebanon,Alain , Alfred , Chan-
tal and Rami for always being there through WhatsApp, for your sense of humor
and for the amazing outings at each time I visited Lebanon. You boosted my energy
to reach this end.

I spare a moved thought for my guardian angel, my grandmotherFarida who
raised me during my early childhood and who left years ago. I wish that you were
here with me and I hope that you are proud of me.

Big thanks to my dear parents, Joseph and Rita , who gave me the best of
education and trusted my plan when I decided to move to France. Even from far
away, I always felt your support. Dad, you taught me to aim high and I would not
be who I am today without you. Mum, you are a perfect example of devotion and
strength, I learn from you a lot and on daily basis.

Last but not least, I want to thank with great a�ection, my handsome �ancé,
Benjamin Danglot , for being my backbone and my everyday bundle of happiness
for the last two years. You su�ered with me the side e�ects of preparing a thesis.
Thank you for everything you do to help my dreams come true and for loving me
unconditionally. I feel so lucky to have you by my side �habibi�.

Stéphanie Challita
Villeneuve d'Ascq, France

October 12, 2018

vii

Abstract

In recent years, multi-cloud computing which aims to combine di�erent o�erings or
migrate applications between di�erent cloud providers, has become a major trend.
Multi-clouds improve the performance and costs of cloud applications, and ensure
their resiliency in case of outages. But with the advent of cloud computing, di�er-
ent cloud providers with heterogeneous cloud services(compute, storage, network,
applications, etc.) and Application Programming Interfaces (APIs) have emerged.
This heterogeneity complicates the implementation of an interoperable multi-cloud
system. Several multi-cloud interoperability solutions have been developed to ad-
dress this challenge. Among these solutions, Model-Driven Engineering (MDE) has
proven to be quite advantageous and is the mostly adopted methodology to rise in
abstraction and mask the heterogeneity of the cloud. However, most of the existing
MDE solutions for the cloud remain focused on only designing the cloud without
automating the deployment and management aspects, and do not cover all cloud
services. Moreover, MDE solutions are not always representative of the cloud APIs
and lack of formalization.

To address these shortcomings, I present in this thesis an approach based on
Open Cloud Computing Interface (OCCI) standard, MDE and formal methods.
OCCI is the only community-based and open recommendation standard that de-
scribes every kind of cloud resources. MDE is used to design, validate, generate
and supervise cloud resources. Formal methods are used to e�ectively reason on the
structure and behaviour of the encoded cloud resources, by using a model checker
verifying their properties. This research takes place in the context of theOCCIware
project, which provides OCCIware Studio , the �rst model-driven tool chain for
OCCI. It is coupled with OCCIware Runtime , the �rst generic runtime for OCCI
artifacts targeting all the cloud service models (IaaS, PaaS, and SaaS).

In this dissertation, I provide two major contributions implemented on top of the
OCCIware approach. First, I propose an approach based on reverse-engineering
to extract knowledge from the ambiguous textual documentation of cloud APIs
and to enhance its representation using MDE techniques. This approach is applied
to Google Cloud Platform (GCP), where I provide GCP Model , a precise model-
driven speci�cation for GCP. GCP Model is automatically inferred from GCP tex-
tual documentation, conforms to theOCCIware Metamodel and is implemented
within OCCIware Studio . It allows one to perform qualitative and quantitative
analysis of the GCP documentation. Second, I propose in particular thefclouds
framework to achieve semantic interoperability in multi-clouds, i.e., to identify the
common concepts between cloud APIs and to reason over them. Thefclouds lan-
guage is a formalization of OCCI concepts and operational semantics in Alloy formal
speci�cation language. To demonstrate the e�ectiveness of thefclouds language,
I formally specify thirteen case studies and verify their properties. Then, thanks to
formal transformation rules and equivalence properties, I draw a precise alignment
between my case studies, which promotes semantic interoperability in multi-clouds.

Keywords: Cloud Computing, Multi-Clouds, Open Cloud Computing Inter-
face (OCCI), Model-Driven Engineering (MDE), Reverse-Engineering, Google
Cloud Platform (GCP), Formal Methods, Formal Veri�cation, Alloy, Interop-
erability

viii

Résumé

Ces dernières années, l'informatique multi-nuages, qui vise à combiner di�érentes
o�res ou à migrer des applications entre di�érents fournisseurs de services en nuage,
est devenue une tendance majeure. Les multi-nuages améliorent les performances
et les coûts des applications hébergées dans les nuages et garantissent leur résilience
en cas de panne. Mais avec l'avènement de l'informatique en nuage, di�érents four-
nisseurs o�rant des services en nuage(calcul, stockage, réseau, applications, etc.)et
des interfaces de programmation d'applications (APIs) hétérogènes sont apparus.
Cette hétérogénéité complique la mise en oeuvre d'un système de multi-nuages
interopérable. Plusieurs solutions pour l'interopérabilité de multi-nuages ont été
développées pour relever ce dé�. Parmi ces solutions, l'Ingénierie Dirigée par les
Modèles (IDM) s'est révélée très avantageuse et constitue la méthodologie la plus
largement adoptée pour monter en abstraction et masquer l'hétérogénéité du nuage.
Cependant, la plupart des solutions IDM existantes pour le l'informatique en nuage
restent concentrées sur la conception des nuages sans automatiser les aspects de
déploiement et de gestion, et ne couvrent pas tous les services en nuage. De plus, les
solutions IDM ne sont pas toujours représentatives des APIs de nuages et manquent
de formalisation.

Pour remédier à ces limitations, je présente dans cette thèse une approche basée
sur le standard Open Cloud Computing Interface (OCCI), les approches IDM et
les méthodes formelles. OCCI est le seul standard ouvert qui décrit tout type de
ressources de nuages. L'IDM est utilisée pour concevoir, valider, générer et super-
viser des ressources de nuage. Les méthodes formelles sont utilisées pour raisonner
e�cacement sur la structure et le comportement des ressources de nuage encodées, à
l'aide d'un véri�cateur de modèle analysant leurs propriétés. Cette recherche a lieu
dans le contexte du projetOCCIware , qui fournit OCCIware Studio , la pre-
mière chaîne d'outils pilotée par les modèles pour OCCI.OCCIware Studio est
associé àOCCIware Runtime , le premier environnement d'exécution générique
pour les artefacts OCCI ciblant tous les modèles de service de nuages (IaaS, PaaS
et SaaS).

Dans cette thèse, je fournis en particulier deux contributions majeures qui sont
mises en oeuvre en se basant sur l'approcheOCCIware . Premièrement, je propose
une approche basée sur la rétro-ingénierie pour extraire des connaissances des docu-
mentations textuelles ambiguës des APIs de nuages et améliorer leur représentation
à l'aide des techniques IDM. Cette approche est appliquée à Google Cloud Plat-
form (GCP), où je proposeGCP Model , une spéci�cation précise et basée sur les
modèles pour GCP.GCP Model est automatiquement déduit de la documentation
textuelle de GCP, est conforme àOCCIware Metamodel et est implémenté dans
OCCIware Studio . Il permet d'e�ectuer des analyses qualitatives et quantita-
tives de la documentation de GCP. Deuxièmement, je propose le cadrefclouds
pour assurer une interopérabilité sémantique entre plusieurs nuages,i.e., pour iden-
ti�er les concepts communs entre les APIs de nuages et raisonner dessus. Le lan-
gagefclouds est une formalisation des concepts et de la sémantique opérationnelle
d'OCCI en employant le langage de spéci�cation formel Alloy. Pour démontrer
l'e�cacité du langage fclouds , je spéci�e formellement treize APIs et en véri�e les
propriétés. Ensuite, grâce aux règles de transformation formelles et aux propriétés

ix

d'équivalence, je peux tracer un alignement précis entre mes études de cas, ce qui
favorise l'interopérabilité sémantique dans un système de multi-nuages.

Mots-clés: Nuage informatique, Multi-nuages, Open Cloud Computing In-
terface (OCCI), Ingénierie dirigée par les modèles (IDM), Rétro-ingénierie,
Google Cloud Platform (GCP), Méthodes formelles, Véri�cation formelle, Al-
loy, Interopérabilité

Contents

List of Figures xiii

List of Tables xvi

I Preface 1

1 Introduction 3

1.1 Thesis Context . 6

1.2 Problem Statement . 6

1.3 Research Questions . 9

1.4 Thesis Goals . 10

1.5 Thesis Vision . 11

1.6 Proposed Solution . 12

1.7 Dissertation Roadmap . 14

1.8 Publications . 16

1.8.1 International Conferences . 16

1.8.2 International Journal . 17

1.9 Awards . 17

II State of the Art 19

2 Model-Driven Approaches for the Cloud 21

2.1 Multi-Cloud Ecosystem . 22

2.1.1 Provider Space . 24

2.1.2 Programming Space . 26

2.1.3 Modeling Space . 26

2.2 Taxonomy of Model-Driven Approaches for the Cloud 27

2.2.1 Usages . 28

2.2.2 Concepts . 29

2.2.3 Characteristics . 29

2.3 Model-Driven Approaches for the Cloud 31

2.4 Discussion . 40

2.5 Summary . 43

xii Contents

III Background 47

3 Modeling, Verifying, Generating and Managing Cloud Resources
with OCCIware 49

3.1 Motivations . 51

3.2 Background on OCCI . 53

3.3 OCCIware Approach . 55

3.3.1 Managing Everything as a Service withOCCIware 55

3.3.2 Generating Cloud Domain-Speci�c Modeling Studios with
OCCIware . 59

3.4 OCCIware Metamodel . 61

3.5 OCCIware Studio . 71

3.6 OCCIware Runtime . 75

3.7 Evaluation of OCCIware Studio . 77

3.7.1 Implementation of a Catalog of Standard OGF's OCCI Ex-
tensions . 77

3.7.2 Five OCCIware Use Cases . 85

3.7.3 Synthesis on theOCCIware Approach 89

3.8 Summary . 92

IV Contributions 93

4 Inferring Precise Models from Cloud APIs Textual Documenta-
tions 95

4.1 Inferring Precise Cloud Models . 97

4.1.1 Approach Overview . 98

4.1.2 Related Work . 100

4.2 GCP Use Case: Motivation & Drawbacks 101

4.3 GCP Model Extraction Approach 107

4.3.1 GCP Snapshot . 108

4.3.2 GCP Crawler . 108

4.3.3 GCP Model . 108

4.3.4 GCP Re�nement . 112

4.3.5 Challenges . 115

4.4 Evaluation of GCP Model . 116

4.4.1 Qualitative Evaluation . 116

4.4.2 Quantitative Evaluation . 119

4.5 Summary . 120

Contents xiii

5 Specifying Heterogeneous Cloud Resources and Reasoning over
them with fclouds 121
5.1 Exploring the Semantic Space . 123

5.1.1 Formal methods and their bene�ts 123
5.1.2 Related Work . 124

5.2 The fclouds Framework . 125
5.2.1 Usage Scenario . 125
5.2.2 Overall Architecture . 126

5.3 The fclouds Language . 128
5.3.1 Notations . 128
5.3.2 Specifyingfclouds Static Semantics 129
5.3.3 Specifyingfclouds Operational Semantics 135
5.3.4 Identifying & Validating fclouds Properties 139

5.4 Evaluation of fclouds . 143
5.4.1 Catalog of Cloud Formal Speci�cations 144
5.4.2 Implementation of fclouds Formal Speci�cations 147
5.4.3 Veri�cation of fclouds Properties 148
5.4.4 De�nition & Validation of Domain-Speci�c Properties 148
5.4.5 Transformation Rules for Semantic Interoperability in Multi-

clouds . 149
5.5 Summary . 149

V Conclusion 151

6 Conclusions and Perspectives 153
6.1 Background Summary . 153
6.2 Contributions Summary . 154
6.3 Perspectives . 156

6.3.1 Short-term Perspectives . 156
6.3.2 Long-term Perspectives . 157

6.4 Final Conclusion . 159

Bibliography 161

List of Figures

1.1 My Thesis in Comics - Part 1. 7

1.2 Thesis Vision. 11

1.3 My Thesis in Comics - Part 2. 13

1.4 Thesis Outline. 14

2.1 Multi-Cloud Ecosystem. 23

2.2 Taxonomy Criteria. 27

3.1 OCCI Speci�cations. 54

3.2 UML Class Diagram of the OCCI Core Model (from [Nyrén 2016b]). 54

3.3 OCCIware Studio and OCCIware Runtime 56

3.4 Model-Driven Managing Everything as a Service withOCCIware . . 58

3.5 Generating Cloud Domain-Speci�c Modeling Studios withOCCIware . 61

3.6 Ecore diagram ofOCCIware Metamodel 62

3.7 OCCIware Studio Features. 71

3.8 Projection of OCCI to EMF. 72

3.9 OCCIware Runtime Architecture. 76

3.10 OCCI Infrastructure Extension Model. 78

3.11 An Infrastructure Con�guration Model. 80

3.12 An OCCI Con�guration Model. 81

3.13 OCCI CRTP Extension Model. 83

3.14 OCCI Platform Extension Model. 83

3.15 OCCI SLA Extension Model. 84

3.16 OCCI Monitoring Extension Model. 85

3.17 OMCRI Designer. 86

3.18 Docker Designer. 88

3.19 LAMP Designer. 89

3.20 OCCIware Studio Product Line. 92

4.1 My Model Extraction Approach Overview. 99

4.2 Di�erent Documentation Formats. 102

4.3 Imprecise String Types. 103

4.4 Informal Enumeration Types. 104

4.5 Error in Describing the �Kind� Attribute. 104

4.6 �Optional/Required� Attribute Constraint. 105

xvi List of Figures

4.7 �Immutable Attribute� Constraint. 105

4.8 �Default Value� Constraint. 105

4.9 Hidden Link betweenInstance and Network. 106

4.10 GCP Model Extraction Approach Overview. 107

4.11 Metamodeling Stack for GCP Model. 109

4.12 The Algorithm of the Model Extraction Approach. 110

4.13 A Subset ofOCCIware Metamodel 110

4.14 Syntactic Parse Tree for Identifying a Hidden Link in a Sentence. . . 113

4.15 A Subset of GCP Extension Diagram. 114

4.16 Recursive Parsing Example. 116

4.17 Two Clusters of Development Teams. 117

5.1 Semantic Space. 123

5.2 fclouds Usage Scenario. 125

5.3 fclouds Framework Overview. 126

5.4 Formalization Process. 127

5.5 Alloy Generator. 147

5.6 Acceleo Template. 147

6.1 Formal Real-World Bridge. 159

List of Tables

2.1 Heterogeneity of Cloud Providers. 24

2.2 MDAC Usages. 41

2.3 MDAC Concepts. 42

2.4 CML Characteristics. 44

3.1 The Mapping Process ofOCCI Concepts into EMF Concepts. . . . 74

3.2 OCCIware Use Cases . 90

4.1 Redundant Attributes and Actions among Kinds. 117

4.2 GCP Products. 119

4.3 Summary of the GCP Model Dataset. 120

5.1 fclouds Static Semantics. 135

5.2 Properties of thefclouds Language. 140

5.3 Summary of thefclouds Framework Dataset. 145

Part I

Preface

The �rst part of this manuscript introduces the scope, motivation and goals of this thesis.

Chapter 1

Introduction

Contents

1.1 Thesis Context . 6

1.2 Problem Statement . 6

1.3 Research Questions . 9

1.4 Thesis Goals . 10

1.5 Thesis Vision . 11

1.6 Proposed Solution . 12

1.7 Dissertation Roadmap . 14

1.8 Publications . 16

1.8.1 International Conferences . 16

1.8.2 International Journal . 17

1.9 Awards . 17

Cloud computing, which is gaining the attention of both academia and industry

for the last decade, was not born from scratch but is a normal evolution of

many domains such as distributed computing, grid computing and service-oriented

computing. Many computing researchers and practitioners have attempted to de�ne

cloud computing in various ways. I give below the most commonly used de�nitions:

ˆ �A Cloud is a type of parallel and distributed system consisting of a collection

of inter-connected and virtualized computers that are dynamically provisioned

and presented as one or more uni�ed computing resource(s) based on service-

level agreements established through negotiation between the service provider

and consumers.� [Buyya 2009].

ˆ �Cloud computing refers to both the applications delivered as services over the

Internet and the hardware and systems software in the data centers that provide

those services.�[Armbrust 2010].

4 Chapter 1. Introduction

ˆ �Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of con�gurable computing resources (e.g., net-

works, servers, storage, applications and services) that can be rapidly provi-

sioned and released with minimal management e�ort or service provider inter-

action.� [Mell 2011].

To summarize, cloud computing enables computing resources, software, or data

to be delivered as aservice and on-demandthrough the Internet, so these resources

have becomecheaper, more powerful and more available than ever before.

More precisely, cloud computing is a model composed of threedeployment mod-

els, three service modelsand three delivery models.

Deployment models. Cloud environments can have di�erent access types,

that are called deployment models . The latter can be private, public or hybrid.

Private cloud environments are owned by a single organization and they can be

built by relying on technologies like OpenStack [opea], whereas public cloud envi-

ronments are owned by a third-party cloud provider such asAmazon Web Services

(AWS) and Google Cloud Platform(GCP). Usually, a cloud developer requires using

private clouds for testing a cloud application, then migrating to public clouds so the

application can be publicly accessed by cloud users. And sometimes, the cloud de-

veloper requires using ahybrid cloud, i.e., that comprises public and private cloud

environments. It allows the cloud developer to make his/her application publicly

accessed by hosting its Web server on a public cloud, and to privately store sensitive

data by keeping his/her application database in a private cloud.

Service models. Cloud providers o�er functionalities as services at di�erent

layers of the cloud stack,i.e., service models : Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS) and Software-as-a-Service(SaaS).

ˆ IaaS: where the capability provided to the IaaS user is to provision virtual

machines and to con�gure the infrastructure concerns: processing, storage,

networking, and other computing resources.

ˆ PaaS: where the capability provided to the PaaS user is to deploy an appli-

cation and it is limited to the database(s), application server(s), compilation

tools, libraries, etc.

ˆ SaaS: where the capability provided to the SaaS user is to manage applications

running on a cloud Infrastructure and/or Platform, and accessible through a

web browser. A SaaS should rely on the principle of multi-tenancy, where

5

multiple independent instances of one or multiple applications operate in a

shared environment.

Delivery models. Cloud resources can be provisioned from either asingle

cloud or multiple clouds. This is known as the delivery model . In this section,

I describe each of the existing delivery models and I highlight the advantages of a

multi-cloud delivery model, which interests us in this dissertation .

ˆ Single cloud: where cloud applications are limited to be deployed on a single

cloud among others,i.e., to bene�t from services of only one cloud provider

at a time.

However, several cloud outages have taken place in the past [Ko 2013], which

prove that the sentence �do not place all your eggs in one basket� is equally ap-

plicable to the cloud ecosystem. Therefore, some cloud application may require to

exploit services frommultiple cloud environments, at the infrastructure, platform,

and software layers. In this case, the cloud developer should perfectly manage to

deal with dependencies and to ensure separation of concerns. As Petcu explained

in [Petcu 2013], there are two basic delivery models in multiple cloud systems:Fed-

erated Cloudsand Multi-Clouds. Petcu has drawn a clear positioning of multi-clouds

versus other cloud models. I summarize it as follows:

ˆ Federated clouds: where the cloud providers are in agreement with each others

to enhance the service o�ered to their consumers,e.g., European Grid Infras-

tructure Federated Clouds(EGI FC) which is a federation of private clouds.

ˆ Multi-clouds: where the application provisions multiple cloud varying services,

without a prior agreement with and between the cloud providers, but with a

third party building a unique entry point for multiple clouds. This strategy

has been adopted in the cloud computing industry since a while in order to

improve disaster recovery and geo-presence, to use unique cloud services from

di�erent providers as they are needed, and to ensure unlimited scalability of

cloud applications, as explained in [Petcu 2013].

The remainder of this introductory chapter is organized as follows. Section 1.1

presents the context of this thesis. In Section 1.2, I identify the problems that

motivate this research. Section 1.3 introduces the research questions that this dis-

sertation aims to answer. Next, in Section 1.4, I present the main goals of this thesis.

Section 1.5 presents the vision of my research. Section 1.6 introduces my proposed

solution. In Section 1.7, I summarize the structure of this dissertation. Finally, in

Section 1.8, I detail the publications derived from my research.

6 Chapter 1. Introduction

1.1 Thesis Context

This thesis is supported by both the OCCIware [occc] research and development

project funded by the French Programme d'Investissements d'Avenir (PIA), and

the Hauts-de-France Regional Council. The OCCIware project promotes the OCCI

standard to address the lack of uni�ed cloud computing standard and facilitate the

development of services. Therefore, the works carried on in this thesis are built on

the OCCI standard by using the OCCIware approach.

This thesis is produced in the Spirals team. Spirals is a joint project-team

between Inria Lille-Nord Europe research center and the University of Lille. Spi-

rals currently consists of eight permanent members and about twenty-�ve non-

permanent members. The research areas of Spirals are distributed systems and

software engineering. The research areas of this thesis are particularly multi-cloud

computing, Model Driven Engineering (MDE) and formal methods.

1.2 Problem Statement

Due to the emergence of numerous cloud providers and their heterogeneity, pro-

visioning cloud services is not a straightforward task. I state the main problem

addressed by this dissertation as follows:

The cloud shows several favorable features like elasticity and pay-as-you-go. In

order to take advantage of these features, the cloud computing market counts

today variety of cloud providers like Amazon, Google, Microsoft, etc. Cloud

providers o�er varying infrastructure, platform or software services. Even at

the same service layer, cloud providers use heterogeneous terms, concepts, and

features, which usually are not aligned with those of competing providers. These

semantic di�erences are critical in cloud computing as they make migrating an

application across providers a very complicated and costly task. In addition,

cloud providers give access to their resources through heterogeneousCloud Re-

source Management(CRM)- Application Programming Interface (API)s. The

management of a potentially large number of cloud services with heterogeneous

CRM-APIs is a challenge, because of incompatibility between the di�erent APIs.

Worse still, the semantics of these CRM-APIs is informally described in English

prose in their documentation available at the provider's website. Therefore, it is

usually impossible to understand the behaviour of a cloud when the developer

requests a virtual machine for example. For the above concerns, the dependency

1.2. Problem Statement 7

to a single cloud provider is promoted, the multi-cloud environment is prevented

and the migration from one cloud to another becomes a very complicated task.

Figure 1.1: My Thesis in Comics - Part 1.

8 Chapter 1. Introduction

The comic strip in Figure 1.1 illustrates the problem above,i.e., the heterogene-

ity in a multi-cloud context that leads to a lack of interoperability across providers.

I credit the work for designing the amazing comics of my thesis to Olivier Audy.

More speci�cally, cloud stakeholders face the following challenges.

Heterogeneous service models. Cloud providers o�er di�erent services that

belong to the Infrastructure (IaaS), Platform (PaaS) or Software (SaaS) layers. We

use the abbreviationEverything as a Service(XaaS) to refer to all categories. These

categories consist in the �Service Model�. Service models contain highly heteroge-

neous cloud resources, which make di�cult the overall management of a computer

system from infrastructure to application resources.

Heterogeneous CRM-APIs. Cloud services are often exposed as Web ser-

vices, which follow the industry standards such asWeb Services Description Lan-

guage(WSDL) 1, Simple Object Access Protocol(SOAP)2 and Universal Description,

Discovery and Integration (UDDI) 3 [Paraiso 2012]. They frequently rely onREp-

resentational State Transfer (REST)ful [Fielding 2000] APIs that provide program-

matic access to the resources o�ered by a cloud provider throughCreate, Retrieve,

Update and Delete(CRUD) operations. For example, the Amazon cloud services

are accessible via a SOAP API, whereas other clouds are based on a REST API,

which leads to an incompatibility between these two di�erent APIs.

Semantic di�erences. The semantics refers to the description of a cloud ser-

vice by its provider. These descriptions are heterogeneous because a cloud provider

employs concepts, which usually do not directly map to those of a competing

provider. In fact, even if cloud providers o�er the same service, the latter may

have di�erent names, characteristics and functionalities. For instance, GCP refers

to its compute service as�instance� , whereas DigitalOcean calls it�droplet� . These

semantic di�erences are critical in cloud computing as they make migrating an ap-

plication across providers a very complicated and costly task.

Lack of veri�cation. Cloud solutions provide services, libraries or model-

driven tools to provision cloud resources. However, once provisioned, the deploy-

1WSDL is an Extensible Markup Language (XML)-based language that is used for describing
the functionality o�ered by a Web service.

2SOAP is a protocol speci�cation for exchanging structured information in the implementation
of Web Services in computer networks.

3UDDI is a platform-independent, XML-based registry by which businesses worldwide can list
themselves on the Internet, and a mechanism to register and locate Web service applications.

1.3. Research Questions 9

ment of the applications can face several problems such as miscon�guration of links

between resources, lack of resources on the hosts in which the applications are de-

ployed, human errors, etc. The only way to be sure that the cloud con�gurations

will run or fail is to deploy them on the target executing environment. Moreover,

there is no way to verify that deployed con�gurations are conform with those de-

sired. The lack of veri�cation tool becomes quickly painful and expensive when the

deployment task is repeated several times.

Lack of formalization. The semantics of cloud APIs is informally described

in their documentation available at provider websites within English prose. It is

then di�cult to understand the behaviour of a cloud when the developer requests a

virtual machine for example. Moreover, the cloud solutions are numerous and also

lack of precise documentation, which complicate their understanding and compar-

ison. This lack of formalization hinders the understanding of the cloud APIs and

solutions, thus complicates the provisioning process and also misleads the alignment

and comparison between cloud o�erings.

Vendor lock-in. It is recognized as one of the greatest challenges to cloud

adoption where cloud clients are locked-in to a speci�c cloud provider due to the

heterogeneity. Therefore, vendor lock-in is a serious result of all the problems

that I discussed above. This problem hinders the complete exploitation of the

full capabilities of cloud computing since it prevents two main intended aspects:

portability and interoperability, which are closely related terms and may often be

confused. Cloud interoperability is the integration between several cloud o�erings,

whereas portability is the ability to move applications between di�erent cloud

providers. Cohen clari�es in [Cohen 2009] the similarities and the di�erences among

these terms in an attempt to exemplify and di�erentiate them.

The work presented in this thesis aims to alleviate the challenges presented

above.

1.3 Research Questions

More speci�cally, this thesis aims to answer the following three research questions

(RQs):

ˆ RQ#1: Is it possible to have a solution that allows to represent all kinds

of cloud resources despite their heterogeneity, and a complete framework for

managing them?

10 Chapter 1. Introduction

� How to design the cloud developer needs at a high-level of abstraction?

� How to verify the cloud structural and behavioral properties before any

concrete deployments?

� How to deploy and manage cloud con�gurations?

ˆ RQ#2: Is it possible to automatically extract precise models from cloud APIs

and to synchronize them with the cloud evolution?

� How to provide an accurate description for a cloud API?

� How to correct the existing drawbacks in a cloud API documentation?

� How to analyze a cloud API documentation?

ˆ RQ#3: Is it possible to reason on cloud APIs and identify their similarities

and di�erences?

� How to better understand cloud solutions?

� How to make sure that a cloud solution re�ects the desired behaviour?

� How to ensure an accurate migration from a cloud solution to an-

other?

These research questions are explored in next sections.

1.4 Thesis Goals

The objective of this thesis topic was to propose the �rst formal framework to rig-

orously handle cloud resources. This framework allows to model, analyze, design,

deploy, manage every kind of cloud resources, and to reason over them. This frame-

work is based on theOpen Cloud Computing Interface(OCCI) [Edmonds 2012, occa]

of the Open Grid Forum (OGF) recommendation. The tooling of this framework

relies on MDE techniques, particularly theEclipse Modeling Framework(EMF) and

the Models@run.time approach. The formalization of this framework relies on for-

mal speci�cation languages such as the Alloy [Jackson 2012] language developed by

Professor Daniel Jackson from theMassachusetts Institute of Technology(MIT). To

achieve this objective, I decompose it into the following goals.

Regarding RQ#1 , this thesis aims to provide mechanisms to interact with het-

erogeneous cloud environments. These mechanisms allow one to model, analyze,

design, deploy and manage every kind of cloud resources.

RegardingRQ#2 , this thesis aims to propose mechanisms to automatically build

a cloud model from the corresponding cloud API. These mechanisms rely on reverse-

engineering techniques. They consist in extracting knowledge from a cloud API

1.5. Thesis Vision 11

documentation in order to infer the concepts to be de�ned in the cloud model so it

correctly re�ects the real cloud API. Also, these mechanisms allow to automatically

update the cloud model in case changes occurred to the cloud API.

Regarding RQ#3 , this thesis intends to provide mechanisms to draw a precise

alignment between cloud APIs. For such purpose, I exploit formal languages to

rigorously and precisely encode cloud concepts and operations and to reason over

them.

1.5 Thesis Vision

We discussed earlier in this chapter that cloud computing encompasses heteroge-

neous cloud providers. As illustrated in Figure 1.2, this thesis takes advantage of

model-based and formal approaches in order to rise in abstraction from the hetero-

geneous real-world and promote multi-cloud computing. The approaches presented

in this thesis are represented in blue. TheOCCIware model-driven approach is

discussed in the background part of this thesis, and thefclouds formal approach

is discussed in the contributions part of this thesis. More precisely, this thesis aims

at inferring models from multi-clouds using the OCCIware platform, and then

formally reasoning on these models using thefclouds framework.

Figure 1.2: Thesis Vision.

12 Chapter 1. Introduction

1.6 Proposed Solution

In this section, I provide an overview of the contributions described in this disser-

tation. As stated before, the goal of my thesis is to provide approaches, languages,

tools for inferring and enhancing the knowledge of cloud APIs, precisely represent-

ing this knowledge and e�ciently reasoning over it. The main contributions of our

work are summarized as follows:

Precise models for cloud APIs. My �rst contribution is to enhance the

knowledge representation in cloud APIs by automatically inferring a precise model

from the cloud textual documentation. My approach is applied on a major cloud

provider, GCP. To address the drawbacks of GCP textual documentation, I propose

a precise model that describes GCP API. It consists in a precise speci�cation that

describes without ambiguity the knowledge and activities in GCP to avoid confu-

sion and misunderstandings. This model-driven speci�cation, calledGCP Model ,

is automatically inferred from the textual documentation of GCP. GCP Model

conforms to the OCCIware Metamodel and is implemented within the open

source model-driven Eclipse-basedOCCIware tool chain. Thanks to our GCP

Model , I o�er corrections to the drawbacks I identi�ed in GCP textual documen-

tation. Also, I analyze GCP by drawing conclusions regarding their documentation

and quantifying their services.

The fclouds framework. I provide as second contributionfclouds , the

�rst formal framework for semantic interoperability between cloud APIs. By se-

mantic interoperability I mean to identify the similarities and di�erences between

cloud APIs concepts and to mathematically reason over them.fclouds contains

a catalog of cloud APIs that are precisely described. It will help the cloud cus-

tomer to understand the behaviour of the cloud API but also how to migrate from

one API to another, thus to promote semantic interoperability. To implement the

formal language that will encode all the APIs of ourfclouds framework, I advo-

cate the use of formal methods,i.e., techniques based on mathematical notations.

They will allow us to rigorously encode cloud concepts and behaviour, validate cloud

properties and �nally de�ne formal transformation rules between cloud concepts. I

adopt the concepts of the OCCI common standard to de�ne the formal language

of the fclouds framework. I choose to formalize OCCI with Alloy [Jackson 2012],

a lightweight promising formal speci�cation language designed by Daniel Jackson

from the MIT.

1.6. Proposed Solution 13

Figure 1.3: My Thesis in Comics - Part 2.

The comic strip in Figure 1.3 vulgarizes this contribution based on OCCI and

Alloy formal language and its analyzer for precisely describing cloud APIs. It mainly

14 Chapter 1. Introduction

highlights how the formalization of OCCI in Alloy allows a standardization of the

the various cloud services. Consequently, this formalization helps the developer to

avoid the misunderstandings that result from the English documentations.

1.7 Dissertation Roadmap

Figure 1.4: Thesis Outline.

This dissertation is divided in �ve parts and six chapters, as shown in Figure 1.4.

While this introductory chapter is part of the �rst part, the second one encloses the

State of the Art. In the third part, I present OCCIware , which is the model-driven

environment on which I rely to implement my works. The fourth part presents the

two contributions of this dissertation. Finally, the last part includes the conclusions

and perspectives of this dissertation. Below, I present an overview of the chapters

that compose the di�erent parts.

1.7. Dissertation Roadmap 15

Part II: State of the Art

Chapter 2: Model-Driven Approaches for the Cloud In this chapter,

I present the approaches that are used in order to ensure multi-clouds, namely

standards, services, libraries and models. I focus on model-based cloud solutions

and I propose a taxonomy to provide a better understanding of the concerns in

which our work takes place. I list and describe the most relevant related works in

terms of our taxonomy criteria. Since our work presents a solution for multi-clouds,

the idea of this chapter is to explore the existing solutions and their limitations.

Part III: Background

Chapter 3: Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware . In this chapter, I present OCCIware , the project

that supports this thesis and the paltform that I used to implement my contributions.

OCCIware proposes to textually and graphically encode cloud APIs and cloud

con�gurations via OCCIware Studio . The latter is a model-driven environment

for OCCI standard, based on an Ecore metamodel. Then,OCCIware Studio is

linked with OCCIware Runtime , an execution environment for OCCI artifacts.

Therefore, from a designed and veri�ed OCCI con�guration, we can generate a

deployment script via the CURL Generator tool. Later, these con�gurations can be

managed at runtime via generated connectors deployed onOCCIware Runtime .

Part IV: Contributions

Chapter 4: Inferring Precise Models from Cloud APIs Textual Doc-

umentations. In this chapter, I present my approach for retrieving information

from cloud APIs, improving their representation and discovering new knowledge

from them. This approach is experimented by studying the textual documentation

of GCP, one of the leaders in the cloud market. Then, I build a precise model for

GCP, called theGCP Model . Thanks to this model, I study GCP API and provide

corrections to the six drawbacks of its current informal documentation.

Chapter 5: Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds . In this chapter, I present my approach for formally

specifying cloud APIs, called thefclouds framework. Based on Alloy formal lan-

guage and the OCCI standard, I de�ne a formal language for cloud computing that

relies on �rst-order logic paradigm combined with relational algebra. Then, I show

how having formal speci�cations of cloud solutions allow to check their behaviour,

16 Chapter 1. Introduction

detect their inconsistencies, and remove their ambiguity to understand their simi-

larities and promote their interoperability.

Part V: Conclusion

Chapter 6: Conclusions and Perspectives. In this chapter, I conclude the

work presented in this dissertation. I discuss some limitations that motivate new

ideas and future directions as short-term and long-term perspectives.

1.8 Publications

The contributions derived from this thesis have been published in international

peer-review conferences. In this section, I detail all the publications resulted from

my research for the last three years. These publications are ordered by year of

publication.

1.8.1 International Conferences

� Stéphanie Challita , Faiez Zalila, and Philippe Merle. �Specifying Semantic

Interoperability between Heterogeneous Cloud Resources with the FCLOUDS

Formal Language.� 11th IEEE International Conference on Cloud Computing

(CLOUD), San Francisco, California, USA, 2018, p. 367-374 [Challita 2018b]

(CORE rank B, acceptance rate: 20%).

� Stéphanie Challita , Faiez Zalila, Christophe Gourdin, and Philippe Merle.

�A Precise Model for Google Cloud Platform.� 6th IEEE International Con-

ference on Cloud Engineering (IC2E), Orlando, Florida, USA, 2018, p. 177-

183 [Challita 2018a] (acceptance rate: 19%).

� Fabian Korte, Stéphanie Challita , Faiez Zalila, Philippe Merle, and Jens

Grabowski. �Model-Driven Con�guration Management of Cloud Applica-

tions with OCCI.� 8th International Conference on Cloud Computing and

Services Science (CLOSER), Funchal, Madeira, Portugal, 2018, p. 100-

111 [Korte 2018] (acceptance rate: 22%).

� Faiez Zalila, Stéphanie Challita , and Philippe Merle. �A Model-Driven Tool

Chain for OCCI.� 25th International Conference on Cooperative Information

Systems (CoopIS), Rhodes, Greece, 2017, p. 389-409 [Zalila 2017a] (CORE

rank A, acceptance rate: 20%).

1.9. Awards 17

� Stéphanie Challita , Fawaz Paraiso, and Philippe Merle.�Towards Formal-

based Semantic Interoperability in Multi-Clouds: The FCLOUDS Framework.�

10th IEEE International Conference on Cloud Computing (CLOUD), Hon-

olulu, Hawaii, USA, 2017, p. 710-713 [Challita 2017b] (CORE rang B, accep-

tance rate: 18%).

� Stéphanie Challita , Fawaz Paraiso, and Philippe Merle.�A Study of Virtual

Machine Placement Optimization in Data Centers.� 7th International Confer-

ence on Cloud Computing and Services Science (CLOSER), Porto, Portugal,

2017, p. 343-350 [Challita 2017a] (acceptance rate: 22.5%).

� Fawaz Paraiso,Stéphanie Challita , Yahya Al-Dhuraibi, and Philippe Merle.

�Model-driven Management of Docker Containers.� 9th IEEE International

Conference on Cloud Computing (CLOUD), San Francisco, California, USA,

2016, p. 718-725 [Paraiso 2016] (CORE rank B, acceptance rate: 15%).

1.8.2 International Journal

In addition, one journal article is under submission:

� Faiez Zalila, Stéphanie Challita , and Philippe Merle. �Model-Driven Cloud

Resource Management with OCCIware.� Future Generation Computer Sys-

tems (FGCS), 2018 [Zalila 2018] (Impact factor 4.639).

1.9 Awards

During this thesis, I was selected as an ambassador of the French fellowship

L'ORÉAL-UNESCO FOR WOMEN IN SCIENCE 2018. Among 900 ap-

plications, 20 female PhD candidates and 10 female postdocs were granted this

award.

Also, I received two student travel grants from:

� IEEE CLOUD 2017 conference that took place in Honolulu, Hawaii, USA,

and,

� FormaliSE 2018 conference (co-located with International Conferences on

Software Engineering (ICSE)) that took place in Gothenburg, Sweden.

Part II

State of the Art

In this part, I review approaches related to cloud computing and I classify the existing
models for the cloud.

Chapter 2

Model-Driven Approaches for the

Cloud

Contents
2.1 Multi-Cloud Ecosystem . 22

2.1.1 Provider Space . 24

2.1.2 Programming Space . 26

2.1.3 Modeling Space . 26

2.2 Taxonomy of Model-Driven Approaches for the Cloud . . . 27

2.2.1 Usages . 28

2.2.2 Concepts . 29

2.2.3 Characteristics . 29

2.3 Model-Driven Approaches for the Cloud 31

2.4 Discussion . 40

2.5 Summary . 43

Today , the plethora of cloud providers and their heterogeneity hinder their in-

teroperability. Therefore, many solutions have emerged to add abstraction be-

tween the cloud providers and provide mechanisms to automate the provisioning of

services from multi-clouds. Among these solutions, MDE has received a signi�cant

attention in the development of software for cloud computing. MDE is a software

development methodology that allows software developers to design the software

concerns at a high level of abstraction, hide di�erent implementation details, reduce

complexity, ease reuse, and thus improve software quality. Since 2010, several MDE

approaches for the cloud have emerged. However, each one targeted a particular

problem and resolved it within an ad-hoc manner. In fact, some years after the

emergence of the cloud computing, several works [Bruneliere 2010, Baryannis 2013]

were interested to the synergy between the cloud and MDE. However, no work gave a

consensus on the set of models, languages, model transformations and software pro-

cesses for the model-driven development of the cloud applications. In this chapter,

I present the �rst detailed study about the use of MDE for the cloud.

22 Chapter 2. Model-Driven Approaches for the Cloud

This chapter is structured as follows. Section 2.1 recalls the concept of �Cloud-

ware engineering� and classi�es the existing Cloudware engineering solutions into

three categories that I call spaces. Section 2.2 describes a taxonomy for explain-

ing Model-Driven Approaches for the Cloud(MDAC). Therefore, I list the di�erent

identi�ed usages for MDAC, during the di�erent phases of building an application

for/in the cloud. Afterwards, I discuss what an eventual MDAC can contain as con-

cepts to reply to the di�erent usages needs. Then, I discuss how these concepts can

be encoded and what are the di�erent possible approaches to do that. Section 2.3

details twenty-two existing MDAC. Then, I discuss these solutions according to my

taxonomy criteria. Section 2.4 identi�es some limitations in the existing approaches.

Finally, Section 2.5 concludes the chapter.

2.1 Multi-Cloud Ecosystem

The emergence of the virtualization and the cloud computing has fostered the de-

ployment of the software on the cloud. This speci�c kind of software is called

Cloudware. The Cloudware engineering requires us to update the classical software

engineering approaches to be adapted to the cloud computing speci�cities such as

elasticity and portability. To promote interoperability between clouds, i.e., to en-

able multi-clouds, the Cloudware engineering market counts numerous solutions at

di�erent levels of abstraction, traditionally called service layers. From my point of

view, these solutions can be classi�ed into three spaces, as shown in Figure 2.1. I

identify the Provider Spacethat o�ers solutions for the cloud provider, the Program-

ming Spacethat o�ers solutions for the cloud developer and theModeling Spacefor

the cloud architect. Multi-cloud solutions, whether they belong theProvider Space,

Programming Spaceor Modeling Space, follow sometimes the current emerging cloud

standards.

Standards. Cloud standards result from collective agreements and aim at pro-

viding some concepts, characteristics and implementations to be commonly used by

cloud providers. Among cloud standards, I identify:

� Cloud Application Management for Platforms (CAMP) [Carlson 2012, cam]:

the Organization for the Advancement of Structured Information Standards

(OASIS)'s CAMP standard targets the deployment of cloud applications on

top of PaaS resources.

� Cloud Data Management Interface(CDMI) [cdm]: de�nes a RESTful inter-

face that allows cloud applications and users to retrieve and perform opera-

tions on the data from the cloud.

2.1. Multi-Cloud Ecosystem 23

Figure 2.1: Multi-Cloud Ecosystem.

� Cloud Infrastructure Management Interface (CIMI) [Davis 2012]: the Dis-

tributed Management Task Force(DMTF) 's CIMI standard de�nes a RESTful

API for managing IaaS resources only.

� OCCI [Edmonds 2012, occa]: the OGF's OCCI proposes a generic resource-

oriented model for describing and managing any kind of cloud resources, in-

cluding IaaS, PaaS, and SaaS.

� Open Virtualization Format (OVF) [ovf]: the DMTF 's OVF standard de�nes

a packaging format for portable virtual machine images.

� Topology and Orchestration Speci�cation for Cloud Applications

(TOSCA) [Binz 2012]: the OASIS's TOSCA de�nes a model to de-

scribe and package cloud application artifacts and to deploy them on IaaS

and PaaS resources.

24 Chapter 2. Model-Driven Approaches for the Cloud

Discussion

Using standards for cloud computing is quite advantageous because they result

of a collective agreement and they extract the key actions and characteristics

of cloud providers. Also, being a standard means that several implementations

have been successfully built using this standard. However, standards are usually

speci�c for a particular cloud service model. Moreover, leading cloud providers

have unfortunately no interest in adopting a standard API like the one o�ered

by OCCI to ease interoperability with other clouds. Each of the cloud providers

would rather have proprietary, closed source implementations with custom

APIs. However, OCCI has proven its utility in several contexts. For example,

the EGI FC [egi] is based on OCCI to ensure interoperability among twenty

cloud providers and over three hundred data centers. Furthermore, OCCI at-

tracts several cloud brokers such as CompatibleOne [Yangui 2014] that aims at

ensuring seamless access to the heterogeneous resources of cloud providers. For

these reasons among others, I propose in this thesis an OCCI-based approach

for interoperability in a multi-cloud context.

In the following, I present the Cloudware spaces and highlight the problem at

each space of the cloud ecosystem.

2.1.1 Provider Space

The cloud market counts today a plethora of cloud providers that, as shown in

Table 2.1, are heterogeneous in terms of their deployment model, service model and

management interface. This heterogeneity leads to vendor lock-in.

Table 2.1: Heterogeneity of Cloud Providers.
Cloud Provider Deployment Model Service Model CRM-API

AWS [aws] Public IaaS & PaaS REST & SOAP
DigitalOcean [dig] Public IaaS REST

EGI FC [egi] Private IaaS REST
FlexiScale [�e] Public IaaS SOAP

GCP [gcp] Public IaaS & PaaS REST
Microsoft Azure [azu] Hybrid IaaS REST

Heroku [her] Public PaaS REST
SalesForce [sal] Public SaaS REST & SOAP
VMware [vmw] Hybrid IaaS REST

Services. To address the providers' heterogeneity problem, the solution in this

space would be a service that o�ers a unique interface to handle the heterogeneity

of di�erent APIs. A service is expected to intermediate the relationship between

2.1. Multi-Cloud Ecosystem 25

the cloud providers and users to simplify the process of combining multiple cloud

services. In this subsection, I survey di�erent cloud services, whether they are

commercial or open source.

� Aeolus [aeo]: is an open source European research project aiming at automat-

ing the deployment and recon�guration of machine pools in the clouds.

� Aneka [Vecchiola 2009]: is a PaaS, that is commercialized by Manjra-

soft [man], for building .NET applications and deploying them on either public

or private clouds.

� CompatibleOne [Yangui 2014]: is an open source PaaS to automate appli-

cation deployment on multiple providers. It is based on CDMI and OCCI

standards.

� Kaavo [kaa]: is a commercial management interface for con�guring and man-

aging applications on the supported cloud providers and platforms.

� mOSAIC [mos, Sandru 2012]: is a European project that o�ers an open source

API for the development and deployment of applications that use multiple

clouds.

� Optimis [Ferrer 2012]: is also a European project that o�ers an open source

PaaS that allows cloud service provisioning and the management of the life-

cycle of the services.

� RightScale [rig]: is a commercial service for deploying and managing applica-

tions across clouds.

� Scalr [scab]: similar to RightScale, Scalr provides deployment of virtual ma-

chines in various clouds and includes automated triggers to scale up and down.

� STRATOS [Pawluk 2012]: o�ers single sign-on and monitors resource con-

sumption and the ful�llment of service level agreements and o�ers autoscaling

mechanisms.

Discussion

A cloud service only masks the heterogeneity problem and does not semanti-

cally resolve it. Cloud users would not have a way to understand how their

applications and sensitive data are dealt with inside a cloud, thus hampering

trust to cloud services. Also, an important limitation in using cloud brokering

26 Chapter 2. Model-Driven Approaches for the Cloud

services is the user reliance on the broker to be continuously up to date with

new cloud technologies, options and o�erings.

2.1.2 Programming Space

In order to allow developers to provision cloud services, each cloud o�ers one or

several language-speci�cSoftware Development Kit(SDK)s to hide technical details

of APIs. However, these SDKs are heterogeneous. Therefore, many multi-cloud

libraries have emerged to allow developers to add abstraction between the cloud

SDKs and enable multi-clouds. In this subsection, I survey di�erent multi-cloud

libraries providing a uniform way to access multiple services and resources, as well

as facilitating the provisioning of services and resources from multiple clouds.

� Fog [fog]: is a Ruby library that provides an interface, making clouds easier

to work with and to switch between providers.

� Gophercloud [gop]: is a Go library that allows cloud developers to connect to

their applications on OpenStack clouds.

� jclouds [jcl]: is a Java library that introduces abstractions aiming the porta-

bility of applications and supports more than thirty cloud providers.

� libcloud [lib]: is a Python library that controls Virtual Machine (VM)s from

di�erent cloud providers.

� SimpleCloud [sim]: is a PHP library for accessing storage, queue and database

services in the cloud.

Discussion

The multi-cloud libraries are tightly coupled to their programming languages

like Ruby, Go, Java, Python and PHP, so the language compiler is able to

check the correctness of the developer code but does not know how to perform

a veri�cation related to the cloud computing �eld. The developer needs to ignore

implementation details and focus on general properties and characteristics. This

will help him/her to avoid premature commitment to implementation choices.

2.1.3 Modeling Space

Meanwhile, there is a need for cloud architects to design their applications for multi-

clouds regardless of the implementation details. For this, model-based solutions are

becoming increasingly popular in cloud computing as they provide domain-speci�c

modeling languages and frameworks that enable architects to describe/select/adapt

2.2. Taxonomy of Model-Driven Approaches for the Cloud 27

multi-cloud environments. This strategy is summarized as �Model once, generate

anywhere�. I identify some of the notable model-based solutions for multi-clouds.

Unlike programming libraries, they work at a high level of abstraction by focusing

on cloud concerns rather than implementation details. I believe that model-driven

engineering brings many bene�ts for multi-clouds [Bruneliere 2010]. Therefore, I

focus in the rest of this chapter on detailing the model-driven Cloudware stack and

discussing model-based approaches.

2.2 Taxonomy of Model-Driven Approaches for the

Cloud

In order to understand MDAC and as shown in Figure 2.2, I propose a taxonomy

that presents the classi�cation of MDAC literature in terms of three main aspects I

identi�ed:

ˆ MDAC usages categorized by the phase of using the approach:design time,

deployment time, and production time (Subsection 2.2.1),

ˆ MDAC concepts used to satisfy the corresponding MDAC usages. These con-

cepts may belong to IaaS or PaaS domains, or they re�ect transverse cloud

concerns like SLA, elasticity, etc. (Subsection 2.2.2), and,

ˆ MDAC characteristics that represent the characteristics of the language used

to implement the MDAC, i.e., the paradigm, the syntax and the semantics

(Subsection 2.2.3).

Figure 2.2: Taxonomy Criteria.

28 Chapter 2. Model-Driven Approaches for the Cloud

2.2.1 Usages

Usually, the process of developing an application for/in the cloud is characterized by

three main phases: design, deployment and production (i.e., the runtime). For each

one, I have identi�ed a set of recurrent usages that can occur during the lifecycle

of a cloud application. They are the models which represent, at a high level of

abstraction, concrete concerns of cloud management interfaces.

2.2.1.1 Design Time

This stage regroups the fundamental activities that enact MDAC. It consists for

example in migrating a legacy system to the cloud, expressing the client needs by

designing and verifying the cloud application requirements, designing the expected

cloud environment to focus on cloud concerns rather than the implementation de-

tails, selecting the optimum cloud provider that suits the application requirements,

re�ning generic models so they become adapted to represent concrete cloud o�er-

ings, exporting cloud models as speci�cations, documentations, and design artifacts

to ease the usage of the cloud systems, etc.

2.2.1.2 Deployment Time

Once the cloud architecture model is designed, MDAC should be capable to generate

the code artifacts in any form for the deployment stage. For example, if the model

de�ned is related to Docker technology [Merkel 2014], MDAC should generate the

artifacts corresponding to the model in a form of docker-compose �le that can be

managed by Docker swarm, or YAML con�guration �les that can be managed by Ku-

bernetes or OpenShift. In addition, MDAC should be able to generate deployment

scripts that can be used by a third-part deployment tools. For example MDAC will

be able to generate Ansible playbooks (roles, tasks, host_vars, etc.) [ans], Puppet

manifests (resources, classes, modules) [pup], and Chef cookbooks (recipes, tem-

plates, etc.) [che].

2.2.1.3 Production Time

During this phase, MDAC allow the user to have a model representation,i.e., an

abstraction of its cloud running system. Then, MDAC will provide a link between

the designed architecture and the deployed cloud artifacts on the executing environ-

ment. When modi�cations occur in an existing architecture, MDAC should update

the executing environment. Conversely, when changes occur in the executing envi-

ronment, they should be re�ected in the existing architecture. Finally, MDAC will

monitor in a real time all the resources deployed in the executing environments and

2.2. Taxonomy of Model-Driven Approaches for the Cloud 29

will report the status in many forms including updating widgets in the designed

architecture, or visualizing the monitored facts in a specialized graphs or exporting

them as CSV, excel, etc.

2.2.2 Concepts

To implement an MDAC, the designers need to de�ne a set of concepts that represent

a speci�c cloud domain such as infrastructure or platform or related to transverse

cloud concerns such as elasticity,Service Level Agreement(SLA) and simulation.

Each domain or concern includes a set of speci�c concepts. For example, VM,

container and network integrate the infrastructure domain, whereas server, appli-

cation and database integrate the platform domain. Each domain-speci�c concept

de�nes a set of attributes, actions, and constraints. An attribute represents a spe-

ci�c property of this type. An action de�nes a business speci�c behavior that can

be triggered by a type instance (named also resource). A constraint associated to

a type represents a business condition that must be respected by each conforming

resource.

2.2.3 Characteristics

MDAC are de�ned through the use of a metamodel that formalizes the di�erent

concepts of the cloud domain. This metamodel de�nes the modeling language,i.e.,

the Cloud Modeling Language(CML), which is the bridge between cloud developers

and the cloud artifacts. Similar to other languages, a CML is de�ned in terms of

its paradigm, syntax and semantics, which are the three pillars of CML character-

istics [Kleppe 2008]. The syntax of a CML may be further divided into anabstract

syntax and a concrete syntax.

2.2.3.1 Paradigm

The paradigm is the manner of thinking when using a language. For example, object-

oriented languages involve objects as a paradigm. As for a cloudDomain-Speci�c

Modeling Language(DSML), its paradigm may rely on the application components,

cloud services, cloud resources, or Feature Model (FM)s. On one hand, the paradigm

of components is application-oriented since it is used to describe the architecture

of the application. The components are thus the entities of an application that the

developer needs to deploy on the cloud. On the other hand, services, resources and

FMs are cloud-oriented paradigms,i.e., used to describe the cloud o�erings. By

services, I discuss slightly coupled, shared entities, already deployed in the cloud.

A cloud platform provides services, such as computing and storage, and provides

30 Chapter 2. Model-Driven Approaches for the Cloud

management interfaces for these services. Since they are shared by several users

simultaneously, services do not keep any state,i.e., stateless. Beside services, re-

sources, such as VMs and containers, are accessible viaUniform Resource Identi�er

(URI)s through REST or SOAP APIs. Basically, resources are not shared but, they

are available on demand by each user. Being able to describe everything you want

in data centers, i.e., compute, storage, network, applications, but even lights for ex-

ample, one can say that the use of resources is generic and not speci�c to the �eld of

cloud computing. This makes the tour de force of this paradigm. As for FMs, they

were introduced in 1990 by Kang et al. [Kang 1990], as part of theFeature Oriented

Domain Analysis (FODA). They are used to denoteSoftware Product Line (SPL)s.

In cloud computing, FMs are used to represent variability of cloud providers.

2.2.3.2 Abstract syntax

The abstract syntax represents the concepts available in a language and how they

are related. For CMLs, the abstract syntax is described by de�ning a metamodel,

which is itself a model that de�nes the concepts of the domain and how they in-

terrelate. Metamodeling techniques have been standardized by theObject Manage-

ment Group (OMG) Meta-Object Facility (MOF) [MOF 2006] and there are sev-

eral tools, like the EMF [EMFa], Enterprise Architect [EA], Rational Rose [Rat],

ATOM 3 [Huÿmann 2001] etc. that provide metamodeling capabilities. Regarding

the abstract syntax, I identify Uni�ed Modeling Language (UML) pro�les, Ecore

and XML schema.

With UML pro�les, we talk about Internal Domain speci�c language (DSL)s

which are limited to the basic language. Although they may draw the libraries and

other facilities, they su�er from the lack of abstraction and the paucity of available

operations. As for Ecore and XML schema, they are external DSLs, which weakness

is the need to create their own tools.

2.2.3.3 Concrete syntax

The concrete syntax describes a speci�c representation of the language used to

display models to end users. It can be either a textual syntax or a graphical rep-

resentation, i.e., displayed with a tree-like or a diagram notation. On one hand,

the textual syntax is usually de�ned using a combination of regular expressions

and Backus-Naur Form (BNF). On the other hand, the graphical syntax uses a

diagram technique with named symbols that represent concepts and lines that con-

nect the symbols and represent relationships. Several tools have been proposed to

implement (i) textual concrete syntaxes for DSLs like Xtext [xte 2016] and EMF-

2.3. Model-Driven Approaches for the Cloud 31

Text [emfb], and (ii) graphical concrete syntaxes likeGraphical Modeling Framework

(GMF) [gmf], Sirius [sir] and Graphiti [gra].

2.2.3.4 Semantics

The semantics de�nes well-formedness criteria and gives the meaning of abstract

syntax and, indirectly, of concrete syntax. It can be classi�ed into two main cate-

gories: static (or structural) semantics and behavioral (or dynamic) semantics. The

former de�nes restrictions on the structure of the designed model, while the latter

de�nes the behavior of the model elements in terms of states, events and interac-

tions. The semantics of CMLs can be explicitly speci�ed usingnatural language,

Object Constraint Language (OCL) constraintsand ontologies. However, sometimes

the semantic content is not explicitly speci�ed. In this case, domain-speci�c models

are only transformed into artifacts of the implementation or directly executed by a

model interpreter that has the potential of facilitating the processing of models at

runtime in order to adapt a running application [Sousa 2012], [Fowler 2010]. In this

case, the semantics is nothing but the abstraction of the model interpreter.

2.3 Model-Driven Approaches for the Cloud

Many MDAC were recently proposed in order to enable abstraction from di�erent

implementation languages and platforms. This way, the focus is shifted from the

solution space towards the problem space, and from the low-level implementation

details towards the higher-level domain speci�c concepts. The numerous existing

MDAC might be overlapping in some aspects and very di�erent in others. Devel-

opers require to have means to compare the existing approaches and to select the

most appropriate one that �ts their needs. Additionally, the lacks of the existing

approaches need to be highlighted in order to carry on future work in this �eld.

Consequently, the need for investigating MDAC becomes quite urgent. Across the

literature on MDAC surveys, the authors in [Bergmayr 2018] recently presented the

most complete state-of-the-art of cloud modeling languages, so far. They surveyed

nineteen approaches, that appeared before 2015, in terms of their purposes, charac-

teristics, capabilities and tooling. In my survey, I study twenty-two existing MDAC

in terms of the three criteria elaborated in Section 2.2,i.e., usages, concepts and

characteristics.

Blueprinting [Nguyen 2012] provides a language that describes cloud services

that are combined from a variety of cloud providers, in order to select the best

con�guration and easily deploy application components in cloud federations while

32 Chapter 2. Model-Driven Approaches for the Cloud

crossing SaaS, PaaS and IaaS layers. The current version of Blueprinting is focused

on designing blueprints, which are the abstract description of applications assembled

in terms of components. As for cloud o�erings, they are represented and consid-

ered as services, and templates are used to specify the service features. Blueprints

are encoded in XML and represented graphically in terms of aVirtual Architec-

ture Topology (VAT). The Blueprinting approach aims to include a detailed and

automatized deployment plan that abstracts the technical details of the interaction

with a cloud, and recon�guration actions de�ned in terms of policies within the

WS-Policy or the SLAng languages. To my knowledge, these functionalities are not

implemented so far.

Brooklyn [bro] is a framework developed by the Apache consortium for model-

ing and managing applications through autonomic deployment blueprints textually

expressed in YAML in terms of components, and which semantics complies with the

CAMP standard. Brooklyn also exposes many of the CAMP REST API endpoints

and uses sensors and actuators to provide support for runtime management allowing

for dynamically monitoring the application when needed. It introduces vocabulary

to describe PaaS capacities and requirements of the application (e.g., databases,

containers), and allows the user to de�ne and enforce his/her own recon�guration

policies.

Cloud Application Modeling and Execution Language

(CAMEL) [Kirkham 2014] enables developers to provision IaaS and PaaS,

and to deploy application components in multi-clouds. It takes into account

several aspects of the application, namely provisioning and deployment topology,

provisioning and deployment requirements, service-level objectives, metrics, scal-

ability rules, providers, execution contexts, etc. Therefore, CAMEL considers

three types of models: (i) a Con�guration Model for selecting the suitable cloud

services,(ii) a Deployment Model for hosting the application and(iii) an Execution

Model for managing the deployed application. CAMEL exists as an Eclipse

plugin, and does not include a graphical interface, but only a textual editor

for designing models. CAMEL integrates and extends existing DSLs, such as

CloudML [Brandtzæg 2012, Ferry 2013], SALOON [Quinton 2013], theScalability

Rules Languages(SRL), and the organization part of CERIF [Asserson 2002]. I

believe that CAMEL could be a source of inspiration for the future e�orts in

modeling the cloud.

2.3. Model-Driven Approaches for the Cloud 33

Cloud Application Modeling Language (CAML) [Bergmayr 2014] allows

cloud architects to represent multi-cloud applications in UML and to select concrete

cloud o�erings captured by dedicated UML pro�les in order to deploy the application

components. As an example,Google App Engine(GAE) pro�le was applied to re�ne

the deployment model of their Petstore reference application, towards concrete cloud

o�erings provided by the GAE. In this approach, cloud providers that operate at

both infrastructure level and platform level are designed. CAML is a UML internal

language, presented as a graphical notation, and based on a library, pro�les and

templates. However, the CAML approach does not include a model interpreter to

enact the deployment of multi-cloud applications.

Cloud Adoption Toolkit [Khajeh-Hosseini 2012] is a collection of �ve tools

that provide decision support for the migration of computing services to a cloud

environment. It considers a number of factors that may contribute to the impact

caused by the migration of an application to the cloud,i.e., cost, energy consump-

tion, stakeholder impact, social and political factors among others. However, their

proposal is focused only on the cost model, which includes a number of infrastruc-

ture con�guration elements, i.e., operating system, server speci�cations (e.g., CPU

clock rate, RAM), storage size, applications, and data already deployed on the VM,

among others. The Cost Modeling tool utilizes UML deployment diagrams (i.e.,

graphical notation), to model an intended architecture for running legacy software

in a cloud environment. Later on, price information that enables automated cost es-

timation for a speci�c cloud environment is added to the deployment model. These

authors work under the assumption that, in most cases, the application deployment

is performed on virtual machines. The Cost Modeling tool can model the pricing

schemes of multiple cloud providers such as AWS, Microsoft Azure, FlexiScale, etc.

However, once the users have created the model, they can select a single cloud

provider they wish to use for each of their virtual machines.

Cloud DSL [Silva 2014] is a language that describes infrastructure services from

di�erent types of clouds. Then, Cloud DSL maps and adapts entities of the cloud

models they propose to platform-speci�c cloud APIs. Cloud DSL is based on an

Ecore metamodel and provides a graphical editor and a textual notation. Cloud

DSL has been integrated with TOSCA [Binz 2012]. Using Cloud DSL with TOSCA

reduces the workload of creating cloud descriptions in a TOSCA speci�cation.

CloudGenius [Menzel 2012] is a framework mainly used for the selection of

appropriate cloud infrastructure services among several ones stored manually and

34 Chapter 2. Model-Driven Approaches for the Cloud

described textually. The Ecore metamodel, on which CloudGenius relies, allows a

multi-criteria decision approach from a set of requirements. The latter are based

on numerical functional requirements (network latency, technical parameters such

as CPU, RAM and storage size, popularity, etc.) and non-numerical functional

requirements (operating system, virtual machine format, licence, etc.). Yet, this

approach neglects to consider non-functional concerns like the cost, the availability,

the response time, etc. A tool prototype named CumulusGenius, used as a Java

library, allows the user to programmatically de�ne the requirements that are given

as input to CloudGenius selection framework. Then, whenever a solution is found,

virtual machines can be executed on top of Amazon EC2 only.

CloudMIG [Frey 2011] is a framework that facilitates the migration of existing

software systems to IaaS and PaaS-based cloud environments, which are Amazon

EC2 and Google App Engine, respectively. In this approach, cloud environments

are modeled as instances of aCloud Environment Model (CEM) which is an Ecore-

based metamodel and for each cloud environment, all possible con�gurations are

modeled. A con�guration contains in particular a set of elements and constraints

on them. CloudMIG takes as input the legacy software system, and extracts the

architectural and utilization models based on theArchitecture-Driven Moderniza-

tion (ADM) principles. From this model, a single compatible cloud environment

model candidate is selected. Then, CloudMIG relies on its own constraint valida-

tors CloudMIG Xpress [Clo] to check the conformance of the legacy software (the

extracted models) with the candidate CEM in terms of constraint violations. The

CloudMIG framework is then extended to improve the search of well-suited IaaS

environments using search-based genetic optimization.

CloudML [Brandtzæg 2012, Ferry 2013, Ferry 2018] is a cloud modeling

language that allows both cloud providers and developers to describe cloud ser-

vices and application components, respectively. Then, it helps to provision cloud

resources by a semi-automatic matching between the de�ned application require-

ments and the cloud o�erings. CloudML is exploited both at design time to de-

scribe the application provisioning of cloud resources after performing the nec-

essary orchestration, and at runtime to manage the deployed applications. In

fact, the model at design time is automatically handled by the Cloud Modeling

Framework (CloudMF), which returns a runtime model of the provisioning re-

sources, according to the Models@run.time approach [Blair 2009]. CloudML only

provides a JSON and an XML textual syntax to specify deployment and man-

agement concerns in IaaS and/or PaaS clouds. CloudML is �rst introduced in

2.3. Model-Driven Approaches for the Cloud 35

the REMICS project [Sadovykh 2011] as a UML model and developed later by

three projects that di�er in their objective, i.e., ARTIST [Bergmayr 2013], MODA-

Clouds [Ardagna 2012], and PaaSage [paa, Je�ery 2017]. On one hand, REMICS

and ARTIST mainly support the migration of legacy software towards a cloud-

based environment. In this sense, they adopt UML models since they are reverse-

engineered and tailored to target cloud systems. In order to extract some semantics,

they map the UML models to OpenTOSCA [Binz 2013]. TheCloud target Selec-

tion (CTS) [Kopaneli 2015] provides a multi-criteria decision making process for the

selection of the cloud target. It combines di�erent types of criteria by using the con-

cepts of CloudML@ARTIST. On the other hand, MODAClouds and PaaSage aim

at supporting engineers in building and deploying multi-cloud applications. There-

fore, they propose Ecore-based models that include dynamic variability to deal with

multiple cloud environments and especially runtime changes. Note that CloudML

in PaaSage is the �rst member of the family of DSLs that form CAMEL.

Farokhi [Farokhi 2014] proposes a framework that assists SaaS providers to

select suitable IaaS, which best satisfy their requirements while handling SLA issues.

The framework includes three main phases:(1) SLA Construction, (2) Service

Selection, and(3) SLA Monitoring and Violation Detection. The Service Selection

Engine takes a textual input, an XML �le precisely, that describes the SaaS provider

requirements. Then, it �nds the adequate IaaS providers' services. A breached SLA

on runtime will question the selection of the cloud provider and will probably lead

to some recon�guration.

Frey et al. [Frey 2013] focus on selecting near-optimal cloud deployment ar-

chitectures and de�ning runtime recon�guration rules. The main purpose of this

approach is to support the migration of software components and their deploy-

ment on IaaS environments. To do so, the authors de�neCloud Deployment Option

(CDO)s which are UML pro�les with graphical syntax and constraints written in

English prose. Then, they propose CDOXplorer, a genetic algorithm that takes

the CDOs as input and analyzes the con�guration space of a given cloud provider.

Later on, CDOXplorer �nds the best con�guration based on the average response

times and SLA violations. CDOXplorer is implemented in the scope of an open

source tool CloudMIG Xpress, that utilizes models which can almost be automati-

cally extracted. The authors in [Frey 2013] assume that the application deployment

is always performed on virtual machines. They don't take the principle of containers

into account.

36 Chapter 2. Model-Driven Approaches for the Cloud

Garcia-Galán et al. [García-Galán 2016] aim to solve the problem of selecting

the most suitable con�guration among the con�guration space o�ered by a given

provider. Their focus is on IaaS. They propose a model that is based on FMs, and

apply the automated analysis of FMs as a reasoning technique over the model. Their

model can be graphically represented using a tree-like notation, in which features

are organized hierarchically. However, their approach did not consider de�ning a

metamodel based on FMs, for the con�guration of cloud services. The information to

create the FM is automatically extracted from the provider website using an ad-hoc

web crawler. This proposal is only applicable to one cloud provider, which is Amazon

EC2. However, these authors plan to include di�erent providers in the future. Their

model includes cloud con�guration elements such as instance type, which determines

the con�guration of a machine, operating system, storage capability, geographic

location, billing information, and customer usage data. Finally, their proposal allows

de�ning constraints on the features and attributes of the model. These constraints

are written in English prose. They implemented their proposal and compared their

implementation against two commercial tools, Amazon TCO and CloudScreener,

and they concluded that their proposal is more expressive and accurate in terms

of providing a wider range of con�guration options and choosing the most suitable

con�guration.

Gherardi et al. [Gherardi 2014] claim to present the �rst paper that combines

robotics, cloud computing, and SPLs. It is interested in con�guring and deploying

complex Robot as a Service(RaaS) only on top of Rapyuta [Mohanarajah 2015],

an open source robotic PaaS. Decisions regarding what components of Rapyuta to

employ and how to compose them (the connections) are taken by exploiting three

models via a Resolution Engine. The �rst two models are a reference architecture

which is an Ecore metamodel re�ecting the requirements of the application, and

an extended FM, i.e., a FM that enriches the features in a model with attributes

in order to improve the semantics. The third model is the glue between the �rst

two models and speci�es how the variability can be resolved. Feature Selector tool

for creating a selection of features re�ecting the requirements of their application.

Graphical editors are used to design the models, that are described within a textual

syntax too.

Holmes [Holmes 2014] proposes three textual languages based on an Ecore

metamodel for expressing and capturing IaaS concepts, then provisioning a cus-

tomized stack of cloud services, via model transformations. From the DSL programs

and the supplied Puppet [pup] modules, the entire cloud service stack is automat-

2.3. Model-Driven Approaches for the Cloud 37

ically built, without further user interaction. Later on, in order to recon�gure the

deployment and achieve the new requirements of the system, reverse-engineering is

used to capture the di�erences between models. Therefore, for dealing with di�eren-

tial changes of IaaS models, Holmes [Holmes 2015] proposes a model-based round-

trip engineering approach that combines the power of model-driven generation with

runtime re�ection, i.e., this approach does not only incorporate models from de-

sign time but also Models@run.time. This approach allows to compare and migrate

infrastructure services between two clouds. They consider a migration from Open-

Stack 2012.1 to OpenStack 2013.2. For orchestration, they employ Nova API [nov],

which is OpenStack native.

MOve to Clouds for Composite Applications (MOCCA) [Leymann 2011]

is a method for moving legacy applications to the cloud. It introduces an Ecore

metamodel for specifying the applications that are modeled in terms of compo-

nents. The model semantics is described with natural language and can also be

deduced by the behavior of the deployment optimizer in use. The authors also pro-

pose Cafe [Mietzner 2009], a prototypical tool supporting the MOCCA method and

o�ering graphical and textual modeling of the application architecture and topol-

ogy. The MOCCA method allows for provisioning infrastructure resources that are

described in OVF �les which perform the required adaptation for the components

deployment. Cafe assumes that an OVF �le represents only one component. In case

an OVF �le contains the virtual image of more than one component (i.e., more than

one virtual system), this �le must be split into separate OVF �les manually. Thus,

Cafe does not support the notion of multiple clouds. However, the authors of this

method state that a future extension of Cafe will support OVF �les with virtual

images of multiple components.

MULTICLAPP [Guillén 2013] is a framework for modeling components of

multi-cloud applications which are not dependent of any speci�c cloud provider.

This framework is based on a UML pro�le, with a graphical editor to model com-

ponents that are expected to be deployed on PaaS cloud environments by applying

cloud provider independent stereotypes to them. These stereotypes enable the ap-

plication developers to select the cloud provider o�erings that are best for deploying

the application components. Applications that are fully modeled are processed by

a deployment engine, which generates each of the cloud artifacts identi�ed in the

deployment plan. Each artifact is adapted in order to comply with the speci�cations

of its assigned platform. Once they are generated, the artifacts can be deployed in

their cloud platforms.

38 Chapter 2. Model-Driven Approaches for the Cloud

OpenTOSCA [opeb] is an ecosystem developed by the University of Stuttgart

that aims to provide modeling tool support and runtime support for the TOSCA

standard [Binz 2012]. Several implementations of OpenTOSCA were developed.

For example, (i) Winery [Kopp 2013] provides an open source Eclipse-based graphi-

cal modeling tool for TOSCA topologies/structures/architectures, i.e., the software

components that constitute the application, the physical or virtual nodes on which

the components will be deployed, and the relationships between components and

nodes, and (ii) OpenTOSCA runtime [Binz 2013] provides an open source con-

tainer for deploying TOSCA-based applications de�ned in aCloud Service ARchive

(CSAR) packaging format. The OpenTOSCA runtime is hence responsible for trans-

lating a TOSCA topology into actions to be performed in clouds. These actions are

sent to the clouds through their respective APIs. Despite TOSCA language man-

ages to cover the infrastructure and platform service stack, it is only de�ned as a

textual XML document or YAML document so it is complicated to have an overview

of the supported cloud entities. Furthermore, TOSCA does not employ the typical

cloud vocabulary, such as services and resources. Instead, it de�nes a set of abstract

elements, such as nodes and relationships to respectively designate cloud services

and how they interact. Therefore, designing a TOSCA topology requires the e�ort

of a human developer, which is a time consuming and an error-prone activity. The

application deployment to the target cloud and its management are provided by or-

chestration plans written within di�erent work�ow languages, e.g., BPMN or BPEL.

However, in case some module of the application is migrated to a di�erent target

provider, the topology and the orchestration plan should be modi�ed which makes

the management of a TOSCA-compliant deployment a complex task.

RESERVOIR-ML [Chapman 2012] o�ers a language for the description of re-

quirements that providers must ful�ll when the developers deploy a multi-component

application on federated IaaS clouds. Among these requirements, it takes into ac-

count non-functional requirements such as quality of service. The RESERVOIR-ML

language encodes the OVF standard within XML and its semantics is described

within OCL constraints. Beside describing the requirements, the main focus of this

approach is also to perform recon�guration tasks and address the scaling require-

ments of the application components,i.e., to ensure elasticity and provision IaaS

resources on demand. To do so, the RESERVOIR-ML project has also developed

UCL-MDA tools, a graphical framework implemented as a plugin for the EclipseIn-

tegrated Development Environment(IDE) for the manipulation of the XML models

and the OCL constraints.

2.3. Model-Driven Approaches for the Cloud 39

SALOON [Quinton 2013] is a graphical framework for cloud environments se-

lection and con�guration purpose. SALOON is an EMF-based framework that relies

on extended FMs to represent clouds variability, as well as on ontology concepts to

model the various semantics of cloud systems. It mainly comprises functional ele-

ments such as the language used to develop the cloud-based application, the number

of application servers, the RAM, the CPU, etc. This proposal also allows to trans-

late the ontology concepts into aConstraint Satisfaction Problem (CSP) in order

to select the adequate cloud environment. In order to extract the information to

create the models for each cloud provider, the authors suggest the use of reverse

engineering on the web con�gurator of each cloud provider as a solution. They

implemented their proposal and tested the performance of their implementation.

They concluded that their proposal was well suited to handle large con�guration

spaces, with a number of features and constraints that would make it overwhelming

for a human user to perform the selection by hand. Despite that the authors state

that SALOON supports the discovery and selection multiple providers, in practice

it does not. In the contrary, it deals with one provider at a time. SALOON targets

ten cloud environments (IaaS and PaaS).

soCloud [Paraiso 2014] is an approach that aims at developing multi-cloud ap-

plications by de�ning a PaaS platform based on FraSCAti, a Service Component

Architecture platform. soCloud de�nes its concepts within an XML schema. It pro-

vides a textual syntax and its semantics is written in English Prose in the context

of the SCA speci�cation that is implemented in FraSCAti. soCloud targets �fteen

cloud environments (IaaS and PaaS), where it allows deploying and recon�guring

application components after achieving the necessary orchestration.

Sousa et al. [Sousa 2017] aim to generate recon�guration plans that satisfy the

requirements of a multi-cloud computing system. To do so, the authors propose an

Ecore metamodel to model FMs and capture the variability of cloud con�gurations.

The multi-cloud constraints that arise during the cloud recon�guration are de�ned

by Linear Temporal Logic (LTL) formulas to express temporal properties. The

authors applied their approach only to Heroku cloud PaaS and they manually built

their FM by going through the Heroku documentation.

StratusML [Hamdaqa 2015] is a layered modeling language and a modeling

framework for cloud applications. StratusML provides a user-friendly interface that

allows the cloud developers to specify their application components, con�gure them,

estimate cost under diverse cloud services, select a cloud provider, use templates to

40 Chapter 2. Model-Driven Approaches for the Cloud

transform and adapt the model into platform speci�c artifacts, and manage the ap-

plication behaviour at runtime through a set of rules. It is built as an extension of

Microsoft Visual Studio 2012, i.e., the Microsoft DSL toolkit is used to design the

StratusML graphical editor and to de�ne the validation constraints. The latter are

required to ensure that the speci�ed model satis�es the application requirements and

provides the information required to generate the target platform speci�c artifacts.

The validation constraints can be classi�ed into hard constraints,i.e., that the user

can never violate, and soft constraints,i.e., that are allowed to be violated, but still

create warnings and errors to guide the user to the correct decisions. In order to

capture the application deployment con�guration, the StratusML metamodel inte-

grates �ve di�erent models to address �ve di�erent, but interleaved functional and

non-functional cloud concerns. It includes the service model, performance model,

adaptation model, availability model, and provider model. StratusML uses lay-

ers to view the di�erent cloud application concerns, facilitating visual modeling of

adaptation rules, and using template-based transformation to deal with platforms

heterogeneity. StratusML has established a connector only with the Windows Azure

IaaS.

2.4 Discussion

Conclusion 1. Primary focus on design time aspects

As depicted in Table 2.2, most of the MDAC only provide the possibility to set the

resources (CPU, memory, disk, network, etc.) limits at design time. However, they

lack of resources management at runtime. The management is necessary because

in the cloud environment, the resources consumption �uctuates according to the

workload. In order to provision the appropriate resources, if the workload grows

or shrinks, the resources should be recon�gured,i.e., increased or decreased as re-

quired at runtime. Thus, a major challenge is how to synchronize the prede�ned

architecture of resources with the resources provisioned in the execution environ-

ment. When modi�cations occur in an existing architecture, the update should be

done in the executing environment. Conversely, when changes like the increase of

the disk storage or the addition of a virtual machine occur in the executing environ-

ment, they should a�ect the existing architecture. It is thus required that an MDAC

reduces the gap between design and runtime activities and provides the same model

for both of them.

We tackle this problem in Chapter 3 by providing a complete tool chain to han-

dle cloud resources during their whole lifecycle, from the design till the management.

2.4. Discussion 41

Table 2.2: MDAC Usages.
MDAC Design Time Deployment Time Production Time

Blueprinting X
Brooklyn X X X
CAMEL X X X
CAML X

Cloud Adoption Toolkit X
Cloud DSL X

CloudGenius X
CloudMIG X X
CloudML X X X
Farokhi X X X

Frey et al. X X X
Garcia-Galán et al. X

Gherardi et al. X
Holmes X X X

MOCCA X X
MULTICLAPP X
OpenTOSCA X X

RESERVOIR-ML X X X
SALOON X
soCloud X X X

Sousa et al. X X X
StratusML X X

Conclusion 2. Primary focus on IaaS

As depicted in Table 2.3, the largest amount of researchers attention has been

focused on IaaS clouds. An e�cient MDAC should allow to handle infrastructure,

platform and software resources. There is a strong separation between these three

types of resources since each of them is managed by a particular resource manager.

These managers do not know how to cooperate. Thus it is extremely di�cult to

implement policies for the management of multi-level resources. However, in order to

manage the elasticity of a system for example, the cloud developer needs to manage

simultaneously resources at IaaS, PaaS and SaaS levels. Therefore, there is a need

for a single MDAC that includes concepts and mechanisms that support both IaaS

and PaaS clouds, enabling their management.

We also tackle this problem in Chapter 3. In fact, our proposed tool chain for

the cloud computing complies to OCCI, the only generic and extensible standard

that handles every kind of cloud resources,i.e., IaaS, PaaS, SaaS and even RaaS

and Container as a Service(CaaS).

42 Chapter 2. Model-Driven Approaches for the Cloud

Table 2.3: MDAC Concepts.
MDAC Service Model

Blueprinting XaaS
Brooklyn PaaS
CAMEL XaaS
CAML IaaS & PaaS

Cloud Adoption Toolkit IaaS
Cloud DSL IaaS

CloudGenius IaaS
CloudMIG IaaS & PaaS
CloudML IaaS & PaaS
Farokhi IaaS & SaaS

Frey et al. IaaS
Garcia-Galán et al. IaaS

Gherardi et al. RaaS
Holmes IaaS

MOCCA IaaS
MULTICLAPP PaaS
OpenTOSCA IaaS & PaaS

RESERVOIR-ML IaaS
SALOON IaaS & PaaS
soCloud IaaS & PaaS

Sousa et al. PaaS
StratusML IaaS

Conclusion 3. Fuzziness of the CML concepts

Most of the MDAC are built from scratch; the designer of the CML goes through the

provider or the application documentation, and then manually de�nes the concepts

that he/she considers important to be included to the provider or the application

metamodel. This methodology results in the fuzziness of the CML which might be

unrepresentative of the concrete cloud environment. Also, the MDAC I reviewed

in this chapter describe a part of the cloud domain that was relevant only at the

moment of the de�nition of the modeling language. However, the designers of each

MDAC require changing their modeling language,i.e., the CML, at each time they

want to support more cloud concepts. As for the user, he/she is unable to add the

missing concepts that he/she needs.

I tackle this problem in Chapter 4 where I propose the �rst advanced approach

for automatically inferring a cloud model that properly represents the cloud

concepts and operations. This model can be updated to follow up with the cloud

API and since it conforms to the genericOCCIware Metamodel , this model can

be extended to support new concepts. It also helps analyzing the cloud API and

enhances its speci�cation so the developer can correctly use its services.

2.5. Summary 43

Conclusion 4. Little attention paid to the semantics

We observe in Table 2.4 that the semantics of the CMLs is, in most cases, either

informal , namely written in English prose or within OCL constraints, or implicit

in the model interpreter behaviour. None of these ways of de�ning the semantics

is su�ciently precise. Natural language might be confusing due to its built-in am-

biguity; although words with multiple meanings give English a linguistic richness,

they also create ambiguity. OCL is semi-formal,i.e., its syntax is well-de�ned but

its semantics is only partially formalized, with many aspects being just described

in natural language in the standard document speci�cations. Also, OCL is e�cient

for only specifying the static semantics of the CMLs. Dynamic semantics remains

de�ned within natural language. Finally, the model interpreter is the engine that

is fed the deployment, con�guration, adaptation models in order to execute them.

Deriving the semantics of these models from the behaviour of the model interpreter

might be erroneous. It is crucial then to propose CMLs with well-formed seman-

tics, i.e., de�ned within formal methods which are mathematical techniques that

allow the cloud stakeholders to reason and describe without ambiguity the structure

metamodel and the behavior of its concepts.

I tackle this problem in Chapter 5 where I propose the �rst formal framework

for precisely specifying cloud APIs and reasoning over them. Consequently, the

developer can verify the correctness of his/her cloud models and their required

behaviour.

2.5 Summary

The wide number of available cloud providers, their high heterogeneity and seman-

tic di�erences make it complicated to exploit multi-cloud assets. In this chapter,

I provided a classi�cation of Cloudware engineering solutions. I showed that the

solutions at the provider and the programming spaces are also heterogeneous and

their provided features are often incompatible. This diversity hinders the proper ex-

ploitation of the full potential of cloud computing, since it prevents interoperability

and promotes vendor lock-in, as well as it increases the complexity of development

and administration of multi-cloud systems.

To deal with this heterogeneity, I introduced the solutions at the modeling space

and explained the major role that models play in the software development for the

cloud computing. I discussed the idea of �Modeling the cloud computing� by leverag-

ing MDE to easily build cloud-native applications. I discussed the usages, concepts

and characteristics of MDAC. Finally, I reviewed the most relevant approaches in

the research area that is closely related to this thesis,i.e., model-driven engineering

44 Chapter 2. Model-Driven Approaches for the Cloud

Table 2.4: CML Characteristics.
MDAC Paradigm Abstract

Syntax
Concrete
Syntax Semantics

Blueprinting Services &
Components

XML
schema Graphical Natural

language

Brooklyn Components YAML
document Textual

Natural
language

& CAMP speci�cation

CAMEL Services &
Components Ecore Textual

Natural
language

& ExecutionWare
CAML Services &

Components
UML
pro�le Graphical Natural

language
Cloud Adoption

Toolkit Services UML
pro�le Graphical Natural

language
Cloud DSL Services &

Components Ecore Graphical Mapping to
TOSCA

CloudGenius Services Ecore Textual
Natural

language &
Selection

Framework

CloudMIG Components Ecore Textual

Natural
language &

CloudMIG Xpress
(Deployment
Optimizer)

CloudML Services &
Components Ecore Textual

Natural
language &
CloudMF

Farokhi Services &
Components

XML
schema Textual Service Selection

Engine

Frey et al. Services &
Components

UML
pro�le Graphical

Natural language &
CDO Xpress
(Deployment
Optimizer)

Garcia-Galán
et al. Feature Models - Graphical

Natural
language &

Automated Analysis
of Feature

Models (AAFM)
Gherardi et al. Feature Model Ecore Graphical

& Textual
Resolution

Engine
Holmes Services &

Components Ecore Textual Natural
language

MOCCA Components Ecore Graphical
& Textual

Natural
language &
Deployment
Optimizer

MULTICLAPP Services &
Components

UML
pro�le Graphical

Natural
language &
Deployment

Engine

OpenTOSCA Services &
Components

XML
schema or

YAML
document

Graphical
& Textual

Natural
language &

TOSCA speci�cation

RESERVOIR-ML Components
& Resources

XML
schema Graphical

Natural
language &
OpenNebula

SALOON Feature
Models Ecore Graphical

An Ontology
& Translation

into a
constraint solver

soCloud Services &
Components

XML
schema Textual

Natural
language &
FraSCAti

Sousa et al. Feature
Models Ecore Textual Temporal

constraints
StratusML Services &

Components
Microsoft

DSL Graphical Natural
language

for cloud computing. Among the proli�c research in this area, there is a lack of

solutions which:

2.5. Summary 45

ˆ support design, deployment and management usages,

ˆ allow handling XaaS systems,

ˆ de�ne the appropriate cloud concepts with possibility of extension if needed,

and,

ˆ de�ne a precise semantics of these concepts.

Based on this study, I describe in the next parts of this dissertation theOC-

CIware background and the two contributions of this thesis respectively. I mainly

propose to leverage MDE and formal methods to help cloud stakeholders taking

better advantage of cloud services.

Part III

Background

In the end of Part II, I discussed the need of precisely describing but also e�ciently
managing every kind of cloud resources. To accomplish this purpose, I detail in this part

our OCCIware approach.

Chapter 3

Modeling, Verifying, Generating

and Managing Cloud Resources

with OCCIware

This chapter corresponds to our article �Model-Driven Cloud Resource
Management with OCCIware� [Zalila 2018] submitted to the Future

Generation Computer Systems (FGCS) journal, which extends our paper �A
Model-Driven Tool Chain for OCCI� [Zalila 2017a] published in the 25th
International Conference on Cooperative Information Systems (CoopIS).

Contents
3.1 Motivations . 51

3.2 Background on OCCI . 53

3.3 OCCIware Approach . 55

3.3.1 Managing Everything as a Service withOCCIware 55

3.3.2 Generating Cloud Domain-Speci�c Modeling Studios with
OCCIware . 59

3.4 OCCIware Metamodel . 61

3.5 OCCIware Studio . 71

3.6 OCCIware Runtime . 75

3.7 Evaluation of OCCIware Studio 77

3.7.1 Implementation of a Catalog of Standard OGF's OCCI Exten-
sions . 77

3.7.2 Five OCCIware Use Cases . 85

3.7.3 Synthesis on theOCCIware Approach 89

3.8 Summary . 92

Several cloud computing standards have been proposed to resolve the hetero-

geneity of cloud providers and promote multi-clouds, as discussed in Chapter 2.

50
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

However, the main drawback of these standards is their speci�city for a particular

cloud service model,i.e., IaaS or PaaS.

OCCI has been proposed as the �rst and only open standard for managing any

cloud resources [Edmonds 2012]. OCCI provides a general purpose model for cloud

computing resources and a RESTful API for e�ciently accessing and managing any

kind of these cloud resources. This will ease interoperability between clouds, as

providers will be speci�ed by the same resource-oriented model called the OCCI

Core Model [Nyrén 2016b], that can be expanded through extensions and accessed

by a common REST [Fielding 2000] API.

Currently, only runtime frameworks such as rOCCI [roc], erocci [ero],

pySSF [pys], pyOCNI [pyo], and OCCI4Java [occb] are available, while OCCI de-

signers/developers/users need software engineering tools to design, edit, validate,

generate, implement, deploy, execute, manage, and supervise new kinds of OCCI

resources, and the con�gurations of these resources. In addition, the existing run-

time implementations are targeting a speci�c cloud service model (mainly IaaS).

Thus, OCCI lacks a uni�ed modeling framework to design its di�erent artifacts,

and verify them during the initial steps of the design process before their e�ective

deployment. Added to that, OCCI stakeholders need a generic runtime implementa-

tion coupled with the expected modeling framework in order to seamlessly execute

the di�erent developed and/or generated artifacts. Finally, as OCCI is proposed as

an open generic standard to manage XaaS, OCCI stakeholders need to obtain, for

each domain, a speci�c modeling framework.

To overcome the issues presented above, I present in this chapter ourOCCIware

approach, which can be summarized as:

ˆ Model-Driven Managing Everything as a Service with OCCIware .

OCCIware is a model-driven vision to manage XaaS. It allows one to model

any type of resources. It provides OCCI users with facilities for designing,

editing, validating, generating, implementing, deploying, executing, managing,

and supervising XaaS with OCCI.

ˆ Generating Cloud Domain-Speci�c Modeling Frameworks with OC-

CIware . OCCIware is a factory of cloud domain-speci�c modeling frame-

works. Each generatedCloud Domain-Speci�c Modeling Studio (CDSMS) is

dedicated for a particular cloud domain. Each CDSMS can be used to design

con�gurations conforms to its related domain and hides the generic concepts

of OCCI.

This work has been done in the context of the OCCIware research and devel-

3.1. Motivations 51

opment project1 funded by the French PIA. The contribution of the academic and

industrial partners has certainly promoted the progress of this project. A special

gratitude is due to Faiez Zalila and Christophe Gourdin who implemented the

OCCIware approach.

This chapter is structured as follows. Section 3.1 explains the motivations behind

OCCIware . Section 3.2 gives a background on the OCCI standard. Section 3.3

presents an overview of theOCCIware approach. It details the di�erent processes

to use theOCCIware approach. Section 3.4 presents theOCCIware Metamodel

by detailing its static semantics de�ned in Ecore and OCL. Section 3.5 provides an

overview of OCCIware Studio and its di�erent implemented features. Section 3.6

presentsOCCIware Runtime and details its architecture. Section 3.7 validates

OCCIware by presenting the di�erent OCCI extensions de�ned by the standard

and implemented using OCCIware . We follow up with the evaluation of OC-

CIware by discussing di�erent �ve use cases implemented with theOCCIware

approach. Finally, Section 3.8 concludes with future work and perspectives.

3.1 Motivations

Currently, cloud architects and developers have a lot of hope for the multi-cloud

computing paradigm as an alternative to avoid the vendor lock-in syndrome, to

improve resiliency during outages, to provide geo-presence, to boost performance

and to lower costs. However, semantic di�erences between cloud provider o�erings,

as well as their heterogeneous CRM-APIs make migrating from a particular provider

to another a very complex and costly process. We assume for example that a cloud

developer would like to build a multi-cloud system spread over two clouds, AWS

and GCP. AWS are accessible via a SOAP-based API, whereas GCP is based on

a REST API, which leads to an incompatibility between these two di�erent APIs.

To use them, cloud consumers should be inline with the concepts and operations of

each API, which is quite frustrating. The cloud developer would like a single API

for both clouds to seamlessly access their resources.

For this, OCCI is an open standard that de�nes a generic extensible model for

any cloud resources and a RESTful API for e�ciently accessing and managing cloud

resources. This will facilitate interoperability between clouds, as cloud provider's

o�erings will be speci�ed by the same resource model, and accessed by a common

REST API. However, cloud developers cannot currently take advantage of this stan-

dard. Although there are several implementations of OCCI, there is no tool that

allows them to design and verify their con�gurations, neither to generate and deploy

1www.occiware.org

52
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

corresponding artifacts. This leads to several challenges:

1. Cloud architects, who are supposed to design the expected multi-cloud plat-

form, are facing on one side to heterogeneity at di�erent levels such as CRM-

APIs heterogeneity (REST APIs vs SOAP APIs), service models heterogeneity

(IaaS, PaaS, SaaS, etc.), deployment model heterogeneity (public, private and

hybrid), and service providers heterogeneity. On the other side, cloud develop-

ers, who create and deploy running cloud systems, are focused on implemen-

tation details rather than cloud concerns, with the risk of misunderstandings

for the concepts and the behavior that rely under cloud APIs. They need a

customized cloud framework dedicated to each cloud domain.

2. The only way to be sure that the designed con�gurations will run correctly is

to deploy them in the clouds. In this context, when errors occur, a correction is

made and the deployment task can be repeated several times before it becomes

operational. This is quite painful and expensive.

3. Cloud developers need to provide various forms of documentation of their

cloud con�gurations, as well as deployment artifacts. However, these tasks are

complex and usually made in an ad-hoc manner with the e�ort of a human

developer, which is error-prone and ampli�es both development and time costs.

4. The CRM-APIs heterogeneity represents a banner to seamlessly execute the

deployment artifacts.

5. At the design level, the con�guration represents a prede�ned architecture.

However, the execution environment hosts a deployed system. A main chal-

lenge to the cloud developers is to provide a synchronization between the

design level and the execution environment. When modi�cations occur in the

prede�ned architecture, the update should be done in the executing environ-

ment. Conversely, when the deployed system changes, it should a�ect the

prede�ned architecture.

Recently, we are witnessing several works that take advantage of MDE for the

cloud [Bruneliere 2010, Bergmayr 2018]. Therefore, to address the identi�ed chal-

lenges, we believe thatthere is a need for a tooled model-driven approach

for OCCI in order to:

1. Enable both cloud architects and developers to e�ciently design their needs

at a high-level of abstraction. This will be done by de�ning a metamodel,

as a DSML, accompanied with graphical and textual concrete syntaxes. The

expected DSML should be extensible in order to target di�erent cloud domains.

3.2. Background on OCCI 53

2. Allow cloud architects to de�ne structural and behavioral properties andver-

ify them before any concrete deployments so they can a priori check the cor-

rectness of their cloud systems.

3. Automatically generate and export (i) textual documentations to assist

cloud architects and developers to understand the concepts and the behavior

of cloud-oriented APIs, (ii) speci�c designers dedicated to each cloud domain

to assist cloud developers in the design of their con�gurations,(iii) formal

speci�cations in order to formally analyze the di�erent artifacts, and (iv)

HTTP scripts that deploy , provision , modify or de-provision cloud re-

sources.

4. Execute the generated scripts into a generic OCCI runtime implementation

that must be able to host the developed connectors to concrete cloud resources.

5. Discover a con�guration model by mapping a running cloud system into

the expected modeling framework,manage this running cloud system via

the con�guration model (for example, execute an action on the con�guration

model implies its execution on the running cloud system), andbring back

the updates of the running system into the corresponding con�guration model.

These processes can be ensured via a connector between the cloud system and

the modeling framework.

3.2 Background on OCCI

OCCI is an open cloud standard [Edmonds 2012] speci�ed by the OGF. OCCI de-

�nes a RESTful Protocol and API for all kinds of management tasks on any kind

of cloud resources, including IaaS, PaaS and SaaS. In order to be modular and ex-

tensible, OCCI is delivered as a set of speci�cation documents divided into the four

following categories as illustrated in Figure 3.1:

54
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.1: OCCI Speci�cations.

Figure 3.2: UML Class Diagram of the OCCI Core Model (from [Nyrén 2016b]).

OCCI Core Model. It de�nes the OCCI Core speci�cation [Nyrén 2016b]

proposed as a general purpose RESTful-oriented model. It is shown in Figure 3.2

and represented as a simple resource-oriented model composed of eight concepts:

Resource represents any cloud computing resource,e.g., a virtual machine, a net-

work, an application container, an application. Link is a relation between two

3.3. OCCIware Approach 55

Resource instances,e.g., a computer connected to a network, an application hosted

by a container. Entity is the abstract base class of all resources and links.

Kind is the notion of class/type within OCCI, e.g., Compute, Network, Container ,

Application . Mixin is used to associate additional cross-cutting features,e.g., lo-

cation, price, user preference, ranking, to resource/link instances.Action represents

an action that can be executed on entities,e.g., start a virtual machine, stop an

application container, restart an application, resize a storage.Category is the ab-

stract base class inherited byKind, Mixin , and Action . Attribute represents the

de�nition of a customer visible property, e.g., the hostname of a machine, the IP

address of a network, or a parameter of an action.

OCCI Protocols. Each OCCI Protocol speci�cation describes how a partic-

ular network protocol can be used to interact with the OCCI Core Model. Multiple

protocols can interact with the same instance of the OCCI Core Model. Currently,

only the OCCI HTTP Protocol [Nyrén 2016a] has been de�ned. But other OCCI

protocols would be proposed in the future such asAdvanced Message Queuing Pro-

tocol (AMQP).

OCCI Renderings. Each OCCI Rendering speci�cation describes a particu-

lar rendering of the OCCI Core Model. Multiple renderings can interact with the

same instance of the OCCI Core Model and will automatically support any OCCI

extension. Currently, both OCCI Text [Edmonds 2016] and JSON2 [Nyrén 2016d]

renderings have been de�ned. Other OCCI renderings would be speci�ed in the

future, such as an XML rendering for instance.

OCCI Extensions. Each OCCI Extension speci�cation describes a particular

extension of the OCCI Core Model for a speci�c application domain, and thus de�nes

a set of domain-speci�c kinds and mixins. OCCI Infrastructure [Nyrén 2016c] is

dedicated to IaaS. Additional OCCI extensions are de�ned such as OCCICompute

Resource Templates Pro�le(CRTP) [Drescher 2016], OCCI Platform [Metsch 2016]

and OCCI SLA [Katsaros 2016].

3.3 OCCIware Approach

3.3.1 Managing Everything as a Service with OCCIware

The OCCIware funded project [occc, Parpaillon 2015] aims to provide a formal

comprehensive, coherent, modular, model-driven tool chain for managing any kind

2JavaScript Object Notation

56
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

of cloud computing resources. TheOCCIware approach relies on MDE, a soft-

ware engineering paradigm that proposes to reason on high-level artifacts, called

models, rather than the code implementation. As MDE allows us to raise the level

of abstraction, a model is an abstract representation of a system. It allows us to

understand the designed system and answer the related queries. A model conforms

to a metamodel, which de�nes the modeling language.

The OCCIware approach is composed of two main components as depicted in

Figure 3.3: (i) OCCIware Studio implemented by Faiez Zalila, and(ii) OCCI-

ware Runtime implemented by Christophe Gourdin.

Figure 3.3: OCCIware Studio and OCCIware Runtime .

OCCIware Studio , detailed in Section 3.5 is an OCCI model-driven tool chain

that enables to design, verify, simulate, and develop every kind of resources as

a service. Usually, a model-driven approach is based on, at least, a metamodel.

The OCCIware approach is designed and developed based on a metamodel, called

OCCIware Metamodel and detailed in Section 3.4. This metamodel implements

and extends theOCCI Core Model.

OCCIware Runtime detailed in Section 3.6 is a generic OCCI-compliant Mod-

els@run.time support and includes a resources container, and tools for deployment,

execution, and supervision of XaaS.

To bene�t from the OCCIware approach, a proposed process must be followed

(cf. Figure 3.4). This process has three steps: thedesign step, the engineering step,

and the use step.

3.3. OCCIware Approach 57

3.3.1.1 Design step

The design step(the top of Figure 3.4) consists in de�ning a new OCCI exten-

sion that extends theOCCI Core extension (an extension-like representation of the

OCCI Core Model), and/or other OCCI extensions already de�ned. This step is en-

sured by the Cloud Architect who aims to have a tooled model-driven framework

for his/her cloud domain such as infrastructure, platform, etc. An OCCI extension

model conforms toOCCIware Metamodel . It can be designed textually and/or

graphically. Once the extension is designed and validated, a generation process of

the Extension Tooling may be triggered. It consists to generate, from an OCCI

extension model, a set of artifacts that meet the needs of the cloud developers.

The set of artifacts generated from an OCCI extension model can be summarized

as:

1. Extension Documentation represents a comprehensive documentation of

the designed extension. It serves as the reference document to describe for the

cloud developer the di�erent notions designed in the extension.

2. Extension Formal Speci�cation de�nes formally the speci�cation of the

designed extension. This artifact can be later analyzed using a dedicated tool

to check rigorously its correctness and its conformance to the OCCI speci�ca-

tions. This extension is detailed in Chapter 5.

3. Extension Metamodel is a modeling language dedicated to the domain of

the designed extension. It allows us to design conforming models representing

running systems of this domain. This metamodel extends theOCCIware

Metamodel .

4. Extension Implementation represents a concrete implementation of the

generated Extension Metamodel. It should provide an implementation for

each concept of the designed extension.

5. Extension Connector extends the Extension Implementation and repre-

sents a skeleton of the causal link between designed models and running cloud

resources. For a designed extension, this module represents the bridge between

both OCCIware Studio / Runtime and the running cloud systems.

6. Extension Designer is a dedicated model-driven graphical designer to the

domain of the extension. It gives a suitable framework for the cloud devel-

oper to graphically design the di�erent resources of a running system, which

instantiate the extension concepts.

58
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.4: Model-Driven Managing Everything as a Service withOCCIware .

3.3. OCCIware Approach 59

3.3.1.2 Engineering step

Once the previous step is achieved, theSoftware Developer can complete the

generatedExtension Connector . It consists of implementing the business code re-

quired to handle each concept of the extension. Later, the completed connector

must be deployed onOCCIware Runtime . Finally, he/she customizes the gen-

erated Extension Designer to adapt it to the dedicated domain and to abstract

the di�erent concepts of the extension. From now on, we can consider that the

Extension Tooling is able to be used to manage conforming con�gurations.

3.3.1.3 Use step

Thanks to OCCIware Studio enriched with the Extension Tooling provided

during the previous steps, the cloud developer, who is theSystem Engineer (end

user from our perspective), can design using the dedicatedExtension Designer ,

an Extension con�guration model conforms to the Extension Metamodel. For the

system engineer, the di�erentOCCIware tooling is entirely hidden because he/she

only deals with domain concepts such as VMs, containers, networks, etc.

To bene�t from the OCCI-compliant tools of OCCIware (i.e., OCCIware

Runtime), the Extension con�guration model must be translated into an OCCI

con�guration model that conforms to the OCCIware Metamodel . Both models

are semantically identical, but the �rst one instantiates the concepts of the generated

Extension Metamodel, and the second instantiates the concepts ofOCCIware

Metamodel .

In order to deploy and manage this generated con�guration, the cloud devel-

oper can interact with the cloud by sendingOCCI HTTP requests to OCCIware

Runtime extended with the deployed Extension Connector . These scripts can

be generated from theOCCI con�guration model. To execute them, OCCIware

Runtime invokes the appropriate Extension Connector to create the instance in

the cloud. Finally, the created resource is deployed in the cloud.

3.3.2 Generating Cloud Domain-Speci�c Modeling Studios with
OCCIware

As previously explained in Subsection 3.3.1, theOCCIware approach provides a set

of tools to design, edit, validate, generate, and manage OCCI artifacts. Concretely,

the main goal of OCCIware Studio consists in designing, at the end, a correct

OCCI con�guration model that conforms to the OCCIware Metamodel . More-

over, the ultimate goal for the cloud developer, the end user of theOCCIware ap-

proach, consists in executing this model that represents an eventual running system

60
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

in the cloud. In the OCCIware approach, executing a con�guration model invokes

the OCCIware Runtime to create the di�erent designed entities. During model-

driven development, two strategies to execute models are possible [Brambilla 2012]:

Code Generationand Model Interpretation.

Code Generationtargets to produce running artifacts (script, code, etc.) from a

higher level model. It is similar to the compilation that produces executable binary

�les from source code. Usually, the generated artifact is produced in a standard lan-

guage that any developer can understand. In addition, the code generation strategy

allows us to link a model-driven framework to existing tools and methods such as

model-checkers, simulators and runtime environments.

Model Interpretation approach consists of parsing and executing the model on the

�y, with an interpretation approach and using a generic engine. A major advantage

of this approach is the capability to change the model at runtime without stopping

the running application because the interpreter would continue the execution by

parsing the new version of the model.

In the OCCIware approach, as shown on the left part of Figure 3.5, both

strategies have been implemented. Code generation process allows us to integrate a

generator of HTTP requests from OCCI con�guration models. These requests can

be later sent to OCCIware Runtime to create and deploy OCCI entities. The

extensibility of OCCIware Studio lets software engineers implement additional

generators to target other existing tools for other purposes such as the generation

of deployment plans. Model interpretation is implemented by de�ning a Runtime

Connector. Using this connector, we can(i) discover a con�guration model by

mapping a running system from OCCIware Runtime to OCCIware Studio ,

(ii) edit the obtained con�guration model, (iii) send these modi�cations to the

running system, and �nally (iv) bring back the changes triggered by the runtime to

the model.

OCCIware Studio represents the �rst model-driven framework to design

OCCI artifacts. In addition, thanks to the di�erent proposed generators, OCCI-

ware Studio can be considered as a factory to build cloud domain-speci�c model-

ing studios, each one is speci�c to a particular cloud domain. As shown on the right

part of Figure 3.5, once an OCCI extension model is de�ned, we can proceed to the

generation of a Cloud Domain-Speci�c Modeling Studio (CDSMS) dedicated to a

particular cloud domain. This speci�c studio provides (i) an Extension Metamodel,

(ii) an Extension Validator , (iii) an Extension Implementation , and (iv) an

Extension Designer . These generated tools allow the cloud developer to design

con�gurations conform to a speci�c cloud domain. As OCCIware Studio , a spe-

ci�c studio can support both strategies to execute the designedExtension con�g-

3.4. OCCIware Metamodel 61

Figure 3.5: Generating Cloud Domain-Speci�c Modeling Studios withOCCIware .

uration model. The software developer completes theExtension Connector with

the implementation related to a particular cloud API. In addition, he/she can im-

plement several generators to generate speci�c artifacts for his/her cloud domain.

If the cloud developer needs to come back and bene�t from bothOCCIware Stu-

dio tooling and OCCIware Runtime , it is always possible. A bridge from the

Extension con�guration models to OCCI con�guration models has been provided.

Next sections provide more details onOCCIware Metamodel , OCCIware

Studio , and OCCIware Runtime before discussing several use cases validating

the OCCIware approach.

3.4 OCCIware Metamodel

Designing is the key activity that must, at �rst, be addressed to later resolve other

encountered challenges such as verifying, generating, and deploying. Therefore, in

order to assist OCCI users in modeling di�erent OCCI artifacts, a metamodel for

OCCI named OCCIware Metamodel 3 is proposed, as shown in Figure 3.6.
3Available here https://github.com/occiware/OCCI-Studio/blob/master/plugins/org.

eclipse.cmf.occi.core/model/OCCI.ecore

62
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.6: Ecore diagram ofOCCIware Metamodel .

3.4. OCCIware Metamodel 63

The entry point to de�ne OCCIware Metamodel was the OCCI Core

Model [Nyrén 2016b]. The gray-colored classes in Figure 3.6 show the eight con-

cepts of OCCI Core Model. The blue-colored classes show the added concepts during

our previous work [Merle 2015a]. Since then, we continued to extendOCCIware

Metamodel in order to meet di�erent needs appeared during its use. The brown-

colored classes introduce the added concepts needed to express business constraints

related to a particular domain. The orange-colored class represents the required

concept to instantiate the mixins in a con�guration model. The yellow-colored

classes de�ne the concepts used to express the behavior of an OCCI kind/mixin.

The cyan-colored classes provide the required concepts to express non-OCCI core

information needed to perform several activities such as code generation and model

visualization. The green-colored classes de�ne theOCCIware data type system.

Finally, the red-colored classes provides a set of Ecore data types required to create

correct OCCI artifacts.

In the following, the di�erent concepts of the OCCIware Metamodel with a

subset of their associated OCL invariants de�ning the static semantics are detailed:

ˆ Extension represents an OCCI extension, e.g., inter-cloud networking

extension [Medhioub 2013], infrastructure extension [Nyrén 2016c], plat-

form extension [Yangui 2013, Yangui 2016, Metsch 2016], application ex-

tension [Yangui 2016], SLA negotiation and enforcement [Katsaros 2016],

cloud monitoring extension [Ciu�oletti 2016], and autonomic computing ex-

tension [Mohamed 2013, Mohamed 2014b, Mohamed 2014a, Mohamed 2015].

Extension has a name, has a scheme, has a description , has a

specification , owns zero or morekinds , owns zero or moremixins , owns

zero or more data types , and can import zero or more extensions. Each

designed extension must, at least, extend the OCCICore extension, the

extension-like representation of theOCCI Core Model. The OCCI Core ex-

tension is composed of three kinds: a rootEntity kind, and two children

kinds, Resource and Link .

De�nition 1 Each Extension instance must have a uniqueschemeamong

all Extension instances.

contex t Extens ion

i n v a r i a n t UniqueScheme :

Extens ion . a l l I n s t a n c e s () � >isUnique (scheme) ;

De�nition 2 The schemeof all kinds must be equal to theschemeof the

owning Extension instance.

64
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

contex t Extens ion

i n v a r i a n t KindsSchemeValid :

k inds � >f o r A l l (k j k . scheme = s e l f . scheme) ;

ˆ Kind is an OCCI Core Model concept representing the immutable type of

OCCI entities and de�nes allowed attributes and actions. Single inheritance,

using the parent relation betweenKinds, allows us to factorize attributes and

actions common to several kinds. Thesource and target references specify

the sense of relations between link-oriented kinds.

De�nition 3 Each Kind instance must inherit from the entity kind instance

directly or transitively. The entity kind instance is the root of the hierarchy

of Kind instances.

contex t Kind

i n v a r i a n t Ent i tyKindIsRootParent :

s e l f � >c l o s u r e (parent) � >e x i s t s (k j k . term = ' e n t i t y ' and k .

scheme = ' ht tp : // schemas . og f . org / o c c i / co re#' and k . parent =

n u l l) ;

De�nition 4 A Kind instance must not overload an inherited attribute.

contex t Kind

i n v a r i a n t At t r ibutesNameNotAlreadyDef inedInParent :

a t t r i b u t e s . name� >e x c l u d e s A l l (parent � >c l o s u r e (parent) .

a t t r i b u t e s . name) ;

ˆ Mixin is an OCCI Core Model concept representing cross-cutting attributes

and actions that can be dynamically added to an OCCI entity. Mixin can be

applied to zero or more kinds and can depend on zero or more otherMixin

instances.

De�nition 5 The inheritance relation dependsbetweenMixin instances must

form a direct acyclic graph. A mixin instance must not inherit from itself

directly or transitively.

contex t Mixin

i n v a r i a n t NoCyc l i c Inhe r i t ance :

depends� >c l o s u r e (depends)� >exc ludes (s e l f) ;

3.4. OCCIware Metamodel 65

ˆ Type is an added concept to represent an abstract type inherited byKind

and Mixin classes. Each type can own zero or moreactions , zero or more

constraints and a Finite State Machine (FSM)describing its behavior.

De�nition 6 Each action instance must have a uniqueschemeamong all

action instances in a Type instance.

contex t Type

i n v a r i a n t Act ionTermUnici ty : ac t i ons � >isUnique (term) ;

De�nition 7 Each constraint instance must have a uniquenameamong all

constraints instances in a Type instance.

contex t Type

i n v a r i a n t ConstraintNameUnique : c o n s t r a i n t s � >isUnique (name) ;

ˆ Action is an OCCI Core Model concept representing business speci�c behav-

iors, such as start/stop a virtual machine, and up/down a network, etc.

ˆ Constraint is an added concept to represent a detailed aspect related to a

particular cloud computing domain. In fact, each extension targets a con-

crete cloud computing domain,e.g., IaaS, PaaS, SaaS, pricing, etc. Therefore,

there are certainly business constraints related to each domain, which must

be respected by con�gurations that use the extension. For example, all IP ad-

dresses of all network resources must be distinct. AConstraint has aname, a

description and abody that can be de�ned with Object Constraint Language

(OCL) [OMG 2014].

ˆ Category is an OCCI Core Model concept and the abstract base class inher-

ited by Type and Action . Each instance of kind, mixin or action is uniquely

identi�ed by both a schemeand a term, has a human-readabletitle , a

description , and owns a set ofattributes .

De�nition 8 The schemeof eachCategory instance must end with a sharp.

contex t Category

i n v a r i a n t SchemeEndsWithSharp :

scheme . s u b s t r i n g (scheme . s i z e () , scheme . s i z e ())= '# ' ;

66
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

ˆ Attribute is an OCCI Core Model concept and represents the de�nition of a

customer-visible property, e.g., the hostname of a machine, the IP address of

a network, or a parameter of an action. An attribute has onename, can have a

data type , can be (or not) mutable (i.e., modi�able by customers), can be (or

not) required (i.e., value is provided at creation time), can have adefault

value and a human-readabledescription .

ˆ AnnotatedElement is an added concept to represent the abstract base class

inherited by Attribute and Category. Each attribute/kind/mixin/action can

own zero or moreannotations .

ˆ Annotation is an added concept and represents an additional information that

can be attached to anAnnotatedElement instance. This mechanism is usually

used to limit changing the metamodel. It allows us adding an information that

may not be related to the core of theOCCI speci�cations, but important to

some related processes like code generation, model visualization, etc.

ˆ FSMis an added concept to model the behavior ofOCCI concepts such

as state diagrams of OCCI Kind instances used in both the Infrastruc-

ture [Nyrén 2016c] and Platform [Metsch 2016] extensions.FSMdescribes the

behavior of a kind/mixin instance, the current state is stored in a speci�c

attribute and can own a set ofstates (State).

De�nition 9 The type of a FSM attribute must beEnumerationType.

contex t FSM

i n v a r i a n t At t r ibuteType :

a t t r i b u t e . type . oc l IsTypeOf (EnumerationType) ;

De�nition 10 The attribute of a FSM instance must belong to the

attributes of the ownerType instance.

contex t FSM

i n v a r i a n t At t r ibuteMustBeDef ined :

s e l f . oc lCon ta ine r () . oclAsType (Type) . a t t r i b u t e s � >i n c l u d e s (s e l f .

a t t r i b u t e)

ˆ State is an added concept to model a FSM state of a kind/mixin instance. It

can be aninitial and/or a final one. It refers to a literal and can own a

set of transitions (outgoingTransition s).

3.4. OCCIware Metamodel 67

De�nition 11 The enumerationType of a State literal is equals to the

type of the attribute of the ownerFSMinstance.

contex t S ta te

i n v a r i a n t L i te ra lType :

owningFSM . a t t r i b u t e . type = s e l f . l i t e r a l . enumerationType ;

ˆ Transition is an added concept to represent a FSM transition from asource

to a target FSM state. When a transition is triggered, an associatedaction

is executed.

De�nition 12 The action of a Transition instance must belong to the

actions of the ownerType instance.

contex t T rans i t i on

i n v a r i a n t ActionMustBeDefined :

s e l f . oc lCon ta ine r () . oclAsType (Sta te) . oc lCon ta ine r () . oclAsType (

FSM) . oc lCon ta ine r () . oclAsType (Type) . ac t i ons � >i n c l u d e s (s e l f .

ac t i on)

ˆ DataType is an added concept to represent an abstract type de�ning OCCI

data types. A DataType instance has anameand a documentation .

ˆ BasicType is an added concept to represent an abstract type extending

DataTypemeta-class and de�ning OCCI primitive data types.

ˆ BooleanType is an added concept to represent a type extendingBasicType

meta-class and de�ning OCCI boolean data types.

ˆ NumericType is an added concept to represent a type extendingBasicType

meta-class and de�ning OCCI numeric data types. A numeric type has a

concrete type , a totalDigits value de�ning the maximal number of digits

of a number, a minimal exclusiveminExclusive value, a maximal exclusive

maxExclusive value, a minimal inclusiveminInclusive value, and a maximal

inclusive maxInclusive value.

ˆ NumericTypeEnumis an added concept to represent an enumeration type de�n-

ing the di�erent OCCIware concrete numeric types. ANumericTypecan be

Byte, Double, Float , Integer , Long, Short , or BigDecimal .

68
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

ˆ StringType is an added concept to represent a type extendingBasicType

meta-class and de�ning OCCIware string data types. A StringType in-

stance can have apattern value de�ning a pattern constraint expressed as a

regular expression, alength value de�ning a length constraint, a minLength

value de�ning the minimum length constraint, and a maxLengthde�ning the

maximum length constraint.

ˆ EObjectType is an added concept to represent a type extendingBasicType

meta-class and de�ningOCCIware Java data types such asURI, Date, etc.

ˆ ArrayType is an added concept to represent array data types. AnArrayType

instance has atype de�ning its type.

ˆ EnumerationType is an added concept to represent enumeration data types.

An EnumerationType instance owns a set ofliterals .

ˆ EnumerationLiteral is an added concept to represent an enumeration literal.

An EnumerationLiteral instance has anameand a documentation .

ˆ RecordTypeis an added concept to represent record data types. ARecordType

instance owns a set of record �elds (recordFields).

ˆ RecordField is an added concept to represent a record �eld. It extends the

Attribute meta-class.

ˆ Integer is an Ecore data type de�ning the primitive Integer type.

ˆ Boolean is an added concept to represent an Ecore data type de�ning the

primitive Boolean type.

ˆ String is an added concept to represent an Ecore data type de�ning the

primitive String type.

ˆ URIis an added concept to represent an Ecore string-based data type extended

with a pattern constraint that conforms to the Uniform Resource Name(URN)

syntax [Moats 1998].

ˆ Nameis an added concept to represent an Ecore string-based data type ex-

tended with the following pattern

�[a-zA-Z][a-zA-Z0-9_-]*� . This data type allows us to initialize a valid

nameattribute to the OCCI constructs and, thus, deduce a term conforms to

the OCCI RESTful HTTP Rendering speci�cation [Nyrén 2016a].

3.4. OCCIware Metamodel 69

ˆ AttributeName is an added concept to represent an Ecore

string-based data type extended with the following pattern

�[a-zA-Z0-9]+(\.[a-zA-Z0-9]+)+� . It allows us to create AttributeName

instances conform to the OCCI Text Rendering speci�cation [Edmonds 2016].

ˆ Schemeis an added concept to represent an Ecore string-based data type ex-

tended with a pattern constraint conforms to the Uniform Resource Identi�er

(URI) syntax [Berners-Lee 1998].

ˆ OCLis an added concept to represent an Ecore string-based data type allowing

us to create correct OCL expressions.

ˆ Configuration is an added concept to represent a running OCCI system.

Configuration owns zero or moreresources (and transitively links), and

use zero or more extensions. For a given con�guration, the kind and mixins of

all its entities (resources and links) must be de�ned byused extensions only.

This avoids a con�guration to transitively reference a type de�ned we do not

know where.

De�nition 13 The kind of all resources of a con�guration must be de�ned

by an extension that is explicitly used by this con�guration.

contex t Con f igu ra t i on

i n v a r i a n t Al lResourcesKindsInUse :

use� >i n c l u d e s A l l (r e s o u r c e s . kind . oc lCon ta ine r ()) ;

De�nition 14 The target resource of all links of all resources of a con-

�guration must be a resource of this con�guration.

contex t Con f igu ra t i on

i n v a r i a n t A l lResou rcesL inksTarge ts InCon f igu ra t i on :

r e s o u r c e s . l i n k s . ta rge t� >f o r A l l (r j r . oc lCon ta ine r () = s e l f) ;

ˆ Resource is an OCCI Core Model concept and represents any cloud comput-

ing resource, such as a virtual machine, a network, and an application. A

Resource owns a set oflinks .

De�nition 15 The kind of a Resource instance must inherit from the

resource kind instance directly or transitively.

70
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

contex t Resource

i n v a r i a n t ResourceKindIs InParent :

kind � >c l o s u r e (parent) � >e x i s t s (k j k . term = ' r e s o u r c e ' and k .

scheme = ' ht tp : // schemas . og f . org / o c c i / co re#') ;

ˆ Link is an OCCI Core Model concept and represents a relation between two

resources, such as a virtual machine connected to a network and an application

hosted by a virtual machine. A Link instance refers to both asource and

target resource.

De�nition 16 The kind of a Link instance must inherit from the link kind

instance directly or transitively.

contex t Resource

i n v a r i a n t ResourceKindIs InParent :

kind � >c l o s u r e (parent) � >e x i s t s (k j k . term = ' l i n k ' and k . scheme

= ' ht tp : // schemas . og f . org / o c c i / co re#') ;

ˆ Entity is anOCCI Core Model abstract concept. Each OCCI entity (resource

or link) owns zero or moreattributes , such as its uniqueid enti�er, the host

name of a virtual machine, the Internet Protocol address of a network. In

addition, each OCCI entity is strongly typed by a Kind and a set of Mixin

instances. As OCCI is a REST API, it gives access to cloud resources via

classical CRUD operations (i.e., Create, Retrieve, Update, and Delete).

De�nition 17 The kind of an Entity instance must be compatible with one

applies kind instance of each mixinparts of this entity.

contex t Resource

i n v a r i a n t KindCompatibleWithOneAppliesOfEachMixin :

pa r t s . mixin � >f o r A l l (m j m. app l i es � >notEmpty () implies m.

app l i es� >e x i s t s (k j kind � >c l o s u r e (parent) � >i n c l u d e s (k))) ;

ˆ AttributeState is an added concept to represent an instantiated OCCI at-

tribute. An AttributeState instance has anameand a value .

ˆ MixinBase is an added concept strongly typed by amixin . It represents an

instantiated mixin and allows us to instantiate the attributes of the referenced

mixin outside the owner entity in order to separate the entity attributes

from the mixin ones. AMixinBase can own zero or moreattributes .

3.5. OCCIware Studio 71

3.5 OCCIware Studio

Once the OCCIware Metamodel was de�ned, it has been tooled with OCCI-

ware Studio , which is a set of plugins for the Eclipse [ecl] IDE. Figure 3.7 shows

all the main features of OCCIware Studio :

Figure 3.7: OCCIware Studio Features.

ˆ OCCIware Designer is a graphical modeler to create, modify, and visualize

both OCCI extensions and con�gurations. The OCCI standard does not de�ne

any standard notation for the graphical or textual concrete syntax. This tool

is implemented on top of the Eclipse Sirius framework [sir].

ˆ OCCIware Editor is a textual editor for both OCCI extensions and con-

�gurations. Our OCCI textual syntax is described in [Merle 2015b]. This tool

is implemented on top of the Eclipse Xtext framework [xte 2016].

ˆ OCCIware Validator is a tool to validate both OCCI extensions and con-

�gurations. This tool checks all the constraints de�ned in the OCCIware

Metamodel , i.e., both Ecore and OCL ones.

ˆ Textile Documentation Generator is a tool to generate aTextile doc-

umentation from an OCCI extension model. Textile is a Wiki-like format

used for instance by GitHub projects. This tool is implemented on top of the

Eclipse Acceleo framework [acc].

72
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

ˆ Latex Documentation Generator is a tool to generate aLatex documen-

tation from an OCCI extension model. It allows us to later generate a portable

document describing theOCCI extension. This tool is implemented on top

of the Eclipse Acceleo framework.

ˆ Ecore Generator is a tool to generate the Ecore metamodel and its associ-

ated Java-based implementation code from anOCCI extension. As shown in

the left part of Figure 3.8, designing a newOCCI extension consists in extend-

ing the OCCI Core extension. Designing anOCCI con�guration consists in

de�ning an instance of anOCCI extension and represents a cloud architecture

already deployed or to deploy.

Figure 3.8: Projection of OCCI to EMF.

The main goal of our work consists in introducing a tooled framework, based

on OCCI , that manages any kind of resources as a service.

To do that, it was necessary to map di�erent OCCI concepts into a modeling

framework to bene�t from the available facilities for building tools based on a

metamodel (the right part of Figure 3.8). EMF was chosen to embedOCCI

and, thus, the OCCIware Metamodel was proposed as a precise meta-

3.5. OCCIware Studio 73

model for OCCI [Merle 2015a]. Therefore, we can de�ne either anOCCI

extension model or anOCCI con�guration model that conform to the OCCI-

ware Metamodel . However, the current tooling in EMF does not allow us

to encode that: anOCCI con�guration is an �instantiation� of an OCCI ex-

tension. For that, OCCIware proposes, using theEcore Generator tool, to

promote the OCCI extension model by translating it into an Ecore metamodel,

extending the OCCIware Metamodel . Consequently, we can design an Ex-

tension con�guration model, instance of this generated metamodel. Later, we

can deduce a semantically equivalentOCCI con�guration model, instance of

the OCCIware Metamodel .

This tool is directly implemented in Java. In the following, the generation

process ofOCCIware Metamodel concepts into the EMF concepts is de-

tailed:

� Each OCCI kind instance is translated into an Ecore class. If itsparent

is the Resource kind, the generated class extends theResource Ecore

class of theOCCIware Metamodel . Otherwise, if its parent is the

Link kind, the generated class extends theLink Ecore class of theOC-

CIware Metamodel .

� Each OCCI mixin instance is translated into an Ecore class extending

the MixinBase class of theOCCIware Metamodel .

� Each OCCI attribute instance, owned by anOCCI kind/mixin, is trans-

lated into an Ecore attribute owned by the corresponding generated Ecore

class.

� Each OCCI action instance, owned by anOCCI kind/ mixin, is trans-

lated into an Ecore operation owned by the corresponding generated

Ecore class.

� Each OCCI constraint instance is translated into an OCL invariant.

� All Ecore data types de�ned in the OCCI extension are translated into

the corresponding EMF concepts and/or types in the generatedOCCI

extension metamodel.

Table 3.1 outlines the mapping process ofOCCIware Metamodel concepts

into EMF concepts.

ˆ Alloy Generator is a tool to generate anAlloy speci�cation from an OCCI

extension model.Alloy is a lightweight formal speci�cation language based

on the �rst-order relational logic [Jackson 2012]. We are able to analyze OCCI

74
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Table 3.1: The Mapping Process ofOCCI Concepts into EMF Concepts.
OCCI concept EMF concept

Kind EClass
Kind's source OCL invariant

Kind' s target OCL invariant
Attribute EAttribute

Action EOperation
Mixin EClass

Constraint OCL invariant
BasicType EDataType

EnumerationType EEnum
RecordType EClass
ArrayType EClass

extensions formally with the Alloy analyzer. The Alloy analyzer is a solver that

takes the constraints of a model and �nds structures that satisfy them. We

used it to explore the model by generating sample OCCI con�gurations, and

also to check properties of the OCCI extension by generating counterexamples.

The generated OCCI con�gurations can be displayed graphically with the

OCCIware Designer . Alloy Generator is the core of thefclouds approach,

my contribution that I detail in Chapter 5. This tool is implemented on top

of the Eclipse Acceleo framework.

ˆ Connector Generator is a tool to generate theOCCI connector implemen-

tation associated to an OCCI extension. This generated connector code ex-

tends the generated Ecore implementation code. This connector code must be

completed by software developers to implement concretely how OCCI CRUD

operations and the speci�c actions must be executed on a real cloud infras-

tructure. Later, this generated connector will be deployed onOCCIware

Runtime . This tool is implemented on top of the Eclipse Acceleo framework.

ˆ Designer Generator is a tool to generate a graphical extension-speci�c de-

signer from anOCCI extension. This designer can be later customized to be

able to represent the concepts related to the extension domain. This tool is

implemented on top of the Eclipse Acceleo framework and generate Eclipse

Sirius models.

ˆ CURL Generator is a tool to generate a CURL-based script from an OCCI

con�guration model. These generated scripts contain HTTP requests to in-

stantiate OCCI entities into any OCCI-compliant runtime. These scripts are

used for o�ine deployment. This tool is implemented on top of the Eclipse

3.6. OCCIware Runtime 75

Acceleo framework.

ˆ Runtime Connector is a tool to synchronize OCCI con�guration models

with running OCCI con�gurations hosted by any OCCI-compliant runtime.

This connector allows cloud developers to introspect an OCCI runtime in

order to build the corresponding OCCI con�guration model, then update this

model and send changes back to the OCCI runtime. This tool integrates the

jOCCI API 4, a Java library implementing transport functions for rendered

OCCI queries.

ˆ Con�guration Converter is a tool to translate an Extension con�guration

model into an OCCI con�guration model (the equivalent relation in Fig-

ure 3.8). This tool allows us to reuse the tools speci�c to OCCI artifacts

such as the CURL Generator to deploy later the con�guration into an OCCI-

compliant runtime. This tool is directly implemented in Java.

3.6 OCCIware Runtime

To enact OCCI con�guration models, we adopt the Models@run.time ap-

proach [Blair 2009] that extends the use of modeling techniques beyond the de-

sign and implementation phases. It seeks to extend the applicability of models and

abstractions to capture the behavior of the executing environment. End users of

OCCIware Studio require interaction with cloud APIs to create, retrieve, update

and delete cloud resources. Therefore,OCCIware Runtime is implemented as a

generic Java implementation of OCCI, available as an open-source project5. The

OCCIware Runtime can be deployed as a standalone server including an embed-

ded Jetty server or as a Java library that is based on Java Servlet API speci�cation.

The OCCIware Runtime is composed of four main parts, as illustrated in

Figure 3.9.

ˆ OCCI Server that implements the following OCCI speci�cations: (i) OCCI

HTTP Protocol [Nyrén 2016a], (ii) OCCI Text Rendering [Edmonds 2016],

OCCI JSON Rendering [Nyrén 2016d] based on the Jackson6 library, and (iii)

OCCI Core Model [Nyrén 2016b] based on theOCCIware Metamodel .

ˆ OCCI Extensions that represent the OCCIware -based modeling of con-

crete cloud domains such as OCCIInfrastructure [Nyrén 2016c], OCCI

4https://github.com/EGI-FCTF/jOCCI-api
5https://github.com/occiware/MartServer
6https://github.com/FasterXML/jackson

76
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Platform [Metsch 2016], OCCISLA[Katsaros 2016], Docker [Paraiso 2016],

cloud mobile robotics [Merle 2017], etc.

Figure 3.9: OCCIware Runtime Architecture.

ˆ OCCI Con�gurations that are instances ofOCCIware con�guration, such

as a con�guration using OCCI Infrastructure and containing a running

virtual machine with 4 cores, 3.2 GHz and 16 GiB.

ˆ OCCI Connectors that consist in the pivot between OCCIware extension-

s/con�gurations and CRM-APIs. Each connector is dedicated to a speci�c

cloud domain, e.g., AWS, GCP, Docker, or mobile robotics. It implements the

3.7. Evaluation of OCCIware Studio 77

corresponding OCCI extension. It executes CRUD (Create, Retrieve, Update

and Delete) operations and extension-speci�c actions, such asstart compute

for the OCCI Infrastructure extension. The OCCIware Runtime is ex-

tensible by design: supporting a new kind of cloud resources consists of adding

a new connector.

Users send their HTTP requests to theOCCIware Runtime to manage an

OCCI con�guration and wait for a reply. In the OCCIware Runtime , the process-

ing of a user's request consists of managing theOCCI HTTP protocol , decoding the

HTTP request body according to its text or JSON format, forwarding the request

to the OCCI Core Model, controlling if the request is allowed by the OCCIware

extension, calling the connector related to the targeted cloud API, preparing the

request to send to the cloud provider, communicating with the cloud API via its

associated network protocol, processing the request by the cloud provider, encoding

the HTTP reply body, and return the reply to the user. Then the user processes

the reply.

3.7 Evaluation of OCCIware Studio

This section validates theOCCIware approach. We discuss howOCCIware ad-

dresses the di�erent requirements listed in Section 3.1. At �rst, we show the di�erent

OCCI extensions de�ned by the OGF's OCCI working group and implemented with

OCCIware . We particularly focus on the Infrastructure extension by showing

how the cloud developer leverages the generated tooling around this extension to

create/manage his/her con�guration models with OCCIware Studio and deploy

them in the cloud. Then, we illustrate the di�erent OCCIware approach usages

presented in Section 3.3 by presenting �ve major use cases that applyOCCIware .

3.7.1 Implementation of a Catalog of Standard OGF 's OCCI Ex-
tensions

Each OCCI extension is implemented as an Eclipse modeling project containing

one extension model, which is an instance ofOCCIware Metamodel . Currently,

OCCIware Studio supports the �ve OCCI extensions de�ned by the OGF's OCCI

working group.

3.7.1.1 The OCCI Infrastructure Extension

OCCI Infrastructure [Nyrén 2016c] de�nes compute, storage and network resource

types and associated links. To design theInfrastructure extension, the OCCI-

78
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

ware architect can useOCCIware Designer and/or OCCIware Editor .

This extension de�nes �ve kinds (Network, Compute, Storage, StorageLink

and NetworkInterface), six mixins (Resource_Tpl, IpNetwork , Os_Tpl, SSH_key,

User_Data, and IpNetworkInterface), and around twenty data types (Vlan range,

Architecture enumeration, various status enumerations, etc.). Figure 3.10 shows

a subset of this extension. The complete one is available here7.

Figure 3.10: OCCI Infrastructure Extension Model.

The Computekind represents a generic information processing resource,e.g., a

virtual machine or container. It inherits the Resource de�ned in the OCCI Core

extension. It has a set ofOCCI attributes such as occi.compute.architecture

to specify the CPU architecture of the instance,occi.compute.core to de�ne the

number of virtual CPU cores assigned to the instance,occi.compute.memory to

de�ne the maximum RAM in gigabytes allocated to the instance, etc. TheCompute

kind exposes �ve actions:start , stop , restart , save and suspend.

The Network kind is an interconnection resource and represents a Layer 2 (L2)

networking resource. This is complemented by theIpNetwork mixin. It exposes two

actions: up and down.

The orange-colored box in Figure 3.10 illustrates the state diagram of aNetwork

instance and describes its behavior. As shown previously in Section 3.4, theOCCI-

ware Metamodel provides the required concepts to describe the behavior of each

kind/mixin. In addition, it allows us de�ning extension-speci�c constraints. For

7https://github.com/occiware/OCCI-Studio/blob/master/plugins/org.eclipse.cmf.
occi.infrastructure/model/Infrastructure.occie

3.7. Evaluation of OCCIware Studio 79

example, the following OCL constraint speci�es that eachNetwork instance must

have a uniqueVLAN.

inv UniqueVlan : Network . a l l I n s t a n c e s ()� >isUnique (o c c i . network .
v lan)

In addition, we de�ne, in the following, an additional OCL constraint in the

IpNetworkInterface mixin, which checks that all IP addresses must be di�erent.

inv IPAddressesMustBeUnique: IpNetwork In te r face . a l l I n s t a n c e s ()� >
isUnique (o c c i . ne two rk i n te r f ace . address)

The NetworkInterface kind inherits the Link kind. It connects a Compute

instance to a Network instance. TheStorage kind represents data storage devices.

The StorageLink kind inherits the Link kind. It connects a Computeinstance to a

Storage instance.

Once the extension is de�ned, the generation process ofInfrastructure Tool-

ing may be triggered. It generates four main elements:(i) the Infrastructure

Metamodel, (ii) the Java-based Infrastlandscructure Implementation , (iii)

Infrastructure Connector , and (iv) Infrastructure Designer .

Listing 3.1 shows a subset of the generatedNetwork connector class. It extends

the NetworkImpl class generated by the EMF tooling and contains theOCCI speci�c

callback methods for the CRUD operations and allNetwork kind-speci�c actions

(i.e., up and down). The generated code of speci�c actions is deducted from the

de�ned FSM on the Network kind.

p u b l i c c l a s s NetworkConnector ex tends NetworkImpl {
NetworkConnector () {}
// OCCI CRUD c a l l b a c k o p e r a t i o n s .
p u b l i c vo id occ iC rea te () { / * TODO * / }
p u b l i c vo id o c c i R e t r i e v e () { / * TODO * / }
p u b l i c vo id occ iUpdate () { / * TODO * / }
p u b l i c vo id o c c i D e l e t e () { / * TODO * / }

// Network a c t i o n s .
p u b l i c vo id up () {

i f (g e t S t a t e () . equa l s (NetworkStatus . INACTIVE)) {
i f (t r ue) {

// TODO : T rans i t i on i n a c t i v e � up� > a c t i v e
s e t S t a t e (NetworkStatus .ACTIVE) ;

} e l s e {
// TODO : T rans i t i on i n a c t i v e � up� > e r r o r
s e t S t a t e (NetworkStatus .ERROR) ;

}
}

}
p u b l i c vo id down () {

i f (g e t S t a t e () . equa l s (NetworkStatus .ACTIVE)) {

80
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

i f (t r ue) {
// TODO : T rans i t i on a c t i v e � down� > i n a c t i v e
s e t S t a t e (NetworkStatus . INACTIVE) ;

} e l s e {
// TODO : T rans i t i on a c t i v e � down� > e r r o r
s e t S t a t e (NetworkStatus .ERROR) ;

}
}

}
}

Listing 3.1: The GeneratedNetwork Connector Class.

Once the generation step is achieved, the software developer can complete

the generated connector classes by updating their methods implementations (TODO

sections in Listing 3.1) with business code related to targeted API. For the

NetworkConnector class, the software developer completes the code to trigger

that the OCCI Network resource was created (occiCreate), will be retrieved

(occiRetrieve), was updated (occiUpdate) and will be deleted (occiDelete). In

addition, he/she completes the generated methods (up and down) related to speci�c

actions de�ned in the Network kind. The completed connector code must be later

deployed on theOCCIware Runtime . Then, the software developer can proceed

to the customization of the generatedInfrastructure Designer which will be used

to create Infrastructure con�guration models as shown in Figure 3.11.

Figure 3.11: An Infrastructure Con�guration Model.

From now on, we can consider that theOCCI Infrastructure extension is

completely tooled and able to be used to manage conforming con�gurations.

Using OCCIware Studio enriched with the Infrastructure Tooling , cloud

3.7. Evaluation of OCCIware Studio 81

developers can design an OCCIInfrastructure con�guration model conforms to

the Infrastructure Metamodel . Figure 3.11 illustrates a small infrastructure con-

�guration composed of a compute (vm1) connected to a network (network1), via an

OCCI link (green-colored box), the network interface (ni1). As this con�guration

uses an IP-based network, theNetwork resource and theNetworkInterface link

have an IpNetwork and IpNetworkInterface mixin, respectively. Each OCCI en-

tity is con�gured by its attributes, e.g., vm1has the vm1hostname, anx64-based

architecture, 4 cores, and4 GiB of memory.

To bene�t from the OCCI-compliant tools de�ned in the OCCIware Studio ,

an Infrastructure con�guration model must be translated into an OCCI con�gu-

ration model that conforms to the OCCIware Metamodel . Figure 3.12 shows a

generated OCCI con�guration model from the Infrastructure con�guration model.

As shown in the palette of the Infrastructure Designer (right part of Figure 3.11), the

Infrastructure Designer allows cloud developers to create an instance of Infrastruc-

ture Metamodel such asCompute, Network, and Storage. However, in the palette of

the OCCIware Designer (right part of Figure 3.12), the cloud developer can only

create instances ofOCCIware Metamodel Resource and Link classes.

Figure 3.12: An OCCI Con�guration Model.

In order to deploy and manage the generatedOCCI con�guration models, cloud

developers interact with the cloud by sendingOCCI HTTP requests to OCCIware

Runtime . These requests can be automatically generated as CURL scripts using

the CURL Generator tool. Listing 3.2 shows the CURL script that requestsOC-

CIware Runtime via both OCCI HTTP Protocol [Nyrén 2016a] and OCCI Text

Rendering [Edmonds 2016] to create thenetwork1 instance. Then, OCCIware

Runtime invokes theocciCreate() method of the NetworkConnector class, which

implements how to create the considered network instance in the cloud. Finally, the

82
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

created Network resource is deployed in the cloud.

OCCI_SERVER_URL = $1

cur l $CURL_OPTS � X PUT $OCCI_SERVER_URL/network/39155c91 � cf53� 42c8� 923f� 6d 5 1 b f f f f f f 9
� H 'Content � Type : text / occ i '
� H ' Category : network ; scheme= "http : //schemas . ogf . org/ occ i / in f ras t ruc tu re#";

c lass= "kind " ; '
� H ' Category : ipnetwork ; scheme= "http : //schemas . ogf . org/ occ i / in f ras t ruc tu re#";

c lass= "mixin " ; '
� H 'X� OCCI� Attr ibute : occ i . core . id= "39155c91� cf53� 42c8� 923f� 6d 5 1 b f f f f f f 9 " '
� H 'X� OCCI� Attr ibute : occ i . core . t i t l e = "network1" '
� H 'X� OCCI� Attr ibute : occ i . network . vlan = 12 '
� H 'X� OCCI� Attr ibute : occ i . network . labe l = "pr ivate " '
� H 'X� OCCI� Attr ibute : occ i . network . address= "10.1.0.0/16" '
� H 'X� OCCI� Attr ibute : occ i . network . gateway = "10.1.255.254" '

Listing 3.2: The generated CURL script to create aNetwork instance

The proposed tooling around the OCCI Infrastructure extension allows us,

with our industrial partner Scalair [scaa], to implement a Java connector for VMware

API. The whole tooling around Infrastructure extension is available here8. In the

future, we will target additional CRM-APIs such as AWS, OpenStack, GCP, etc.

3.7.1.2 The OCCI CRTPExtension

OCCI CRTP [Drescher 2016] de�nes a set of precon�gured instances of the OCCI

compute resource type. It extends the Infrastructure extension. Figure 3.13 shows

the OCCI CRTP extension designed withOCCIware Studio . Its tooling is avail-

able here9.

3.7.1.3 The OCCI Platform Extension

OCCI Platform [Metsch 2016] de�nes application and component resource types

and associated links. Figure 3.14 shows the OCCI Platform extension designed

with OCCIware Studio . Its tooling is available here10.

8https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.infrastructure

9https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.CRTP

10 https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.platform

3.7. Evaluation of OCCIware Studio 83

Figure 3.13: OCCI CRTP Extension Model.

Figure 3.14: OCCI Platform Extension Model.

84
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

3.7.1.4 The OCCI SLAExtension

OCCI SLA [Katsaros 2016] de�nes OCCI types for modeling service level agree-

ments. Figure 3.15 shows the OCCI SLA extension designed withOCCIware

Studio . Its tooling is available here11.

Figure 3.15: OCCI SLA Extension Model.

3.7.1.5 The OCCI Monitoring Extension

OCCI Monitoring [Ciu�oletti 2016] is a draft speci�cation and de�nes sensor and

collector types for monitoring cloud systems. Figure 3.16 shows the OCCI Monitor-

ing extension designed withOCCIware Studio . Its tooling is available here12.

11 https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.sla

12 https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.monitoring

3.7. Evaluation of OCCIware Studio 85

Figure 3.16: OCCI Monitoring Extension Model.

3.7.2 Five OCCIware Use Cases

In this subsection, �ve major use cases of theOCCIware approach are illustrated.

3.7.2.1 Cloud Simulation with OCCIware

This work [Ahmed-Nacer 2016a, Ahmed-Nacer 2017] provides a methodology for

the simulation of OCCI con�gurations. The simulation technology has increas-

ingly become popular as it allows users to evaluate their algorithms and appli-

cations before deploying them on a real cloud environment. This work reuses

CloudSim [Calheiros 2011], a generalized and extensible simulation framework that

allows seamless modeling, simulation, and experimentation of emerging cloud com-

puting infrastructures and application services. CloudSim allows users to test the

performance of a newly developed application service in a controlled environment.

Moreover, CloudSim allows a user to model and simulate all the cloud infrastructure

resources. The main idea of this use case consists in de�ning an OCCI extension

named Simulation which extends the Infrastructure extension. The extension

de�nes two notions: a resource to simulaterepresents the resource to be simulated,

and a simulation resourcerepresents the resource which performs the simulation ac-

tivity. Two main artifacts are generated for this use case:Simulation Metamodel

and Simulation Designer . Once aSimulation con�guration model is de�ned, it

can be later veri�ed, and analyzed by the CloudSim tool. The simulation activ-

ity evaluates the con�guration using some metrics such as the percentage of used

86
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

memory, the percentage of used disk, and the average of the CPU utilization.

3.7.2.2 Cloud Mobile Robotics with OCCIware

This use case [Merle 2017] illustrates the convergence of cloud computing

and robotics platforms. It introduces Open Mobile Cloud Robotics Interface

(OMCRI), a Robot-as-a-Service vision based platform, which o�ers a uni�ed easy

access to remote heterogeneous mobile robots.OMCRIis a new OCCI extension for

mobile cloud robotics. This extension de�nes three kinds of heterogeneous robots:

Lego Mindstorm NXT 2, Turtlebot, and Parrot AR.Drone. It introduces a set of

mixins that customize the sensors and the actuators of each robot. AnOMCRIcon-

nector has been developed and deployed on theOCCIware Runtime . End users

can create OMCRI con�guration models to manage the mobile robots. They interact

with mobile robots by sending OCCI HTTP requests to theOCCIware Runtime .

These requests may be: creating a mobile robot resource, updating its attributes,

and executing an action of a mobile robot. In this work, an evaluation to measure

the performance, stability, and scalability of the OMCRI has been performed. Eval-

uation tests have shown that OMCRI overhead remains low and that OMCRI does

not add any latency. Figure 3.17 shows an OMCRI con�guration modeled using the

customized OMCRI Designer.

Figure 3.17: OMCRI Designer.

3.7.2.3 Docker Management with OCCIware

In this work [Paraiso 2016], authors present a model-driven management of

Docker [doc] containers based onOCCIware Studio . Docker is a technology

3.7. Evaluation of OCCIware Studio 87

used for developing, deploying and executing applications packaged into containers.

Docker lacks of deployability veri�cation tool for containers at design time. In addi-

tion, the synchronization between the designed containers and those deployed was

still a major challenge for the Docker technology. Finally, Docker did not provide

a mechanism to recon�gure the container resources at runtime. To resolve these

issues, authors refer to theOCCIware approach by proposing Docker Studio13, an

OCCI-based studio for the Docker technology. This work de�nes a Docker extension

using OCCIware Studio . To resolve the lack of veri�cation challenge in Docker,

this work reuses theConstraint concept added in theOCCIware Metamodel

to de�ne constraints speci�c to the Docker domain such as the not permitted bidi-

rectional or closed loop link between DockerContainers. By de�ning this kind of

information and validating it using the OCCIware Validator, the end user is now

sure that his/her designed con�guration is correct and it is ready to be deployed.

Then, a Docker Designer is generated and customized to provide a high-level abstrac-

tion for Docker containers that is used for reasoning and managing large container

deployments in the cloud. As shown in Figure 3.18, Docker Designer allows repre-

senting a human understandable description of some aspects of a running Docker

system. In addition, to resolve the synchronization issue, a speci�c generator for the

Docker technology has been provided in order to generate Docker artifacts (Docker

Command-Line Interface (CLI) commands, Docker Compose �le, Docker Swarm

con�gurations). These generated artifacts are used for online deployment. More-

over, to ensure the synchronization from the running system to the Docker model, a

Docker Connector has been developed. This connector updates the model elements

according to the running system changes. Finally, to ensure the resource manage-

ment at runtime, the developed connector implements the observer/listener design

pattern. Therefore, the connector relies on a noti�cation mechanism that reports

events when a model element has been changed.

3.7.2.4 Managing Cloud Applications with OCCIware

In this work [Korte 2018], authors focus on modeling cloud applications with OCCI.

OGF de�nes extensions that target the requirements of di�erent cloud service levels,

such as IaaS and PaaS. However, no concrete use cases and implementations have

been provided around the OCCI Platform extension. This behavior is due to sev-

eral issues. At �rst, the lifecycle for the Componentand Application resources as

de�ned in the OCCI Platform speci�cation is incomplete (P1 issue). Moreover, the

OGF provides two separate OCCI extensions for the Infrastructure and Platform do-

mains, but it misses to de�ne the connection between them (P2 issue). In addition,

13 Available here https://github.com/occiware/Docker-Studio

88
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.18: Docker Designer.

the current version of the OCCI speci�cation does not de�ne howComponentsand

Applications can be managed throughout their lifecycle and if and how additional

tooling, e.g., con�guration management tools, can be integrated (P3 issue). Finally,

the current version of the OCCI speci�cation lacks of any real-world use case for the

application of the Platform extension (P4 issue). To tackle these issues, authors de-

�ne the Model-Driven Con�guration Management of Cloud Applications with OCCI

(MoDMaCAO) framework. It addresses the �rst issue P1 by enhancing the OCCI

Platform extension via additional lifecycle State s and Actions . Furthermore, they

resolve the P2 issue by introducing a newLink kind to be able to connectComponents

of the OCCI Platform extension to Computeresources of the OCCI Infrastructure

extension. In addition, they de�ne a new OCCI extension to be able to model appli-

cation components that are managed with help of a con�guration management tool

(addressing the P3 issue). They demonstrate the feasibility of the de�ned extension

by modeling �ve di�erent distributed cloud applications (a Client/Server applica-

tion, a distributed MongoDB database, the popular LAMP web-application stack, a

distributed Cassandra database, and an Apache Spark cluster) and �nally provide a

framework for implementing model-driven con�guration management with di�erent

con�guration management tools such as Ansible and Roboconf, thereby addressing

P4. Figure 3.19 shows a LAMP con�guration modeled using the LAMP designer.

3.7. Evaluation of OCCIware Studio 89

Figure 3.19: LAMP Designer.

3.7.2.5 Modeling Google Cloud Platform with OCCIware

In this work [Challita 2018a], I de�ne a precise model, a.k.a an OCCI extension,

that describes GCP API. For the previous use cases, the entry point of each one is

designing an OCCI extension that describes a speci�c cloud domain. The particu-

larity of this work consists in analyzing of the textual documentation of the GCP

API in order to infer an OCCI extension for GCP. This extension represents a pre-

cise model for the GCP API. It will allow end users to graphically design their GCP

con�gurations and deploy them later. This use case is detailed next in Chapter 4.

3.7.3 Synthesis on the OCCIware Approach

The OCCIware approach has been successfully applied in di�erent use cases and

domains. Each one implements some required features in a cloud modeling frame-

work. Table 3.2 states an overview on the implementation of these usages in di�erent

use cases.

For the Infrastructure use case (Subsection 3.7.1.1), cloud architects have

taken advantage of theOCCIware Studio tools to design the structural and be-

havioral aspects of the extension, verify it according to the requirements speci�c

to the domain, and generate its documentation14. To deploy designed con�gura-

tions, Infrastructure use case implements the code generation strategy to pro-

14 Available here https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.
eclipse.cmf.occi.infrastructure/documentation

90
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Table 3.2: OCCIware Use Cases

In
fr

as
tr

uc
tu

re

S
im

ul
at

io
n

O
M

C
R

I

D
o

ck
er

M
oD

M
aC

A
O

G
C

P

C
ov

er
ag

e

Cloud Domain IaaS IaaS RaaS CaaS PaaS [IkPkS]aaS XaaS
Design X X X X X X X

Veri�cation X X X X X X X
Documentation X X X X X X X
Code generation X X X X

Model interpretation VMware
API

CloudSim
API

Robots
API

Docker
API

Ansible
API

GCP
API X

Deployment X X X X
Discovery X X

Management X X X X X
Monitoring X X X

duce CURL scripts from an OCCI con�guration. In addition, model interpretation

strategy is also implemented. Indeed, an OCCI extension for theVMwaretechnology

has been de�ned15. VMwareextension extends theInfrastructure extension. A

VMwareconnector has been developed. It supports the deployment of a designed

VMwarecon�guration in the cloud environment. In addition, it ensures the recon-

�guration of a running system at runtime (management) and the synchronization

between the design and the execution environment by a�ecting changes occurred in

the executing environment to the existing architecture (monitoring).

For the Cloud Simulation use case (Subsection 3.7.2.1), it illustrates several

usages of theOCCIware approach. At �rst, it represents the capability to create

a speci�c designer for theSimulation domain. In addition, it shows how we can

come back from theSimulation Studio to the OCCIware Studio by generating

an OCCI con�guration model from a Simulation con�guration model. Finally,

this work implements the model interpretation strategy by simulating an OCCI

con�guration model using the CloudSim API. This use case illustrates how we can

plug an external API, here CloudSim, into the OCCIware framework. In fact,

once a con�guration has been designed, it can be reused for several activities such

as simulation, deployment, and cost analysis.

OMCRI use case (Subsection 3.7.2.2) endorses the fact that we can manage XaaS

with the OCCIware approach, even mobile robots. OMCRI use case validates

the genericity of the OCCIware Runtime . In addition, the evaluation shows

that adopting the OCCIware approach into another domain, other than cloud

computing, does not cause a latency that damages the responsiveness of the system.

Docker use case (Subsection 3.7.2.3) is considered as the �rst OCCI-based studio

implemented with OCCIware technology. It illustrates our approach to consider

15 Available here https://github.com/occiware/Multi-Cloud-Studio/tree/master/plugins/
org.eclipse.cmf.occi.multicloud.vmware

3.7. Evaluation of OCCIware Studio 91

OCCIware as a factory to build cloud modeling frameworks (right part of Fig-

ure 3.5). Docker Studio represents a concrete use case which implements both

strategies, code generation, and model interpretation, to execute designed models

speci�c to a particular domain. The most important feature developed in the Docker

use case is the mapping of a running architecture from the execution environment to

the modeling framework. It allows end users to bene�t from theDocker Studio

while the con�guration was not initially designed using it.

MoDMaCAO use case (Subsection 3.7.2.4) validates the applicability of theOC-

CIware approach on di�erent cloud layers. This work is the result of a fruitful col-

laboration between theOCCIware team in Inria, Spirals, Fabian Korte and Jens

Grabowski from the University of Goettingen. MoDMaCAO can even be applied to

connect two layers in the cloud such as IaaS and PaaS. Model interpretation strat-

egy has been experimented by developing a connector which allows us to deploy and

manage di�erent designed cloud applications using Ansible [ans], a �exible con�g-

uration management system. Code generation strategy may also be experimented

by generating Ansible playbook artifacts from MoDMaCAO con�gurations.

GCP use case (Subsection 3.7.2.5) represents the �rst use case that applies the

OCCIware approach on a big cloud provider, a.k.a GCP. I present the GCP use

case in the next chapter. GCP use case is a major part of my �rst contribution

in this thesis. In this work I target to integrate both code generation and model

interpretation strategies. With the code generation approach, they aim to use GCP

con�gurations to generate GCP artifacts, such as JSON �les that contain the needed

structured information for creating a VM for example. In addition, this use case

aims to experiment the model interpretation approach, by de�ning the business logic

of GCP connector which de�nes the relationship between GCP con�gurations and

their executing environment.

To summarize, the OCCIware approach provides a software product line,

named OCCIware Studio Product Line as shown in Figure 3.20. OCCI-

ware Studio is considered as a factory to create other studios. Each one targets

a particular cloud domain. The di�erent generated studios share a common base,

which is OCCIware Metamodel . Therefore, composing the di�erent generated

studios can be an interesting perspective to create anInternet of Everything (IoE)

Studio that allows us to compose heterogeneous concepts and domains in the same

modeling framework.

92
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.20: OCCIware Studio Product Line.

3.8 Summary

This chapter presented OCCIware , the �rst model-driven approach for OCCI.

The OCCIware approach provides two main components:OCCIware Studio

and OCCIware Runtime . OCCIware Studio is a model-driven tool chain to

design OCCI artifacts. It is built on the top of a metamodel, namedOCCIware

Metamodel , which de�nes the precise semantics of OCCI in Ecore and OCL. Our

metamodel can be seen as a DSML to de�ne and exchange OCCI extensions and

con�gurations between end users and resource providers.OCCIware Runtime is

a generic OCCI-compliant runtime environment.

The OCCIware approach is proposed as a framework to manage XaaS with

OCCI. Moreover, the OCCIware approach is considered as a factory of cloud

domain-speci�c modeling languages and studios due to its capability to generate

a complete framework to manage resources speci�c to a particular cloud domain.

The OCCIware approach has been validated via several use cases, which target

di�erent domains (IaaS, PaaS, RaaS and CaaS). Each use case illustrates a speci�c

usage of theOCCIware approach and demonstrates its genericity and extensibility.

In the next part of this dissertation, I present my contributions that are based

on the OCCIware approach. In the next chapter, I present my approach for repre-

senting in an enhanced and automated way the concrete set of cloud concepts and

the behaviour of cloud operations.

Part IV

Contributions

In the end of Part II, I discussed the need of automatically building cloud models and
formally reasoning over them. In this part, I detail my solution to make it reality.

Chapter 4

Inferring Precise Models from

Cloud APIs Textual

Documentations

This chapter is an extended version of our paper �A Precise Model for
Google Cloud Platfom� [Challita 2018a] published in the 6th IEEE

International Conference on Cloud Engineering (IC2E).

Contents
4.1 Inferring Precise Cloud Models 97

4.1.1 Approach Overview . 98

4.1.2 Related Work . 100

4.2 GCP Use Case: Motivation & Drawbacks 101

4.3 GCP Model Extraction Approach 107

4.3.1 GCP Snapshot . 108

4.3.2 GCP Crawler . 108

4.3.3 GCP Model . 108

4.3.4 GCP Re�nement . 112

4.3.5 Challenges . 115

4.4 Evaluation of GCP Model 116

4.4.1 Qualitative Evaluation . 116

4.4.2 Quantitative Evaluation . 119

4.5 Summary . 120

Cloud documentations are the �rst agreement between cloud developers and

cloud providers on how exactly cloud APIs should operate. Even with doc-

umentations, cloud developers tend to build cloud con�gurations or send HTTP

requests that are inconsistent with the legal use of the cloud API. This upsetting

situation is due to the impreciseness of the cloud textual documentations and to the

96
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

lack of veri�cation process that ensures the correctness of cloud con�gurations before

their deployment. Cloud models play an important role to capture the expectations

of a cloud API and to a priori validate the correctness of its cloud con�gurations.

These models are manually designed so far, which is prohibitively labor intensive,

time consuming and error-prone. To address this issue, I propose a novel approach

to infer model-driven speci�cations from natural language text of cloud API docu-

mentations. My approach is applied on a concrete cloud provider, GCP, which is

today one of the most important and growing provider in the cloud market. GCP

provides developers several products to build a range of programs from simple web-

sites to complex applications. Although it was established only �ve years ago, GCP

has gained notable expansion due its suite of public cloud services that it based on

a huge, solid infrastructure. Actually, GCP o�ers hosting services on the same sup-

porting infrastructure that Google uses internally for end-user products like Google

Search and YouTube. This outstanding reliability results in GCP being adopted by

eminent organizations such as Airbus, Coca-Cola, HTC, Spotify, etc. In addition,

the number of GCP partners has also increased substantially, most notably Equinix,

Intel and Red Hat.

To use GCP services, expert developers refer at �rst to the GCP API docu-

mentation provided at GCP website. By going through the GCP documentation,

I realize that it contains wealthy information about GCP services and operations,

such as the semantics of each attribute and the behaviour of each operation. How-

ever, GCP documentation is described through HTML pages at its website1 and

is written in natural language, a.k.a. English prose, which results in human errors

and/or semantic confusions. Also, the current GCP documentation lacks of visual

support, hence the developer will spend considerable time before �guring out the

links between GCP resources. To avoid confusion and misunderstandings, the cloud

developers obviously need a precise speci�cation of the knowledge and activities in

GCP.

After presenting the general approach we promote to obtain formal cloud mod-

els, this chapter presents a precise model for GCP. It describes GCP resources and

operations, reasons about this API and provides corrections to its current draw-

backs, such asInformal Heterogeneous Documentation, Imprecise Types, Implicit

Attribute Metadata, Hidden Links, Redundancyand Lack of Visual Support that I

detail in Section 4.2. This is a work of reverse engineering [Rugaber 2004], which

is the process of extracting knowledge from a man-made documentation and re-

producing it based on the extracted information. In order to formally encode the

GCP API without ambiguity, I choose to automatically infer a GCP Model as the

1https://cloud.google.com

4.1. Inferring Precise Cloud Models 97

target documentation format. In fact, my approach leverages the use of MDE to

provide a precise and homogeneous speci�cation, and reduce the cost of develop-

ing complex systems. MDE allows to rise in abstraction from the implementation

level to the model level, and to provide a graphical output and a formal veri�cation

of GCP structure and operations. My GCP Model conforms to the OCCIware

Metamodel presented in Chapter 3.

The contributions of this chapter can be summarized in three categories:

1. an automated approach to infer models from textual documentations,

2. a concrete use case of our approach: a preciseGCP Model that consists in

a formal speci�cation of GCP. This model, automatically built, also provides

corrections for the drawbacks that I identi�ed in GCP documentation,

3. an analysis of GCP documentation because it is as important as analyzing the

API itself. This is done thanks to my model which is a clearer representation

of GCP compared to the original one and hence easier to reason over it, and,

4. a validation of the preciseness of my GCP model.

This chapter is structured as follows. Section 4.1 argues for the need to analyze

cloud textual documentations and proposes a protocol to automatically infer models

from them. Section 4.2 identi�es six general drawbacks of GCP documentation that

motivate this work. Next, Section 4.3 describes my model-driven approach for a

better description of GCP API and gives an overview of some background concepts

I use in my GCP Model . Section 4.4 presents and discusses my results, which

validate my approach. Finally, Section 4.5 concludes the chapter with future work.

4.1 Inferring Precise Cloud Models

Modeling cloud APIs is an important way for capturing their requirements and

succeeding a thorough understanding of their behavior. Modeling allows the cloud

developer to keep the cloud concepts clean from the details of implementation classes

and the HTTP requests. Moreover, modeling by using MDE principles allows the

developer to generate from the cloud model the corresponding Java implementation

classes. The model can also be used to generate di�erent outputs,e.g., HTML

pages, or it can be interpreted at runtime by software. However, modeling the cloud

requires knowledge in modeling techniques which is not necessarily available among

cloud experts. For this reason, modeling experts are employed to formalize models

within an iterative way in collaboration with cloud experts. This procedure involves

long meetings due to ambiguities or misunderstandings among the involved actors,

98
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

so the acquisition of cloud models consumes a lot of time and cannot follow-up with

the extensive documentations provided by the cloud providers. These documen-

tations are the most relevant source of information for the construction of cloud

models. Such textual documents can be stored in a structured way like HTML

pages, JSON, YAML or XML �les or in an unstructured way like reports or man-

uals. However, the textual documentations may contain syntactical or semantic

errors that distort the real semantics of cloud APIs and that require analysis and

recti�cations before gathering the information. Therefore, the acquisition process

of cloud models remains relatively error-prone and costly.

To address this challenge, I propose to automatically provide a precise model of

the cloud API from the documentation supplied by the cloud provider. This way,

the cloud developer can easily access the model-based documentation of the cloud

that he/she uses. Model-based documentations allow the developer to thoroughly

understand the insights of the cloud API. I combined both web crawling andNatural

Language Processing(NLP) in order to correctly infer models from the cloud docu-

mentations. The global approach is summarized as follows. First, using a dedicated

web crawler, I extract information that allows me to build a model. Web crawlers are

bots that visit the internet to extract information from web pages. Second, I apply

NLP [Chowdhury 2003] with rules to extract properties, semantics and constraints

on the API. NLP is a branch of the arti�cial intelligence �eld that automates the

study and extraction of useful knowledge from texts written by humans, in order

to better interface with computers. In this context, programs implementing NLP

take as input a text �ow and exploit information to achieve several tasks such as re-

lationship extraction, automatic summarization, terminology extraction, etc. NLP

has two main approaches: rule-based and statistical. The former refers to the idea of

using hand-coded set of rules to exploit information. For instance, to recognize email

addresses, IP addresses, I use speci�c regular expressions. This approach is easy to

implement and suitable for speci�c cases. The latter relies on machine learning to

achieve more complex tasks. My approach exploited the rule-based NLP which suc-

cessfully achieved knowledge extraction. My web crawler takes into assumption the

structure of the provided documentation, whether it takes the form of HTML pages,

JSON �les or others. Since most of cloud documentations are provided as HTML

pages at the provider's website, I speci�cally propose in this chapter to automate

the extraction of precise models from HTML cloud documentations.

4.1.1 Approach Overview

This section discusses the design of our approach, which is represented in Figure 4.1,

and also outlines the foundations behind it, namely web crawling, cloud modeling

4.1. Inferring Precise Cloud Models 99

and NLP. First, my proposed system takes a documentation as input, and then

uses the documentationSpeci�c Parser, Model Generator, Text Analysis Engine

and Model Validator to correctly generate the model of the cloud API.

Figure 4.1: My Model Extraction Approach Overview.

ˆ Speci�c Parser: First, I connect to the main page of the cloud documentation

and the speci�c parser takes the documentation in a structured HTML format

as input and extracts resources from the HTML tags. More speci�cally, using

an HTML parser, I retrieve the table or the list containing the cloud resources.

In fact, the retrieval of information from HTML pages requires recognition

rules that are speci�c to the documentation format. Sometimes, the informa-

tion is structured in tables with speci�c IDs. Other documentations could be

organized within lists and therefore crawling must be adapted. Afterwards,

for each resource, the parser retrieves the resource elements such as its name,

description, list of actions and list of attributes. For each attribute, I retrieve

its properties like its name, description and type.

ˆ Model Generator: I de�ne exhaustive and systematic mapping between the

parsed cloud API concepts and the used cloud metamodel. For example,

for each row of the documentation HTML table (<tr> </tr>) , I add a new

resource instance to the target cloud model. This resource instantiates the

corresponding concept of the cloud metamodel, in terms of the mapping rules I

de�ned. For each cell(<td> </td>) that contains the de�nition of an element

of this resource, I add a new attribute instance to the target cloud model.

ˆ Text Analysis Engine: Later on, the text analysis engine performs some nat-

ural language post-processing actions. I mainly de�ne a set of rules on the

description of the attributes to detect implicit properties that are not clearly

stated in speci�c cells and to elucidate domain-speci�c metadata. I also apply

on the description a set of rules based on keywords of each attribute to re�ne

its type if necessary. Sometimes, the type and the description of an attribute

do not match, and thus the cloud developer may de�ne incorrect types in

100
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

their HTTP requests. I also use NLP to generate a tree structure to identify

relations between concepts.

ˆ Model Validator: Finally, the cloud model I generated is passed to the model

validator to ensure that it is consistent, conforms to the metamodel and be-

haves as expected. At each time an error is detected, I iterate on the model to

�x it by de�ning additional rules or correcting the existing ones. Our approach

does not provide automated correction mechanisms for the errors raised at the

validation, the developer has to correct errors by himself/herself.

This contribution is original and striking, and I estimate that it will leave an

impact in the cloud domain. It might seem simple but it involves many complicated

details. In the remaining of this chapter, I apply my model inferring approach to a

real and signi�cant cloud provider and I cover the whole modeling of his documen-

tation. I concretely exploit this idea by automatically inferring from GCP textual

documentation, a precise model that conforms to theOCCIware Metamodel .

This use case might be applied to other source platforms, like Amazon, towards

other target platforms, like CloudML. I chose GCP because it is one of the major

cloud providers with an informal documentation and OCCIware because it consists

in the context of this thesis and the OCCIware Metamodel is extensible in a

way to support all kinds of cloud resources.

4.1.2 Related Work

The literature of model-driven approaches for the cloud shows that researchers do

not discuss the details of how they obtain their models for the cloud. This is due

to cloud models being manually constructed. Even though researchers might have

already thought about automating the process of designing cloud models, this idea

has not been put into practice. To the best of our knowledge, we provide the �rst

work that investigates and formalizes a cloud API documentation. In [Petrillo 2016],

Petrillo et al. have focused on studying three di�erent cloud APIs and proposed a

catalog of seventy-three best practices for designing REST APIs. In contrast to

our work, this work is limited to analyzing the documentations of these APIs and

does not propose any corrections. Two recent works were interested in studying

REST APIs in general. [Haupt 2017] provides a framework to analyze the struc-

ture of REST APIs to study their structural characteristics, based on their Swag-

ger documentations. [Cao 2017] presents AutoREST, an approach and a proto-

type to automatically infer an OpenAPI speci�cation from a REST API HTML

documentation. Our work can be seen as a combination of these two previous

works [Haupt 2017, Cao 2017], since we infer a rigorous model-driven speci�cation

4.2. GCP Use Case: Motivation & Drawbacks 101

from GCP HTML documentation and we provide some analysis of its corresponding

API. However, in contrast to these two works, our work is speci�cally applied on

a cloud REST API and proposes corrections to the detected de�cits of its docu-

mentation. Moreover, given that it is an important but very challenging problem,

analyzing natural language documents from di�erent �elds has been studied by

many previous works. In [Zhai 2016], Zhai et al. apply NLP techniques to con-

struct models from Javadocs in natural language. These models allow one to reason

about library behaviour and were implemented to e�ectively model 326 Java API

functions. [Pandita 2012] presents an approach for inferring formal speci�cations

from API documents targeted towards code contract generation. [Zhong 2009] de-

velops an API usage mining framework and its supporting tool calledMining API

usage Pattern from Open source repositories(MAPO) for mining API usage pat-

terns automatically. [Sinha 2010] proposes abstract models of quality use cases by

inspecting information in use case text.

4.2 GCP Use Case: Motivation & Drawbacks

The object of my study is the GCP documentation. GCP is a proprietary cloud

platform that consists of a set of physical assets (e.g., computers and hard disk

drives) and virtual resources (e.g., virtual machines, a.k.a. VMs) hosted in Google's

data centers around the globe. I especially target this API because it belongs to

a well-known cloud provider and because I believe it can be represented within a

better formal speci�cation.

GCP documentation is available in the form of HTML pages online. The URL2

is the starting point of my study and the base for building my GCP Model . This

page exhaustively lists the resources supported by the deployment manager, and

provides a hyperlink to each of these resources. Normally, the developer will use

the deployment manager to deploy his/her applications. The deployment manager

will then provision the required resources. Therefore, I adopt this page to study the

documentation of each GCP resource that could be provisioned by the developer.

Through my study of GCP, I have identi�ed six main conceptual drawbacks/lim-

itations on GCP documentation, which are detailed below.

Informal heterogeneous documentation. Enforcing compliance to docu-

mentation guidelines requires specialized training and a strongly managed documen-

tation process. However, often due to aggressive development schedules, developers

2https://cloud.google.com/deployment-manager/docs/configuration/
supported-resource-types

102
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

neglect these extensive processes and end up writing documentations in an ad-hoc

manner with some little guidance. This results in poor quality documentations that

are rarely �t for any downstream software activities.

By going through the HTML pages of GCP documentation, it was not long

before I realized that it has two di�erent formats to describe the attributes of each

resource (cf. Figure 4.2). This is an issue because it may disturb and upset the

reader, i.e., the cloud developer.

Figure 4.2: Di�erent Documentation Formats.

Imprecise types. GCP documentation is represented by a huge number of

descriptive tables written in natural language. Thus it is a syntactically and seman-

tically error-prone documentation; it may contain human-errors and its static and

dynamic semantics are not well-formed,i.e., does not describe without ambiguity

the API and its behavior. In fact, some of the written sentences are imprecise and

can be interpreted in various di�erent ways, which can lead to confusions and mis-

understandings when the user wants to provision cloud resources from GCP API.

For each resource attribute, I checked the corresponding type and description to

assess whether the information is accurate. Figure 4.3 shows that the current GCP

documentation states explicitly that string types are supported. But later on, fur-

ther details in the description explain how to set such strings. For example, the

e�ective type of the attribute is a URL in (1), an email addressin (2), an enumer-

4.2. GCP Use Case: Motivation & Drawbacks 103

ation in (3), and an array in (4). The cloud developer may de�ne non-valid string

formats for his/her application. The bugs will be detected during the last steps of

the provisioning process and �xing them becomes a tricky and time consuming task.

Figure 4.3: Imprecise String Types.

In addition, Figure 4.4 shows that GCP documentation employs several ways

to denote an enumeration type. Sometimes, the enumeration literals are listed in

the description of the attribute, and sometimes they are retrievable from another

HTML page.

104
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

Figure 4.4: Informal Enumeration Types.

As for Figure 4.5, it represents the documentation of thekind attribute in four

di�erent resources. I notice that (4) shows a formatting error, which induces to the

fact that GCP documentation is written by hand.

Figure 4.5: Error in Describing the �Kind� Attribute.

Therefore, GCP documentation lacks of a precise and rigorous de�nition of its

4.2. GCP Use Case: Motivation & Drawbacks 105

data types.

Implicit attribute metadata. I notice that GCP documentation con-

tains implicit information in the attribute description. For example, it

contains some information that speci�es if an attribute:

ˆ is optional or required (cf. Figure 4.6),

Figure 4.6: �Optional/Required� Attribute Constraint.

ˆ is mutable or immutable (cf. Figure 4.7),

Figure 4.7: �Immutable Attribute� Constraint.

ˆ has a default value (cf. Figure 4.8).

Figure 4.8: �Default Value� Constraint.

106
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

These constraints are only explained in the description of each attribute, but

lacks of any veri�cation process. The developer will not be able to ensure, before

the deployment phase, that his/her code meets these constraints.

Hidden links. A link is the relationship between two resource instances: a

source and a target. These links are implicit in GCP documentation but they are

important for proper organization of GCP resources. They are represented by a

nested hierarchy, where a resource is encompassed by another resource and where

an attribute de�nes the link between these resources, either directly or indirectly.

Figure 4.9 shows an example of a deducible link, a.k.a.networkInterface because

the description of this attribute is a URL pointing to the target resource, a.k.a.

network . Therefore, I can say that networkInterface is a link that connects an

instance to a network . If graphical support exists, this link would de�nitely be

more explicit.

Figure 4.9: Hidden Link betweenInstance and Network.

Redundancy. In addition to this, I observe from my study that GCP doc-

umentation is redundant. According to my observation, it contains a set of

attributes and actions in common, i.e., with the same attribute name and type, and

the same action name and type respectively. Among this set, I especially notice a

redundancy of the attributes name, id , kind , selfLink , description , etc., as well

as of the actionsget , list , delete , insert , etc.

Lack of visual support. Finally, the information in GCP documentation

is only descriptive, which involves a huge time to be properly understood and

4.3. GCP Model Extraction Approach 107

analyzed. In contrast to textual descriptions, visual diagrams help to avoid wastage

of time because it easily highlights in short but catchy view the concepts of the

API. Consequently, logical sequence and comparative analysis can be undertaken to

enable quick understanding and attention. Cloud developers can view the graphs at

a glance to understand the documentation very quickly, which is more complicated

through descriptive format.

Overall, these six drawbacks above are calling for more analysis of GCP docu-

mentation and for corrections. Once the development has begun, corrections can be

exponentially time consuming and expensive to amend. Therefore, the cloud devel-

oper �rstly needs a clear detailed speci�cation, with no ambiguous information, in

order to:

1. make the development faster and meet expectations of the cloud API,

2. avoid the di�erent interpretations of a functionality and minimize assumptions,

and,

3. help the developer to move along more smoothly with the API updates for

maintainability purpose.

4.3 GCP Model Extraction Approach

Figure 4.10: GCP Model Extraction Approach Overview.

This section presents my approach that takes advantage of MDE techniques to

precisely, textually and graphically, describe GCP API. In fact, MDE is emerging

108
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

and emphasizing on the use of models and model transformations to raise the level

of abstraction and automation in the software development.

To understand the concepts that rely under the architecture of my approach, I

begin by giving an illustration of it in Figure 4.10. This architecture is composed

of three main parts: a Snapshot of GCP HTML pages, a GCP Crawler and a

GCP Model increased byModel Transformations for GCP Refinement . Each

of these four parts is detailed in the following.

4.3.1 GCP Snapshot

Google is the master of its cloud API and its documentation, which means that

GCP engineers could update/correct GCP documentation, whenever they are re-

quested to or they feel the urge to. But since continuously following up with GCP

documentation is crippling and costly, I locally save the HTML pages of GCP doc-

umentation in order to have a snapshot of GCP API at the moment of crawling its

documentation. This snapshot is built on July 27, 2017.

4.3.2 GCP Crawler

In order to study and understand GCP documentation, the main step of my ap-

proach is to extract all GCP resources, their attributes and actions and to save

them in a format that is very simple and easily readable by a human. In this sense,

extracting knowledge by hand from this documentation is not reliable nor repre-

sentative of reality; if the documentation changes, extracted knowledge should also

evolve through an automated process. Therefore, I have set up an automatic crawler

to infer my GCP speci�cation from the natural language documentation.

4.3.3 GCP Model

For a better description of the GCP resources and for reasoning over them, I pro-

pose to represent the knowledge I extracted into a model that formally speci�es

these resources, while providing a graphical concrete syntax and processing with

transformations. This addresses the drawbacks of GCP documentation identi�ed in

Section 4.2. Choosing the adequate metamodel when developing a model is crucial

for its expressiveness [Fowler 2010]. In this context, a language tailored for cloud

computing domain will bring us the power to easily and �nely specify and validate

GCP API. Therefore, I choose to adopt theOCCIware Metamodel because it is a

precise metamodel dedicated to describe any kind of cloud resources. As I detailed

in Chapter 3, the OCCIware Metamodel is encoded in EMF [Steinberg 2008]

and it de�nes its own data type classi�cation system. Therefore, it easily allows

4.3. GCP Model Extraction Approach 109

Figure 4.11: Metamodeling Stack for GCP Model.

to de�ne primitive types such as booleans, numerics and strings, andcomplex types

such as arrays, enumerations and records. In addition, thanks to itsExtension

concept, OCCIware Metamodel allows us to de�ne a set of resource instances

targeting a concrete cloud computing domain such as GCP.

In my approach, I exploit these two advantages and I build aGCP Model ,

which is an expressive model and an appropriate abstraction of the GCP API.

GCP Model conforms to OCCIware Metamodel , which conforms to Ecore

Metamodel , as illustrated in Figure 4.11.

To go further, I present my approach with an algorithm, as illustrated in Fig-

ure 4.12. First, using the OCCI API, I create a model,i.e., an OCCI extension (cf.

line 1). Then, I connect to the GCP documentation using the jsoup library that

provides an API to parse HTML pages from a URL (cf. line 2). Second, for each

resource in the HTML page, I apply the following procedure (cf. line 3): I connect

to the dedicated documentation page of the resource (cf. line 4). I create an OCCI

resource (cf. line 5) and I use the information inside the HTML page to set the

correct values (cf. line 6). Third, for each attribute of the resource detailed in the

HTML page (cf. line 7), I extract information from the documentation and add

them to the OCCI attribute (cf. line 9). The newly created attribute is added to

the set of attributes of the OCCI resource (cf. line 10). Eventually, I add the new

OCCI resource to the model under construction and so on (cf. line 11).

110
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

Figure 4.12: The Algorithm of the Model Extraction Approach.

Figure 4.13: A Subset ofOCCIware Metamodel .

In order to ease the understanding of this work, I brie�y present in the following

the main concepts ofOCCIware Metamodel used to design myGCP Model

(cf. Figure 4.13). For more details on theOCCIware Metamodel , readers can

refer to Chapter 3.

ˆ Extension represents concrete cloud computing domains,e.g., IaaS, PaaS,

SaaS. In my work,Extension represents theGCP Model . It contains several

kinds and data types.

ˆ Kind represents a GCP entity type, such asversion , firewall , image,

instance , network , cluster , database, etc. EachKind has a set of attributes

and actions. A Kind can have as parent anotherResource or Link . A Link is

4.3. GCP Model Extraction Approach 111

a relation between twoResource instances. For example,networkInterface

connects avirtual machine instance to a network instance.

ˆ Attribute represents a property of a GCP resource or a link, such as itsid ,

name, description , selfLink , timestamp, etc. An Attribute instance has a

name, a description, may have a default value and may be mutable or required.

ˆ Action represents an operation that can be executed on GCP API,i.e., on its

Kind instances, such ascreate an instance,get a database,delete a cluster,

etc.

ˆ BooleanType represents the Boolean type. For example, thevm attribute

expects a boolean value to indicate whether to deploy a version on a virtual

machine or in a container and theautoDelete attribute to denote whether

the disk will be auto-deleted when the instance is deleted.

ˆ NumericTyperepresents numeric types such asByte, Double, Float , Integer ,

Long, Short , etc., as well as their minimal and maximal values. For example,

the currentDiskSize attribute, which is the current disk usage of a Cloud

SQL resource, expects a long type value and thetargetUtilization attribute,

which is the target CPU utilization to maintain when scaling, expects a �oat

type value between 0 and 1.

ˆ StringType represents string types, as well as their regular expressions if they

exist. A regular expression is used to de�ne the speci�c textual syntax for

representing patterns that matching text needs to be conform to. For example,

the networkIP attribute, which is an IPv4 internal network address to assign

to a network interface of an instance resource, expects a string type value

with an appropriate regular expression to check for an IP address.

ˆ ArrayType represents a complex DataType to de�ne lists and their types. For

example, the serverNames attribute, which is list of server names that are

delegated to a managed zone, is an array of strings.

ˆ EnumerationType represents a complex DataType to de�ne enumerations.

Each EnumerationType has at least one literal (EnumerationLiteral). For

example, thestatus attribute of an image resource is an enumeration,i.e., it

can take a value among its enumeration literals only.

ˆ EnumerationLiteral represents a value that an attribute can have. For ex-

ample, the status of animage instance can beFailed , Pending or Ready.

112
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

ˆ RecordType represents a complex DataType to de�ne structures. A

RecordTypeinstance appears as a row in the database table. It contains some

data about one particular attribute. For example, in GCP, the settings at-

tribute which de�nes the user settings of a Cloud SQL resource is a record.

Each RecordTypehas at least oneRecordField .

ˆ RecordField represents a �eld of a record. For example,pricingPlan , which

is the pricing plan of a resource, andreplicationType , which is the replication

type of a resource, are record �elds of thesettings attribute and expect an

enumeration type value.

4.3.4 GCP Re�nement

Thanks to OCCIware Metamodel , my GCP Model provides a homogeneous

speci�cation language for GCP, which tackles theInformal Heterogeneous Doc-

umentation drawback, identi�ed in Section 4.2. It also carries out �ve in-place

Model Transformations that propose corrections to face and address the other draw-

backs discussed in Section 4.2. They aim for several objectives, especiallyType

Re�nement, Implicit Attribute Metadata Detection , Link Identi�cation , Redundancy

Removal and Model Visualization. I highlight in the following these correcting

and/or enhancing transformations.

ˆ Type Re�nement is done by adopting the data type system proposed byOC-

CIware Metamodel , de�ning regular expressions, and using the EMF val-

idator to check the type constraints that are attached to the attributes. For

instance, among the constraints de�ned for theGCP Model , one constraint

states that if the type of an attribute in the documentation is string and

the description explains that this is an email address, myGCP Model will

apply the email validation constraint for re�nement purpose. This kind of

information is translated into a StringType containing the following regular

expression:

^[A� Z0� 9._%+ �]+@[A� Z0� 9. �]+\\. [A � Z] {2 ,6 } $

ˆ Implicit Attribute Metadata Detection to explicitly store information into ad-

ditional attributes de�ned in the Attribute concept of myGCP Model . To

do so, I apply NLP which has made great progress and has proven to be e�-

cient in acquiring the semantics of sentences in API documentation. Among

NLP techniques, I use theWord Tagging/Part-of-Speech (PoS) [Klein 2003]

one. It consists in marking up a word in a text as corresponding to a partic-

ular part of speech, based on both its de�nition and its context. For this, I

4.3. GCP Model Extraction Approach 113

declare my pre-de�ned tags for some GCP speci�c attribute properties. Some

pre-de�ned tags are as follows:

� mutable = true if [Input-Only].

� mutable = false if [Output-only]/read only.

� required = true if [Required].

� required = false if [Optional].

ˆ Link Identi�cation to deduce logical connections between resources. There-

fore, I also refer to the idea of applying NLP techniques. This time, I use

Syntactic Parsing [Jurafsky 2000] to acquire the semantics of sentences in

GCP documentation. The parse tree in Figure 4.14 describes the sequential

patterns that allow us to identify the semantics of a link between two

resources, namely between aninstance and a network in this example. The

syntactic parsing is achieved by using Stanford parser [sta], which is a library

based on neural network.

Figure 4.14: Syntactic Parse Tree for Identifying a Hidden Link in a Sentence.

ˆ Redundancy Removalin order to o�er the cloud developers more compact,

intuitive and explicit representation of GCP resources and links. To do so,

I propose to have someabstractKind instances. An abstractKind is an

abstract class from which inherit a group of Kind instances. It allows to

factorize their common attributes and actions and to reuse them. This is

known as Formal Concept Analysis (FCA) technique [Priss 2006], which is a

conceptual clustering technique mainly used for producing abstract concepts

and deriving implicit relationships between objects described through a set of

attributes.

114
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

ˆ Model Visualization for an easier analysis of the API, even if the model is

not as sophisticated as the original documentation. In fact, when we visualize

information, we understand, retain and interpret them better and quicker be-

cause the insights become obvious [Moody 2009]. Unfortunately, as discussed

in Section 4.2 (lack of visual support), GCP does not currently provide such

a visual model. I provide hence, usingOCCIware tooling, a model visual-

ization of GCP documentation. Figure 4.15 shows the graphical output of a

subset of GCP Model . This diagram also shows an example ofRedundancy

Removal, where I introduce an abstractKind instance and I factorize the at-

tributes and actions of two versions of the same kind. Further information

regarding the abstractKind instance is given in Section 4.4.1.2.

Figure 4.15: A Subset of GCP Extension Diagram.

I have implemented a prototype of my approach in Java. I used jsoup library3

for building the Snapshot of GCP HTML pages and GCP Crawler , and the

Eclipse-basedOCCIware Studio for building GCP Model . Readers can �nd

the snapshot of GCP documentation built on July 27, 2017, as well as my precise

GCP Model and its code here4.

Once my model is built, GCP con�gurations, which representGCP Instances

that conform to GCP Model , can be designed. Then, I aim to elaborate use cases
3https://jsoup.org
4https://github.com/occiware/GCP-Model

4.3. GCP Model Extraction Approach 115

for my model-based GCP con�gurations as a way of checking them. To do so, I

identify the code generationand model interpretation techniques which are two of

the advantages of model-driven engineering [Schmidt 2006]. First, with thecode

generation approach, I aim to useGCP Instances to generate artifacts, such as:

ˆ JSON �les that contain the needed structured information for creating a VM

for example, through GCP deployment manager,

ˆ CURL scripts that allow us to create a VM for example via the POST action,

ˆ Shell scripts for GCP CLI, and,

ˆ Java or Python code for GCP SDKs to aid in identifying bugs prior to runtime.

Second, I aim to experiment themodel interpretation approach, by de�ning

the business logic ofGCP Connector . The latter de�nes the relationship be-

tween GCP Instances and their executing environment. For this, the connector

provides tools that are not only used to generate the necessary artifacts correspond-

ing to the behavior of GCP actions (create, get, insert, list, patch, update, etc.),

but also to e�ciently make online updates for the GCP Instances elements ac-

cording to the changes in the executing environment and to the models@run.time

approach [Bencomo 2014]. The generated artifacts will be seamlessly executed in

the executing environment thanks to MDE principles [Paraiso 2016].

This validation process is entitled �validation by test�, because it aims at verifying

whether GCP Instances can be executed and updated in the real world. By

validating a broad spectrum of GCP Instances , I validate the e�ciency of my

GCP Model .

4.3.5 Challenges

This contribution of inferring models from APIs might seem simple but it encom-

passes many challenges like the fact of the documentation is spread over pages.

Therefore, one must deeply explore the documentation to completely de�ne all the

required elements. For example, when an attribute is an enumeration, we must de-

�ne the corresponding OCCIware EnumerationType before adding the attribute

to the correspondentOCCIware kind. However, as we can see in Figure 4.16, the

de�nition of this enumeration is in another HTML page, and thus the mining of this

page is mandatory and preliminary to designing the model.

Another challenge of this contribution is the e�ort and time to toughly analyze

the structure of the documentation, which of course contains format inconsistencies

making the mining very complicated. This task is necessary in order to design a

116
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

Figure 4.16: Recursive Parsing Example.

correct and resilient crawler. Also, the metadatas are described in natural language

in the description, and do not have speci�c placeholder. So the extraction of this

knowledge requires to carefully design the rules that will detect these metadata and

put them forward.

Finally, the need to manually check the validity of the extracted model is also a

challenge. So far, it is complicated to set up an automatic veri�cation support, and

I manually verify the automatically extracted values. For example, if blank spaces

were found, I iterate and re�ne the rules of knowledge extraction.

4.4 Evaluation of GCP Model

Thanks to my approach, I perform a qualitative analysis of the GCP documentation

and I check if it satis�es three properties: the uniformity , the concisenessand the

consistency & comprehensiveness. Then, to evaluate the e�ectiveness of my model,

I report quantitative results that validate the preciseness of myGCP Model .

4.4.1 Qualitative Evaluation

4.4.1.1 Uniformity

GCP documentation is not uniform , i.e., it is not written by following the

same documentation guideline. In fact, the crawling process has been sophisticated

and I ended up implementing two parsing �lters to capture the two di�erent formats

of the HTML pages (cf. Section 4.2 (heterogeneous documentation format)). For

each Kind instance, I noted the �lter I used to parse the attributes and the one I

used for the actions. This information allows us to reconstruct and understand the

map of the GCP development teams. I arrive at the following hypothesis:GCP

documentation is developed by two clusters of development teams , as

shown in Figure 4.17.

In addition, this classi�cation helps us to predict/learn what teams collaborate

together, and to identify the tight links between the GCP development teams and

the GCP products. Since the clusters ofKind instances are completely disjoint, I

conclude that the two GCP development teams are completely separated .

4.4. Evaluation of GCP Model 117

Figure 4.17: Two Clusters of Development Teams.

Table 4.1: Redundant Attributes and Actions among Kinds.
Before Abstraction After Abstraction

Redundant
Attributes

#
of occurrences

%
of redundancy

#
of occurrences

%
of redundancy

name 92 64,79% 26 18,31%
id 80 56,34% 14 9,86%
selfLink 79 55,63% 13 9,15%
kind 79 55,63% 13 9,15%
description 75 52,82% 9 6,34%
Average 57,04% 10,56%
Redundant

Actions
#

of occurrences
%

of redundancy
#

of occurrences
%

of redundancy
get 142 100,00% 76 53,52%
list 142 100,00% 76 53,52%
delete 140 98,59% 74 52,11%
insert 76 53,52% 10 7,04%
Average 88,02% 41,54%

4.4.1.2 Conciseness

A cloud API documentation should be concise,i.e., describing all the concepts

clearly but brie�y and without redundancy. However, this is not the case for GCP

documentation. As depicted in Table 4.1, I prove that GCP documentation contains

several redundant attributes and actions. Then I show how my approach minimizes

the redundancy by introducing the abstractKind concept. Column �Before Ab-

straction� encompasses the # of occurrences and the % of redundancy for each

redundant attribute and action in the o�cial GCP documentation. As for column

�After Abstraction� , it studies the same aspects but after introducing simply

one abstractKind instance in my GCP Model . This instance contains all the

attributes and actions of Table 4.1. Columns�Redundant Attributes� and �Re-

118
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

dundant Actions� list respectively the names of the attributes and actions that I

observed in more than 50% of the resources o�ered by GCP. For each attribute/ac-

tion, I show the number of occurrences in columns�# of occurrences� , as well as

the percentage of redundancy in columns�% of redundancy� . Rows �Average�

give the average of columns�% of redundancy� .

From the results in Table 4.1, I have the following observations. First, I calculate

the % of redundancy for all attributes and actions of GCP documentation, which

indicates the e�ectiveness of my approach. Second, these percentages are relatively

high, which prove that GCP documentation is redundant. Third, after fac-

torizing the attributes and actions, I succeed to have 66 less occurrences

and 46,48% decrease of the redundancy . These results are noticeable and

satisfying even with my simple example that consists in only oneabstractKind

instance included toGCP Model .

4.4.1.3 Consistency & Comprehensiveness

I have just discussed that some attributes and actions of the GCP resources are

redundant. It is not strange to have all these attributes and actions in common.

In fact, it makes quite sense that almost each of theKind instances has anid as

an identi�er to guarantee that a resource is unique, akind as this is the type of

the resource, aselfLink as a URL that can be used to access the resource again,

a description to report and explain the use of this resource, etc. In addition, it

is normal that every Kind instance has a list of operations so it can be created,

updated, retrieved, deleted, etc.

However, the main problem and what is strange here is why among the 142

resources, the GCP documentation has left 50 without anameor 62 without an

id or 63 without a kind or a description , or 2 without delete or 66 with-

out insert , etc. I went further in this research and I checked for each redun-

dant attribute/action the set of Kind instances that are missing it. For example,

{ compute.beta.regionInstanceGroup , compute.v1.regionInstanceGroup } is the

set of Kind instances that does not contain thedelete action. In this case, it is

comprehensible that the developer has no right to delete, for bothcompute ver-

sions, theregionInstanceGroup concept, which refers to the virtual machines in a

particular region.

Another example is regarding dataproc.v1.cluster Kind instance, which

describes the identifying information, con�guration, and status of a cluster of

Google Compute Engine instances.dataproc.v1.cluster belongs to the set of

kinds that miss the nameattribute and also to the set of kinds that miss the

description attribute. In the �rst set, i.e., the one that misses thenameattribute,

4.4. Evaluation of GCP Model 119

dataproc.v1.cluster substitutes the nameattribute by the clusterName attribute.

Although these two have the same semantics, using di�erent vocabulary to express

it will lead to nothing but a confusion for the developer. Therefore, I deduce from

this example that GCP documentation is inconsistent , i.e., does not employ

the same words to de�ne the same characteristics of its services. In the second set,

the description attribute is e�ectively missing and this is not justi�able. I can

then state that GCP documentation is not comprehensive , i.e., it contains

some oversights or incompleteness.

4.4.2 Quantitative Evaluation

To evaluate the preciseness of my model, I conduct using myGCP Crawler an

automated and recursive analysis of the GCP o�cial documentation. First, I per-

form a global investigation to identify, quantify and sort the provided services. This

analysis allows us to declare thatGCP API contains 142 resources packaged

into 14 products as listed in Table 4.2. Each product o�ers a service likeBig

Data, Compute, Network, Management, Storage & Databases, etc.

Table 4.2: GCP Products.
Product

Name
Number

of Resources
O�ered
Service

App Engine 48 Compute
BigQuery 2 Big Data

Cloud Functions 1 Compute
Cloud User Account 2 Management

Compute Engine 67 Compute
Container Engine 1 Compute
Cloud Dataproc 4 Big Data

Cloud DNS 1 Network
Cloud IAM 2 Identity &

Security
Logging 2 Management

Cloud Pub/Sub 2 Big Data
Runtime Con�g 3 Management

Cloud SQL 2 Storage &
Databases

Cloud Storage 5 Storage &
Databases

Total 142 6

Besides the 142 types of resources,GCP documentation contains 2124 at-

tributes that describe the static aspect of the API, and 985 actions that

describe its dynamic aspect. Table 4.3 presents a summary of myGCP Model .

This dataset covers all the information presented in GCP o�cial documentation and

formalized by GCP Model . For each class of my model, Table 4.3 provides the

number of instances present in my dataset. The last line provides the total ofGCP

objects present in the dataset.

120
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

Table 4.3: Summary of the GCP Model Dataset.
GCP

Metaclass Name
GCP

Model Instances
Kind 142

Attribute 2124
Action 985

BooleanType 90
NumericType 375
StringType 1402
ArrayType 218

EnumerationType 21
EnumerationLiteral 80

RecordType 143
RecordField 613

Total 5437

In addition to these precise statistics that I provide, my approach allows to

clearly specify GCP attributes thanks to the Type Re�nement and the Implicit

Attribute Metadata Detection. Also, unlike GCP o�cial documentation, my model

uses a DataType validator at design time to validate the types de�ned before

the provisioning. This validation guarantees the coherence and preciseness of the

GCP con�gurations that must be conform to GCP Model , which is an e�cient

abstraction of the GCP API.

4.5 Summary

In this chapter, I proposed the �rst approach that analyses cloud API documenta-

tions and applies NLP techniques to extract model-driven speci�cations. A major

use case was carried out on GCP. I highlighted six main drawbacks of GCP doc-

umentation and I argued for the need of inferring a formal speci�cation from the

current natural language documentation. To address the problem ofinformal het-

erogeneous documentation, I present my model-driven approach which consists in a

GCP Model that conforms to the OCCIware Metamodel presented in Chap-

ter 3. Using my GCP Crawler , my model is automatically populated by the GCP

resources that are documented in plain HTML pages. I also proposed �veModel

Transformations to correct the remaining �ve drawbacks. Finally, my approach

allowed us to deduce some facts regarding theuniformity , conciseness, consistency

and comprehensivenessof GCP API. To conclude, I validated the preciseness of my

model by providing quantitative results on GCP API.

In the next chapter of this dissertation, I present my approach for reasoning on

cloud APIs in order to verify their behaviour and understand their similarities.

Chapter 5

Specifying Heterogeneous Cloud

Resources and Reasoning over

them with fclouds

This chapter is a combined and extended version of our papers �Specifying
Semantic Interoperability between Heterogeneous Cloud Resources with the
FCLOUDS Formal Language� [Challita 2018b] published in the 11th IEEE

International Conference on Cloud Computing (CLOUD) and �Towards
Formal-Based Semantic Interoperability in Multi-Clouds: The FCLOUDS

Framework� [Challita 2017b] published in the 10th IEEE International
Conference on Cloud Computing (CLOUD).

Contents
5.1 Exploring the Semantic Space 123

5.1.1 Formal methods and their bene�ts 123

5.1.2 Related Work . 124

5.2 The fclouds Framework . 125

5.2.1 Usage Scenario . 125

5.2.2 Overall Architecture . 126

5.3 The fclouds Language . 128

5.3.1 Notations . 128

5.3.2 Specifyingfclouds Static Semantics 129

5.3.3 Specifyingfclouds Operational Semantics 135

5.3.4 Identifying & Validating fclouds Properties 139

5.4 Evaluation of fclouds . 143

5.4.1 Catalog of Cloud Formal Speci�cations 144

5.4.2 Implementation of fclouds Formal Speci�cations 147

5.4.3 Veri�cation of fclouds Properties 148

5.4.4 De�nition & Validation of Domain-Speci�c Properties 148

122
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

5.4.5 Transformation Rules for Semantic Interoperability in Multi-
clouds . 149

5.5 Summary . 149

Chapter 2 reviewed the solutions for multi-cloud interoperability. To be e�ec-

tive, these solutions must achieve a compromise between de�ning the common

cloud principles and supporting any kind of cloud resources, regardless of their

abstraction level. This frustrating situation calls for more depth about the cloud

providers' semantics to reason about the common principles that interoperability

solutions must adhere to.

In this chapter, I present my vision for reasoning on cloud solutions viafclouds ,

my framework for semantic interoperability in a multi-cloud context. By semantic

interoperability I mean to identify the similarities and di�erences between cloud

APIs concepts and to reason over them. My framework contains a catalog of cloud

APIs that are precisely described. It will help the cloud customer to understand how

to migrate from one API to another, thus to promote semantic interoperability. To

implement the formal language that will encode all the APIs of myfclouds frame-

work, I advocate the use of formal methods,i.e., techniques based on mathematical

notations. They will allow me to rigorously encode cloud concepts and behaviour,

validate desired and/or imposed cloud properties and �nally de�ne formal transfor-

mation rules between cloud concepts. For more reliability, I adopt the concepts of the

OCCI common standard to de�ne the formal language of thefclouds framework.

I choose to formalize OCCI with Alloy, a lightweight promising formal speci�cation

language designed by Daniel Jackson from the MIT [Jackson 2012].

The key contributions of this chapter are:

1. the fclouds framework, my formal approach for semantic interoperability in

multi-clouds,

2. the fclouds language, the formal language of thefclouds framework, which

consists in a formalization of OCCI concepts and operational semantics in

Alloy,

3. the identi�cation of �ve properties (consistency, sequentiality, reversibility,

idempotenceand safety) that re�ect OCCI RESTful operational semantics,

and their validation in fclouds , which ensures the language correctness,

4. a catalog of thirteen formal speci�cations of cloud APIs from di�erent appli-

cation domains, encoded withfclouds language, which prove the language

expressiveness, and,

5.1. Exploring the Semantic Space 123

5. formal transformation rules between heterogeneous concepts with similar se-

mantics.

This chapter is structured as follows. Section 5.1 outlines the need to reason

on the �Cloudware engineering� solutions, explains the motivations behind explor-

ing their semantics and positions my contribution in relation to the related works.

Section 5.2 presents my frameworkfclouds , its components and a usage scenario.

Section 5.3 presents thefclouds language that speci�es OCCI core concepts and

operational semantics, and veri�es properties on how OCCI should work. Section 5.4

illustrates the use of my formal language with a series of thirteen examples. Finally,

I conclude in Section 5.5.

5.1 Exploring the Semantic Space

A set of common principles that all interoperability solutions adhere to must be

agreed on. Accordingly, I argue in the following for the need to explore theSemantic

space. The latter will allow the cloud architect to rise in abstraction and reason

about cloud APIs through the use of formal methods, as shown in Figure 5.1.

Figure 5.1: Semantic Space.

5.1.1 Formal methods and their bene�ts

Formal methods are techniques that are based on mathematical notations and they

will allow me to rigorously encode the underlying semantics of cloud APIs concepts

through formal speci�cations. Formal speci�cations remove ambiguities, since unlike

natural language statements, mathematical speci�cations are only interpreted in one

way, the correct one. This focuses onwhat a system should do rather thanhow to

accomplish it. Formal methods also allow me to e�ectively reason on the structure

and behaviour of the encoded concepts, by using a model checker verifying cloud

124
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

properties, i.e., constraints denoting characteristics of cloud con�gurations and/or

operations. This is quite advantageous to guarantee the accuracy and correctness of

the multi-cloud solutions, and because the earlier a defect is removed the cheaper it

will be to correct it. Being precisely speci�ed, veri�ed and correctly understood, the

cloud APIs can be correctly compared. For this, I will de�ne formal transformation

rules between their concepts, and verify equivalence properties. The developers will

hence be able to achieve semantic interoperability in a multi-cloud system.

For the above reasons, I propose in the current work to rise in abstraction by

heading towards using formal models and veri�cation for cloud computing.

5.1.2 Related Work

Only few works from the literature applied formal methods for the cloud, which

proves the novelty of this domain. Benzadri et al. [Benzadri 2013] proposed a

formal model for cloud computing using Bigraphical Reactive Systems(BRS).

AWS [Newcombe 2015] used TLA+ speci�cation language in their complex sys-

tems such as S3 and DynamoDB. Bobba et al. [Bobba 2017] speci�ed and vali-

dated Google's Megastore, Apache Cassandra, Apache ZooKeeper, and RAMP us-

ing Maude language and model checker. Besides using di�erent techniques to reason

over the cloud, these three works di�er in their objectives too. [Benzadri 2013] rea-

sons over cloud concepts for deployment and adaptation purpose. [Newcombe 2015]

aims at �nding subtle bugs in their internal distributed algorithms, which helps

correcting and optimizing their systems. [Bobba 2017] veri�es the performance and

correctness of cloud storage systems. My work focuses on the interoperability con-

cern by formalizing the static and operational semantics of the cloud domain.

From the literature, I found out that semantic interoperability between cloud

domains has been also achieved with techniques di�erent from formal methods.

For example, the authors in [Yongsiriwit 2016] proposed an ontology-based frame-

work for semantic interoperability in multi-clouds. They de�ne translations be-

tween IaaS concepts of three standards. However, they do not consider any map-

ping between API operations. Also, PaaS Semantic Interoperability Framework

(PSIF) [Loutas 2011], which was implemented in the context of Cloud4SOA project,

proposes common PaaS models that describe structural, functional and behavioural

semantics. fclouds goes beyond PSIF and aims to verify properties of the models

thanks to the usage of formal methods.

5.2. The fclouds Framework 125

5.2 The fclouds Framework

This section presents thefclouds formal-based framework, which is our vision for

semantic interoperability in multi-clouds. I begin by giving a scenario that motivates

my approach, then I describe how I modelfclouds structure and behaviour, and

how I reason over them.

5.2.1 Usage Scenario

Figure 5.2: fclouds Usage Scenario.

I assume that a developer would like to build a multi-cloud system spread over

two clouds, the private EGI FC and the public GCP. EGI is based on OCCI REST

API and GCP on its own REST API, so the developer is faced to two heteroge-

neous APIs implementing di�erent concepts and paradigms. To provision a virtual

machine, the HTTP request has a di�erent format for each API, which is quite

frustrating. The developer would like a single API for both clouds to seamlessly

access their resources. However, the GCP API will not work on OCCI and if OCCI

wanted to provide equivalent services to GCP, it should not only adopt the same

type of API but also the same concepts with the risk of misunderstandings, inconsis-

tencies and incompleteness. Con�icts and misunderstandings about the semantics

126
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

of cloud providers can be solved, or at least identi�ed at an earlier stage, if aspects

of structure and operations are conveyed through the use of formal models.

As depicted in Figure 5.2, the �rst stage of fclouds requires extracting from

websites, in a manual or automated way, knowledge regarding the services o�ered by

cloud providers. Then, I proceed by a precise modeling to understand and validate

the behaviour of cloud APIs, in order to overcome their semantic heterogeneity.In

the second stageof fclouds , I proceed with transformation models, which explain

how knowledge collected against one cloud provider can be transformed to �t an-

other. This stage allows a rigorous comparison and semantic connections between

cloud providers.

5.2.2 Overall Architecture

fclouds framework is based on several cloud formal models that can be composable.

It consists of a formal model for OCCI (fOCCI), a formal model for GCP (fGCP),

a formal model for Docker (fDocker), etc. (see the rectangles in Figure 5.3).

Later on, I will de�ne transformation rules that �nd equivalence and specialization

relationships between them, thus I can seamlessly achieve semantic interoperability

(see the ovals in Figure 5.3). The green shapes represent some of the APIs and the

transformation rules that are speci�ed in my fclouds framework (see Section 5.4

for the entirety of fclouds APIs) and the orange shapes represent an API and

transformation rules that are considered for future work.

Figure 5.3: fclouds Framework Overview.

In the following, I detail the process of formalizing cloud APIs, which is at the

5.2. The fclouds Framework 127

basis of fclouds framework. As shown in Figure 5.4, it is developed in two main

steps: Modeling and Reasoning .

5.2.2.1 Modeling

Modeling using formal methods is the process of providing a precise speci�cation of

a cloud model,i.e., de�ning and validating:

ˆ Cloud structure and constraints , as represented in Frame(1) in Fig-

ure 5.4, to denote the types of cloud concepts such as virtual machines, con-

tainers, storage, operating systems, servers, applications, etc. and describe

con�gurations of these types. fclouds models support cloud computing con-

cepts speci�cation while simplifying irrelevant details to focus on the most

important characteristics.

ˆ Cloud API operations , as represented in Frame(2) in Figure 5.4, to denote

the operations that the developer uses to provision, manage or release cloud

services through the cloud API.

Figure 5.4: Formalization Process.

In my work, I choose the Alloy formal language to provide a concise speci�cation

of fclouds models, with both a graphical output and a textual output, so it can

be easy to analyze and reason over them. More details about this language, called

the fclouds language are given in Subsections 5.3.2 and 5.3.3.

128
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

5.2.2.2 Reasoning

Using formal models has the advantage of allowing reasoning over concepts and op-

erations for a better understanding of their semantics and how they work. Therefore,

oncefclouds models have been speci�ed, I proceed by thede�nition and veri-

�cation of cloud structural and behavioural properties as shown in Frame

(3) in Figure 5.4. This step allows to ensure the correctness of all cloud formal

models in the fclouds framework, so I can draw later inferences between them.

More details about cloud properties are given in Subsection 5.3.4.

5.3 The fclouds Language

The formal language on which is based thefclouds framework and that I pro-

pose, is called thefclouds language. It is an Alloy-based formal language

which makes explicit OCCI core concepts [Nyrén 2016b] andOCCI REST opera-

tions [Nyrén 2016a], as well as the underlying properties.

5.3.1 Notations

I argue it is more advantageous and reliable to adopt an open standard to de�ne the

formal speci�cation language of all fclouds APIs, instead of writing a language

from scratch. The most popular standard is OCCI since it is used by the private EGI

FC and it was successfully extended to support heterogeneous aspects of the cloud

domain, through OCCI Infrastructure [Nyrén 2016c], OCCI Platform [Metsch 2016],

etc. In fact, OCCI de�nes a generic and extensible model for cloud resources

and a RESTful API for e�ciently accessing and managing resources. This facil-

itates interoperability between clouds that are implemented as OCCIextensions ,

i.e., speci�ed by the same OCCI resource model, and accessed by the same REST

API. Today, there are several trends for formal methods like Petri nets, languages

based on logic, semantics programs, automata theory, etc. Choosing the appropri-

ate notation is critical in order to �nd the right compromise between formalization

and complexity. Meanwhile, Alloy is becoming increasingly popular among formal

methods, as it is a relational, �rst-order logic language, with well-thought out syntax

and model visualization features. Alloy is a lightweight promising formal speci�ca-

tion language designed by Daniel Jackson from the MIT [Jackson 2012]. It allows

to specify complex systems in a streamlined way, by describing concepts and con-

straints. The speci�cations are translated into �rst-order logic expressions that can

be automatically solved by the Alloy analyzer, a model checker using SATis�abil-

ity (SAT) solvers. The latter allows automatic veri�cation of a system model, to

5.3. The fclouds Language 129

ensure its consistency and other desired properties, thus to guarantee its correct-

ness. Therefore, I choose to formalize OCCI using a lightweight promising formal

language, the Alloy speci�cation language [Jackson 2012]. I refer to this formal

speci�cation as the fclouds language.

In the following, I present a subset of thefclouds static and operational seman-

tics. For more details, the entirety of this language is available in theOCCIware

o�cial website [Ahmed-Nacer 2016b] and in this GitHub repository1.

5.3.2 Specifying fclouds Static Semantics

The static semantics of fclouds corresponds to the formalization of the OCCI

core concepts [Nyrén 2016b] in Alloy. I use a strategy based onTime dimen-

sion [Jackson 2012]. It allows to distinguish between mutable �elds,i.e., those

that are related to Time, and immutable ones, i.e., those that are not related to

Time. I detail in the following the twelve concepts of fclouds in Alloy:

ˆ Entity represents an abstract type de�ning the set of all resources and links.

abs t rac t s i g Ent i ty {
id : one St r ing ,
kind : one Kind ,
mix ins : s e t Mixin � > Time ,
a t t r i b u t e s : s e t A t t r i bu teS ta te � > Time

}

A signature (sig) in Alloy de�nes a set of atoms. An atom is an indivisi-

ble, immutableand uninterpreted unity. Signature declarations can introduce

fields . A �eld represents a relation among signatures. For example,Entity

declares four �elds: id , kind , mixins and attributes . Each entity instance

has a unique identi�er (id) . A declaration of the form id : one String can

be read as declaring a feature of the set Entity; formally, it declares a binary

relation between the set of entities,Entity , and the set of Strings,String .

The one multiplicity keyword signi�es that the relation between a tuple from

id and a tuple from String has a 1..1 cardinality. Thekind �eld is the Entity

type, for example the kind of a resource can beCompute, Application , etc.

The mixins �eld is used to add additional features such as location and price.

The set multiplicity keyword signi�es that mixins can contain any number of

elements. Theid and kind are immutable. As for the mixins and attributes

1https://github.com/occiware/fclouds-Framework

130
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

�elds, they are mutable and they identify the association betweenMixin atoms

and their Time, and the association betweenAttributeState atoms and their

Time . mixins and attributes are ternary relations. mixins relation as-

sociates entities, mixins and times, whereasattributes relation associates

entities, attributes and times.

ˆ Kind is the Entity type. For example, the kind of a resource can beCompute,

Network, Application , etc.

s i g Kind extends Category {
parent : lone Kind ,
a c t i o n s : s e t Action ,
e n t i t i e s : s e t Ent i ty � > Time

}

The extends keyword in Alloy indicates that a set is declared as a subset

of another one and that it will form, with other subsets similarly declared, a

partition of the set it extends. A Kind instance can have zero or oneparent

kind. The lone keyword is an example of a relation multiplicity. In our case,

it signi�es that a given Kind is to be associated to at most oneparent . A Kind

instance can also have zero or manyactions and zero or manyentities . The

parent and actions �elds are immutable. Only the entities �eld is mutable

because entities (resources or links) can be created/added or deleted/removed

at runtime. The entities associated to a certain kind cannot have the same id.

This is de�ned through the following constraint, which must always hold, i.e.,

an invariant.

a l l t : Time j no d i s j e1 , e2 : e n t i t i e s . t j e1 . id = e2 . id

This invariant takes the form of a basic �rst-order logical formula, and it says

that for every time, there is no pair of distinct entities that have the same

id. The all keyword denotes the universal quanti�er, where a declaration such

as t : Time denotes an arbitrary element t of the set Time. Theno disj

keyword means that kinds do not have overlapping entities. Likewise, the dot

notation e1.id or e2.id is the standard notation for accessing a feature, or

attribute, of an instance of a signature. In this case, the dot serves to access

the id feature of an entity instance.

ˆ AttributeState represents an instantiated OCCIAttribute .

5.3. The fclouds Language 131

s i g A t t r i bu teS ta te {
name : one Str ing ,
va lue : one S t r i ng

}

An AttributeState instance has exactly onenameand onevalue .

ˆ Attribute is the property of an entity like machine hostname, IP address of

a network, parameter of an action, etc.

s i g At t r ibu te {
name : one Str ing ,
mutable : lone Boolean ,
requ i red : lone Boolean ,
d e f a u l t : l one St r ing ,
d e s c r i p t i o n : lone St r ing ,
type : lone DataType ,
mul t ip le_va lues : lone Boolean

}

An Attribute instance has exactly onenameand can have zero or one informa-

tion whether it is mutable or not, required or not and hasmultiple values

or not. However, Boolean type is not supported by Alloy for declarations.

Therefore, in order to express these �elds, I useutil/boolean library that de-

�nes a boolean type sig Boolean { } with one sig True, False extends

Boolean { } . An Attribute instance can also have zero or onedefault value

and zero or onedescription . All the attributes �elds are immutable.

ˆ DataType is the abstract class used to extend the non-extensible data type

system of the OCCI speci�cation. Since attributes can have scalar data types

(IP address, �oat, etc.) and enumeration, the classical data types de�ned as

strings, booleans and integers are insu�cient and require to be extended.

abs t rac t s i g DataType {
name: one S t r i ng

}

A Datatype instance has exactly one immutable name such asarray ,

enumeration , record , etc.

ˆ Mixin is a concept that adds additional features to OCCI entities.

132
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

s i g Mixin extends Category {
a c t i o n s : s e t Action ,
depends : s e t Mixin ,
a p p l i e s : s e t Kind ,
e n t i t i e s : s e t Ent i ty � > Time

}

A Mixin instance can contain zero or many actions, it candependfrom zero or

many of mixins, i.e., if Mixin A depends from Mixin B, any entity associated

to Mixin B will inherit the capabilities (attributes and actions) of both Mixin

B and Mixin A. Mixin can be alsoapplied to zero or many kinds, i.e., add

new capabilities to the kind instances. AMixin instance has zero or many

entities that are associated to it. Only the entities �eld is mutable. A

Mixin instance must not inherit/depend from itself directly or transitively.

This constraint is ensured as follows:

no d : t h i s .^ @depends j d = t h i s

This constraint speci�es that the relation between mixins is acyclic, i.e., the

relation between mixins do not form a ring. It denotes that there is no mixin

that belongs to the set of targets reachable from the same mixin itself. Theno

quanti�er means that this constraint is true when for d = this is true, there

is no bindings of thed variable. In other words, d does not have a value if it

belongs to the this.� @depends relation and is equal to the mixin instance

itself. The ��� operator denotes the transitive closure of the dependsrelation,

i.e., the smallest enclosing relation that is transitive. The �@� symbol is used

to prevent the depends �eld from being expanded. Without the @ symbol,

the constraint would instead be short for:

no d : t h i s . ^ (t h i s . depends) j d = t h i s

which does not even type-check.

ˆ Action represents an operation that can be executed on an entity instance

such asstart virtual machine, stop virtual machine, restart an application,

resize a storage, etc.

s i g Act ion extends Category {
}

5.3. The fclouds Language 133

ˆ Category is the abstract class of all theAction , Kind and Mixin instances.

abs t rac t s i g Category {
term : one Str ing ,
scheme : one St r ing ,
t i t l e : lone St r ing ,
a t t r i b u t e s : s e t A t t r i bu te

}

A Category instance has exactly oneterm, one schemeand may have or not

one title . A Category instance also contains a set ofattributes . The

attribute name must be unique, as de�ned by the following constraint:

no d i s j a1 , a2 : a t t r i b u t e s j a1 . name = a2 . name

This constraint means that there is no pair of distinct attributes that have the

same name. All theCategory �elds are immutable.

ˆ Resource represents a concrete cloud computing resource, which refers to any

entity hosted in a cloud, e.g., compute1is a resource that belongs toCompute

kind, network3 is a resource that belongs toNetwork kind, storage2 is a

resource that belongs toStorage kind, etc.

s i g Resource extends Ent i ty {
l i n k s : s e t Link � > Time

}

A Resource instance owns a set of mutablelinks .

ˆ Link is the relationship between two Resource instances. For example,

NetworkInterface connects aComputeinstance to a Network instance, and

StorageLink connects aComputeinstance to a Storage instance.

s i g Link extends Ent i ty {
source : Resource one� > Time ,
t a r g e t : Resource one� > Time

}

Link contains two mutable �elds: source and target . Each sourced link must

have a target, as de�ned by the following constraint:

134
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

one source i m p l i e s one t a r g e t

The one quanti�er applied before the �source� expression means that the set

of sources has exactly one tuple,i.e., for a Link l, l.source is the resource

that l is currently sourced to. Similarly, the one quanti�er applied before the

�target� expression means that the set of targets has exactly one tuple,i.e.,

for a Link l, l.target is the resource that l currently targets. This constraint

means that the one sourceconstraint implies the one target constraint.

ˆ Extension is a set of kind and mixin instances targeting a concrete cloud

domain (IaaS, PaaS, SaaS, pricing, SLA, cloud monitoring, etc.).

s i g Extension {
name : one St r ing ,
scheme : one St r ing ,
import : s e t Extension ,
k inds : s e t Kind ,
mix ins : s e t Mixin ,
types : s e t DataType

}

An Extension instance has onenameand onescheme. It can use or extend

zero or many extensions. It owns zero or manykinds , mixins and datatypes .

All the Extension �elds are immutable. The scheme of all kinds must be equal

to the scheme of the owningExtension instance, as de�ned by the following

constraint:

a l l k : k inds j k . @scheme= scheme

This constraint means that for every kind of an extension, the scheme of this

kind is equal to the scheme of the extension.

ˆ Configuration is the abstraction of an OCCI-based running system. Mod-

eling a con�guration o�ine allows designers to think and analyze their cloud

systems without having to deploy them concretely in the clouds [Merle 2015a].

s i g Conf igu ra t ion {
use : s e t Extension ,
r e s o u r c e s : s e t Resource� > Time ,
mix ins : s e t Mixin � > Time

}

5.3. The fclouds Language 135

The use �eld, which is the set of extensions used in a con�guration, is im-

mutable because the extensions cannot be added or removed at runtime. The

resources and mixins �elds are mutable. The kind of all resources of a con-

�guration instance must be de�ned by an extension that is explicitly used by

this con�guration. This constraint can be expressed as follows:

a l l t : Time j r e s o u r c e s . t . k ind . ex tens ion in use

This constraint means that for every time, the extensions containing the kinds

of the con�guration resources are contained in the extensions of this con�guration.

In Alloy, the in keyword denotes the subset relation.

Table 5.1: fclouds Static Semantics.
fclouds
Concepts Description

Entity an abstract type de�ning the set of all resources and links
Kind an immutable type of OCCI entities

AttributeState an instantiated OCCI attribute

Attribute an entity property,
such as the hostname of a virtual machine

DataType an abstract type de�ning enumerations, lists, records, etc.

Mixin represents crosscutting attributes and actions that can be
dynamically added to an OCCI entity

Action domain speci�c behavior,
such as start/stop a virtual machine

Category the abstract base class inherited byKind, Mixin and Action

Resource represents any cloud computing resource,
such as a virtual machine

Link a relation between two resources

Extension a concrete cloud computing domain,
such as IaaS, PaaS, SaaS, cloud robotics, etc.

Configuration a running OCCI system

Table 5.1 presents a summary of thefclouds language concepts.

5.3.3 Specifying fclouds Operational Semantics

The operational semantics offclouds corresponds to the formalization of the infor-

mal OCCI behavioural speci�cation detailed in [Nyrén 2016a]. It mainly includes

di�erent REST operations, i.e., CREATE, RETRIEVE, UPDATE, DELETE. In

this idiom, these operations are modeled as predicates that specify the relation-

ship between pre-state,i.e., the state before the operation is called and post-state,

i.e., the state after the operation is completed. To do so, Time is added at the

end of each mutable �eld to represent the state concept. To be more speci�c, an

operation op will be speci�ed using a predicate: pred op[...,t,t':Time] ... ,

136
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

with two special parameters t and t' denoting, respectively, the pre- and post-

states [Garis 2012]. The core of each predicate is carried out by de�ning explicitly

pre- and post-conditions, which are constraints that must be satis�ed before execut-

ing the operation and after the operation is �nished respectively. Eight operations

were de�ned to the Configuration concept of fclouds , as depicted in Table 5.2.

I present in the following the four REST operations applied to resources.

5.3.3.1 Create semantics

The following predicate shows how I formally specify the creation of a resource.

1pred CreateResource [c o n f i g : Conf igura t ion , r esou rce Id : St r ing ,
kind : Kind , mix ins : s e t Mixin , a t t r i b u t e s : s e t
A t t r ibu teSta te , t , t ' : Time] {

2// p r e co n d i t i on s at i n s t a n t t
3no resou rce : c o n f i g . r e s o u r c e s . t j r esou rce . id = resou rce Id
4kind in c o n f i g . use . k inds
5mixins in c o n f i g . use . mix ins
6// p o s t c o n d i t i o n s at i n s t a n t t '
7one resou rce : Resource {
8r esou rce . id = resou rce Id
9r esou rce . kind = kind
10r esou rce . mix ins . t ' = mix ins
11r esou rce . a t t r i b u t e s . t ' = a t t r i b u t e s
12c o n f i g . r e s o u r c e s . t ' = c o n f i g . r e s o u r c e s . t + resou rce
13}
14c o n f i g . mix ins . t ' = c o n f i g . mix ins . t '
15}

At time t, I specify that a con�guration, passed as argument to the predicate,

does not have a resource with the id passed as a predicate argument (cf. line 3).

The no quanti�cation keyword expresses the null cardinality of the empty resource

set that satis�es the constraint resource.id = resourceId . As well, I specify

that the kind and the mixins of the resource I want to create, are contained in the

con�guration extensions (cf. lines 4 and 5). At time t' , I add to the con�guration

resources, one resource with the id, kind, mixins and attributes, passed as argument

to the predicate (cf. lines 7 to 12). The �+� operator denotes set union. I also

explicitly specify that the mixins of the con�guration remain unchanged (cf. line 14).

5.3. The fclouds Language 137

5.3.3.2 Retrieve semantics

The following predicate shows how I formally specify the retrieval of a resource.

1pred Ret r ieveResource [c o n f i g : Conf igura t ion , r esou rce Id :
2Str ing , t , t ' : Time] {
3// p r e co n d i t i on s at i n s t a n t t
4one resou rce : c o n f i g . r e s o u r c e s . t {
5r esou rce . id = resou rce Id
6}
7// p o s t c o n d i t i o n s at i n s t a n t t '
8one resou rce : c o n f i g . r e s o u r c e s . t ' {
9r esou rce . id = resou rce Id
10r esou rce . mix ins . t ' = resou rce . mix ins . t
11r esou rce . a t t r i b u t e s . t ' = resou rce . a t t r i b u t e s . t
12r esou rce . l i n k s . t ' = resou rce . l i n k s . t
13}
14c o n f i g . r e s o u r c e s . t ' = c o n f i g . r e s o u r c e s . t
15c o n f i g . mix ins . t ' = c o n f i g . mix ins . t
16}

At time t, I verify that a con�guration has one resource with the id passed as

a predicate argument (cf. lines 4 and 5). At timet' , I specify that the id, mixins,

attributes and links of the retrieved resource remain unchanged (cf. lines 8 to

12). I also specify that the resources and the mixins of the con�guration remain

unchanged (cf. lines 14 and 15).

5.3.3.3 Update semantics

The following predicate shows how I formally specify the update of a resource.

1pred UpdateResource [c o n f i g : Conf igura t ion , r esou rce Id : St r ing ,
a t t r i b u t e 1 : A t t r ibu teSta te , a t t r i b u t e 2 : A t t r ibu teSta te , t ,

2t ' : Time] {
3// p r e co n d i t i on s at i n s t a n t t
4one resou rce: c o n f i g . r e s o u r c e s . t j r esou rce . id = resou rce Id

& & resou rce . a t t r i b u t e s . t = a t t r i b u t e 1
5a t t r i b u t e 1 ! = a t t r i b u t e 2
6// p o s t c o n d i t i o n s at i n s t a n t t '
7one resou rce : c o n f i g . r e s o u r c e s . t {
8r esou rce . a t t r i b u t e s . t ' = resou rce . a t t r i b u t e s . t ++

a t t r i b u t e 2

138
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

9}
10c o n f i g . r e s o u r c e s . t ' = c o n f i g . r e s o u r c e s . t
11c o n f i g . mix ins . t ' = c o n f i g . mix ins . t
12}

At time t, I specify that a con�guration, passed as argument to the predicate,

has a resource with the id passed as a predicate argument and with the attribute,

attribute1 which is also passed as a predicate argument (cf. line 4). The �&&�

operator denotes conjunction of constraints. I also specify that theattribute1,

passed as argument to the predicate, is di�erent fromattribute2, also passed as

argument to the predicate (cf. line 5). The �!=� operator is the negation operator

�!� associated to the comparison operator �=� and is equivalent tonot attribute1

= attribute2 . At time t' , I update the existing attribute state of my resource,

i.e., attribute1, with the value of the new attribute state, i.e., attribute2 (cf. lines 7

and 8). The �++� operator is used for the override, which means that the tuples of

attribute2 replace the tuples ofattribute1. I also explicitly specify that the resources

and the mixins of the con�guration remain unchanged. Only the attributes of one

resource change (cf. lines 10 and 11).

5.3.3.4 Delete semantics

The following predicate shows how I formally specify the deletion of a resource.

1pred Dele teResource [c o n f i g : Conf igura t ion , r esou rce Id : St r ing ,
t , t ' : Time] {

2// p r e co n d i t i on s at i n s t a n t t
3one resou rce : c o n f i g . r e s o u r c e s . t j r esou rce . id = resou rce Id
4// p o s t c o n d i t i o n s at i n s t a n t t '
5one resou rce : c o n f i g . r e s o u r c e s . t {
6r esou rce . id = resou rce Id
7c o n f i g . r e s o u r c e s . t ' = c o n f i g . r e s o u r c e s . t � r esou rce
8}
9c o n f i g . mix ins . t ' = c o n f i g . mix ins . t
10}

At time t, I specify that a con�guration, passed as argument to the predicate,

has a resource with the id passed as an argument (cf. line 3). At timet' , I remove

from the con�guration resources, one resource with the id passed as argument to

the predicate (cf. lines 5 to 7). The �-� operator denotes set di�erence. I explicitly

specify that the mixins of the con�guration remain unchanged (cf. line 9).

5.3. The fclouds Language 139

5.3.4 Identifying & Validating fclouds Properties

Using formal languages has the advantage of allowing reasoning over concepts and

operational semantics for a better understanding of their semantics and how they

work. Therefore, once thefclouds formal language has been speci�ed, I proceed by

the de�nition of some structural and behavioural properties to ensure its correctness

and to express its desired/required behaviour. I formally encode theconsistency,

sequentiality, reversibility, idempotenceand safety behavioural properties. The last

two properties are classi�ed into a broader property which is theconformance to

HTTP 2 protocol [Belshe 2015]. Then, using the Alloy analyzer, I validate that

these properties adequately hold in myfclouds static and operational semantics.

To express these properties,assertions are written and are expected to hold as

consequence of the speci�ed constraints. In order to be con�dent that an assertion

holds, I check it within a reasonable scope,i.e., I bound the number of atoms allowed

for each signature to 10. If no counterexamples are returned by the Alloy analyzer

with such a scope, I can be con�dent that my language re�ects the desired semantics.

5.3.4.1 Consistency

fclouds language is consistent if it does not contain any contradictory constraints,

so its concepts can be instantiated and each cloud API operation can be executable.

I can also analyze what could not be instantiated, thus can't be deployed in real-

world. In these cases, my formal language might be over-constraining so I deem

necessary to relax some constraints. TheCreateResourceIsConsistent assertion

below can't be shown to have a counterexample. Hence, it asserts the existence of

a valid con�guration that meets the pre- and post-conditions of Create Resource,

i.e., it is consistent and expresses the desired behaviour.

a s s e r t Crea teResource IsCons is ten t {
a l l c o n f i g : Conf igura t ion , r esou rce Id : St r ing , resourceKind :

Kind , mix ins : Mixin , a t t r i b u t e s : A t t r ibu teSta te , t : Time j
CreateResource [con f ig , resource Id , resourceKind , mixins ,

a t t r i b u t e s , t , t . next]
i m p l i e s {
no resou rce : c o n f i g . r e s o u r c e s . t j r esou rce . id = resou rce Id
resourceKind in c o n f i g . use . k inds
and one resou rce : c o n f i g . r e s o u r c e s . (t . next) j

r esou rce . id = resou rce Id
and resou rce . kind = resourceKind

}
}

140
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

Table 5.2: Properties of thefclouds Language.
Properties Consistency Idempotence Safety

Static Semantics + N/A N/A
Operational Semantics

(OCCI REST Operations)
Create Resource + + -

Retrieve Resource + + +
Update Resource + - -
Delete Resource + + -

Create Link + + -
Retrieve Link + + +
Update Link + - -
Delete Link + + -

Properties Sequentiality Reversibility
Pairs of OCCI REST Operations

Create Resource & Retrieve Resource + -
Retrieve Resource & Create Resource - -
Retrieve Resource & Update Resource + -
Update Resource & Retrieve Resource - -
Update Resource & Delete Resource - -
Delete Resource & Update Resource - -
Delete Resource & Create Resource - +
Create Resource & Delete Resource + +

Create Link & Retrieve Link + -
Retrieve Link & Create Link - -
Retrieve Link & Update Link + -
Update Link & Retrieve Link - -
Update Link & Delete Link - -
Delete Link & Update Link - -
Delete Link & Create Link - +
Create Link & Delete Link + +

Note that to model �nite execution traces, Alloy de�nes a library util/ordering

that provides useful relations to manipulate the total order of Timeconcept, namely

�rst to denote the �rst time, and next, a binary relation that, given a time returns

the following time in the order.

The fclouds static semantics and all OCCI REST operations were proven to

be consistent, as shown in Table 5.2. However, the notion of consistency is basic

and does not su�ce in order to validate my fclouds language. There are other

examples of reliable veri�cation and validation tasks that can be performed on pairs

of operations such as sequentiality and/or reversibility of operations.

5.3.4.2 Reversibility

Two cloud API operations are reversible when they contain inverse mathematical

logic. For example, de-provisioning a virtual machine reverses the operation of

provisioning it. In OCCI, Create Resource and Delete Resource, Create Link

and Delete Link are reversible. The following assertion, which is checking that

Create Resource is reversed byDelete Resource, was proven to be valid.

5.3. The fclouds Language 141

a s s e r t Dele teResourceReverseCreateResource {
a l l c o n f i g : Conf igura t ion , r esou rce Id : St r ing , kind : Kind ,

mix ins : Mixin , a t t r i b u t e s : A t t r ibu teSta te , t : Time {
CreateResource [con f ig , resource Id , kind , mixins , a t t r i b u t e s ,

t , t . next]
i m p l i e s Dele teResource [con f ig , resource Id , t . next , t]

}
}

5.3.4.3 Sequentiality

Two cloud API operations are sequential when one cannot happen if the other one

did not happen at the time before. For example, the developer can adapt the

performance of a virtual machine only if it was created before.

It is explicitly stated in the informal speci�cation of OCCI that Update

Resource operation should be preceded byRetrieve Resource operation: �Before

updating a resource instance it is RECOMMENDED that the client �rst retrieves the

resource instance�[Nyrén 2016a]. I also explicitly specify infclouds that Retrieve

Resource operation must be preceded byCreate Resource operation (as shown in

the following assertion), Update Link by Retrieve Link and Retrieve Link by

Create Link .

a s s e r t CreateResourceThenRetr ieveResource {
a l l c o n f i g : Conf igura t ion , r esou rce Id : St r ing , kind : Kind ,

mix ins : s e t Mixin , a t t r i b u t e s : s e t A t t r ibu teSta te , t :
Time j

CreateResource [con f ig , resource Id , kind , mixins , a t t r i b u t e s ,
t , t . next]

and Ret r ieveResource [con f ig , resource Id , t . next , t . next . next]
i m p l i e s one resou rce : c o n f i g . r e s o u r c e s . (t . next . next) {

r esou rce . id = resou rce Id
and resou rce . kind = kind
and resou rce . mix ins . (t . next . next) = mix ins

}
}

5.3.4.4 Conformance to HTTP 2 Protocol

As OCCI is a REST architecture that conforms to the HTTP protocol, it must

conform to its speci�cation too. Therefore, there are some imposed properties I

must have in any REST-based systems so they must be checked in thefclouds

142
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

language. According to theRequest For Comments(RFC) HTTP 2 [Belshe 2015], I

identi�ed two properties of the HTTP methods and I veri�ed in my formal language

that the appropriate pairs of operations respect these properties.

1. Idempotence: a method is idempotent when it always produces the same

server external state even if applied several times [Belshe 2015]. In HTTP,

GET, PUT and DELETE methods are idempotent. In OCCI, Retrieve op-

eration is associated with a GET HTTP method, Create operation is a PUT

HTTP method and Delete operation is a DELETE HTTP method. So I ver-

ify in my formal language that Retrieve Resource , Retrieve Link , Create

Resource, Create Link , Delete Resource and Delete Link are idempotent.

For example, as a result, the following assertion is valid:

a s s e r t CreateResourceIs Idempotent {
a l l c o n f i g : Conf igura t ion , r esou rce Id : St r ing , kind :

Kind , mix ins : Mixin , a t t r i b u t e s : A t t r ibu teSta te , t :
Time j

CreateResource [con f ig , resource Id , kind , mixins ,
a t t r i b u t e s , t , t . next]

and CreateResource [con f ig , resource Id , kind , mixins ,
a t t r i b u t e s , t . next , t . next . next]

i m p l i e s c o n f i g . r e s o u r c e s . (t . next) =
c o n f i g . r e s o u r c e s . (t . next . next)

}

This assertion checks if creating a resource induces the same con�guration at

times t.next and t.next.next. In contrast, an Update operation, referred to as

a POST in HTTP, is not idempotent. Therefore, the accuracy of myfclouds

language is maintained if the following assertion is not valid:

a s s e r t UpdateResourceIsIdempotent

2. Safety: a method is safe when it does not change the external server

state [Belshe 2015]. It mainly concerns the retrieval of information. Asafe

method is necessarily anidempotent method, but not the reverse way. In

HTTP, a GET method is safe. Therefore, in fclouds , I check that Retrieve

Resource and Retrieve Link respect this property, so they do not change

the cloud con�guration. An example of a safe operation is detailed below:

5.4. Evaluation of fclouds 143

a s s e r t Re t r i eveResou rce IsSa fe {
a l l c o n f i g : Conf igura t ion , r esou rce Id : St r ing , t : Time j

Ret r ieveResource [con f ig , resource Id , t , t . next]
i m p l i e s c o n f i g . r e s o u r c e s . t = c o n f i g . r e s o u r c e s . (t . next)
and c o n f i g . mix ins . t = c o n f i g . mix ins . (t . next)
and one resou rce : c o n f i g . r e s o u r c e s . (t . next) {

r esou rce . id = resou rce Id
resou rce . a t t r i b u t e s . t = resou rce . a t t r i b u t e s . (t . next)

r esou rce . l i n k s . t = resou rce . l i n k s . (t . next)
}

}

This assertion checks if a con�guration remains the same at timet, i.e., before

retrieving the resource, and at timet.next, i.e., after retrieving the resource.

Table 5.2 lists all the operations that I have modeled, as well as all the proper-

ties that have been checked. The �+� symbol represents the operations or the

pairs of operations that should ful�ll a property, while the �-� represents the

operations or the pairs of operations that they should not ful�ll this property.

By using the Alloy analyzer, I check that the fclouds language, the core

language of myfclouds framework, correctly re�ects these properties, so I

guarantee that it is valid and that I implemented the desired behaviour.

5.4 Evaluation of fclouds

To validate the e�ectiveness of my formal language, I demonstrate how it can be

easily adapted to di�erent concerns by providing formal speci�cations in Alloy for

OCCI extensions from di�erent cloud application domains. Therefore, I have sur-

veyed the literature to �nd all the already published OCCI extensions. I have

identi�ed thirteen works that belong to IaaS, PaaS and Internet of Things (IoT)

domains, as well as to transverse cloud concerns. As a working hypothesis, I have

assumed that all these extensions are correct as they were already accepted through

a peer review process. My validation allows me to con�rm:

1. the power of expression of myfclouds language (Subsection 5.4.1),

2. the validity of the fclouds behaviour I de�ned, on all of the OCCI extensions

(Subsection 5.4.3),

3. the ability of my language to de�ne domain-speci�c properties (Subsec-

tion 5.4.4), and,

144
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

4. its ability to encode equivalence predicates,i.e., transformation rules between

heterogeneous concepts, and to de�ne properties of the equivalence (Subsec-

tion 5.4.5).

5.4.1 Catalog of Cloud Formal Speci�cations

Thanks to my proposed formal language, I succeeded to precisely encode thirteen

heterogeneous APIs, as shown in Table 5.3 that gives a summary of myfclouds

framework dataset. For each concept of my language, Table 5.3 provides the number

(#) of instances of this concept present in the dataset. The last line provides

the total of fclouds concepts present in the dataset. For brevity, I give in the

following excerpts of the formal APIs' speci�cations, implemented beforehand as

OCCI extensions. Full speci�cations for each of these thirteen extensions can be

found in the supplemental material here2.

1. OCCI Infrastructure [Nyrén 2016c] is an OCCI-based extension for IaaS

application domain. It de�nes compute, storage and network resource types

and associated links. It de�nes �ve kinds such asCompute, six mixins such

as IpNetworkInterface , and around twenty data types such asVlan range.

The Computekind represents a generic information processing resource,e.g.,

a virtual machine or container. It inherits the Resource kind de�ned in the

OCCI Core Model. Computehas a set of OCCI attributes that I declare

as �elds to my Computesignature, such asocci.compute.architecture to

specify the CPU architecture of the instance,occi.compute.core to de�ne the

number of virtual CPU cores assigned to the instance,occi.compute.memory

to de�ne the maximum RAM in gigabytes allocated to the instance, etc. The

lone keyword signi�es that the relation between two tuples from two sets, such

as occi.compute.architecture and Architecture , has a 0..1 cardinality.

s i g Compute extends f c l o u d s / Resource {
occ i_compute_archi tecture : lone Arch i tec tu re ,
occi_compute_cores : lone Core ,
occi_compute_hostname : lone St r ing ,
occi_compute_share : lone Share ,
occi_compute_speed : lone GHz,
occi_compute_memory : lone GiB ,
occi_compute_state : one ComputeStatus ,
occi_compute_state_message : lone S t r i ng

}

2https://github.com/occiware/fclouds-Framework

5.4. Evaluation of fclouds 145

Table 5.3: Summary of thefclouds Framework Dataset.
Extension #Kind #Mixin #Attribute #Action #DataType

IaaS
OCCI

Infrastructure 5 6 31 9 20
OCCI CRTP 0 6 18 0 0

Docker 24 0 251 7 2
GCP 150 0 2348 985 398

VMware 6 7 19 0 1
PaaS

OCCI Platform 3 4 11 4 3
MoDMaCAO 1 31 9 0 2

IoT
OMCRI 5 9 20 15 2

CoT 6 4 21 0 3
Transverse

cloud concerns
OCCI SLA 2 2 8 5 4

OCCI
Monitoring 2 3 9 0 2

Cloud
Simulation 8 14 53 0 0

Cloud
Elasticity 2 4 23 4 5

Total 214 90 2821 1029 442

2. OCCI CRTP [Drescher 2016] is an OCCI-based extension that de�nes a

set of precon�gured instances of the OCCIComputeresource type.

3. Docker is a lightweight container for deploying and managing applications.

Docker is implemented as an extension of OCCI in [Paraiso 2016]. It de�nes

generic and speci�c container and machine resource types and associated links.

4. GCP is one of the leaders among cloud providers. It o�ers several service such

as Compute, Storage, Network, Management, Big Data and Security. GCP

was implemented as OCCI extension in [Challita 2018a] and as I presented in

Chapter 4. I present in the following the formal speci�cation of the Instance

resource type, which represents a virtual machine in GCP.

s i g Ins tance extends f c l o u d s / Resource {
creat ionTimestamp : one St r ing ,
name : one St r ing ,
d e s c r i p t i o n : one St r ing ,
machineType : one St r ing ,
s t a t us : one StatusEnum ,
sta tusMessage : one St r ing ,
zone : one S t r i ng
d i s k s : one DiskRecord ,

146
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

cpuPlatform : one St r ing ,
l a b e l s : one Map,
minCpuPlatform : one St r ing ,
g u e s t A c c e l e r a t o r s : one GuestAcceleratorRecord ,
s t a r t R e s t r i c t e d : one Boolean ,
d e l e t i o n P r o t e c t i o n : one Boolean ,
kind : one S t r i ng

}

5. VMware is a virtualization and cloud computing software provider and it is

implemented as an extension of OCCI in [Zalila 2017b]. It de�nes VMware

instance, storage and network resource types and associated links.

6. OCCI Platform [Metsch 2016] is an OCCI-based extension for PaaS ap-

plication domain. It de�nes application and component resource types and

associated links.

7. MoDMaCAO [Korte 2018] is an application of OCCI for managing cloud ap-

plications. It de�nes generic and speci�c application, component, installation

dependency and execution dependency resource types.

8. OMCRI [Merle 2017] is an application of OCCI for Robot-as-a-Service domain.

The OMCRI extension de�nes generic and speci�c robot resource types.

9. CoT is an application of OCCI for seamlessly provisioning cloud and IoT

resources [Rachkidi 2017].

10. OCCI SLA [Katsaros 2016] de�nes OCCI types for modeling service level

agreements.

11. OCCI Monitoring [Ciuffoletti 2016] is a draft speci�cation of OCCI

that de�nes sensor and collector types for monitoring cloud systems.

12. Cloud Simulation [Ahmed-Nacer 2016a, Ahmed-Nacer 2017] is an

application of OCCI to simulate cloud systems. TheCloud Simulation

extension de�nes two notions: (i) a resource to simulate that represents the

resource to be simulated, and(ii) a simulation resource that represents the

resource which performs the simulation activity.

13. Cloud Elasticity [Zalila 2017b] is an application of OCCI that de�nes

a controller resource type to provide strategies for automatically provisioning

and de-provisioning compute resources such as memory and cores.

5.4. Evaluation of fclouds 147

5.4.2 Implementation of fclouds Formal Speci�cations

To provide the formal speci�cations of OCCI extensions, I implemented Alloy Gen-

erator, which is an Acceleo [acc] generation module added to the OCCIware tool

chain. Acceleo is a model-to-text generator,i.e., as illustrated in Figure 5.5, it takes

an OCCI extension and generates a text �le, which an Alloy speci�cation in our

case. This speci�cation conforms to thefclouds speci�cation.

Figure 5.5: Alloy Generator.

Acceleo uses a template-based approach. This approach mixes static parts, which

are raw text that will be outputted as it is, and templates, which are text that

contains special part which will be �lled with information from the model. Let 's

consider the example in Figure 5.6, which represents the template that is responsible

of generating an Alloy signature for each kind of an OCCI extension. �one sig� and

�extends Kind� are static parts, whereas the values between brackets will be replaced

by values of the extension kinds (cf. line 1). In this template, we can see that there

are conditionals on concepts (cf. lines 3, 5 and 7). For instance, if there is no

actions, then we print �no actions�. Otherwise, for each action, we use a dedicated

template (cf. line 7). In fact, in our Alloy Generator, I created templates for each

OCCI concept to create the corresponding Alloy concept.

Figure 5.6: Acceleo Template.

148
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

5.4.3 Veri�cation of fclouds Properties

Being rigorously encoded using the same formal language,i.e., fclouds , my thir-

teen case studies can be now accessed by the same OCCI RESTful interface. There-

fore, it is important to make sure that they correctly re�ect the behaviour of

fclouds . Using the Alloy analyzer, I verify that my thirteen formal speci�ca-

tions satisfy all the assertions,i.e., properties, that I formulated in my fclouds

language (cf. Table 5.2). For instance, I verify that Create Computeoperation of

OCCI Infrastructure is idempotent and that Update Instance operation of

GCP is not safe.

5.4.4 De�nition & Validation of Domain-Speci�c Properties

My framework allows me to verify some domain-speci�c properties. For instance,

in the following listing, I check whether creating aNetworkInterface between two

OCCI resources only occurs between oneComputeresource type and oneNetwork

resource type. This assertion is validated so my formal speci�cation respects and im-

plements the following requirement ofOCCI Infrastructure speci�cation: �Net-

workInterface connects a Compute instance to a Network instance�[Nyrén 2016c].

a s s e r t NetworkInterfaceBetweenComputeAndNetwork {
a l l c o n f i g : Conf igura t ion , l i n k I d : St r ing , l inkKind :

ne twork in te r face , l i nkSou rce : f c l o u d s /Resource , l i nkTarge t :
f c l o u d s /Resource , t : Time j

CreateLink [con f ig , l i nk Id , l inkKind , l inkSource , l inkTarget , t ,
t . next]

i m p l i e s one c o n f i g : Con f igu ra t ion {
one resourceCompute : c o n f i g . r e s o u r c e s . t {

resourceCompute . hasKind [compute]
one l i n k : f c l o u d s /Link {

l i n k . id = l i n k I d
l i n k in resourceCompute . l i n k s . (t . next)

}
}
one resourceNetwork : c o n f i g . r e s o u r c e s . t {

resourceNetwork . hasKind [network]
one l i n k : f c l o u d s /Link {

l i n k . id = l i n k I d
l i n k in resourceNetwork . l i n k s . (t . next)

}
}

}
}

5.5. Summary 149

5.4.5 Transformation Rules for Semantic Interoperability in Multi-
clouds

The last step for achieving semantic interoperability between heterogeneous domains

is to de�ne predicates that implement bidirectional formal transformation rules to

map between resources with similar semantics. In the following example, I show

how I can migrate from an OCCI Infrastructure virtual machine at to a GCP

virtual machine. I map the attributes of a given Computeresource to those of an

Instance resource. Also, since I learned from theOCCI Infrastructure and

GCP documentations that the memory in OCCI is expressed in gigabytes, whereas

it is in megabytes in GCP, I applied the multiplication operator for the conversion.

pred ComputeMapInstance [c : one Compute , i : one Ins tance] {
i . machinetype . guestCpus = c . occi_compute_cores
i . name = c . occi_compute_hostname
i . machinetype . isSharedCpu = c . occi_compute_share
i . machinetype .memoryMb = mul [1024 , c . occi_compute_memory]
i . s t a t us = c . occi_compute_state
i . s ta tusMessage = c . occi_compute_state_message

}

Such formal equivalence rules and properties are capable of gaining huge time

and development costs. The cloud developer can now verify a priori the feasibility

of his/her multi-cloud system, before embarking on error-prone implementations.

Thanks to my transformation rules and to MDE principles, I can later imagine a

model that factorizes common attributes for re-usability betweenOCCI Infras-

tructure and GCP .

5.5 Summary

This chapter presented thefclouds framework, my approach that relies on formal

speci�cation techniques, speci�cally on the Alloy language, to rigorously and clearly

describe the requirements of cloud APIs. I formalize the OCCI standard in order

to implement my formal language for the clouds. My formal speci�cation of OCCI

was checked for validity thanks to the Alloy analyzer that provides a veri�cation

backbone for OCCI properties. To demonstrate the usefulness of my approach,

I conducted thirteen case studies to show how my approach is applied on OCCI

extensions and that these thirteen APIs with di�erent functionality verify the OCCI

properties so they correctly comply to the OCCI standard. Also, applying Alloy to

these APIs allowed me to re�ect the proper behavior of each API by identifying

150
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

and validating its speci�c properties. Finally, having rigorously speci�ed the static

and operational semantics of each cloud API, I de�ned formal transformation rules

between their formal speci�cations, thus ensure semantic interoperability between

them.

This chapter concludes the fourth part of this dissertation, i.e., the contribu-

tions. In Chapter 4 I described how I automatically extracted a precise model from

GCP documentation to provide an accurate description of GCP API. Afterwards,

Chapter 5 described how I formally veri�ed that cloud APIs re�ect the desired be-

haviour and how I achieved semantic interoperability between their concepts with

the fclouds framework.

In the following part, I summarize the main contributions of this thesis, present

the conclusions of the research work, and de�ne a set of perspectives for future work.

Part V

Conclusion

The last part of the manuscript presents a summary, future perspectives and �nal remarks
of this thesis.

Chapter 6

Conclusions and Perspectives

Contents
6.1 Background Summary . 153

6.2 Contributions Summary . 154

6.3 Perspectives . 156

6.3.1 Short-term Perspectives . 156

6.3.2 Long-term Perspectives . 157

6.4 Final Conclusion . 159

This last chapter summarizes the contributions of this thesis and discusses future

research lines of the work presented in this dissertation. It is structured as follows.

Section 6.1 recapitulates theOCCIware research project that supports this thesis.

In Section 6.2, I summarize the contributions of this thesis. Section 6.3 states short-

term and long-term perspectives to extend this research. Section 6.4 concludes this

manuscript.

6.1 Background Summary

This thesis is supported by the French OCCIware project and promotes its advance-

ment. OCCIware addresses:

ˆ RQ#1: Is it possible to have a solution that allows to represent all kinds

of cloud resources despite their heterogeneity, and a complete framework for

managing them?

OCCIware platform is summarized as follows:

A complete modeling, veri�cation, generation and management sup-

port. MDE approaches have proven to be advantageous to address the heterogene-

ity across cloud providers. However, the existing MDE approaches for the cloud,

are limited to designing cloud infrastructures. Cloud developers need support to

deploy and manage, not only design all the kinds of cloud resources. Automating

154 Chapter 6. Conclusions and Perspectives

the deployment of cloud artifacts and managing di�erent types of cloud resources

at runtime are not straightforward. To tackle these issues, I introduced theOCCI-

ware approach in Chapter 3. This solution is based on well accepted and de�ned

standards and technologies. In particular,OCCIware relies on the OCCI standard

that proposes a generic model and API for managing any kind of cloud comput-

ing resources. Also, OCCIware exploits the principles of MDE and leverage them

to provide modeling, veri�cation, generation and management support for cloud

extensions and con�gurations. TheOCCIware approach especially provides the

OCCIware Metamodel , which is based on an Ecore syntax and allows to de�ne

cloud concepts with OCL constraints over them. TheOCCIware Metamodel

can be seen as a domain-speci�c modeling language to de�ne and exchange OCCI

extensions and con�gurations between end-users and resource providers. For tooling

purpose, the OCCIware Studio is a tool chain built on top of the OCCIware

Metamodel . The OCCIware Studio allows both cloud architects and users can

encode OCCI extensions and con�gurations, respectively, graphically via theOC-

CIware Designer tool, and textually via the OCCIware Editor tool. They can

also automatically verify the consistency of these extensions and con�gurations via

the OCCIware Validator tool, generate dedicated model-driven tooling via both

Ecore Generator and Connector Generator tools, generate a deployment script

via the CURL Generator tool, and manage their con�gurations at runtime via

the generated connectors deployed inOCCIware Runtime .

6.2 Contributions Summary

The two contributions of this thesis are made as part of my work around the OC-

CIware platform. The �rst contribution addresses:

ˆ RQ#2: Is it possible to automatically extract precise models from cloud APIs

and to synchronize them with the cloud evolution?

The second contribution addresses:

ˆ RQ#3: Is it possible to reason on cloud APIs and identify their similarities

and di�erences?

The two contributions are respectively summarized as follows:

An automated knowledge extraction support. As cloud environments

evolve over time, their models have to evolve as well to be kept up-to-date. However,

nearly all the existing models that represent the cloud environment are manually

6.2. Contributions Summary 155

built, which is tedious and error-prone. In addition, the de�ned vocabulary of the

existing cloud models is not rich enough to cover the heterogeneity of all existing

resources. It only considers the lowest common denominator of the cloud providers.

It should also be noted that the de�ned vocabulary is not �exible enough and there

is no information provided on how the developer can extend this vocabulary. In

Chapter 4, I thus introduce my approach of inferring precise models from cloud

textual documentations. To experiment this approach, I studied the documentation

of GCP that presents various drawbacks. Later on, I implemented a crawler that

automatically extracts GCP resource types, their attributes and operations. These

resources are stored inGCP Model that conforms to the OCCIware Metamodel

and is built as an OCCI extension using theOCCIware Studio . I showed that

using MDE to specify GCP API improve the speci�cation of GCP, especially via

the model transformations like re�ning the types of the attributes and detecting

implicit metadata. A precise speci�cation, accompanied by a validator at design

time, helps the developer to ensure correctness of his/her GCP con�gurations before

their deployment. I also showed that using such a model-driven speci�cation leads

to a redundancy reduction, even with a simple transformation,i.e., by introducing

a single abstract kind to the speci�cation. My approach also allowed me to deduce

some facts regarding theuniformity , conciseness, consistencyand comprehensiveness

of GCP API.

A formal speci�cation support. Cloud solutions (APIs, services, standards

and model-driven approaches) are numerous and heterogeneous. Moreover, there is

no clear consensus on how these solutions work. And although MDE approaches

allow the developer to validate cloud con�gurations before their deployment

through OCL constraints, the developer needs to logically think and understand the

cloud solutions. Developers need a formal speci�cation of cloud solutions,fclouds

is the �rst approach ensuring this support. As explained in Chapter 5, fclouds

encapsulates the OCCIware Metamodel and helps developers understand

without ambiguity the static semantics of cloud environments and the behavioural

semantics of their operations. From the developer's perspective,fclouds acts a

black box: the developer de�nes OCCI extensions usingOCCIware Studio as

entry point of fclouds , and retrieves a formal speci�cation of each extension. This

speci�cation is written in Alloy which is a lightweight relational formal language

based on the �rst-order logic. The Alloy syntax is simple and easy to use, and

through my experimentation I demonstrated that it is expressive enough to specify

di�erent cloud concerns. In addition, by using the Alloy analyzer, developers can

check the consistency of their extensions, the sequentiality of certain couples of

156 Chapter 6. Conclusions and Perspectives

cloud operations, the reversibility of others, as well as the idempotence and safety

of certain operations. If counterexamples are found, the developers can detect

inconsistencies in their extensions. Finally, I describe transformation rules for

mapping concepts from a cloud solution to another and thus, I make cloud solutions

more semantically interoperable.

Together, these two contributions support the automated construction of formal

cloud speci�cations by handling the complexities linked to the natural language

documentations of cloud providers. They provide means to specify cloud concepts

and operations and a way for verifying their consistency and various other properties.

In addition, they provide means for de�ning transformation rules, thus ensuring

semantic interoperability among cloud providers.

6.3 Perspectives

In this dissertation, I presented my work that successfully covers the needs of pre-

cisely modeling and verifying cloud resources and reasoning over them. However,

there is still a lot of work that can be done to improve my research. In this section I

thus discuss some short-term and long-term perspectives that should be considered

in the continuation of this work.

6.3.1 Short-term Perspectives

Broadening the validation scope of OCCIware . The OCCIware ap-

proach was successfully validated by designing and managing, using theOCCIware

Studio and the OCCIware Runtime respectively, �ve OCCI extensions and three

academic uses cases. Hereafter, we target industrial validation for theOCCIware

approach. Therefore, an ongoing work aims to get this approach tested and adopted

within Scalair [scaa], a hybrid cloud provider. Also, in order to cover the whole cloud

market, the Xscalibur [xsc] start-up is currently developing theMulti-Cloud Stu-

dio 1 that supports two other cloud providers: AWS and OpenStack. Both OCCI

extensions for AWS and OpenStack are under development2 in order to provide a

modeling studio to design both AWS and OpenStack con�gurations.

Generating a new textual documentation from GCP Model and eval-

uating it. I aim to generate fromGCP Model , thanks to the OCCIware Stu-

1https://github.com/occiware/Multi-Cloud-Studio
2Available here https://github.com/occiware/Multi-Cloud-Studio/tree/master/plugins/

org.eclipse.cmf.occi.multicloud.aws.ec2

6.3. Perspectives 157

dio facilities, a new textual documentation of GCP API. Then, I aim to strengthen

the validation of this documentation by conducting a survey to be taken by devel-

opers that are using GCP API. This survey will help us to verify how accurate the

processed documentation is and if it actually saves their development time. Also, for

ultimate measurement of our approach, we will contact Google employees who are

in charge of GCP API, because we believe that their expertise is the most e�cient

for reviewing this work.

Providing a complete tool chain for GCP. For the moment, GCP Model

is an enhanced and accurate speci�cation of the GCP API that allows the developer

to analyze and correctly understand its services. The developer would therefore

make more e�ective use of GCP API and tend to write more e�cient code or REST

requests.GCP Studio , which is a dedicated model-driven environment for graph-

ically and textually designing con�gurations that conform to GCP Model , is a

work in progress. I aim to associateGCP Studio to a GCP connector in order to

allow an e�ective provisioning of GCP resources and their management at runtime.

Extending the catalog of formal cloud APIs. As described in Chapter 5, I

successfully speci�ed thirteen cloud APIs by using my proposedfclouds language.

I aim to extend my catalog of formal cloud APIs in order to achieve my vision of

building the �rst comprehensive framework for semantic interoperability in multi-

clouds. Therefore, using thefclouds language, I aim to formally specify AWS,

OpenStack, TOSCA, etc.

6.3.2 Long-term Perspectives

Automatically generating OCCIware deployment plans. We target

to extend OCCIware Studio in order to support the automatic generation of

deployment plans from OCCI con�gurations. Currently, the cloud developer does

this task manually. This feature allows us to analyze the di�erent resources and

links between them available in an OCCI con�guration and deduce a deployment

plan, which will be automatically executed onOCCIware Runtime .

Following the evolution of GCP API. I plan to update my approach so

it would automatically handle the evolution of GCP API. At the moment, this evo-

lution is manually ensured. For automating the process, it is more practical if my

crawler is less related to the structure of GCP HTML pages, because in reality the

latter are constantly updated. This can be done by experimenting arti�cial intel-

ligence algorithms to extract knowledge from GCP documentation, then studying

158 Chapter 6. Conclusions and Perspectives

whether the inferredGCP Model in this case will not be missing some information.

Also, my model needs to incrementally detect streaming modi�cations, by calculat-

ing and modifying only the di�erences between the initially processed version and

the newly modi�ed one.

Dealing with additional types of properties. fclouds allows to verify

that the appropriate cloud operations satisfy these �ve properties: consistency, se-

quentiality, reversibility, idempotence and safety. For verifying di�erent aspects of

the cloud APIs, I aim to enrich fclouds with additional properties such asReach-

ability, i.e., when executing operations on cloud resources through APIs, there is

always a transition from a resource state to another.

Considering further formal techniques. I proposed in this dissertation to

use the Alloy formal language and its analyzer to formally specify cloud APIs and

reason about them. However, being a SAT solver, Alloy is not e�ective for resolving

numerical constraints which aim for example to minimize the cloud application

cost. Therefore, I intend to use adequate heuristics like SMT solvers, which are

obviously better than SAT solvers for such scenarios. For example, the TLA+

speci�cation language and TLC, its model checker [Lamport 2002] are recognized

and used to verify the reachability problem. Furthermore, although model checkers

verify that the properties are valid within a big scope of research, I need to prove it

in the absolute through a convincing argument. Hence, I will use automated proof

assistants [Loveland 2016], namely Coq [Barras 1997], which implements algorithms

and heuristics to build a proof describing the sequence of needed moves in order to

solve a property.

Working on real-world interoperability. I presented in Chapter 5, a sce-

nario that showed the usage of fclouds for ensuringsemantic interoperability. It

mainly consisted in two stages: modeling and reasoning. For the future, I aim

to introduce a third stage, where my formal framework is incorporated in the de-

velopment and maintenance of a bridge with a uni�ed API, to promote real-world

interoperability, while formal semantics is properly re�ected in its behaviour. This

third stage is depicted in (3) of Figure 6.1.

Improving the management of cloud applications. In this thesis, I fo-

cused on OCCI standard, which is developed by the OGF and aims to standardize

an API for the management of any kind of cloud resources. Besides OCCI, TOSCA

currently receives more attention by both the industry and research community,

but their focus is di�erent and they can be used complementarily. For managing

6.4. Final Conclusion 159

Figure 6.1: Formal Real-World Bridge.

cloud applications, I aim to implement a model-driven cloud orchestrator based on

two complementary standards, TOSCA and OCCI. Therefore, I am re�ning the

mapping between the concepts of these two standards [Glaser 2017], and building

TOSCA Studio , a dedicated model-driven environment for designing applications

with TOSCA. This approach will allow TOSCA to have a complementary tool to

take better advantage of deployed applications in production environments. At

runtime, TOSCA Studio will be able to: (i) communicate with an OCCI Infras-

tructure such as the EGI FC to provision virtual machines for example, or(ii) be

exposed via the OCCI Plaform API in order to create, retrieve, update and delete

any kind of cloud application resources.

6.4 Final Conclusion

To close this manuscript, two quotes synthesize the main idea of this thesis:

�No problem can be solved from the same consciousness that created it.�

�Albert Einstein

This �rst quote remarks the value of changing the consciousness to resolve a chal-

lenge in life. In other terms, what got you to a problem is not going to get you out of

160 Chapter 6. Conclusions and Perspectives

it. Therefore, proposing new cloud APIs to resolve the heterogeneity of the existing

ones, will only worsen the problem. However, MDE brings new opportunities to

improve the cloud solutions. This thesis evidences the value of rising in abstraction

to face the heterogeneity in the cloud domain.

�Concision in style, precision in thought, decision in life.�

�Victor Hugo

This second quote remarks the value of concision and precision to successfully make

a decision. Eliminating redundancy while conveying the ideas without ambiguity,

will lead to a better conclusion. By using formal methods to provide a concise

and precise speci�cation mechanism, this thesis evidences a better understanding of

cloud APIs. This is crucial for taking e�cient use of the cloud ecosystem and for

making better decisions regarding the o�ers selection.

Bibliography

[acc] Acceleo Website. http://www.eclipse.org/acceleo/ (accessed on July 25,

2018). (Cited on pages 71 and 147.)

[aeo] Aeolus ANR Project Website. http://aeolus-project.org/ (accessed on

May 27, 2018). (Cited on page 25.)

[Ahmed-Nacer 2016a] Mehdi Ahmed-Nacer and Samir Tata.Simulation Extension

for Cloud standard OCCIware. In 25th IEEE International Conference on

Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-

ICE), pages 263�264. IEEE, 2016. (Cited on pages 85 and 146.)

[Ahmed-Nacer 2016b] Mehdi Ahmed-Nacer, Samir Tata, Walid Gaaloul, Philippe

Merle, Jean Parpaillon, Noël Plouzeau and Stéphanie Challita.OCCI Be-

havioural Model. OCCIware Deliverable 2.2.2, December 2016. (Cited on

page 129.)

[Ahmed-Nacer 2017] Mehdi Ahmed-Nacer, Walid Gaaloul and Samir Tata.OCCI-

Compliant Cloud Con�guration Simulation . In IEEE International Confer-

ence on Edge Computing (EDGE), pages 73�81. IEEE, 2017. (Cited on

pages 85 and 146.)

[ans] Ansible Website. https://www.ansible.com/ (accessed on June 17, 2018).

(Cited on pages 28 and 91.)

[Ardagna 2012] Danilo Ardagna, Elisabetta Di Nitto, Giuliano Casale, Dana Petcu,

Parastoo Mohagheghi, Sébastien Mosser, Peter Matthews, Anke Gericke,

Cyril Ballagny, Francesco D'Andriaet al. MODAClouds: A Model-Driven

Approach for the Design and Execution of Applications on Multiple Clouds.

In 4th International Workshop on Modeling in Software Engineering, pages

50�56. IEEE Press, 2012. (Cited on page 35.)

[Armbrust 2010] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D

Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoicaet al. A View of Cloud Computing. Communications of

the ACM, vol. 53, no. 4, pages 50�58, 2010. (Cited on page 3.)

[Asserson 2002] Anne Asserson, Keith G Je�ery and Andrei Lopatenko.CERIF:

past, present and future: an overview. 2002. (Cited on page 32.)

162 Bibliography

[aws] Amazon Web Services Website. https://aws.amazon.com/ (accessed on

June 3, 2018). (Cited on page 24.)

[azu] Microsoft Azure Website. https://azure.microsoft.com/en-us/ (accessed

on June 3, 2018). (Cited on page 24.)

[Barras 1997] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant,

Jean-Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet,

Cesar Munoz, Chetan Murthyet al. The Coq Proof Assistant Reference

Manual: Version 6.1. 1997. (Cited on page 158.)

[Baryannis 2013] George Baryannis, Panagiotis Garefalakis, Kyriakos Kritikos,

Kostas Magoutis, Antonis Papaioannou, Dimitris Plexousakis and Chrysos-

tomos Zeginis.Lifecycle Management of Service-based Applications on Multi-

Clouds: A Research Roadmap. In International workshop on Multi-cloud ap-

plications and federated clouds, pages 13�20. ACM, 2013. (Cited on page 21.)

[Belshe 2015] Mike Belshe, Martin Thomson and Roberto Peon.Hypertext Transfer

Protocol Version 2 (HTTP/2) . 2015. (Cited on pages 139 and 142.)

[Bencomo 2014] Nelly Bencomo, Robert B France, Betty HC Cheng and Uwe Aÿ-

mann. Models@run.time: Foundations, Applications, and Roadmaps, vol-

ume 8378. Springer, 2014. (Cited on page 115.)

[Benzadri 2013] Zakaria Benzadri, Faiza Belala and Cha�a Bouanaka.Towards a

Formal Model for Cloud Computing. In International Conference on Service-

Oriented Computing, pages 381�393. Springer, 2013. (Cited on page 124.)

[Bergmayr 2013] Alexander Bergmayr, Hugo Bruneliere, Javier Luis Canovas

Izquierdo, Jesus Gorronogoitia, George Kousiouris, Dimosthenis Kyri-

azis, Philip Langer, Andreas Menychtas, Leire Orue-Echevarria, Clara

Pezuelaet al. Migrating legacy software to the cloud with ARTIST. In Soft-

ware Maintenance and Reengineering (CSMR), 2013 17th European Confer-

ence on, pages 465�468. IEEE, 2013. (Cited on page 35.)

[Bergmayr 2014] Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel

Wimmer and Gerti Kappel. UML-based Cloud Application Modeling with Li-

braries, Pro�les, and Templates*. In Proc. Workshop on CloudMDE, pages

56�65, 2014. (Cited on page 33.)

[Bergmayr 2018] Alexander Bergmayr, Uwe Breitenbücher, Nicolas Ferry, Alessan-

dro Rossini, Arnor Solberg, Manuel Wimmer, Gerti Kappel and Frank Ley-

Bibliography 163

mann. A Systematic Review of Cloud Modeling Languages. ACM Computing

Surveys (CSUR), vol. 51, no. 1, page 22, 2018. (Cited on pages 31 and 52.)

[Berners-Lee 1998] Tim Berners-Lee, Roy Fielding and Larry Masinter.Uniform

Resource Identi�ers (URI): Generic Syntax. Technical report, 1998. (Cited

on page 69.)

[Binz 2012] Tobias Binz, Gerd Breiter, Frank Leymann and Thomas Spatzier.

Portable Cloud Services Using TOSCA. IEEE Internet Computing, no. 3,

pages 80�85, 2012. (Cited on pages 23, 33 and 38.)

[Binz 2013] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank

Leymann, Alexander Nowak and Sebastian Wagner.OpenTOSCA-A Run-

time for TOSCA-based Cloud Applications. In Service-Oriented Computing,

pages 692�695. Springer, 2013. (Cited on pages 35 and 38.)

[Blair 2009] Gordon Blair, Nelly Bencomo and Robert B France.Models@run.time.

Computer, vol. 42, no. 10, pages 22�27, 2009. (Cited on pages 34 and 75.)

[Bobba 2017] Rakesh Bobba, Jon Grov, Indranil Gupta, Si Liu, José Meseguer, Pe-

ter C Olveczky and Stephen Skeirik.Design, Formal Modeling, and Valida-

tion of Cloud Storage Systems Using Maude. Technical report, 2017. (Cited

on page 124.)

[Brambilla 2012] Marco Brambilla, Jordi Cabot and Manuel Wimmer. Model-

Driven Software Engineering in Practice. Synthesis Lectures on Software

Engineering, vol. 1, no. 1, pages 1�182, 2012. (Cited on page 60.)

[Brandtzæg 2012] Eirik Brandtzæg, Sébastien Mosser and Parastoo Mohagheghi.

Towards CloudML, a Model-Based Approach to Provision Resources in the

Clouds. In 8th European Conference on Modelling Foundations and Appli-

cations (ECMFA), pages 18�27, 2012. (Cited on pages 32 and 34.)

[bro] Brooklyn Website. https://brooklyn.apache.org/ (accessed on September

14, 2018). (Cited on page 32.)

[Bruneliere 2010] Hugo Bruneliere, Jordi Cabot and Frédéric Jouault.Combining

Model-Driven Engineering and Cloud Computing. In Modeling, Design, and

Analysis for the Service Cloud-MDA4ServiceCloud'10: Workshop's 4th edi-

tion (co-located with the 6th European Conference on Modelling Foundations

and Applications-ECMFA 2010), 2010. (Cited on pages 21, 27 and 52.)

164 Bibliography

[Buyya 2009] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James

Broberg and Ivona Brandic. Cloud Computing and Emerging IT Platforms:

Vision, Hype, and Reality for Delivering Computing as the 5th Utility. Future

Generation Computer Systems, vol. 25, no. 6, pages 599�616, 2009. (Cited

on page 3.)

[Calheiros 2011] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF

De Rose and Rajkumar Buyya.CloudSim: A Toolkit for Modeling and Simu-

lation of Cloud Computing Environments and Evaluation of Resource Provi-

sioning Algorithms. Software: Practice and Experience, vol. 41, no. 1, pages

23�50, 2011. (Cited on page 85.)

[cam] OASIS CAMP speci�cation . http://docs.oasis-open.org/camp/

camp-spec/v1.2/camp-spec-v1.2.pdf (accessed on June 6, 2018). (Cited

on page 22.)

[Cao 2017] Hanyang Cao, Jean-Rémy Falleri and Xavier Blanc.Automated Gen-

eration of REST API Speci�cation from Plain HTML Documentation . In

the 15th International Conference on Service-Oriented Computing (ICSOC),

pages 453�461. Springer, 2017. (Cited on page 100.)

[Carlson 2012] Mark Carlson, Martin Chapman, Alex Heneveld, Scott Hinkelman,

Duncan Johnston-Watt, Anish Karmarkar, Tobias Kunze, Ashok Malhotra,

Je� Mischkinsky, Adrian Otto et al. Cloud Application Management for Plat-

forms. Speci�cation document, OASIS, 2012. (Cited on page 22.)

[cdm] Storage Networking Industry Association (SNIA) Website. https://www.

snia.org/cdmi (accessed on June 3, 2018). (Cited on page 22.)

[Challita 2017a] Stéphanie Challita, Fawaz Paraiso and Philippe Merle.A Study

of Virtual Machine Placement Optimization in Data Centers. In 7th Inter-

national Conference on Cloud Computing and Services Science (CLOSER),

2017. (Cited on page 17.)

[Challita 2017b] Stéphanie Challita, Fawaz Paraiso and Philippe Merle. To-

wards Formal-based Semantic Interoperability in Multi-Clouds: the fclouds

Framework. In 10th IEEE International Conference on Cloud Computing

(CLOUD), pages 710�713. IEEE, 2017. (Cited on pages 17 and 121.)

[Challita 2018a] Stéphanie Challita, Faiez Zalila, Christophe Gourdin and Philippe

Merle. A Precise Model for Google Cloud Platform. In 6th IEEE International

Conference on Cloud Engineering (IC2E), pages 177�183. IEEE, 2018. (Cited

on pages 16, 89, 95 and 145.)

Bibliography 165

[Challita 2018b] Stéphanie Challita, Faiez Zalila and Philippe Merle. Specifying

Semantic Interoperability between Heterogeneous Cloud Resources with the

fclouds Formal Language. In 11th International Conference on Cloud Com-

puting (CLOUD), pages 367�374. IEEE, 2018. (Cited on pages 16 and 121.)

[Chapman 2012] Clovis Chapman, Wolfgang Emmerich, Fermín Galán Márquez,

Stuart Clayman and Alex Galis. Software Architecture De�nition for On-

Demand Cloud Provisioning. Cluster Computing, vol. 15, no. 2, pages 79�

100, 2012. (Cited on page 38.)

[che] Chef Website. https://www.chef.io/chef/ (accessed on June 17, 2018).

(Cited on page 28.)

[Chowdhury 2003] Gobinda G Chowdhury. Natural Language Processing. Annual

review of information science and technology, vol. 37, no. 1, pages 51�89,

2003. (Cited on page 98.)

[Ciu�oletti 2016] Augusto Ciu�oletti. Open Cloud Computing Interface - Monitor-

ing Extension. Speci�cation Document 1.2, Open Grid Forum, January 2016.

(Cited on pages 63, 84 and 146.)

[Clo] CloudMIG Xpress Website. http://www.cloudmig.org/ (accessed on June

11, 2018). (Cited on page 34.)

[Cohen 2009] Reuven Cohen.Examining Cloud Compatibility, Portability and In-

teroperability. ElasticVapor: Life in the Cloud, 2009. (Cited on page 9.)

[Davis 2012] Doug Davis and Gilbert Pilz. Cloud Infrastructure Management In-

terface (CIMI) Model and REST Interface over HTTP . vol. DSP-0263, May

2012. (Cited on page 23.)

[dig] DigitalOcean Website. https://www.digitalocean.com/ (accessed on June

3, 2018). (Cited on page 24.)

[doc] Docker Website. https://www.docker.com/ (accessed on July 22, 2018).

(Cited on page 86.)

[Drescher 2016] Michel Drescher, Boris Parák and David Wallom.Open Cloud Com-

puting Interface - Compute Resource Template Pro�le. Speci�cation Docu-

ment GFD.222, Open Grid Forum, February 2016. (Cited on pages 55, 82

and 145.)

[EA] Enterprise Architect Website. http://www.sparxsystems.com/products/

ea/ (accessed on May 27, 2018). (Cited on page 30.)

166 Bibliography

[ecl] Eclipse Website. http://www.eclipse.org/ (accessed on July 25, 2018).

(Cited on page 71.)

[Edmonds 2012] Andy Edmonds, Thijs Metsch, Alexander Papaspyrou and Alexis

Richardson. Toward an Open Cloud Standard. IEEE Internet Computing,

vol. 16, no. 4, pages 15�25, 2012. (Cited on pages 10, 23, 50 and 53.)

[Edmonds 2016] Andy Edmonds and Thijs Metsch.Open Cloud Computing Inter-

face - Text Rendering. Speci�cation Document GFD-R-P.229, Open Grid

Forum, 2016. (Cited on pages 55, 69, 75 and 81.)

[egi] EGI FC Website. https://www.egi.eu/ (accessed on June 13, 2018). (Cited

on page 24.)

[EMFa] Eclipse Modeling Framework (EMF) Website. http://www.eclipse.org/

modeling/emf/ (accessed on May 27, 2018). (Cited on page 30.)

[emfb] EMFText Website. http://www.emftext.org/ (accessed on May 27, 2018).

(Cited on page 31.)

[ero] erocci Website. http://erocci.ow2.org (accessed on August 13, 2018).

(Cited on page 50.)

[Farokhi 2014] Soodeh Farokhi.Towards an SLA-Based Service Allocation in Multi-

Cloud Environments. In 14th IEEE/ACM International Symposium on Clus-

ter, Cloud and Grid Computing (CCGrid), pages 591�594. IEEE, 2014.

(Cited on page 35.)

[Ferrer 2012] Ana Juan Ferrer, Francisco HernáNdez, Johan Tordsson, Erik Elm-

roth, Ahmed Ali-Eldin, Csilla Zsigri, RaüL Sirvent, Jordi Guitart, Rosa M

Badia, Karim Djemameet al. OPTIMIS: A Holistic Approach to Cloud Ser-

vice Provisioning. Future Generation Computer Systems, vol. 28, no. 1, pages

66�77, 2012. (Cited on page 25.)

[Ferry 2013] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin and

Arnor Solberg. Towards Model-Driven Provisioning, Deployment, Monitor-

ing, and Adaptation of Multi-Cloud Systems. In IEEE 6th International Con-

ference on Cloud Computing (CLOUD), pages 887�894. IEEE, 2013. (Cited

on pages 32 and 34.)

[Ferry 2018] Nicolas Ferry, Franck Chauvel, Hui Song, Alessandro Rossini, Maksym

Lushpenko and Arnor Solberg. CloudMF: Model-Driven Management

of Multi-Cloud Applications. ACM Transactions on Internet Technology

(TOIT), vol. 18, no. 2, pages 16:1�16:24, 2018. (Cited on page 34.)

Bibliography 167

[Fielding 2000] Roy Thomas Fielding. Architectural Styles and the Design of

Network-based Software Architectures. PhD thesis, University of California,

Irvine, 2000. (Cited on pages 8 and 50.)

[�e] FlexiScale Website. http://www.flexiscale.com/ (accessed on June 6,

2018). (Cited on page 24.)

[fog] Fog Website. https://fog.io/ (accessed on June 3, 2018). (Cited on

page 26.)

[Fowler 2010] Martin Fowler. Domain-Speci�c Languages. Pearson Education, 2010.

(Cited on pages 31 and 108.)

[Frey 2011] Sören Frey and Wilhelm Hasselbring.The CloudMIG Approach: Model-

Based Migration of Software Systems to Cloud-Optimized Applications. Inter-

national Journal on Advances in Software, vol. 4, no. 3 and 4, pages 342�353,

2011. (Cited on page 34.)

[Frey 2013] Sören Frey, Florian Fittkau and Wilhelm Hasselbring. Search-Based

Genetic Optimization for Deployment and Recon�guration of Software in the

Cloud. In International Conference on Software Engineering, pages 512�521.

IEEE Press, 2013. (Cited on page 35.)

[García-Galán 2016] Jesús García-Galán, Pablo Trinidad, Omer F Rana and An-

tonio Ruiz-Cortés. Automated Con�guration Support for Infrastructure Mi-

gration to the Cloud. Future Generation Computer Systems, vol. 55, pages

200�212, 2016. (Cited on page 36.)

[Garis 2012] Ana Garis, Ana CR Paiva, Alcino Cunha and Daniel Riesco.Speci-

fying UML Protocol State Machines in Alloy. In International Conference

on Integrated Formal Methods, pages 312�326. Springer, 2012. (Cited on

page 136.)

[gcp] Google Cloud Platform Website. https://cloud.google.com/ (accessed on

June 3, 2018). (Cited on page 24.)

[Gherardi 2014] Luca Gherardi, Dominique Hunziker and Gajamohan Mohanara-

jah. A Software Product Line Approach for Con�guring Cloud Robotics

Applications. In 7th IEEE International Conference on Cloud Computing

(CLOUD), pages 745�752. IEEE, 2014. (Cited on page 36.)

[Glaser 2017] Fabian Glaser, Johnannes Erbel and Jens Grabowski.Model Driven

Cloud Orchestration by Combining TOSCA and OCCI. In 7th International

168 Bibliography

Conference on Cloud Computing and Services Science (CLOSER), pages

644�650, 2017. (Cited on page 159.)

[gmf] Graphical Modeling Framework (GMF) Website. https://www.eclipse.

org/gmf-tooling/ (accessed on May 27, 2018). (Cited on page 31.)

[gop] Gophercloud Website. http://gophercloud.io/ (accessed on June 3, 2018).

(Cited on page 26.)

[gra] Graphiti Website. https://www.eclipse.org/graphiti/ (accessed on May

27, 2018). (Cited on page 31.)

[Guillén 2013] Joaquín Guillén, Javier Miranda, Juan Manuel Murillo and Carlos

Canal. A UML Pro�le for Modeling Multicloud Applications . In Service-

Oriented and Cloud Computing, pages 180�187. Springer, 2013. (Cited on

page 37.)

[Hamdaqa 2015] Mohammad Hamdaqa and Ladan Tahvildari.StratusML: A Lay-

ered Cloud Modeling Framework. In IEEE International Conference on Cloud

Engineering (IC2E), pages 96�105, 2015. (Cited on page 39.)

[Haupt 2017] Florian Haupt, Frank Leymann, Anton Scherer and Karolina

Vukojevic-Haupt. A Framework for the Structural Analysis of REST APIs.

In the International Conference on Software Architecture (ICSA), pages 55�

58. IEEE, 2017. (Cited on page 100.)

[her] Heroku Website. https://www.heroku.com/ (accessed on June 3, 2018).

(Cited on page 24.)

[Holmes 2014] Taíd Holmes.Automated Provisioning of Customized Cloud Service

Stacks using Domain-Speci�c Languages. CloudMDE 2014, pages 46�55,

2014. (Cited on page 36.)

[Holmes 2015] Taíd Holmes.Facilitating Migration of Cloud Infrastructure Services-

A Model-Based Approach. 3rd International Workshop on Model-Driven En-

gineering on and for the Cloud in conjunction with ACM/IEEE 18th Inter-

national Conference on Model Driven Engineering Languages and Systems,

pages 7�12, 2015. (Cited on page 37.)

[Huÿmann 2001] H Huÿmann. Fundamental Approaches to Software Engineering

(FASE) . In 5th International Conference held as Part of the Joint European

Conferences on Theory and Practice of Software (ETAPS). Springer, 2001.

(Cited on page 30.)

Bibliography 169

[Jackson 2012] Daniel Jackson. Software Abstractions: logic, language, and analy-

sis. MIT press, 2012. (Cited on pages 10, 12, 73, 122, 128 and 129.)

[jcl] Apache jclouds Website. http://www.jclouds.org/ (accessed on May 27,

2018). (Cited on page 26.)

[Je�ery 2017] Keith Je�ery and Lutz Schubert. PaaSage. IEEE Cloud Computing,

vol. 4, no. 3, pages 60�60, 2017. (Cited on page 35.)

[Jurafsky 2000] Daniel Jurafsky. Speech and Language Processing: An Introduc-

tion to Natural Language Processing. Computational linguistics, and speech

recognition, 2000. (Cited on page 113.)

[kaa] Kaavo Website. http://www.kaavo.com/ (accessed on May 27, 2018). (Cited

on page 25.)

[Kang 1990] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak and

A Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibil-

ity Study. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software

Engineering Inst, 1990. (Cited on page 30.)

[Katsaros 2016] Gregory Katsaros.Open Cloud Computing Interface - Service Level

Agreements. Speci�cation Document GFD.228, Open Grid Forum, October

2016. (Cited on pages 55, 63, 76, 84 and 146.)

[Khajeh-Hosseini 2012] Ali Khajeh-Hosseini, David Greenwood, James W Smith

and Ian Sommerville. The Cloud Adoption Toolkit: Supporting Cloud Adop-

tion Decisions in the Enterprise. Software: Practice and Experience, vol. 42,

no. 4, pages 447�465, 2012. (Cited on page 33.)

[Kirkham 2014] Tom Kirkham, Brian Matthews, Vasily Bunakov and Keith Jef-

fery. CAMEL and the Modelling of Cloud Lifecycles. In 2014 Conference,

eChallenges e-2014, pages 1�6. IEEE, 2014. (Cited on page 32.)

[Klein 2003] Dan Klein and Christopher D Manning. Accurate Unlexicalized Pars-

ing. In Proceedings of the 41st Annual Meeting on Association for Computa-

tional Linguistics-Volume 1, pages 423�430. Association for Computational

Linguistics, 2003. (Cited on page 112.)

[Kleppe 2008] Anneke Kleppe. Software Language Engineering: Creating Domain-

Speci�c Languages using Metamodels. Pearson Education, 2008. (Cited on

page 29.)

170 Bibliography

[Ko 2013] SSGL Ryan Ko, Stephen Lee and Veerappa Rajan.Cloud Computing

Vulnerability Incidents: A Statistical Overview. Cloud Security Alliance,

2013. (Cited on page 5.)

[Kopaneli 2015] Aliki Kopaneli, George Kousiouris, Gorka Echevarria Velez,

Athanasia Evangelinou and Theodora Varvarigou.A Model Driven Approach

for Supporting the Cloud Target Selection Process. Procedia Computer Sci-

ence, vol. 68, pages 89�102, 2015. (Cited on page 35.)

[Kopp 2013] Oliver Kopp, Tobias Binz, Uwe Breitenbücher and Frank Leymann.

Winery-A Modeling Tool for TOSCA-based Cloud Applications. In Interna-

tional Conference on Service-Oriented Computing, pages 700�704. Springer,

2013. (Cited on page 38.)

[Korte 2018] Fabian Korte, Stéphanie Challita, Faiez Zalila, Philippe Merle and

Jens Grabowski. Model-Driven Con�guration Management of Cloud Appli-

cations with OCCI. In 8th International Conference on Cloud Computing

and Services Science (CLOSER), pages 100�111, 2018. (Cited on pages 16,

87 and 146.)

[Lamport 2002] Leslie Lamport. Specifying Systems: the TLA+ Language and

Tools for Hardware and Software Engineers. Addison-Wesley Longman Pub-

lishing Co., Inc., 2002. (Cited on page 158.)

[Leymann 2011] Frank Leymann, Christoph Fehling, Ralph Mietzner, Alexander

Nowak and Schahram Dustdar. Moving Applications to the Cloud: an Ap-

proach Based on Application Model Enrichment. International Journal of Co-

operative Information Systems, vol. 20, no. 03, pages 307�356, 2011. (Cited

on page 37.)

[lib] Apache Libcloud Website. http://libcloud.apache.org/ (accessed on May

27, 2018). (Cited on page 26.)

[Loutas 2011] Nikolaos Loutas, Eleni Kamateri and Konstantinos Tarabanis. A

Semantic Interoperability Framework for Cloud Platform as a Service. In

3rd International Conference on Cloud Computing Technology and Science

(CloudCom), pages 280�287. IEEE, 2011. (Cited on page 124.)

[Loveland 2016] Donald W Loveland. Automated Theorem Proving: a logical basis.

Elsevier, 2016. (Cited on page 158.)

[man] Manjrasoft Website. http://www.manjrasoft.com/ (accessed on May 27,

2018). (Cited on page 25.)

Bibliography 171

[Medhioub 2013] Houssem Medhioub, Bilel Msekni and Djamal Zeghlache.OCNI

� Open Cloud Networking Interface. In 22nd International Conference on

Computer Communications and Networks (ICCCN), pages 1�8. IEEE, 2013.

(Cited on page 63.)

[Mell 2011] Peter Mell and Tim Grance.The NIST De�nition of Cloud Computing .

2011. (Cited on page 4.)

[Menzel 2012] Michael Menzel and Rajiv Ranjan.CloudGenius: Decision Support

for Web Server Cloud Migration. In 21st International Conference on World

Wide Web, pages 979�988. ACM, 2012. (Cited on page 33.)

[Merkel 2014] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent

Development and Deployment. Linux Journal, vol. 2014, no. 239, page 2,

2014. (Cited on page 28.)

[Merle 2015a] Philippe Merle, Olivier Barais, Jean Parpaillon, Noël Plouzeau and

Samir Tata. A Precise Metamodel for Open Cloud Computing Interface. In

8th International Conference on Cloud Computing (CLOUD), pages 852�

859. IEEE, 2015. (Cited on pages 63, 73 and 134.)

[Merle 2015b] Philippe Merle, Jean Parpaillon and Olivier Barais. OCCI Speci�c

Language - Structural Part. OCCIware Deliverable 2.3.1, May 2015. (Cited

on page 71.)

[Merle 2017] Philippe Merle, Christophe Gourdin and Nathalie Mitton. Mobile

Cloud Robotics as a Service with OCCIware. In 2nd IEEE International

Congress on Internet of Things (ICIOT), pages 710�713. IEEE, 2017. (Cited

on pages 76, 86 and 146.)

[Metsch 2016] Thijs Metsch and Mohamed Mohamed.Open Cloud Computing In-

terface - Platform. Speci�cation Document GFD.227, Open Grid Forum,

February 2016. (Cited on pages 55, 63, 66, 76, 82, 128 and 146.)

[Mietzner 2009] Ralph Mietzner, Tobias Unger and Frank Leymann. Cafe: A

Generic Con�gurable Customizable Composite Cloud Application Framework.

On the Move to Meaningful Internet Systems: OTM 2009, pages 357�364,

2009. (Cited on page 37.)

[Moats 1998] R. Moats.URN Syntax. Technical report, 1998. (Cited on page 68.)

[MOF 2006] OMG MOF. 2.0 Core Speci�cation. OMG Document, January, 2006.

(Cited on page 30.)

172 Bibliography

[Mohamed 2013] Mohamed Mohamed, Djamel Belaïd and Samir Tata.Monitoring

and Recon�guration for OCCI Resources. In 5th IEEE International Confer-

ence on Cloud Computing Technology and Science (CloudCom), volume 1,

pages 539�546. IEEE, 2013. (Cited on page 63.)

[Mohamed 2014a] Mohamed Mohamed.Generic Monitoring and Recon�guration

for Service-based Applications in the Cloud. PhD thesis, INT, Evry, France,

2014. (Cited on page 63.)

[Mohamed 2014b] Mohamed Mohamed, Djamel Belaïd and Samir Tata.Autonomic

Computing for OCCI Resources. Technical report, Telecom Sud Paris, Jan-

uary 2014. (Cited on page 63.)

[Mohamed 2015] Mohamed Mohamed, Mourad Amziani, Djamel Belaid, Samir Tata

and Tarek Melliti. An Autonomic Approach to Manage Elasticity of Business

Processes in the Cloud. Future Generation Computer Systems, vol. 50, pages

49�61, 2015. (Cited on page 63.)

[Mohanarajah 2015] Gajamohan Mohanarajah, Dominique Hunziker, Ra�aello

D'Andrea and Markus Waibel. Rapyuta: A Cloud Robotics Platform. IEEE

Transactions on Automation Science and Engineering, vol. 12, no. 2, pages

481�493, 2015. (Cited on page 36.)

[Moody 2009] Daniel Moody.The �Physics" of Notations: Toward a Scienti�c Basis

for Constructing Visual Notations in Software Engineering. IEEE Transac-

tions on Software Engineering, vol. 35, no. 6, pages 756�779, 2009. (Cited

on page 114.)

[mos] mOSAIC Project Website. http://www.mosaic-project.eu/ (accessed on

June 14, 2018). (Cited on page 25.)

[Newcombe 2015] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu,

Marc Brooker and Michael Deardeu�. How Amazon Web Services Uses For-

mal Methods. Communications of the ACM, vol. 58, no. 4, pages 66�73,

2015. (Cited on page 124.)

[Nguyen 2012] Dinh Khoa Nguyen, Francesco Lelli, Mike P Papazoglou and Willem-

Jan Van Den Heuvel.Blueprinting Approach in Support of Cloud Computing.

Future Internet, vol. 4, no. 1, pages 322�346, 2012. (Cited on page 31.)

[nov] Nova Documentation. https://docs.openstack.org/nova/latest/ (ac-

cessed on June 14, 2018). (Cited on page 37.)

Bibliography 173

[Nyrén 2016a] Ralf Nyrén, Andy Edmonds, Thijs Metsch and Boris Parák. Open

Cloud Computing Interface - HTTP Protocol. Speci�cation Document

GFD.223, Open Grid Forum, February 2016. (Cited on pages 55, 68, 75,

81, 128, 135 and 141.)

[Nyrén 2016b] Ralf Nyrén, Andy Edmonds, Alexander Papaspyrou, Thijs Metsch

and Boris Parák. Open Cloud Computing Interface - Core. Speci�cation

Document GFD.221, Open Grid Forum, February 2016. (Cited on pages xv,

50, 54, 63, 75, 128 and 129.)

[Nyrén 2016c] Ralf Nyrén, Andy Edmonds, Alexander Papaspyrou, Thijs Metsch

and Boris Parák. Open Cloud Computing Interface - Infrastructure. Speci-

�cation Document GFD.224, Open Grid Forum, February 2016. (Cited on

pages 55, 63, 66, 75, 77, 128, 144 and 148.)

[Nyrén 2016d] Ralf Nyrén, Florian Feldhaus, Boris Parák and Zdenek Sustr.Open

Cloud Computing Interface - JSON Rendering. Speci�cation Document

GFD-R-P.226, Open Grid Forum, 2016. (Cited on pages 55 and 75.)

[occa] OCCI-WG: OCCI Working Group Website. http://occi-wg.org/ (accessed

on May 27, 2018). (Cited on pages 10 and 23.)

[occb] OCCI4Java GitHub Repository. https://github.com/occi4java/

occi4java (accessed on August 13, 2018). (Cited on page 50.)

[occc] OCCIware Project Website. http://www.occiware.org/ (accessed on June

13, 2018). (Cited on pages 6 and 55.)

[OMG 2014] OMG. Object Constraint Language, Version 2.4. OMG Speci�cation

OMG Document Number: formal/2014-02-03, Object Management Group,

February 2014. (Cited on page 65.)

[opea] OpenStack Website. https://www.openstack.org/ (accessed on June 6,

2018). (Cited on page 4.)

[opeb] OpenTOSCA Ecosystem Website. http://www.iaas.uni-stuttgart.de/

OpenTOSCA/(accessed on June 11, 2018). (Cited on page 38.)

[ovf] DMTF Website. https://www.dmtf.org/standards/ovf (accessed on June

6, 2018). (Cited on page 23.)

[paa] PaaSage Project Website. https://paasage.ercim.eu/ (accessed on June

13, 2018). (Cited on page 35.)

174 Bibliography

[Pandita 2012] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney

and Amit Paradkar. Inferring Method Speci�cations from Natural Language

API Descriptions. In the 34th International Conference on Software Engi-

neering (ICSE), pages 815�825. IEEE, 2012. (Cited on page 101.)

[Paraiso 2012] Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy

and Lionel Seinturier. A Federated Multi-Cloud PaaS Infrastructure. In 5th

IEEE International Conference on Cloud Computing (CLOUD), pages 392�

399. IEEE, 2012. (Cited on page 8.)

[Paraiso 2014] Fawaz Paraiso, Philippe Merle and Lionel Seinturier.soCloud: A

Service-Oriented Component-based PaaS for Managing Portability, Provi-

sioning, Elasticity, and High Availability across Multiple Clouds. Computing,

pages 1�27, 2014. (Cited on page 39.)

[Paraiso 2016] Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi and Philippe

Merle. Model-driven Management of Docker Containers. In 9th IEEE Inter-

national Conference on Cloud Computing (CLOUD), pages 718�725. IEEE,

2016. (Cited on pages 17, 76, 86, 115 and 145.)

[Parpaillon 2015] Jean Parpaillon, Philippe Merle, Olivier Barais, Marc Dutoo and

Fawaz Paraiso. OCCIware-A Formal and Tooled Framework for Managing

Everything as a Service. In Projects Showcase@ STAF'15, volume 1400,

pages 18�25, 2015. (Cited on page 55.)

[Pawluk 2012] Przemyslaw Pawluk, Bradley Simmons, Michael Smit, Marin Litoiu

and Serge Mankovski. Introducing STRATOS: A Cloud Broker Service. In

5th IEEE International Conference on Cloud Computing (CLOUD), pages

891�898. IEEE, 2012. (Cited on page 25.)

[Petcu 2013] Dana Petcu. Multi-Cloud: Expectations and Current Approaches. In

International Workshop on Multi-cloud Applications and Federated Clouds,

pages 1�6. ACM, 2013. (Cited on page 5.)

[Petrillo 2016] Fabio Petrillo, Philippe Merle, Naouel Moha and Yann-Gaël

Guéhéneuc.Are REST APIs for Cloud Computing Well-Designed? An Ex-

ploratory Study. In the International Conference on Service-Oriented Com-

puting (ICSOC), pages 157�170. Springer, 2016. (Cited on page 100.)

[Priss 2006] Uta Priss. Formal Concept Analysis in Information Science. Arist,

vol. 40, no. 1, pages 521�543, 2006. (Cited on page 113.)

Bibliography 175

[pup] Puppet Website. https://puppet.com/ (accessed on June 17, 2018). (Cited

on pages 28 and 36.)

[pyo] pyOCNI GitHub Repository. https://github.com/tmetsch/pyssf (ac-

cessed on August 13, 2018). (Cited on page 50.)

[pys] pySSF GitHub Repository. https://github.com/tmetsch/pyssf (accessed

on August 13, 2018). (Cited on page 50.)

[Quinton 2013] Clément Quinton, Nicolas Haderer, Romain Rouvoy and Laurence

Duchien. Towards Multi-Cloud Con�gurations Using Feature Models and On-

tologies. In International Workshop on Multi-cloud Applications and Feder-

ated Clouds, pages 21�26. ACM, 2013. (Cited on pages 32 and 39.)

[Rachkidi 2017] Elie Rachkidi, Djamel Belaïd, Nazim Agoulmine and Nada Chen-

deb. Cloud of Things Modeling for E�cient and Coordinated Resources Pro-

visioning. In OTM Confederated International Conferences" On the Move

to Meaningful Internet Systems", pages 175�193. Springer, 2017. (Cited on

page 146.)

[Rat] Rational Rose Modeler Website. https://www-01.ibm.com/software/

rational/uml/products/ (accessed on May 27, 2018). (Cited on page 30.)

[rig] RightScale Website. https://www.rightscale.com/ (accessed on May 27,

2018). (Cited on page 25.)

[roc] rOCCI Website. http://gwdg.github.io/rOCCI (accessed on August 13,

2018). (Cited on page 50.)

[Rugaber 2004] Spencer Rugaber and Kurt Stirewalt.Model-Driven Reverse Engi-

neering. IEEE software, vol. 21, no. 4, pages 45�53, 2004. (Cited on page 96.)

[Sadovykh 2011] Andrey Sadovykh, Christian Hein, Brice Morin, Parastoo Mo-

hagheghi and Arne J Berre.REMICS: REuse and Migration of legacy appli-

cations to Interoperable Cloud Services. In 4th European conference on To-

wards a service-based internet, pages 315�316. Springer-Verlag, 2011. (Cited

on page 35.)

[sal] Salesforce Website. http://www.salesforce.com/eu/ (accessed on May 27,

2018). (Cited on page 24.)

[Sandru 2012] Calin Sandru, Dana Petcu and Victor Ion Munteanu. Building an

Open-Source Platform-as-a-Service with Intelligent Management of Multiple

176 Bibliography

Cloud Resources. In IEEE/ACM 5th International Conference on Utility and

Cloud Computing, pages 333�338. IEEE Computer Society, 2012. (Cited on

page 25.)

[scaa] Scalair Website. https://www.scalair.fr/ (accessed on July 22, 2018).

(Cited on pages 82 and 156.)

[scab] Scalr Website. https://www.scalr.com/ (accessed on June 3, 2018). (Cited

on page 25.)

[Schmidt 2006] Douglas C Schmidt. Model-Driven Engineering. COMPUTER-

IEEE COMPUTER SOCIETY, vol. 39, no. 2, page 25, 2006. (Cited on

page 115.)

[Silva 2014] Gabriel Costa Silva, Louis M Rose and Radu Calinescu.Cloud DSL:

A Language for Supporting Cloud Portability by Describing Cloud Entities.

CloudMDE 2014, pages 36�45, 2014. (Cited on page 33.)

[sim] SimpleCloud Website. https://www.ibm.com/developerworks/

opensource/library/os-simplecloud/os-simplecloud-pdf.pdf (ac-

cessed on June 3, 2018). (Cited on page 26.)

[Sinha 2010] Avik Sinha, Stanley M Sutton Jr and Amit Paradkar. Text2Test: Au-

tomated Inspection of Natural Language Use Cases. In the 3rd International

Conference on Software Testing, Veri�cation and Validation (ICST), pages

155�164. IEEE, 2010. (Cited on page 101.)

[sir] Sirius Website. http://www.eclipse.org/sirius/ (accessed on May 27,

2018). (Cited on pages 31 and 71.)

[Sousa 2012] Gustavo Sousa, Fábio M Costa, Peter J Clarke and Andrew A Allen.

Model-Driven Development of DSML Execution Engines. In 7th Workshop

on Models@ run. time, pages 10�15. ACM, 2012. (Cited on page 31.)

[Sousa 2017] Gustavo Sousa, Walter Rudametkin and Laurence Duchien.Extending

Dynamic Software Product Lines with Temporal Constraints. In Proceedings

of the 12th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems, pages 129�139. IEEE Press, 2017. (Cited on

page 39.)

[sta] Stanford Parser Website. https://nlp.stanford.edu/software/

lex-parser.shtml (accessed on July 24, 2018). (Cited on page 113.)

Bibliography 177

[Steinberg 2008] Dave Steinberg, Frank Budinsky, Ed Merks and Marcelo Paternos-

tro. EMF: Eclipse Modeling Framework. Pearson Education, 2008. (Cited

on page 108.)

[Vecchiola 2009] Christian Vecchiola, Xingchen Chu and Rajkumar Buyya.Aneka:

A Software Platform for .NET-based Cloud Computing. High Speed and

Large Scale Scienti�c Computing, vol. 18, pages 267�295, 2009. (Cited on

page 25.)

[vmw] VMware Website. https://www.vmware.com/ (accessed on June 6, 2018).

(Cited on page 24.)

[xsc] XScalibur Website. http://www.xscalibur.com/ (accessed on October 15,

2018). (Cited on page 156.)

[xte 2016] Xtext Website, 2016. http://www.eclipse.org/Xtext/ (accessed on

May 27, 2018). (Cited on pages 30 and 71.)

[Yangui 2013] Sami Yangui and Samir Tata.CloudServ: PaaS resources provision-

ing for service-based applications. In 27th IEEE International Conference

on Advanced Information Networking and Applications (AINA 2013), pages

522�529. IEEE, 2013. (Cited on page 63.)

[Yangui 2014] Sami Yangui, Iain-James Marshall, Jean-Pierre Laisne and Samir

Tata. CompatibleOne: The Open Source Cloud broker. Journal of Grid

Computing, vol. 12, no. 1, pages 93�109, 2014. (Cited on pages 24 and 25.)

[Yangui 2016] Sami Yangui and Samir Tata.An OCCI Compliant Model for PaaS

Resources Description and Provisioning. The Computer Journal, vol. 59,

no. 3, pages 308�324, 2016. (Cited on page 63.)

[Yongsiriwit 2016] Karn Yongsiriwit, Mohamed Sellami and Walid Gaaloul. A Se-

mantic Framework Supporting Cloud Resource Descriptions Interoperability.

In 9th International Conference on Cloud Computing (CLOUD), pages 585�

592. IEEE, 2016. (Cited on page 124.)

[Zalila 2017a] Faiez Zalila, Stéphanie Challita and Philippe Merle.A Model-Driven

Tool Chain for OCCI . In OTM Confederated International Conferences" On

the Move to Meaningful Internet Systems", pages 389�409. Springer, 2017.

(Cited on pages 16 and 49.)

[Zalila 2017b] Faiez Zalila, Philippe Merle, Jean Parpaillon, Slim Kallel, Mehdi

Ahmed-Nacer, Walid Gaaloul and Christophe Gourdin. OCCI Extension

Models. OCCIware Deliverable 2.4.1, September 2017. (Cited on page 146.)

178 Bibliography

[Zalila 2018] Faiez Zalila, Stéphanie Challita and Philippe Merle. Model-Driven

Cloud Resource Management with OCCIware. Future Generation Computer

Systems (FGCS), 2018. under review. (Cited on pages 17 and 49.)

[Zhai 2016] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jian-

hua Zhao and Feng Qin. Automatic Model generation from Documentation

for Java API Functions. In the 38th International Conference on Software

Engineering, pages 380�391. ACM, 2016. (Cited on page 101.)

[Zhong 2009] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei and Hong Mei.MAPO:

Mining and Recommending API Usage Patterns. ECOOP�Object-Oriented

Programming, pages 318�343, 2009. (Cited on page 101.)

	List of Figures
	List of Tables

