Skip to Main content Skip to Navigation
Theses

Evaluation de l'impact sanitaire des cigarettes électroniques : caractérisation physicochimique des e-liquides et e-vapeurs

Abstract : The electronic cigarette has been on the market for several years and enjoys a strong reputation. Existing scientific data tend to consider the e-cigarette as less toxic than its main counterpart, the conventional cigarette. However, the intrinsic impact of vaping on human health, in the short and long term, is not precisely known and is currently part of many Public Health debates.Since 2014, we have undertaken a project whose main objective is to study the health impact of the electronic cigarette using a multidisciplinary approach comprising physicochemical analysis and experimental toxicology. As part of this project, my work focused on the physicochemical characterization of e-liquids, from a unique commercial source, and their e-vapors, mainly based on the identification and quantification of potentially-toxic compounds. Regarding the current lack of reference methods, this analysis requires a high level of control and robustness of the entire measurement chain, from generation to analysis methods, especially for e-vapor study.Considering the potential health impact of metallic trace elements (MTEs), we first developed and validated a method allowing the simultaneous dosage of 15 MTEs in e-liquids by ICP-MS. The e-liquid, a viscous organic matrix, is a source of significant matrix effects which must be corrected by the addition of matrix in the calibration step, in a suitable proportion. The method was fully validated according to the recommendations of the French Accreditation Committee and the US Environmental Protection Agency and demonstrated satisfactory robustness parameters.Six e-liquids and their respective e-vapors, generated via a smoking/vaping machine, were then analysed to detect and quantify their main ingredients (propylene glycol, glycerol and nicotine) and various potentially-toxic pollutants (15 MTEs, 50 pesticides, 16 polycyclic aromatic hydrocarbons and 3 carbonyl compounds). Each e-liquid composition was in accordance with that announced by the manufacturer and contained few pollutants, at trace levels. In the e-vapors, 3 carbonyl compounds, 2 polycyclic aromatic hydrocarbons and 4 MTEs (Sb, Cd, Cr and Pb) were found at concentrations 7 to 6126-fold lower than those measured in the mainstream smoke of the reference cigarette 3R4F, analysed under comparable conditions (except for chromium and antimony which were not detectable in the 3R4F smoke).The vaping regimen, that is mainly based on the volume, the duration and the frequency of puffs, is strongly suspected to participate to the large observed variability of the e-vapor chemical composition between different published data. Through focusing on the analysis of a unique family of compounds with health impact, we demonstrated, on the one hand, that the vaping regimen has some influence on the carbonyl composition of e-vapors and, on the other hand, that vaping regimens are not all suitable for any type of e-cigarette models.This work has contributed to improve the current knowledge on the physicochemical characterization of e-cigarette emissions. Globally, the e-cigarettes and e-liquids tested emit and/or generate few potentially-toxic compounds, at concentrations lower than those observed in conventional cigarette smoke. Our findings satisfy partly the urgent need of optimization and harmonization of the analytical practices used to study e-cigarettes and their emissions. They should thus contribute to the establishment of reference methods that will allow and facilitate the interpretation and comparison of data, which vary significantly across the literature.
Document type :
Theses
Complete list of metadatas

Cited literature [212 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02015374
Contributor : Abes Star :  Contact
Submitted on : Tuesday, February 12, 2019 - 10:43:05 AM
Last modification on : Wednesday, October 14, 2020 - 4:10:56 AM
Long-term archiving on: : Monday, May 13, 2019 - 2:41:57 PM

File

2018LILUS015.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02015374, version 1

Collections

Citation

Nicolas Beauval. Evaluation de l'impact sanitaire des cigarettes électroniques : caractérisation physicochimique des e-liquides et e-vapeurs. Médecine humaine et pathologie. Université du Droit et de la Santé - Lille II, 2018. Français. ⟨NNT : 2018LIL2S015⟩. ⟨tel-02015374⟩

Share

Metrics

Record views

275

Files downloads

712