R. A. Stelzma, H. N. Schnitwlein, and F. R. Muriiagh, An English I'ranslation of Alzheimer, p.1907

. Paper, ijber eine eigenartige Erlranliung der Hirnrinde, Clinical Anatomy, vol.8, pp.429-431, 1995.

C. Ising, M. Stanley, and D. M. Holtzman,

, Alzheimer's and Implications for Drug Development, Clin. Pharmacol. Ther, vol.98, issue.5, pp.469-471, 2015.

. , Basics of Alzheimer's disease, 2016.

C. Qiu, M. Kivipelto, and E. Strauss, Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention, Dialogues Clin. Neurosci, vol.11, issue.2, 2009.

R. Mayeux and Y. Stern, Epidemiology of Alzheimer Disease. Cold Spring Harb, Perspect. Med, vol.2, p.6239, 2012.

S. C. Janicki and N. Schupf, Hormonal Influences on Cognition and Risk for Alzheimer's Disease

, Curr. Neurol. Neurosci. Rep, vol.10, pp.359-366, 2010.

D. E. Barnes and K. Yaffe, The projected effect of risk factor reduction on Alzheimer's disease prevalence, Lancet Neurol, vol.10, issue.9, pp.819-828, 2011.

S. Norton, F. E. Matthews, D. E. Barnes, K. Yaffe, and C. Brayne, Potential for primary prevention of Alzheimer's disease: an analysis of population-based data, Lancet Neurol, vol.13, issue.8, pp.788-794, 2014.

M. L. Daviglus, B. L. Plassman, A. Pirzada, C. C. Bell, P. E. Bowen et al.,

J. Dunbar-jacob, J. M. Granieri, E. C. Mcgarry, K. Patel, D. Trevisan et al., Risk factors and preventive interventions for Alzheimer disease: state of the science, Arch. Neurol, vol.68, issue.9, pp.1185-1190, 2011.

L. Letra, I. Santana, and R. Seiça, Obesity as a risk factor for Alzheimer's disease: the role of adipocytokines. Metab. Brain Dis, vol.29, pp.563-568, 2014.

A. Machado, A. J. Herrera, R. M. De-pablos, A. M. Espinosa-oliva, M. Sarmiento et al., Chronic stress as a risk factor for Alzheimer's disease, Nat. Rev. Neurosci, vol.25, issue.6, pp.785-804, 2014.

D. M. Michaelson, APOE ?4: the most prevalent yet understudied risk factor for Alzheimer's disease, Alzheimers Dement, vol.10, issue.6, pp.861-868, 2014.

B. Imtiaz, A. M. Tolppanen, M. Kivipelto, and H. Soininen, Future directions in Alzheimer's disease from risk factors to prevention, Biochem. Pharmacol, vol.88, issue.4, pp.661-670, 2014.

M. Bilbul and H. M. Schipper, Risk profiles of Alzheimer disease. Can, J. Neurol. Sci, vol.38, issue.4, pp.580-592, 2011.

R. C. Barber, The genetics of Alzheimer's disease. Scientifica (Cairo), 2012.

Y. H. Hung, A. I. Bush, and R. A. Cherny, Copper in the brain and Alzheimer's disease, J. Biol. Inorg. Chem, vol.15, pp.61-76, 2010.

S. Ayton, P. Lei, and A. I. Bush, Metallostasis in Alzheimer's disease, Free Radical Biol. Med, vol.62, pp.76-89, 2013.

P. S. Donnelly, Z. Xiao, and A. G. Wedd, Copper and Alzheimer's disease, Curr. Opin. Chem. Biol, vol.11, issue.2, pp.128-133, 2007.

C. Hureau, Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-? peptides involved in Alzheimer disease. Part 1: An overview, Coord. Chem. Rev, vol.2012, issue.19, pp.2164-2174

K. J. Barnham and A. I. Bush, Metals in Alzheimer's and Parkinson's Diseases, Curr. Opin. Chem. Biol, vol.12, issue.2, pp.222-228, 2008.

H. Chapter-;-kozlowski, M. Luczkowski, M. Remelli, and D. Valensin, Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases), Context of the project ~ 59 ~ 60, vol.256, pp.2129-2141, 2012.

I. Hozumi, T. Hasegawa, A. Honda, K. Ozawa, Y. Hayashi et al.,

A. Koumura, T. Sakurai, A. Kimura, Y. Tanaka, M. Satoh et al., Patterns of levels of biological metals in CSF differ among neurodegenerative diseases, J. Neurol. Sci, vol.303, issue.1, pp.95-99, 2011.

K. J. Barnham and A. I. Bush, Biological metals and metal-targeting compounds in major neurodegenerative diseases, Chem. Soc. Rev, vol.43, issue.19, pp.6727-6749, 2014.

C. J. Frederickson, S. W. Suh, D. Silva, C. J. Frederickson, and R. B. Thompson, Importance of Zinc in the Central Nervous System: The Zinc-Containing Neuron, J. Nutr, vol.130, issue.5, pp.1471-1483, 2000.

T. Kambe, T. Tsuji, A. Hashimoto, and N. Itsumura, The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism, Physiol. Rev, vol.95, issue.3, pp.749-784, 2015.

M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, and W. R. Markesbery, Copper, iron and zinc in Alzheimer's disease senile plaques, J. Neurol. Sci, vol.158, pp.47-52, 1998.

C. Hureau and P. Dorlet, Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-? peptides involved in Alzheimer disease. Part 2: Dependence of Cu(II) binding sites with A? sequences, Coord. Chem. Rev, vol.2012, issue.19, pp.2175-2187

C. Migliorini, E. Porciatti, M. Luczkowski, and D. Valensin, Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases, Coord. Chem. Rev, vol.2012, issue.1, pp.352-368

M. Rowinska-zyrek, M. Salerno, and H. Kozlowski, Neurodegenerative diseases-Understanding their molecular bases and progress in the development of potential treatments, Coord. Chem. Rev, vol.284, pp.298-312, 2015.

D. Kim, N. H. Kim, and S. H. Kim, 34 GHz Pulsed ENDOR Characterization of the Copper Coordination of an Amyloid ? Peptide Relevant to Alzheimer's Disease, Angew. Chem. Int. Ed, vol.52, issue.4, pp.1139-1142, 2013.

B. Alies, E. Renaglia, M. Rózga, W. Bal, P. Faller et al., Cu(II) Affinity for the Alzheimer's Peptide: Tyrosine Fluorescence Studies Revisited, Anal. Chem, vol.85, issue.3, pp.1501-1508, 2013.

T. Kowalik-jankowska, M. Ruta, K. Wi?niewska, and L. ?ankiewicz, Coordination abilities of the 1-16 and 1-28 fragments of ?-amyloid peptide towards copper(II) ions: a combined potentiometric and spectroscopic study, J. Inorg. Biochem, vol.95, issue.4, pp.270-282, 2003.

T. R. Young, A. Kirchner, A. G. Wedd, and Z. Xiao, An integrated study of the affinities of the A?16 peptide for Cu(i) and Cu(ii): implications for the catalytic production of reactive oxygen species, Metallomics, vol.6, issue.3, pp.505-517, 2014.

E. Atrián-blasco, A. Conte-daban, and C. Hureau, Mutual interference of Cu and Zn ions in

C. W. Ritchie, A. I. Bush, A. Mackinnon, S. Macfarlane, M. Mastwyk et al., Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting A? amyloid deposition and toxicity in alzheimer disease: A pilot phase 2 clinical trial, Arch. Neurol, vol.60, issue.12, pp.1685-1691, 2003.

C. W. Ritchie, A. I. Bush, and C. L. Masters, Metal-protein attenuating compounds and Alzheimer's disease, Expert Opin. Investig. Drugs, vol.13, issue.12, pp.1585-1592, 2004.

R. N. Rosenberg, Translational research on the way to effective therapy for Alzheimer disease, Arch. Gen. Psychiatry, vol.62, issue.11, pp.1186-1192, 2005.

V. B. Kenche and K. J. Barnham, Alzheimer's disease & metals: therapeutic opportunities, Br. J. Pharmacol, vol.163, pp.211-219, 2011.

C. Treiber, A. Simons, M. Strauss, M. Hafner, R. Cappai et al., Clioquinol Mediates Copper Uptake and Counteracts Copper Efflux Activities of the Amyloid Precursor Protein of Alzheimer's Disease, J. Biol. Chem, issue.50, pp.51958-51964, 2004.

M. Mital, I. A. Zawisza, M. Z. Wiloch, U. E. Wawrzyniak, V. Kenche et al., Copper Exchange and Redox Activity of a Prototypical 8-Hydroxyquinoline: Implications for Therapeutic Chelation, Inorg. Chem, issue.15, pp.7317-7319, 2016.

K. J. Barnham, E. C. Gautier, G. B. Kok, and G. Krippner, 8-hydroxy quinoline derivatives, WO 2004007461 A1, Google Patents: 2004. Chapter II: Cu ion chelation ~ 121 ~

C. L. Fu, L. S. Hsu, Y. F. Liao, and M. K. Hu, New Hydroxyquinoline-Based Derivatives as Potent Modulators of Amyloid-beta Aggregations, Arch. Pharm, vol.349, issue.5, pp.327-341, 2016.

P. A. Adlard, R. A. Cherny, D. I. Finkelstein, E. Gautier, E. Robb et al., Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta, Neuron, vol.59, issue.1, pp.43-55, 2008.

L. Lannfelt, K. Blennow, H. Zetterberg, S. Batsman, D. Ames et al.,

S. Targum, A. I. Bush, R. Murdoch, J. Wilson, and C. W. Ritchie, Safety, efficacy, and biomarker findings of PBT2 in targeting A? as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial, Lancet Neurol, vol.7, issue.9, pp.779-786, 2008.

N. G. Faux, C. W. Ritchie, A. Gunn, A. Rembach, A. Tsatsanis et al., PBT2 rapidly improves cognition in Alzheimer's Disease: additional phase II analyses, J. Alzheimers Dis, vol.20, issue.2, pp.509-516, 2010.

N. R. Relkin, Testing the mettle of PBT2 for Alzheimer's disease. The Lancet. Neurology, vol.7, pp.762-763, 2008.

V. Oliveri and G. Vecchio, 8-Hydroxyquinolines in medicinal chemistry: A structural perspective, Eur. J. Med. Chem, vol.120, pp.252-274, 2016.

S. S. Hindo, A. M. Mancino, J. J. Braymer, Y. Liu, S. Vivekanandan et al., Small Molecule Modulators of Copper-Induced A? Aggregation, J. Am. Chem. Soc, vol.131, issue.46, pp.16663-16665, 2009.

A. Martínez, R. Alcendor, T. Rahman, M. Podgorny, I. Sanogo et al., Ionophoric polyphenols selectively bind Cu 2+ , display potent antioxidant and anti-amyloidogenic properties, and are non-toxic toward Tetrahymena thermophila, Biorg. Med. Chem, issue.16, pp.3657-3670, 2016.

E. Barcia, A. Salama, A. Fernández-carballido, and S. Negro, Protective effects of clioquinol on human neuronal-like cells: a new formulation of clioquinol-loaded PLGA microspheres for Alzheimer's disease, Journal of Drug Targeting, vol.19, issue.8, pp.637-646, 2011.

L. M. Gomes, R. P. Vieira, M. R. Jones, M. C. Wang, C. Dyrager et al., The Alzheimer's therapeutic PBT2 promotes amyloid-? degradation and GSK3 phosphorylation via a metal chaperone activity, J. Inorg. Biochem, vol.139, pp.220-230, 2011.

M. Nguyen, A. Robert, A. Soumia-saquet, L. Vendier, and B. Meunier, Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease, Chem. Eur. J, vol.20, issue.22, pp.6771-6785, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02023147

M. Nguyen, L. Rechignat, A. Robert, and B. Meunier, The Necessity of Having a Tetradentate Ligand to Extract Copper(II) Ions from Amyloids, ChemistryOpen, vol.2015, issue.1, pp.27-31
URL : https://hal.archives-ouvertes.fr/hal-01920330

Y. Yang, T. Chen, S. Zhu, X. Gu, X. Jia et al., Two macrocyclic polyamines as modulators of metal-mediated A?40 aggregation, Integr. Biol, vol.7, issue.6, pp.655-662, 2015.

D. Kaden, A. I. Bush, R. Danzeisen, T. A. Bayer, and G. Multhaup, Disturbed Copper Bioavailability in Alzheimer's Disease, Int. J. Alzheimers Dis, 2011.

T. Storr, M. Merkel, G. X. Song-zhao, L. E. Scott, D. E. Green et al.,

H. Patrick, B. O. Schugar, H. J. Orvig, and C. , Synthesis, Characterization, and Metal Coordinating Ability of Multifunctional Carbohydrate-Containing Compounds for Alzheimer's Therapy, J. Am. Chem. Soc, vol.129, pp.7453-7463, 2007.

A. Conte-daban, A. Day, P. Faller, and C. Hureau, How Zn can impede Cu detoxification by chelating agents in Alzheimer's disease: a proof-of-concept study, Dalton Trans, vol.45, issue.39, pp.15671-15678, 2016.

S. Noël, F. Perez, J. T. Pedersen, B. Alies, S. Ladeira et al., A new water-soluble Cu(II) chelator that retrieves Cu from Cu(amyloid-?) species, stops associated ROS production and prevents Cu(II)-induced A? aggregation, J. Inorg. Biochem, vol.117, pp.322-325, 2012.

A. Lakatos, E. Zsigo, D. Hollender, N. V. Nagy, L. Fulop et al., Two pyridine derivatives as potential Cu(ii) and Zn(ii) chelators in therapy for Alzheimer's disease, Dalton Trans, issue.5, pp.1302-1315, 2010.

E. Atrian-blasco, E. Cerrada, A. Conte-daban, D. Testemale, P. Faller et al., Copper(i) targeting in the Alzheimer's disease context: a first example using the biocompatible PTA ligand, Metallomics, vol.2015, issue.8, pp.1229-1232

P. S. Donnelly, A. Caragounis, T. Du, K. Laughton, I. Volitakis et al., Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloidbeta peptide, J. Biol. Chem, issue.8, pp.4568-4577, 2008.

P. J. Crouch, L. W. Hung, P. A. Adlard, M. Cortes, V. Lal et al., Increasing Cu bioavailability inhibits A? oligomers and tau phosphorylation, vol.106, pp.381-386, 2009.

A. Sanabria-castro, I. Alvarado-echeverría, and C. Monge-bonilla, Molecular Pathogenesis of Alzheimer's Disease: An Update, Ann. Neurosci, vol.2017, issue.1, pp.46-54

M. G. Savelieff, S. Lee, Y. Liu, and M. H. Lim, Untangling Amyloid-?, Tau, and Metals in Alzheimer's Disease, ACS Chem. Biol, vol.8, pp.856-865, 2014.

E. Atrian-blasco, P. Gonzalez, A. Santoro, B. Alies, P. Faller et al., Cu and Zn coordination to amyloids: a chemistry of pathological importance ?, Coord. Chem. Rev, 2017.

K. Ono, Alzheimer's disease as oligomeropathy, Neurochem. Int, vol.17, pp.30331-30335, 2017.

E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera et al., Copper active sites in biology, Chem. Rev, vol.114, issue.7, pp.3659-3653, 2014.

C. Hureau, Coordination of redox active metal ions to the APP and to the amyloid-? peptides involved in AD. Part 1: an overview, Coord. Chem. Rev, vol.2012, pp.2164-2174

C. Cheignon, M. Tomas, D. Bonnefont-rousselot, P. Faller, C. Hureau et al., Oxidative stress and the amyloid beta peptide in Alzheimer's Disease, Redox Biology, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01635507

M. A. Santos, K. Chand, and S. Chaves, Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease, Coord. Chem. Rev, pp.287-303, 2016.

K. J. Barnham and A. I. Bush, Biological metals and metal-targeting compounds in major neurodegenerative diseases, Chem. Soc. Rev, vol.43, pp.6727-6749, 2014.

E. Atrian-blasco, A. Conte-daban, and C. Hureau, Mutual interference of Cu and Zn ions in Alzheimer's disease: perspectives at the molecular level, Dalton Transactions, 2017.

P. K. Glasoe and F. A. Long, Use of glass electrodes to measure acidities in deuterium oxide, J. Phys. Chem, vol.64, issue.1, pp.188-190, 1960.

F. J. Rossotti and H. Rossotti, Potentiometric titrations using Gran plots: A textbook omission, J. Chem. Educ, vol.42, issue.7, pp.375-378, 1965.
DOI : 10.1021/ed042p375

G. Schwarzenbach and H. A. Flaschka, Complexometric titrations, 1969.

R. Delgado, M. Do-carmo-figueira, and S. Quintino, Redox method for the determination of stability constants of some trivalent metal complexes, Talanta, vol.45, issue.2, pp.451-462, 1997.

P. Gans, A. Sabatini, and A. Vacca, Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs, Talanta, vol.43, issue.10, pp.1739-1753, 1996.

L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini et al., Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species, Coord. Chem. Rev, vol.184, issue.1, pp.311-318, 1999.

A. Conte-daban, V. Borghesani, S. Sayen, E. Guillon, Y. Journaux et al., Link between Affinity and Cu(II) Binding Sites to Amyloid-beta Peptides Evaluated by a New Water-Soluble UV-Visible Ratiometric Dye with a Moderate Cu(II) Affinity, Anal. Chem, vol.2017, issue.3, pp.2155-2162
DOI : 10.1021/acs.analchem.6b04979

URL : http://europepmc.org/articles/pmc5714188?pdf=render

C. Hureau, H. Eury, R. Guillot, C. Bijani, S. Sayen et al., X-Ray and solution structures of CuGHK and CuDAHK complexes. Influence on their redox properties, Chem. Eur. J, vol.17, issue.36, pp.10151-10160, 2011.

P. Faller, C. Hureau, P. Dorlet, P. Hellwig, Y. Coppel et al., Methods and techniques to study the bioinorganic chemistry of metal-peptide complexes linked to neurodegenerative diseases, Coord. Chem. Rev, vol.2012, pp.2381-2396

J. Nagaj, K. Stokowa-so?tys, I. Zawisza, M. Je?owska-bojczuk, A. Bonna et al., Selective control of Cu(II) complex stability in histidine peptides by ?-alanine, J. Inorg. Biochem, vol.119, pp.85-89, 2013.

O. Proux, X. Biquard, E. Lahera, J. J. Menthonnex, A. Prat et al.,

G. Kapoujvan, G. Perroux, P. Taunier, D. Grand, P. Jeantet et al., FAME: A new beamline for X-ray absorption investigations of very-diluted systems of environmental, material and biological interests, Phys. Scr, vol.115, pp.970-973, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00386441

J. Nagaj, K. Stokowa-so?tys, I. Zawisza, M. Je?owska-bojczuk, A. Bonna et al., Selective control of Cu(II) complex stability in histidine peptides by ?-alanine, J. Inorg. Biochem, vol.119, pp.85-89, 2013.

T. Kowalik-jankowska, M. Ruta, K. Wi?niewska, and L. ?ankiewicz, Coordination abilities of the 1-16 and 1-28 fragments of ?-amyloid peptide towards copper(II) ions: a combined potentiometric and spectroscopic study, J. Inorg. Biochem, vol.95, issue.4, pp.270-282, 2003.

B. Alies, E. Renaglia, M. Rózga, W. Bal, P. Faller et al., Cu(II) Affinity for the Alzheimer's Peptide: Tyrosine Fluorescence Studies Revisited, Anal. Chem, vol.85, issue.3, pp.1501-1508, 2013.
DOI : 10.1021/ac302629u

I. , Another advantage is its water solubility, usefull in the Alzheimer's disease studies. It is also biocompatible and has a low intrinsic toxicity. The first step of this work is the removal of Cu ions from the A? peptide. For this study, XANES and EPR experiments were performed. XANES allows to follow Cu(II) and Cu(I) at the same time, and EPR is specific to Cu(II) ions, so in the presence of Cu(I), there is no signal. XANES experiments are used to monitor the removal of Cu(I) from A? by PTA. The ligand was added progressively and after 4.5 equiv. of PTA, Cu ion is totally chelated by the ligand and not by the peptide. 4 equiv. are needed for the Cu(I) chelation and 0.5 equiv. is required for the reduction of Cu(II) into Cu(I). EPR experiment confirms this result: with 6 equiv. of PTA, the signature of Cu(II)-A? becomes flat, in line with complete Cu(II) reduction. The results of the UV-Visible competition are consistent with that: the addition of PTA eliminates the d-d band of Cu(II)-A?; it is needed around 1 h to remove Cu(I) from A?. NMR experiments are in good agreement with these results of Cu ion removal. Indeed, upon Cu(I) addition, the spectrum of A? changes mainly for the Histidine signals, most of the researches on metal chelation or metal redistribution approaches focus on the Cu(II) ion. Nevertheless, until now, there is no evidence of the redox state of Cu ions in the synaptic cleft. In addition, some studies have proved that a Cu(II) ligand naturally present in the brain, Human Serum Albumin (HSA), protected less cells from Cu-A? complex toxicity in comparison with metallothionein, vol.3