R. A. Stelzma, H. N. Schnitwlein, and F. R. Muriiagh, An English I'ranslation of Alzheimer, p.1907

. Paper, ijber eine eigenartige Erlranliung der Hirnrinde, Clinical Anatomy, vol.8, pp.429-431, 1995.

C. Ising, M. Stanley, and D. M. Holtzman,

, Alzheimer's and Implications for Drug Development, Clin. Pharmacol. Ther, vol.98, issue.5, pp.469-471, 2015.

. , Basics of Alzheimer's disease, 2016.

C. Qiu, M. Kivipelto, and E. Strauss, Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention, Dialogues Clin. Neurosci, vol.11, issue.2, 2009.

R. Mayeux and Y. Stern, Epidemiology of Alzheimer Disease. Cold Spring Harb, Perspect. Med, vol.2, p.6239, 2012.

S. C. Janicki and N. Schupf, Hormonal Influences on Cognition and Risk for Alzheimer's Disease

, Curr. Neurol. Neurosci. Rep, vol.10, pp.359-366, 2010.

D. E. Barnes and K. Yaffe, The projected effect of risk factor reduction on Alzheimer's disease prevalence, Lancet Neurol, vol.10, issue.9, pp.819-828, 2011.

S. Norton, F. E. Matthews, D. E. Barnes, K. Yaffe, and C. Brayne, Potential for primary prevention of Alzheimer's disease: an analysis of population-based data, Lancet Neurol, vol.13, issue.8, pp.788-794, 2014.

M. L. Daviglus, B. L. Plassman, A. Pirzada, C. C. Bell, P. E. Bowen et al.,

J. Dunbar-jacob, J. M. Granieri, E. C. Mcgarry, K. Patel, D. Trevisan et al., Risk factors and preventive interventions for Alzheimer disease: state of the science, Arch. Neurol, vol.68, issue.9, pp.1185-1190, 2011.

L. Letra, I. Santana, and R. Seiça, Obesity as a risk factor for Alzheimer's disease: the role of adipocytokines. Metab. Brain Dis, vol.29, pp.563-568, 2014.

A. Machado, A. J. Herrera, R. M. De-pablos, A. M. Espinosa-oliva, M. Sarmiento et al., Chronic stress as a risk factor for Alzheimer's disease, Nat. Rev. Neurosci, vol.25, issue.6, pp.785-804, 2014.

D. M. Michaelson, APOE ?4: the most prevalent yet understudied risk factor for Alzheimer's disease, Alzheimers Dement, vol.10, issue.6, pp.861-868, 2014.

B. Imtiaz, A. M. Tolppanen, M. Kivipelto, and H. Soininen, Future directions in Alzheimer's disease from risk factors to prevention, Biochem. Pharmacol, vol.88, issue.4, pp.661-670, 2014.

M. Bilbul and H. M. Schipper, Risk profiles of Alzheimer disease. Can, J. Neurol. Sci, vol.38, issue.4, pp.580-592, 2011.

R. C. Barber, The genetics of Alzheimer's disease. Scientifica (Cairo), 2012.

T. L. Cerajewska, M. Davies, and N. X. West, Periodontitis: a potential risk factor for Alzheimer's disease, Br. Dent. J, vol.218, issue.1, pp.29-34, 2015.

T. M. Sivanandam and M. K. Thakur, Traumatic brain injury: a risk factor for Alzheimer's disease, Neurosci. Biobehav. Rev, vol.2012, issue.5, pp.1376-1381

N. Schupf, Genetic and host factors for dementia in Down's syndrome, Br. J. Psychiatry, vol.180, pp.405-410, 2002.

L. O. Soto-rojas, F. De-la-cruz-lópez, M. A. Ontiveros-torres, A. Viramontes-pintos, M. C. Cárdenas-aguayo et al., Neuroinflammation and Alteration of the Blood-Brain Barrier in Alzheimer´s Disease, Alzheimer's Disease-Challenges for the Future, 2015.

M. P. Mattson, Pathways towards and away from Alzheimer's disease, Nature, vol.430, pp.631-639, 2004.

H. Jahn, Memory loss in Alzheimer's disease, Dialogues Clin. Neurosci, vol.15, issue.4, pp.445-454, 2013.

I. Grundke-iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, vol.83, pp.4913-4917, 1986.

. Chapter, Context of the project ~ 57 ~ 24. Silbert, L. C., Does statin use decrease the amount of Alzheimer disease pathology in the brain, Neurology, vol.69, pp.8-11, 2007.

D. M. Holtzman, J. C. Morris, and A. M. Goate, Alzheimer's Disease: The Challenge of the Second Century, Sci. Transl. Med, vol.2011, issue.77, pp.77-78

C. Laske, H. R. Sohrabi, S. M. Frost, K. López-de-ipiña, P. Garrard et al., Innovative diagnostic tools for early detection of Alzheimer's disease, Alzheimers Dement, vol.11, issue.5, pp.561-578, 2015.

M. W. Weiner, D. P. Veitch, P. S. Aisen, L. A. Beckett, N. J. Cairns et al., Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials, Alzheimers Dement, vol.13, issue.4, pp.1-85, 2017.

K. A. Johnson, N. C. Fox, R. A. Sperling, and W. E. Klunk, Brain imaging in Alzheimer disease, Cold Spring Harb. Perspect. Med, vol.2012, issue.4, p.6213

R. J. Caselli, T. G. Beach, D. S. Knopman, and N. R. Graff-radford, Alzheimer Disease: Scientific Breakthroughs and Translational Challenges, Mayo Clin. Proc, vol.2017, issue.6, pp.978-994

W. E. Klunk, H. Engler, A. Nordberg, Y. Wang, G. Blomqvist et al., Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B, Ann. Neurol, vol.55, issue.3, pp.306-319, 2004.

K. Kantarci, Molecular imaging of Alzheimer disease pathology, Am. J. Neuroradiol, vol.35, issue.6, pp.12-17, 2014.

C. C. Rowe, U. Ackerman, W. Browne, R. Mulligan, K. L. Pike et al., Imaging of amyloid ? in Alzheimer's disease with 18 F-BAY94-9172, a novel PET tracer: proof of mechanism, Lancet Neurol, vol.7, issue.2, pp.129-135, 2008.

D. F. Wong, P. B. Rosenberg, Y. Zhou, A. Kumar, V. Raymont et al., In Vivo Imaging of Amyloid Deposition in Alzheimer Disease Using the Radioligand 18 F-AV-45 (Flobetapir F 18), J. Nucl. Med, issue.6, pp.913-920, 2010.

C. M. Clark, J. A. Schneider, B. J. Bedell, T. G. Beach, W. B. Bilker et al., Use of florbetapir-pet for imaging ?-amyloid pathology, JAMA, vol.305, issue.3, pp.275-283, 2011.

N. Nelissen, K. Van-laere, L. Thurfjell, R. Owenius, M. Vandenbulcke et al., Phase 1 Study of the Pittsburgh Compound B Derivative 18 FFlutemetamol in Healthy Volunteers and Patients with Probable Alzheimer Disease, J. Nucl. Med, vol.50, issue.8, pp.1251-1259, 2009.

R. Vandenberghe, K. V. Laere, A. Ivanoiu, E. Salmon, C. Bastin et al., 18 F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: A phase 2 trial, Ann. Neurol, vol.2010, issue.3, pp.319-329

N. Bandara, A. K. Sharma, S. Krieger, J. W. Schultz, B. H. Han et al., Evaluation of 64Cu-Based Radiopharmaceuticals that Target Abeta Peptide Aggregates as Diagnostic Tools for Alzheimer's Disease, J. Am. Chem. Soc, vol.2017, issue.36, pp.12550-12558

M. T. Fodero-tavoletti, V. L. Villemagne, B. M. Paterson, A. R. White, Q. Li et al., Bis(thiosemicarbazonato) Cu-64 complexes for positron emission tomography imaging of Alzheimer's disease, J. Alzheimers Dis, vol.20, issue.1, pp.49-55, 2010.

J. B. Torres, E. M. Andreozzi, J. T. Dunn, M. Siddique, I. Szanda et al., PET Imaging of Copper Trafficking in a Mouse Model of Alzheimer Disease, J. Nucl. Med, vol.57, issue.1, pp.109-114, 2016.

K. A. Jellinger, Alzheimer 100-highlights in the history of Alzheimer research, J. Neural. Transm, vol.113, pp.1603-1623, 2006.

B. Olsson, R. Lautner, U. Andreasson, A. Öhrfelt, E. Portelius et al., CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis, Lancet Neurol, vol.15, issue.7, pp.673-684, 2016.

R. Sperling and K. Johnson, Biomarkers of Alzheimer disease: current and future applications to diagnostic criteria, Continuum (Minneap Minn), vol.19, issue.2, pp.325-338, 2013.

G. Chen, T. Xu, Y. -h.;-yan, Y. Zhou, Y. Jiang et al., Amyloid beta: structure, biology and structure-based therapeutic development, Acta Pharmacologica Sinica, vol.2017, pp.1-31

R. J. O'brien and P. C. Wong, Amyloid Precursor Protein Processing and Alzheimer's Disease

, Annu. Rev. Neurosci, vol.34, issue.1, pp.185-204, 2011.

M. Nicolas and B. A. Hassan, Amyloid precursor protein and neural development, Development, vol.141, issue.13, pp.2543-2548, 2014.

L. J. Sosa, A. Caceres, S. Dupraz, M. Oksdath, S. Quiroga et al., The physiological role of the Amyloid Precursor Protein (APP) as an adhesion molecule in the developing nervous system, J. Neurochem, 2017.

V. Borghesani, B. Alies, and C. Hureau, Cu(II) binding to various forms of amyloid-? peptides. Are they friends or foes ?, Eur. J. Inorg. Chem, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01635553

E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera et al.,

M. T. Emmons, C. H. Kjaergaard, R. G. Hadt, and L. Tian, Copper Active Sites in Biology, Chem. Rev, vol.114, issue.7, pp.3659-3853, 2014.

A. Messerschmidt and C. Metalloenzymes, Comprehensive Natural Products II, pp.489-545, 2010.

C. E. Elwell, N. L. Gagnon, B. D. Neisen, D. Dhar, A. D. Spaeth et al., Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity, Chem. Rev, vol.2017, issue.3, pp.2059-2107

H. Kozlowski, A. Janicka-klos, J. Brasun, E. Gaggelli, D. Valensin et al., Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation), Coord. Chem. Rev, vol.253, issue.21, pp.2665-2685, 2009.

J. F. Eisses and J. H. Kaplan, Molecular characterization of hCTR1, the human copper uptake protein, J. Biol. Chem, issue.32, pp.29162-29171, 2002.

D. Ambrosi, N. Rossi, and L. , Copper at synapse: Release, binding and modulation of neurotransmission, Neurochem. Int, vol.90, pp.36-45, 2015.

I. F. Scheiber, J. F. Mercer, and R. Dringen, Metabolism and functions of copper in brain, Prog. Neurobiol, vol.116, pp.33-57, 2014.

Y. H. Hung, A. I. Bush, and R. A. Cherny, Copper in the brain and Alzheimer's disease, J. Biol. Inorg. Chem, vol.15, pp.61-76, 2010.

S. Ayton, P. Lei, and A. I. Bush, Metallostasis in Alzheimer's disease, Free Radical Biol. Med, vol.62, pp.76-89, 2013.

P. S. Donnelly, Z. Xiao, and A. G. Wedd, Copper and Alzheimer's disease, Curr. Opin. Chem. Biol, vol.11, issue.2, pp.128-133, 2007.

C. Hureau, Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-? peptides involved in Alzheimer disease. Part 1: An overview, Coord. Chem. Rev, vol.2012, issue.19, pp.2164-2174

K. J. Barnham and A. I. Bush, Metals in Alzheimer's and Parkinson's Diseases, Curr. Opin. Chem. Biol, vol.12, issue.2, pp.222-228, 2008.

H. Chapter-;-kozlowski, M. Luczkowski, M. Remelli, and D. Valensin, Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases), Context of the project ~ 59 ~ 60, vol.256, pp.2129-2141, 2012.

I. Hozumi, T. Hasegawa, A. Honda, K. Ozawa, Y. Hayashi et al.,

A. Koumura, T. Sakurai, A. Kimura, Y. Tanaka, M. Satoh et al., Patterns of levels of biological metals in CSF differ among neurodegenerative diseases, J. Neurol. Sci, vol.303, issue.1, pp.95-99, 2011.

K. J. Barnham and A. I. Bush, Biological metals and metal-targeting compounds in major neurodegenerative diseases, Chem. Soc. Rev, vol.43, issue.19, pp.6727-6749, 2014.

C. J. Frederickson, S. W. Suh, D. Silva, C. J. Frederickson, and R. B. Thompson, Importance of Zinc in the Central Nervous System: The Zinc-Containing Neuron, J. Nutr, vol.130, issue.5, pp.1471-1483, 2000.

T. Kambe, T. Tsuji, A. Hashimoto, and N. Itsumura, The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism, Physiol. Rev, vol.95, issue.3, pp.749-784, 2015.

M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, and W. R. Markesbery, Copper, iron and zinc in Alzheimer's disease senile plaques, J. Neurol. Sci, vol.158, pp.47-52, 1998.

C. Hureau and P. Dorlet, Coordination of redox active metal ions to the amyloid precursor protein and to amyloid-? peptides involved in Alzheimer disease. Part 2: Dependence of Cu(II) binding sites with A? sequences, Coord. Chem. Rev, vol.2012, issue.19, pp.2175-2187

C. Migliorini, E. Porciatti, M. Luczkowski, and D. Valensin, Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases, Coord. Chem. Rev, vol.2012, issue.1, pp.352-368

M. Rowinska-zyrek, M. Salerno, and H. Kozlowski, Neurodegenerative diseases-Understanding their molecular bases and progress in the development of potential treatments, Coord. Chem. Rev, vol.284, pp.298-312, 2015.

D. Kim, N. H. Kim, and S. H. Kim, 34 GHz Pulsed ENDOR Characterization of the Copper Coordination of an Amyloid ? Peptide Relevant to Alzheimer's Disease, Angew. Chem. Int. Ed, vol.52, issue.4, pp.1139-1142, 2013.

B. Alies, E. Renaglia, M. Rózga, W. Bal, P. Faller et al., Cu(II) Affinity for the Alzheimer's Peptide: Tyrosine Fluorescence Studies Revisited, Anal. Chem, vol.85, issue.3, pp.1501-1508, 2013.

T. Kowalik-jankowska, M. Ruta, K. Wi?niewska, and L. ?ankiewicz, Coordination abilities of the 1-16 and 1-28 fragments of ?-amyloid peptide towards copper(II) ions: a combined potentiometric and spectroscopic study, J. Inorg. Biochem, vol.95, issue.4, pp.270-282, 2003.

T. R. Young, A. Kirchner, A. G. Wedd, and Z. Xiao, An integrated study of the affinities of the A?16 peptide for Cu(i) and Cu(ii): implications for the catalytic production of reactive oxygen species, Metallomics, vol.6, issue.3, pp.505-517, 2014.

E. Atrián-blasco, A. Conte-daban, and C. Hureau, Mutual interference of Cu and Zn ions in

, Alzheimer's disease: perspectives at the molecular level, Dalton Trans. 2017, vol.46, issue.38, pp.12735-13146

A. Conte-daban, V. Borghesani, S. Sayen, E. Guillon, Y. Journaux et al., Link between Affinity and Cu(II) Binding Sites to Amyloid-beta Peptides Evaluated by a New Water-Soluble UV-Visible Ratiometric Dye with a Moderate Cu(II) Affinity, Anal. Chem, vol.2017, issue.3, pp.2155-2162

C. Hureau, V. Balland, Y. Coppel, P. L. Solari, E. Fonda et al., Importance of dynamical processes in the coordination chemistry and redox conversion of copper amyloid-? complexes, J. Biol. Inorg. Chem, issue.7, pp.995-1000, 2009.

J. Shearer and V. A. Szalai, The Amyloid-? Peptide of Alzheimer's Disease Binds CuI in a Linear BisHis Coordination Environment: Insight into a Possible Neuroprotective Mechanism for the Amyloid-? Peptide, J. Am. Chem. Soc, vol.130, issue.52, pp.17826-17835, 2008.

R. A. Himes, G. Y. Park, G. S. Siluvai, N. J. Blackburn, and K. D. Karlin, Structural Studies of Copper(I) Complexes of Amyloid-? Peptide Fragments: Formation of Two-Coordinate Bis(histidine) Complexes, Angew. Chem. Int. Ed, vol.47, issue.47, pp.9084-9087, 2008.

R. A. Himes, G. Y. Park, A. N. Barry, N. J. Blackburn, K. D. Karlin et al., Synthesis and X-ray Absorption Spectroscopy Structural Studies of Cu(I) Complexes of HistidylHistidine Peptides: The Predominance of Linear 2-Coordinate Geometry, J. Am. Chem. Soc, vol.129, issue.17, pp.298-312, 2007.

N. Xia and L. Liu, Metallothioneins and Synthetic Metal Chelators as Potential Therapeutic Agents for Removal of Aberrant Metal Ions from Metal-AB Species, Mini Rev. Med. Chem, vol.14, issue.3, pp.271-281, 2014.

A. Robert, Y. Liu, M. Nguyen, and B. Meunier, Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease, Acc. Chem. Res, vol.48, issue.5, pp.1332-1339, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01920331

M. A. Santos, K. Chand, and S. Chaves, Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease, Coord. Chem. Rev, pp.287-303, 2016.

L. E. Scott and C. Orvig, Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease, Chem. Rev, vol.109, issue.10, pp.4885-4910, 2009.

L. W. Hung and K. J. Barnham, Modulating metals as a therapeutic strategy for Alzheimer's disease, vol.2012, pp.955-969

A. Gnjec, J. A. Fonte, C. Atwood, and R. N. Martins, Transition metal chelator therapy-A potential treatment for alzheimer's disease?, Front. Biosci, vol.7, pp.1016-1023, 2002.

A. Budimir, Alzheimer's disease and chelation therapy, Acta Pharm, vol.61, pp.1-14, 2011.

C. Rodríguez-rodríguez, M. Telpoukhovskaia, and C. Orvig, The art of building multifunctional metal-binding agents from basic molecular scaffolds for the potential application in neurodegenerative diseases, Coord. Chem. Rev, vol.2012, issue.19, pp.2308-2332

M. P. Cuajungco, K. Y. Fagét, X. Huang, R. E. Tanzi, and A. I. Bush, Metal chelation as a potential therapy for Alzheimer's disease, Ann. N.Y. Acad. Sci, vol.920, pp.292-304, 2000.

S. Bolognin, D. Drago, L. Messori, and P. Zatta, Chelation therapy for neurodegenerative diseases, Med Res Rev, vol.29, issue.4, pp.547-570, 2009.

N. E. Wezynfeld, E. Stefaniak, K. Stachucy, A. Drozd, D. P?onka et al., Resistance of Cu(A?4-16) to Copper Capture by Metallothionein-3 Supports a Function for the A?442 Peptide as a Synaptic Cu(II) Scavenger, Angew. Chem. Int. Ed, vol.55, issue.29, pp.8235-8238, 2016.

M. Mital, N. E. Wezynfeld, T. Fraczyk, M. Z. Wiloch, U. E. Wawrzyniak et al., A Functional Role for A? in Metal Homeostasis? NTruncation and High-Affinity Copper Binding, Angew. Chem. Int. Ed, vol.54, issue.36, pp.10460-10464, 2015.

R. Gabathuler, Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases, Neurobiol. Dis, vol.37, issue.1, pp.48-57, 2010.

C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev, vol.46, issue.1, pp.3-26, 2001.

M. G. Savelieff, A. S. Detoma, J. S. Derrick, and M. H. Lim, The Ongoing Search for Small Molecules to Study Metal-Associated Amyloid-? Species in Alzheimer's Disease, Acc. Chem. Res, vol.47, issue.8, pp.2475-2482, 2014.

A. I. Bush and R. E. Tanzi, Therapeutics for Alzheimer's Disease Based on the Metal Hypothesis, Neurotherapeutics, vol.5, pp.421-432, 2008.

A. Gaeta and R. C. Hider, The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy, Br. J. Pharmacol, vol.146, issue.8, pp.1041-1059, 2005.

J. S. Derrick and M. H. Lim, Tools of the Trade: Investigations into Design Strategies of Small Molecules to Target Components in Alzheimer's Disease, ChemBioChem, vol.16, issue.6, pp.887-898, 2015.

H. Masui and . Metalloaromaticity, Coord. Chem. Rev, vol.219, pp.957-992, 2001.

A. Chapter-;-rimola, J. Alí-torres, C. Rodríguez-rodríguez, J. Poater, E. Matito et al., Cu ion chelation ~ 119 ~ 21

, Ab Initio Design of Chelating Ligands Relevant to Alzheimer's Disease: Influence of Metalloaromaticity, J. Phys. Chem. A, vol.115, issue.45, pp.12659-12666, 2011.

L. R. Perez and K. J. Franz, Minding metals: Tailoring multifunctional chelating agents for neurodegenerative disease, Dalton Trans, vol.39, issue.9, pp.2177-2187, 2010.

M. W. Beck, A. S. Pithadia, A. S. Detoma, K. J. Korshavn, M. H. Lim et al., Ligand Design to Target and Modulate Metal-Protein Interactions in Neurodegenerative Diseases, In Ligand Design in Medicinal Inorganic Chemistry, pp.256-286, 2014.

J. K. Sahni, S. Doggui, J. Ali, S. Baboota, L. Dao et al., Nanoparticle-chelator conjugates as inhibitors of amyloid-? aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease, J. Controlled Release, vol.152, issue.2, pp.187-190, 2009.

Z. Cui, P. R. Lockman, C. S. Atwood, C. H. Hsu, A. Gupte et al., Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases, Eur. J. Pharm. Biopharm, vol.59, issue.2, pp.263-272, 2005.

C. Berk, G. Paul, and M. Sabbagh, Investigational drugs in Alzheimer's disease: current progress, Expert Opin. Investig. Drugs, vol.23, issue.6, pp.837-846, 2014.

N. Guzior, A. Wi?ckowska, D. Panek, and B. Malawska, Recent Development of Multifunctional Agents as Potential Drug Candidates for the Treatment of Alzheimer's Disease, Curr. Med. Chem, vol.22, issue.3, pp.373-404, 2015.

J. J. Braymer, A. S. Detoma, J. Choi, K. S. Ko, and M. H. Lim, Recent Development of Bifunctional Small Molecules to Study Metal-Amyloid-? Species in Alzheimer's Disease, Int. J. Alzheimers Dis, pp.1-9, 2011.

M. G. Dickens and K. J. Franz, A Prochelator Activated by Hydrogen Peroxide Prevents MetalInduced Amyloid ? Aggregation, ChemBioChem, vol.2010, issue.1, pp.59-62

D. S. Folk and K. J. Franz, A Prochelator Activated by ??Secretase Inhibits A? Aggregation and Suppresses Copper-Induced Reactive Oxygen Species Formation, J. Am. Chem. Soc, vol.132, pp.4994-4995, 2010.

Y. H. Hung, A. I. Bush, and R. A. Cherny, Copper in the brain and Alzheimer's disease, J. Biol. Inorg. Chem, vol.15, pp.61-76, 2010.

R. Squitti and C. Salustri, Agents complexing copper as a therapeutic strategy for the treatment of Alzheimer's disease, Curr. Alzheimer Res, vol.6, issue.6, pp.476-487, 2009.

K. J. Barnham and A. I. Bush, Biological metals and metal-targeting compounds in major neurodegenerative diseases, Chem. Soc. Rev, vol.43, issue.19, pp.6727-6749, 2014.

S. Ayton, P. Lei, and A. I. Bush, Biometals and their therapeutic implications in Alzheimer's disease, Neurotherapeutics, vol.12, issue.1, pp.109-120, 2015.

A. I. Bush, Drug Development Based on the Metals Hypothesis of Alzheimer's Disease, J. Alzheimers Dis, vol.15, pp.223-240, 2008.

P. J. Crouch and K. J. Barnham, Therapeutic Redistribution of Metal Ions To Treat Alzheimer's Disease, Acc. Chem. Res, vol.2012, issue.9, pp.1604-1611

S. R. Bareggi and U. Cornelli, Clioquinol: Review of its Mechanisms of Action and Clinical Uses in Neurodegenerative Disorders, CNS Neurosci Ther, vol.18, pp.41-46, 2012.

A. I. Bush, Metal complexing agents as therapies for Alzheimer's disease, Neurobiol. Aging, vol.23, pp.1031-1038, 2002.

P. Zatta, D. Drago, S. Bolognin, and S. L. Sensi, Alzheimer's disease, metal ions and metal homeostatic therapy, Trends Pharmacol. Sci, vol.30, issue.7, pp.346-355, 2009.

L. Cahoon, The curious case of clioquinol, Nat. Med, vol.15, issue.4, pp.356-359, 2009.

S. Bolognin, P. Zatta, D. Drago, G. Tognon, P. P. Parnigotto et al., Mutual stimulation of beta-amyloid fibrillogenesis by clioquinol and divalent metals, Neuromol. Med, vol.10, issue.4, pp.322-332, 2008.

D. Vaira, M. Bazzicalupi, C. Orioli, P. Messori, L. Bruni et al.,

, Alzheimer's disease specifically interfering with brain metal metabolism: structural characterization of its zinc(II) and copper(II) complexes, Inorg. Chem, issue.13, pp.3795-3797, 2004.

A. Budimir, N. Humbert, M. Elhabiri, I. Osinska, M. Birus et al., Hydroxyquinoline based binders: promising ligands for chelatotherapy?, J. Inorg. Biochem, vol.105, issue.3, pp.490-496, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00783427

M. J. Pushie, K. H. Nienaber, K. L. Summers, J. J. Cotelesage, O. Ponomarenko et al.,

K. Pickering, I. J. George, and G. N. , The solution structure of the copper clioquinol complex, J. Inorg. Biochem, vol.133, pp.50-56, 2014.

B. Raman, T. Ban, K. Yamaguchi, M. Sakai, T. Kawai et al., Metal Iondependent Effects of Clioquinol on the Fibril Growth of an Amyloid ? Peptide, J. Biol. Chem, issue.16, pp.16157-16162, 2005.

A. M. Mancino, S. S. Hindo, A. Kochi, and M. H. Lim, Effects of Clioquinol on Metal-Triggered Amyloid-? Aggregation Revisited. Inorg. Chem, issue.20, pp.9596-9598, 2009.

G. Padmanabhan, I. Becue, and J. Smith, Analytical profiles of drug substances, pp.57-90, 1989.

R. A. Cherny, C. S. Atwood, M. E. Xilinas, D. N. Gray, W. D. Jones et al., Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic mice, Neuron, vol.30, issue.3, pp.665-676, 2001.

C. Grossi, S. Francese, A. Casini, M. C. Rosi, I. Luccarini et al., Clioquinol decreases amyloid-beta burden and reduces working memory impairment in a transgenic mouse model of Alzheimer's disease, J. Alzheimers Dis, vol.17, issue.2, pp.423-440, 2009.

S. Schafer, F. G. Pajonk, G. Multhaup, and T. A. Bayer, Copper and clioquinol treatment in young APP transgenic and wild-type mice: effects on life expectancy, body weight, and metal-ion levels, Journal of molecular medicine, vol.85, issue.4, pp.405-413, 2007.

B. Regland, W. Lehmann, I. Abedini, K. Blennow, M. Jonsson et al., Treatment of Alzheimer's disease with clioquinol, Dement. Geriatr. Cogn. Dis, vol.12, issue.6, pp.408-422, 2001.

B. Ibach, E. Haen, J. Marienhagen, and G. Hajak, Clioquinol treatment in familiar early onset of Alzheimer's disease: a case report, Pharmacopsychiatry, vol.38, issue.4, pp.178-179, 2005.

C. W. Ritchie, A. I. Bush, A. Mackinnon, S. Macfarlane, M. Mastwyk et al., Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting A? amyloid deposition and toxicity in alzheimer disease: A pilot phase 2 clinical trial, Arch. Neurol, vol.60, issue.12, pp.1685-1691, 2003.

C. W. Ritchie, A. I. Bush, and C. L. Masters, Metal-protein attenuating compounds and Alzheimer's disease, Expert Opin. Investig. Drugs, vol.13, issue.12, pp.1585-1592, 2004.

R. N. Rosenberg, Translational research on the way to effective therapy for Alzheimer disease, Arch. Gen. Psychiatry, vol.62, issue.11, pp.1186-1192, 2005.

V. B. Kenche and K. J. Barnham, Alzheimer's disease & metals: therapeutic opportunities, Br. J. Pharmacol, vol.163, pp.211-219, 2011.

C. Treiber, A. Simons, M. Strauss, M. Hafner, R. Cappai et al., Clioquinol Mediates Copper Uptake and Counteracts Copper Efflux Activities of the Amyloid Precursor Protein of Alzheimer's Disease, J. Biol. Chem, issue.50, pp.51958-51964, 2004.

M. Mital, I. A. Zawisza, M. Z. Wiloch, U. E. Wawrzyniak, V. Kenche et al., Copper Exchange and Redox Activity of a Prototypical 8-Hydroxyquinoline: Implications for Therapeutic Chelation, Inorg. Chem, issue.15, pp.7317-7319, 2016.

K. J. Barnham, E. C. Gautier, G. B. Kok, and G. Krippner, 8-hydroxy quinoline derivatives, WO 2004007461 A1, Google Patents: 2004. Chapter II: Cu ion chelation ~ 121 ~

C. L. Fu, L. S. Hsu, Y. F. Liao, and M. K. Hu, New Hydroxyquinoline-Based Derivatives as Potent Modulators of Amyloid-beta Aggregations, Arch. Pharm, vol.349, issue.5, pp.327-341, 2016.

P. A. Adlard, R. A. Cherny, D. I. Finkelstein, E. Gautier, E. Robb et al., Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta, Neuron, vol.59, issue.1, pp.43-55, 2008.

L. Lannfelt, K. Blennow, H. Zetterberg, S. Batsman, D. Ames et al.,

S. Targum, A. I. Bush, R. Murdoch, J. Wilson, and C. W. Ritchie, Safety, efficacy, and biomarker findings of PBT2 in targeting A? as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial, Lancet Neurol, vol.7, issue.9, pp.779-786, 2008.

N. G. Faux, C. W. Ritchie, A. Gunn, A. Rembach, A. Tsatsanis et al., PBT2 rapidly improves cognition in Alzheimer's Disease: additional phase II analyses, J. Alzheimers Dis, vol.20, issue.2, pp.509-516, 2010.

N. R. Relkin, Testing the mettle of PBT2 for Alzheimer's disease. The Lancet. Neurology, vol.7, pp.762-763, 2008.

V. Oliveri and G. Vecchio, 8-Hydroxyquinolines in medicinal chemistry: A structural perspective, Eur. J. Med. Chem, vol.120, pp.252-274, 2016.

S. S. Hindo, A. M. Mancino, J. J. Braymer, Y. Liu, S. Vivekanandan et al., Small Molecule Modulators of Copper-Induced A? Aggregation, J. Am. Chem. Soc, vol.131, issue.46, pp.16663-16665, 2009.

A. Martínez, R. Alcendor, T. Rahman, M. Podgorny, I. Sanogo et al., Ionophoric polyphenols selectively bind Cu 2+ , display potent antioxidant and anti-amyloidogenic properties, and are non-toxic toward Tetrahymena thermophila, Biorg. Med. Chem, issue.16, pp.3657-3670, 2016.

E. Barcia, A. Salama, A. Fernández-carballido, and S. Negro, Protective effects of clioquinol on human neuronal-like cells: a new formulation of clioquinol-loaded PLGA microspheres for Alzheimer's disease, Journal of Drug Targeting, vol.19, issue.8, pp.637-646, 2011.

L. M. Gomes, R. P. Vieira, M. R. Jones, M. C. Wang, C. Dyrager et al., The Alzheimer's therapeutic PBT2 promotes amyloid-? degradation and GSK3 phosphorylation via a metal chaperone activity, J. Inorg. Biochem, vol.139, pp.220-230, 2011.

M. Nguyen, A. Robert, A. Soumia-saquet, L. Vendier, and B. Meunier, Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease, Chem. Eur. J, vol.20, issue.22, pp.6771-6785, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02023147

M. Nguyen, L. Rechignat, A. Robert, and B. Meunier, The Necessity of Having a Tetradentate Ligand to Extract Copper(II) Ions from Amyloids, ChemistryOpen, vol.2015, issue.1, pp.27-31
URL : https://hal.archives-ouvertes.fr/hal-01920330

M. Nguyen, C. Bijani, N. Martins, B. Meunier, and A. Robert, Transfer of Copper from an Amyloid to a Natural Copper-Carrier Peptide with a Specific Mediating Ligand, Chem. Eur. J, vol.21, issue.47, pp.17085-17090, 2015.

J. Ceccom, F. Coslédan, H. Halley, B. Francès, J. M. Lassalle et al., Copper Chelator Induced Efficient Episodic Memory Recovery in a Non-Transgenic Alzheimer's Mouse Model, PLoS One, vol.7, issue.8, p.43105, 2012.

C. Deraeve, C. Boldron, A. Maraval, H. Mazarguil, H. Gornitzka et al.,

B. Meunier, Preparation and Study of New Poly-8-Hydroxyquinoline Chelators for an anti-Alzheimer Strategy, Chem. Eur. J, vol.14, issue.2, pp.682-696, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00371845

V. B. Kenche, I. A. Zawisza, C. L. Masters, W. Bal, K. J. Barnham et al., Mixed ligand Cu 2+ complexes of a model therapeutic with Alzheimer's amyloid-? peptide and monoamine neurotransmitters, Inorg. Chem, vol.52, issue.8, pp.21990-21995, 2010.

M. W. Beck, S. B. Oh, R. A. Kerr, H. J. Lee, S. H. Kim et al., A rationally designed small molecule for identifying an in vivo link between metalamyloid-? complexes and the pathogenesis of Alzheimer's disease, Chemical Science, vol.6, issue.3, pp.1879-1886, 2015.

M. W. Beck, J. S. Derrick, R. A. Kerr, S. B. Oh, W. J. Cho et al., Structure-mechanismbased engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease, Nat. Commun, vol.7, pp.13115-13127, 2016.

S. Lee, X. Zheng, J. Krishnamoorthy, M. G. Savelieff, H. M. Park et al., Rational Design of a Structural Framework with Potential Use to Develop Chemical Reagents That Target and Modulate Multiple Facets of Alzheimer's Disease, J. Am. Chem. Soc, vol.136, issue.1, pp.299-310, 2014.

J. Geng, M. Li, L. Wu, J. Ren, and X. Qu, Liberation of Copper from Amyloid Plaques: Making a Risk Factor Useful for Alzheimer's Disease Treatment, J. Med. Chem, vol.55, pp.9146-9155, 2012.

C. Rodríguez-rodríguez, N. Sánchez-de-groot, A. Rimola, Á. Álvarez-larena, V. Lloveras et al., Design, Selection, and Characterization of Thioflavin-Based Intercalation Compounds with Metal Chelating Properties for Application in Alzheimer's Disease, J. Am. Chem. Soc, vol.131, issue.4, pp.1436-1451, 2009.

C. Harford and B. Sarkar, Amino Terminal Cu(II)-and Ni(II)-Binding (ATCUN) Motif of Proteins and Peptides: Metal Binding, DNA Cleavage, and Other Properties, Acc. Chem. Res, vol.30, issue.3, pp.123-130, 1997.

A. Lakatos, B. Gyurcsik, N. V. Nagy, Z. Csendes, E. Weber et al., Histidine-rich branched peptides as Cu(ii) and Zn(ii) chelators with potential therapeutic application in Alzheimer's disease, Dalton Trans, issue.6, pp.1713-1726, 2012.

M. Jensen, A. Canning, S. Chiha, P. Bouquerel, J. T. Pedersen et al.,

I. Sasaki, C. Hureau, and P. Faller, Inhibition of Cu-Amyloid-? by using Bifunctional Peptides with ?-Sheet Breaker and Chelator Moieties, Chem. Eur. J, vol.2012, issue.16, pp.4836-4839

A. Conte-daban, B. Boff, A. Candido, C. Montes-aparicio, C. Gateau et al., A trishistidine pseudopeptide with ability to remove both Cu(I) and Cu(II) from the amyloid-beta peptide and to stop the associated ROS formation, Chem. Eur. J, 2017.

A. B. Caballero, L. Terol-ordaz, A. Espargaró, G. Vázquez, E. Nicolás et al., Histidine-Rich Oligopeptides To Lessen Copper-Mediated Amyloid-? Toxicity, Chem. Eur. J, vol.22, issue.21, pp.7268-7280, 2016.

X. Hu, Q. Zhang, W. Wang, Z. Yuan, X. Zhu et al., Tripeptide GGH as the Inhibitor of Copper-Amyloid-?-Mediated Redox Reaction and Toxicity, ACS Chem. Neurosci, vol.7, issue.9, pp.1255-1263, 2016.

C. Quintanova, R. S. Keri, S. Chaves, and M. A. Santos, Copper(II) complexation of tacrine hybrids with potential anti-neurodegenerative roles, J. Inorg. Biochem, vol.151, pp.58-66, 2015.

T. Chen, X. Wang, Y. He, C. Zhang, Z. Wu et al., Effects of Cyclen and Cyclam on Zinc(II)-and Copper(II)-Induced Amyloid ?-Peptide Aggregation and Neurotoxicity, Inorg. Chem, issue.13, pp.5801-5809, 2009.

W. Wu, P. -h.;-lei, Q. Liu, J. Hu, A. P. Gunn et al., Sequestration of Copper from ?-Amyloid Promotes Selective Lysis by CyclenHybrid Cleavage Agents, J. Biol. Chem, issue.46, pp.31657-31664, 2008.

Y. Yang, T. Chen, S. Zhu, X. Gu, X. Jia et al., Two macrocyclic polyamines as modulators of metal-mediated A?40 aggregation, Integr. Biol, vol.7, issue.6, pp.655-662, 2015.

D. Kaden, A. I. Bush, R. Danzeisen, T. A. Bayer, and G. Multhaup, Disturbed Copper Bioavailability in Alzheimer's Disease, Int. J. Alzheimers Dis, 2011.

T. Storr, M. Merkel, G. X. Song-zhao, L. E. Scott, D. E. Green et al.,

H. Patrick, B. O. Schugar, H. J. Orvig, and C. , Synthesis, Characterization, and Metal Coordinating Ability of Multifunctional Carbohydrate-Containing Compounds for Alzheimer's Therapy, J. Am. Chem. Soc, vol.129, pp.7453-7463, 2007.

A. Conte-daban, A. Day, P. Faller, and C. Hureau, How Zn can impede Cu detoxification by chelating agents in Alzheimer's disease: a proof-of-concept study, Dalton Trans, vol.45, issue.39, pp.15671-15678, 2016.

S. Noël, F. Perez, J. T. Pedersen, B. Alies, S. Ladeira et al., A new water-soluble Cu(II) chelator that retrieves Cu from Cu(amyloid-?) species, stops associated ROS production and prevents Cu(II)-induced A? aggregation, J. Inorg. Biochem, vol.117, pp.322-325, 2012.

A. Lakatos, E. Zsigo, D. Hollender, N. V. Nagy, L. Fulop et al., Two pyridine derivatives as potential Cu(ii) and Zn(ii) chelators in therapy for Alzheimer's disease, Dalton Trans, issue.5, pp.1302-1315, 2010.

E. Atrian-blasco, E. Cerrada, A. Conte-daban, D. Testemale, P. Faller et al., Copper(i) targeting in the Alzheimer's disease context: a first example using the biocompatible PTA ligand, Metallomics, vol.2015, issue.8, pp.1229-1232

P. S. Donnelly, A. Caragounis, T. Du, K. Laughton, I. Volitakis et al., Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloidbeta peptide, J. Biol. Chem, issue.8, pp.4568-4577, 2008.

P. J. Crouch, L. W. Hung, P. A. Adlard, M. Cortes, V. Lal et al., Increasing Cu bioavailability inhibits A? oligomers and tau phosphorylation, vol.106, pp.381-386, 2009.

A. Sanabria-castro, I. Alvarado-echeverría, and C. Monge-bonilla, Molecular Pathogenesis of Alzheimer's Disease: An Update, Ann. Neurosci, vol.2017, issue.1, pp.46-54

M. G. Savelieff, S. Lee, Y. Liu, and M. H. Lim, Untangling Amyloid-?, Tau, and Metals in Alzheimer's Disease, ACS Chem. Biol, vol.8, pp.856-865, 2014.

E. Atrian-blasco, P. Gonzalez, A. Santoro, B. Alies, P. Faller et al., Cu and Zn coordination to amyloids: a chemistry of pathological importance ?, Coord. Chem. Rev, 2017.

K. Ono, Alzheimer's disease as oligomeropathy, Neurochem. Int, vol.17, pp.30331-30335, 2017.

E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera et al., Copper active sites in biology, Chem. Rev, vol.114, issue.7, pp.3659-3653, 2014.

C. Hureau, Coordination of redox active metal ions to the APP and to the amyloid-? peptides involved in AD. Part 1: an overview, Coord. Chem. Rev, vol.2012, pp.2164-2174

C. Cheignon, M. Tomas, D. Bonnefont-rousselot, P. Faller, C. Hureau et al., Oxidative stress and the amyloid beta peptide in Alzheimer's Disease, Redox Biology, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01635507

M. A. Santos, K. Chand, and S. Chaves, Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease, Coord. Chem. Rev, pp.287-303, 2016.

K. J. Barnham and A. I. Bush, Biological metals and metal-targeting compounds in major neurodegenerative diseases, Chem. Soc. Rev, vol.43, pp.6727-6749, 2014.

E. Atrian-blasco, A. Conte-daban, and C. Hureau, Mutual interference of Cu and Zn ions in Alzheimer's disease: perspectives at the molecular level, Dalton Transactions, 2017.

T. Chen, X. Wang, Y. He, C. Zhang, Z. Wu et al., Effects of Cyclen and Cyclam on Zinc(II)-and Copper(II)-Induced Amyloid ?-Peptide Aggregation and Neurotoxicity, Inorg. Chem, issue.13, pp.5801-5809, 2009.

S. R. Banerjee, M. Pullambhatla, C. A. Foss, S. Nimmagadda, R. Ferdani et al., Cu-Labeled Inhibitors of Prostate-Specific Membrane Antigen for PET Imaging of Prostate Cancer, J. Med. Chem, vol.64, issue.6, pp.2657-2669, 2014.

G. J. Stasiuk and N. J. Long, The ubiquitous DOTA and its derivatives: the impact of 1,4,7,10tetraazacyclododecane-1,4,7,10-tetraacetic acid on biomedical imaging, Chem. Commun, issue.27, pp.2732-2746, 2013.

E. H. Wong, G. R. Weisman, D. C. Hill, D. P. Reed, M. E. Rogers et al., Synthesis and Characterization of Cross-Bridged Cyclams and Pendant-Armed Derivatives and Structural Studies of Their Copper(II) Complexes, J. Am. Chem. Soc, vol.122, issue.43, pp.10561-10572, 2000.

E. Terreno, D. D. Castelli, A. Viale, and S. Aime, Challenges for Molecular Magnetic Resonance Imaging, Chem. Rev, vol.110, issue.5, pp.3019-3042, 2010.

R. M. Izatt, K. Pawlak, J. S. Bradshaw, and R. L. Bruening, Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules, Chem. Rev, vol.95, issue.7, pp.2529-2586, 1995.

R. Delgado, V. Felix, L. M. Lima, and D. W. Price, Metal complexes of cyclen and cyclam derivatives useful for medical applications: a discussion based on thermodynamic stability constants and structural data, Dalton Trans, issue.26, pp.2734-2745, 2007.

L. Burai, I. Fabian, R. Kiraly, E. Szilagyi, and E. Brucher, Equilibrium and kinetic studies on the formation of the lanthanide(III) complexes, J. Chem. Soc, issue.2, pp.243-248, 1998.

L. M. Lima, D. Esteban-gómez, R. Delgado, C. Platas-iglesias, and R. Tripier, Monopicolinate Cyclen and Cyclam Derivatives for Stable Copper(II) Complexation, Inorg. Chem, vol.2012, issue.12, pp.6916-6927
URL : https://hal.archives-ouvertes.fr/hal-01557438

A. Rodriguez-rodriguez, Z. Garda, E. Ruscsak, D. Esteban-gomez, A. De-blas et al., Stable Mn2+, Cu2+ and Ln3+ complexes with cyclen-based ligands functionalized with picolinate pendant arms, Dalton Trans, vol.44, issue.11, pp.5017-5031, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01518182

J. Peisach and W. E. Blumberg, Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins, Arch. Biochem. Biophys, vol.165, issue.2, pp.691-708, 1974.

R. D. Hancock, M. Salim-shaikjee, S. M. Dobson, and J. C. Boeyens, The Stereochemical activity or non-activity of the 'Inert' pair of electrons on lead(II) in relation to its complex stability and structural properties. Some considerations in ligand design, Inorg. Chim. Acta, vol.154, issue.2, pp.229-238, 1988.

M. Kodama and E. Kimura, Polarographic studies on copper(II) 1,4,7,10-tetraazacyclododecane complexation, J. Chem. Soc., Chem. Commun, issue.9, pp.326-327, 1975.

M. Kodama and E. Kimura, Equilibria of complex formation between several bivalent metal ions and macrocyclic tri-and penta-amines, Dalton Trans, issue.9, pp.1081-1085, 1978.

R. J. Motekaitis, B. E. Rogers, D. E. Reichert, A. E. Martell, and M. J. Welch, Stability and Structure of Activated Macrocycles, Ligands with Biological Applications. Inorg. Chem, issue.13, pp.3821-3827, 1996.

B. Alies, I. Sasaki, O. Proux, S. Sayen, E. Guillon et al., Zn impacts Cu coordination to Amyloid-ß, the Alzheimer's peptide, but not the ROS production and the associated cell toxicity, Chem. Commun, issue.12, pp.1214-1216, 2013.

G. Royal, V. Dahaoui-gindrey, S. Dahaoui, A. Tabard, R. Guilard et al., New Synthesis of trans-Disubstituted Cyclam Macrocycles-Elucidation of the Disubstitution Mechanism on the Basis of X-ray Data and Molecular Modeling, Eur. J. Org. Chem, issue.9, pp.1971-1975, 1998.

M. Mato-iglesias, A. Roca-sabio, Z. Pálinkás, D. Esteban-gómez, C. Platas-iglesias et al., Lanthanide Complexes Based on a 1,7-Diaza-12-crown-4 Platform Containing Picolinate Pendants: A New Structural Entry for the Design of Magnetic Resonance Imaging Contrast Agents, Inorg. Chem, issue.17, pp.7840-7851, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00518175

A. Oxford-diffraction-ltd and U. K. , Crysalis software system, version 1.171.28 cycle 4 beta, 2005.

G. Sheldrick, A short history of SHELX, Acta Cryst. A, vol.64, issue.1, pp.112-122, 2008.

P. K. Glasoe and F. A. Long, Use of glass electrodes to measure acidities in deuterium oxide, J. Phys. Chem, vol.64, issue.1, pp.188-190, 1960.

F. J. Rossotti and H. Rossotti, Potentiometric titrations using Gran plots: A textbook omission, J. Chem. Educ, vol.42, issue.7, pp.375-378, 1965.
DOI : 10.1021/ed042p375

G. Schwarzenbach and H. A. Flaschka, Complexometric titrations, 1969.

R. Delgado, M. Do-carmo-figueira, and S. Quintino, Redox method for the determination of stability constants of some trivalent metal complexes, Talanta, vol.45, issue.2, pp.451-462, 1997.

P. Gans, A. Sabatini, and A. Vacca, Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs, Talanta, vol.43, issue.10, pp.1739-1753, 1996.

L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini et al., Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species, Coord. Chem. Rev, vol.184, issue.1, pp.311-318, 1999.

A. Conte-daban, V. Borghesani, S. Sayen, E. Guillon, Y. Journaux et al., Link between Affinity and Cu(II) Binding Sites to Amyloid-beta Peptides Evaluated by a New Water-Soluble UV-Visible Ratiometric Dye with a Moderate Cu(II) Affinity, Anal. Chem, vol.2017, issue.3, pp.2155-2162
DOI : 10.1021/acs.analchem.6b04979

URL : http://europepmc.org/articles/pmc5714188?pdf=render

C. Hureau, H. Eury, R. Guillot, C. Bijani, S. Sayen et al., X-Ray and solution structures of CuGHK and CuDAHK complexes. Influence on their redox properties, Chem. Eur. J, vol.17, issue.36, pp.10151-10160, 2011.

P. Faller, C. Hureau, P. Dorlet, P. Hellwig, Y. Coppel et al., Methods and techniques to study the bioinorganic chemistry of metal-peptide complexes linked to neurodegenerative diseases, Coord. Chem. Rev, vol.2012, pp.2381-2396

J. Nagaj, K. Stokowa-so?tys, I. Zawisza, M. Je?owska-bojczuk, A. Bonna et al., Selective control of Cu(II) complex stability in histidine peptides by ?-alanine, J. Inorg. Biochem, vol.119, pp.85-89, 2013.

O. Proux, X. Biquard, E. Lahera, J. J. Menthonnex, A. Prat et al.,

G. Kapoujvan, G. Perroux, P. Taunier, D. Grand, P. Jeantet et al., FAME: A new beamline for X-ray absorption investigations of very-diluted systems of environmental, material and biological interests, Phys. Scr, vol.115, pp.970-973, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00386441

J. Nagaj, K. Stokowa-so?tys, I. Zawisza, M. Je?owska-bojczuk, A. Bonna et al., Selective control of Cu(II) complex stability in histidine peptides by ?-alanine, J. Inorg. Biochem, vol.119, pp.85-89, 2013.

T. Kowalik-jankowska, M. Ruta, K. Wi?niewska, and L. ?ankiewicz, Coordination abilities of the 1-16 and 1-28 fragments of ?-amyloid peptide towards copper(II) ions: a combined potentiometric and spectroscopic study, J. Inorg. Biochem, vol.95, issue.4, pp.270-282, 2003.

B. Alies, E. Renaglia, M. Rózga, W. Bal, P. Faller et al., Cu(II) Affinity for the Alzheimer's Peptide: Tyrosine Fluorescence Studies Revisited, Anal. Chem, vol.85, issue.3, pp.1501-1508, 2013.
DOI : 10.1021/ac302629u

I. , Another advantage is its water solubility, usefull in the Alzheimer's disease studies. It is also biocompatible and has a low intrinsic toxicity. The first step of this work is the removal of Cu ions from the A? peptide. For this study, XANES and EPR experiments were performed. XANES allows to follow Cu(II) and Cu(I) at the same time, and EPR is specific to Cu(II) ions, so in the presence of Cu(I), there is no signal. XANES experiments are used to monitor the removal of Cu(I) from A? by PTA. The ligand was added progressively and after 4.5 equiv. of PTA, Cu ion is totally chelated by the ligand and not by the peptide. 4 equiv. are needed for the Cu(I) chelation and 0.5 equiv. is required for the reduction of Cu(II) into Cu(I). EPR experiment confirms this result: with 6 equiv. of PTA, the signature of Cu(II)-A? becomes flat, in line with complete Cu(II) reduction. The results of the UV-Visible competition are consistent with that: the addition of PTA eliminates the d-d band of Cu(II)-A?; it is needed around 1 h to remove Cu(I) from A?. NMR experiments are in good agreement with these results of Cu ion removal. Indeed, upon Cu(I) addition, the spectrum of A? changes mainly for the Histidine signals, most of the researches on metal chelation or metal redistribution approaches focus on the Cu(II) ion. Nevertheless, until now, there is no evidence of the redox state of Cu ions in the synaptic cleft. In addition, some studies have proved that a Cu(II) ligand naturally present in the brain, Human Serum Albumin (HSA), protected less cells from Cu-A? complex toxicity in comparison with metallothionein, vol.3