
�>���G �A�/�, �i�2�H�@�y�k�y�R�k�d�y�j

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�k�y�R�k�d�y�j

�a�m�#�K�B�i�i�2�/ �Q�M �N �6�2�# �k�y�R�N

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�a�i�m�/�v �Q�7 �#�m�+�F�H�B�M�; ���M�/ �/�2�H���K�B�M���i�B�Q�M �Q�7 �/�m�+�i�B�H�2 �i�?�B�M �}�H�K�b
�Q�M �`�B�;�B�/ �b�m�#�b�i�`���i�2�b

�L���/�B�� �"�2�M �.���?�K���M�2

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�L���/�B�� �"�2�M �.���?�K���M�2�X �a�i�m�/�v �Q�7 �#�m�+�F�H�B�M�; ���M�/ �/�2�H���K�B�M���i�B�Q�M �Q�7 �/�m�+�i�B�H�2 �i�?�B�M �}�H�K�b �Q�M �`�B�;�B�/ �b�m�#�b�i�`���i�2�b�X
�J�2�+�?���M�B�+�b �Q�7 �K���i�2�`�B���H�b �(�T�?�v�b�B�+�b�X�+�H���b�b�@�T�?�)�X �l�M�B�p�2�`�b�B�i�û �:�`�2�M�Q�#�H�2 ���H�T�2�b�- �k�y�R�3�X �1�M�;�H�B�b�?�X �I�L�L�h �,
�k�y�R�3�:�_�1���A�y�R�j�=�X �I�i�2�H�@�y�k�y�R�k�d�y�j�=

https://tel.archives-ouvertes.fr/tel-02012703
https://hal.archives-ouvertes.fr






“ Every block of stone has a statue inside it and it is the task of the sculptor to discover it.”

Michelangelo
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1

Introduction

Thin �lms and coatings are extensively used for their mechanical, electronic and optoelec-

tronic properties [ 37]. They are involved in a variety of technological applications ranging

from low emissivity windows [ 55] to microelectronic devices [ 105]. During the deposition

process, thin �lms can be subjected to high residual compressive stresses [73, 114] reaching

up to a few GPa. These residual stresses may cause simultaneous buckling and delamina-

tion of the �lm, giving rise to various blister morphologies such as circular blisters, straight-

sided blisters or telephone cord blisters as shown in �gure 1. Such defects are detrimental

to the mechanical properties and conductivity of the multi layer system and are thus highly

undesirable.

Ni(200 nm)/pcNi(200 nm)/pc

�������P
m

(a) (b)

�������
Pm

20 �Pm

(c) (d)

FIGURE 1: Examples of buckling delamination structures. (a) Circular blisters –
Au(630 nm) on Si. (b) Straight sided blisters – stainless steel. (c) Intersecting blisters
– Stainless steel on polycarbonate. (d) Telephone cords blisters –Y2O3(30-50nm) on

GaAs. (Courtesy of C. Coupeau et col., Institut P')



2 Introduction

A growing interest in the study of these mechanical instabilities has emerged during the

last decades. In particular, analytical studies based on Föppl von Kármán plate theory have

provided valuable insights into the mechanism of formation of straight-sided and circular

blisters [48, 49], in the case of elastic thin �lms on rigid substrates. Later, the �nite element

method proved to be a valuable tool for the study of buckling-driven delamination of elastic

thin �lms and allowed deeper understanding of the mechanism of formation of telephone

cord buckles [31] and highlighted the existing correlation between the �lm/substrate in-

terface energy and the blister's wavelength. However, the response of ductile thin �lms

deposited on rigid substrates remains an open issue. For instance, it has been evidenced

experimentally that the shape of circular blisters observed on gold thin �lms differs from

the sinusoidal form predicted by the elastic model [ 18]. In particular, the folding angle mea-

sured at the basis of the blister is signi�cantly larger in the experimental case compared to

the elastic model predictions. Regarding the delamination problem, an interesting point is

that some circular blisters can be observed on gold �lms deposited on silicon substrates,

while the analysis of buckle delamination considering linear elastic �lms predicts that this

particular shape is unstable [49].

These differences in morphology and stability are thought to originate from the elastic-

plastic response of the �lm. However, the key features of the mechanisms leading to such

morphologies need to be clari�ed, which is the purpose of the present study.

The purpose of this thesis is thus to:

• generate buckling structures in samples of gold thin �lms deposited on silicon sub-

strates, study their morphology and characterize the mechanical properties of the thin

�lm,

• develop a model for the buckling driven delamination of ductile thin �lms deposited

on rigid substrate and study the effect of plasticity on the response of the �lm in the

case of straight and circular blisters,

• analyse conditions leading to the formation of the experimentally observed buckles

and try to �t their pro�les using �nite element calculations. Explore how plastic de-

formation of the �lm in�uences the mechanics of blisters propagation, especially their

morphological stability during the delamination stage.

This research project has required expertise in the experimental �eld as well as in the

numerical �eld and gave place to fruitful collaborations between the following research

units:

• the group "`Surface, Interfaces et Matériaux sous Contrainte"' of P' Institute in Poitiers

where the Au/Si samples were prepared and the buckling structures as well as the

residual stresses characterized,

• the group "`Physique du Métal"' of the SIMaP laboratory in Grenoble where nanoin-

dentation tests and �nite element simulations were performed.



Introduction 3

This thesis contains four different chapters. In the �rst chapter, we present the context

of this research project and provide an overview of some fundamental results in the un-

derstanding of the complex mechanisms of buckling-driven delamination. In particular, we

introduce the problem of plate buckling and post-buckling and consider the delamination of

thin �lms from their substrate as an application of fracture mechanics at the �lm/substrate

interface (coupled with the plate buckling problem).

In the second chapter, we present an experimental study of the buckling structures ob-

served on gold thin �lm deposited on silicon substrates. The methods used for residual

stress measurement as well as the characterization of the thin �lm's mechanical properties

are presented and the corresponding results are discussed. These results provide important

data for the elaboration of elastic-plastic buckling model.

In the third chapter, we present our numerical model for the buckling of ductile thin

�lms and use it to study the effects of plasticity on the morphology of straight and circular

blisters. By comparing the simulation results with the experimental observations, we gain

a better understanding of the possible conditions that lead to the formation of the blisters

observed experimentally. In particular, we study the in�uence of the loading history on the

equilibrium pro�les of straight and circular blisters.

In the last chapter, we present a numerical model for the buckling-driven delamination

of ductile thin �lms and use it to study the in�uence of plasticity on the morphology of

straight blisters and on the energy balance of the system during delamination. We also

study the in�uence of other important parameters on the �nal pro�le of straight blisters

such as the in�uence of the interface properties, the boundary conditions during the loading

and and the loading history. The last part of this chapter is dedicated to the study of the

morphological stability of circular blisters in purely elastic and ductile thin �lms.

In the conclusion of this thesis we discuss the limits of our models and suggest some per-

spectives that can be pursued in order to improve the buckling-driven delamination model

of ductile thin �lms on rigid substrates.
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The aim of this chapter is to give the reader an overview of some fundamental results

in the mechanics of plates and shells as well as fracture mechanics applied to interfacial

failure. These results are crucial to understand the complex mechanisms of buckling-driven

delamination. Although analytical descriptions are available for the analysis of buckling,

numerical model are mandatory when buckling and delamination are considered.

This chapter contains three main sections: In the �rst section, Föppl von Kármán plate the-

ory is used to study the elastic buckling of elastic thin �lms in the case of straight and circular

buckles. In the second section, we recall the main results from the literature concerning the

study of of cracks and especially interface cracks. We complete this section with a descrip-

tion of cohesive models which will be applied to describe interface cracking. In the third

section, we combine Föppl von Kármán plate theory with interfacial crack propagation to

study buckling-driven delamination of thin �lms.



6 Chapter 1. State of the art

1.1 Elastic buckling of thin �lms

Elasticity is de�ned as the ability of a deformed material body to return to its original shape

and size when the forces causing the deformation are removed. On general basis, most ob-

jects that undergo elastic deformation exhibit small deformations and can thus be described

by a linear relation between the stress and strain.[63, 101] Conditions are entirely different

if those objects undergo large displacements that alter signi�cantly their initial shapes. The

linear elastic model thus does no longer apply and it becomes necessary to consider a non-

linear relation between the applied stress and the resultant strain. The buckling of beams

and thin �lms is an example of non-linear response.[ 101] However, it is due to large displace-

ments (geometric non-linearity) rather than to material behaviour (material non-linearity).

In many cases, the damage of a thin �lm submitted to compressive stresses may be at-

tributed to an elastic instability (buckling). Studying the buckling of thin �lms and plates is

thus of great practical importance as it helps determine the critical buckling load (i.e the load

at which the �lm buckles) and the corresponding buckling con�guration of equilibrium.

In order to model the elastic buckling of thin �lms, we use the formalism introduced by

A.Föppl [ 36] and then T.von Kármán [ 56]at the beginning of the 20th century. This approach

has been lately applied to model the buckling-driven delamination of thin �lms in the work

of J. W. Hutchinson and Z. Suo [48].

1.1.1 Straight buckling of elastic thin �lms

We consider an isotropic and elastic thin �lm of thickness h, deposited on a rigid substrate.

Its elastic properties are given by E and � , its Young's modulus and Poisson's ratio respec-

tively. The �lm is assumed to be free from the substrate along a region of width 2b and

clamped along its edges. The �lm, initially unbuckled and in a state of equilibrium, is sub-

ject to a uniform equi-biaxial compressive in-plane stress, � xx = � yy = � � .

Under the assumption h << b , the �lm is represented by a wide, clamped Euler column

of width 2b. If we take into account the invariance of the equilibrium state along the x-axis,

the problem can be considered as two-dimensional. The full geometry of the problem is

presented in �gure 1.1.

(Oy)

(Oz)

(+b)(-b)
(h)

(Ox)

M

(buckled )

(Oy)

(Oz)

(+b)(-b)

(h)

(unbuckled )

substrate

�� lm

FIGURE 1.1: Geometry and conventions of the one-dimensional blister.� N andM
are respectively the resultant stress and the bending moment. left: unbuckled state;

right: buckled state and local loading on the �lm.
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The deformation of the plate is characterized by its y- and z- displacement, v and w. The

system can be characterized by Föppl von Kármán (FvK) plate theory with fully clamped

conditions at its edges:

v = w =
@w
@y

= 0 ; for y = � b (1.1)

The general form of the governing differential equation of a geometrically non-linear

plate ensures moment equilibrium and is given by the following set of equations in Carte-

sian coordinates system:

8
>>>>>>>>><

>>>>>>>>>:

@Nx
@x +

@Nxy
@y = 0

@Nyx
@x +

@Ny
@y = 0

D(
@4w
@x4

+ 2
@4w

@x2@y2
+

@4w
@y4

) = Nx
@2w
@x2

+ 2Nxy
@2w
@x@y

+ Ny
@2w
@y2

(1.2)

where Nx , Ny and Nxy are the internal forces acting in the mid surface of the �lm. The

changes in the resultant stresses with respect to the initial state are given by � Nx = Nx + �h ,

� Ny = Ny + �h and � Nxy = Nxy + �h . D = Eh3=(12(1� � 2)) is called the bending stiffness

or the �exural rigidity of the �lm. It should be noted that the bending moment is related to

the bending strain by M y = D @2w
@y2 .

Under the assumption of the invariance of the equilibrium state along the x-axis, the

problem takes a simpler form:

8
>>><

>>>:

@� Ny
@y = 0 ) � Ny = cste = � N

D
@4w
@y4

� Ny
@2w
@y2

= 0 ) D
@4w
@y4

� (� N � �h )
@2w
@y2

= 0

(1.3)

In general, such a problem has only one solution corresponding to the initial �at con�gu-

ration of equilibrium (i.e w = 0 ). However, the magnitude of Nx in the differential equation

depends on the prescribed in-plane external load � . We can �nd values of these loads for

which non-trival solutions are possible. The minimum load allowing for such a non-trivial

solution is called the critical load.

To solve the equation, we start �rst by applying Hooke's Law. Considering the non-

variance of the solution along the x-axis, we establish the following equation:

8
>><

>>:

� y = @v
@y+

1
2( @w

@y)
2 = (1 � � 2) � N y

Eh

� x = 0 ! � Nx = � � Ny

(1.4)

Then, the resolution of Eq.1.4yields:
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8
>>>>>><

>>>>>>:

w =
1
2

�
�

1 + cos
� �y

b

��

M = M y(b) =
� 2

2
Dh
b2 �

�h � � N
D

=
� 2

b2

(1.5)

(1.6)

(1.7)

Eq.1.7gives the value of the residual stress that is constant in the delaminated part of the

straight sided blister according to Eq. 1.3. It is equal to its critical buckling stress � c.

� c =
�h � � N

h
=

� 2D
b2h

=
� 2

12
E

(1 � � 2)
(
h
b

)2 (1.8)

By integrating Eq.1.4 between x = � b and x = b, using the de�ection given by Eq. 1.5

and the boundary conditions given by v(� b) = v(b) = 0 , we obtain the following expression

of � N as well as the relation between the maximum out-of plane displacement � and the

loading ration �
� c

of the straight sided blister.

8
>>><

>>>:

� N =
3� 2

4
D
b2 � 2

� = h

r
4
3

(
�
� c

� 1)

(1.9)

(1.10)

The nonlinear nature of the post-buckling solution is expressed through the square root

dependency of the blister amplitude with respect to the loading in Eq. 1.10, which is typical

from spercritical bifurcations.

1.1.2 Circular buckling of elastic thin �lms

In this part, the case of one-dimensional blister is generalised to the axisymmetric case corre-

sponding to a circular blister. In this approach, we follow quite freely the method developed

in the following references [ 48, 101, 106]. As in the previous case, we consider an elastic thin

�lm assumed to be isotropic with Young`s modulus E, Poisson's ratio � and thickness h, de-

posited on a hard substrate. The �lm is submitted to an in-plane equi-biaxial compressive

stress implying � r = � � 0. The geometry is similar to the one presented previously except

that a circular interface crack of radius R exists on the interface between the �lm and the

substrate. The full geometry of the problem is presented in �gure 1.2.

For such an axisymmetric problem, it is more convenient to use the polar coordinates r

and � rather than Cartesian coordinates.

x = r cos(� ); y = r sin(� ); r 2 = x2 + y2 and � = tan � 1(
y
x

) (1.11)

We use the relations between the Cartesian and the polar coordinates (eq.1.11) to adapt

the governing equation of plate buckling (eq. 1.2), derived for a rectangular plate, to a circu-

lar plate.

Thus, in the case of axi-symmetrically loaded circular plate, Föppl von Kármán equation

takes the following form.
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This is a fourth order Bessel type homogeneous differential equations. Its has a general

solution of the form [ 19].

w(� ) = C1 + C2 ln( � ) + C3J0(� ) + C4Y0(� ) (1.16)

where J0(� ) and Y0(� ) are ,respectively, the Bessel functions of the �rst and second kind of

zero order [111] and Ci;i =(1 ;:::;4) are constants. Since the termsln( � ) and Y0(� ) tend towards

1 when � = 0 and w(� = 0) is �nite and equal to the maximum de�ection, the constants C2

and C4 must be equal to zero which leads to the following form of de�ection

w(� ) = C1 + C3J0(� ): (1.17)

Let � = � (r = R) = R
q

�h
D where R is the radius of the plate. The clamping boundary

conditions requires:

8
>><

>>:

w(� = � ) = 0

dw
d�

j � = � = 0

(1.18)

By deriving equation 1.17we obtain the slope of the plate mid-surface which is given by

dw
d�

= C3
dJ0

d�
: (1.19)

From the Bessel function theory, we have[111]

J1(� ) = �
dJ0

d�
: (1.20)

We can thus re-write conditions 1.18as

8
><

>:

C1 + C3J0(� ) = 0

� C3J1(� ) = 0

(1.21)

A non trivial solution for these equations is J1(� ) = 0 . The �rst non-zero solution to this

equation [111] is given by � � = 3 :8317, which is the �rst order solution.

Noting that � � 2 = � � 2(r = R) = � R2h
D and D = Eh3=(12(1 � � 2)) , we can derive the

critical buckling stress in the case of a circular plate � �
c as following:

� �
c = � � 2 D

hR2 = 1 :2235
E

1 � � 2 (
h
R

)2 (1.22)

In order to have an expression of the associated axisymmetric buckling mode w1(� ), we

use the �rst of equations 1.21to get C1 = � C3J0(� � ). Reporting this entity in equation 1.17,

we get:

w1(� ) = � C3(J0(� � ) � J0(� )) (1.23)
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They tend towards zero when there is no difference between the two materials and get their

signs changed when the two materials are switched. A more explicit way of expressing � is

given below:

� =
�E1 � �E2
�E1 + �E2

where �E = E i in plane stress and �E i = E i
1� � 2

i
in plane strain, with E i Young's modulus for

material i . The coef�cient � tends, thus, toward 1 when the �rst material is highly rigid

compared to the second material and towards zero when both materials are equally rigid.

Under plane strain condition, in the (�; � ) plane, the physically admissible values of �

and � lie within an enclosed parallelogram de�ned by � = � 1 and � � 4� = � 1 (Fig. 1.6).

As can be noted, most of the systems exhibit values of beta ranging between 0 and �= 4.

FIGURE 1.6: Values of Dundurs' parameters in plane strain for some couples of
materials, from [48]

1.2.3 Stress �elds at the crack tip

For the sake of clarity, let us �rst consider the case of an in�nitely large linear elastic solid

which contains a plane crack , propagating along a straight line. The case of bimaterial will

be considered later in this paragraph.

Case of homogeneous materials

Let us consider an in�nitely large linear elastic solid with a crack of length 2a submitted to a

remote tensile loading (Fig. 1.7). E , � and � the Young's modulus, Poisson's ratio and shear

modulus respectively. The system is described using polar coordinates with the origin at the

crack tip as speci�ed �gure 1.7.

We assume that during the initiation of fracture, the plastic deformation is localized very

close to the crack tip. Solving the equilibrium equation in the framework of linear elasticity
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where i =
p

� 1 and K = K 1+ iK 2 is the complex stress intensity factor for the interface. The

term r i� is given by r i� = cos(� ln r ) + i sin(� ln r ) with � the elastic heterogeneity parameter

expressed as a function of the Dundurs' parameter � as follow:

� =
1

2�
ln

�
1 � �
1 + �

�
(1.28)

The quantities F I
ij and F II

ij are speci�ed in [ 85]. We notice that when � = 0 , � = 0 and K 1,

K 2, F I
ij and F II

ij reduce to the quantities K I , K II , f I
ij and f II

ij respectively, as presented in

equation 1.26in the case of homogeneous materials. Thus, in this caseK 1 and K 2 play then

similar roles to conventional modes I and mode II intensity factors K I , K II in homogeneous

materials, although these parameters should not be identi�ed in general. The singular �elds

are normalized so that,in the plane containing the interface ( � = 0 � ):

� 22 + i� 12 =
Kr i�
p

2�r
(1.29)

We notice that the terms K 2 and K 1 cannot characterize � 22 and � 11 independently be-

cause of the termr i� . Moreover, the term r i� brings some complications due to its oscillatory

nature that are not present in the elastic homogeneous case. The associated crack opening

at a distancer from the crack front can be approximated by � i = ui (r; � = � ) � ui (r; � = � � ),

which leads to:

� 2 + i� 1 =
8

(1 + 2 i� ) cosh(�� )
(K 1 + iK 2)

E �

� r
2�

� 1=2
r i� (1.30)

with
1

E �
=

1
2

�
1

E1
+

1
E2

�

1.2.4 Mode dependence of interfacial fracture

As presented in the beginning of section 1.2, in the case of a crack propagating along the

interface between two materials, the contrast in the elastic moduli with respect to the inter-

face induces a mode II component. These asymmetries can heavily affect the propagation of

the crack and its �nal equilibrium state. It is thus important to characterize the proportion

in which the different modes contribute to the crack opening. To this end, a mode mixity

parameter  is introduced:

 = arctan

 
I m

�
Kl i�

�

Re(Kl i� )

!

= Arg(Kl i� ) (1.31)

with K = K 1 + iK 2 the complex stress intensity factor and l a reference length that can

be �xed based on specimen geometry considerations (crack size, thickness of the layer...)

or material length scale considerations (size of the fracture process zone, plastic zone at

fracture...) [48, 92]. The choice stays optional even though for a matter of simplicity it can be

preferable to �x l so that, whatever the system is, it stays inside the K -dominance area. The
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freedom in the choice of l comes from the simple transformation rule that links one choice

(l1 of mode mixity angle  1) to another (l2 of mode mixity angle  2) [84]:

 2 =  1 + � ln
�

l2
l1

�
(1.32)

If l is chosen inside the K -dominance area, the equation 1.29 can be used in order to

write another expression equivalent to Eq. 1.31:

 = arctan
�

� 12

� 22

�

(r = l;� =0 � )
(1.33)

where � 12(r = l; � = 0 � ) and � 22(r = l; � = 0 � ) are respectively the shear and normal stress

near the crack tip. We notice that if the crack front undergoes pure mode I loading, then

 = 0 � and if it undergoes a pure mode II loading,  = 90 � .

Finally, if � = 0 , the equation 1.33becomes

 = arctan
�

K 2

K 1

�
: (1.34)

where as mentioned before, the terms K 2 and K 1 in equation 1.34 turn into the classical

stress intensity factors K I and K II de�ned in the case of homogeneous materials.

Now that we have properly de�ned the mode mixity parameter, we can look into the

dependence of adhesion upon mode mixity. From a thermodynamic point of view, the true

work of adhesion WA of a given interface is the amount of energy required to create new

surfaces from the bonded state of two elastic solids, such as a �lm and its substrate. The

true work of adhesion is generally hard to measure as it can be altered by other sources of

dissipation such as plasticity around the crack tip. Thus mechanical tests can only provide

measurements of interfacial toughness Gc which is larger than WA and tends towards the

true work of adhesion as the dissipated energy is minimized. Among the most used tech-

niques for interfacial toughness measurements, we can cite the double cantilever beam test

(DCB) [54], four-point bend test [ 50, 96] the bulge test [108].

We can �nd in the literature clear evidences for mode dependence of interfacial tough-

ness at the interface between two solids [59, 102, 110, 112]. In particular, Liechti and Chai

[65] considered in their pioneer experiments the case of a glass/epoxy interface (The speci-

men is represented �gure 1.8). The authors have set up an experimental method that enables

the measurement of the interfacial toughness Gc for various mode mixity values. They ob-

served that the values of the interfacial toughness reaches its minimum around  = 0 � i.e

pure mode I loading and its maximum when  approaches90� i.e pure shear loading.

Two values of l were chosen: l1 = 12; 7mm associated to values 1 �xed in accordance to

the typical dimension of the layers and l2 = 127�m associated to values 2 taken two orders

of magnitude smaller than l1 so that it lays in the K-dominance area. The shift between

the two results in term of  is approximately of 15� . We can notice that the use of l2 for  

calculation places the origin of the  2 axis (i.e.  2 = 0 ) at the minimum of Gc and roughly

centres the data, although a slight asymmetry remains in the Gc( 2) function.
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c

FIGURE 1.8: Data from [65] for an epoxy]1 / glass]2 interface: 1 axis is obtained
using l1 = 12; 7mm and 2 using l2 = 127�m . The solid curves representGc( 2)

as given by equation1.35

Based on experimental results, phenomenological laws have been proposed to account

for the mode mixity dependence of adhesion. Among the most widely used, we can cite the

one used in [48]. It uses a symmetrical function with respect to  = 0 to correct the value of

mode I toughness GIc .

Gc( ) = GIc f ( ) = GIc
�
1 + tan 2(� )

�
(1.35)

where � is determined by Gc( �
2 ) = GIIc .

The origin of the mode mixity of interfacial toughness is to a large extend dependent

of the assembly under consideration (polymer on metal, metal on metal etc.. ..) and a uni-

�ed or unique description could not yet meet general agreement. However experimental

work involving two solids bonded by a thin adhesive layer where at least one is ductile [ 28,

65, 100] showed a marked dependence of the toughness upon mode mixity and suggested

the importance of the role played by plasticity in this effect. Numerical studies using �-

nite elements [99] gave evidence that the increase of roughness observed with increasing

proportion of mode II to mode I is due to the extension of plastic deformation outside

of the fracture process zone. Later, plastic �ow models allowed an accurate assessment of

the plasticity contribution to interface fracture resistance in thin-�lm interconnect structures

(Cu=TaN=SiO2) [64].
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The speci�c stages of a traction separation law depends on the physical fracture mecha-

nisms at the microscopic scale as illustrated in �gure 1.10.

The traction opening pro�le mimics mechanically the failure process. Therefore, various

pro�les can be identi�ed depending on the opening mechanism. These laws are generally

under the form ~T = f (~� ), where ~� is the opening and ~T the traction. It should be noted

that this law can be speci�ed for normal and shear modes by considering the normal and

tangential components of the traction and the opening vectors speci�ed in equation 1.36.

FIGURE 1.10: Schematic illustration of several physical mechanisms occurring in
materials during crack growth. from [86]

~T =

 
Tn

Tt

!

, ~� =

 
� n

� t

!

(1.36)

where n and t stand respectively for normal and shear components. Among the most used

cohesive laws, we enumerate the following: cubic polynomial law [ 103], trapezoidal [ 104],

smoothed trapezoidal [ 91], exponential [ 75], linear softening [ 9] and bilinear softening[ 79,

115]. These laws are depicted in �gure 1.11. The x-axis corresponds to normalizes opening

�=� c where � c is the critical opening. The y-axis corresponds to normalized traction T=Tmax

where Tmax is the maximum traction.

For each of these cohesive laws, the cohesive energyGc is de�ned as the energy per unit

surface that is dissipated during the fracture process and corresponds in Fig. 1.11to the area

underneath the function f (� ). In the case of linear elastic mechanics, it can be de�ned as

follow

Gc =
Z � cr

0

~T :d~� =
Z � n

cr

0
Tn :d� n

| {z }
GIc

+
Z � t

cr

0
Tt :d� t

| {z }
GIIc

(1.37)

1.3 Simultaneous buckling and delamination of thin �lms

In section 1.1, we have established a post-buckling solution in the case of straight and circu-

lar blisters respectively. This solution is valid as long as the edges of the blisters are assumed
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Gc Gc

Gc Gc

Gc Gc

FIGURE 1.11: Example of traction-separation laws: (a) cubic polynomial, (b) trape-
zoidal, (c) smooth trapezoidal, (d)exponential, (e) linear softening, a,d (f) bilinear soft-

ening. from [77]

to be perfectly clamped to a rigid substrate. However, in the case of a possible delamina-

tion along the interface, blister edges can be considered as a crack front and are prone to

evolve. To study the stability of the crack front, we need to consider the variation of the

elastic energy (Ee) spent during the propagation of a crack of surface A. This entity is called

the energy release rate and can be expressed as follow.

G = �
dEe

dA
(1.38)

The Grif�th criterion states that the crack front is stable as long as the energy release rate

G is lower or equal to the interfacial toughness Gc [45] (G < G c).
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1.3.1 Growth and destabilization of straight blisters

In the case of straight blisters, the value of the energy release rateG can be calculated as a

function of � and � c [48].

G =
1
2

(1 � � 2)
E

h(� � � c)( � + � c) (1.39)

G reaches its maximum for a loading ratio �
� c

= 3 . It is convenient to introduce the elastic

strain energy per unit area in the �lm G0:

G0 =
(1 � � 2)h

2E
� 2 (1.40)

The normalized energy release rate is thus given by:

G
G0

=
�

1 �
� c

�

� �
1 + 3

� c

�

�
(1.41)

G0 can be seen as the maximum energy per unit surface that can be available to break

the interface when released.

Case of brittle interface

Under the assumption of a perfectly brittle interface, Gc is constant and does not change as

the crack front propagates. We can plot the ratio G
Gc

as a function of the width of the blister

busing equations 1.8and 1.39(see �g.1.12).

FIGURE 1.12: Evolution of the ratio G
G c

during straight blister's propagation based
on an ideally brittle interface, from [48]

We notice that for an initially debonded area of width 2bi , once the internal stresses are

high enough, and the ratio G
Gc

reaches the value1, the propagation of the crack front starts

and doe not stop as the ratio G
Gc

increases and stays higher than1 during the propagation.

This result is not in agreement with the experimental observations that clearly state a stable

equilibrium at the crack front. To avoid this dissonance, a mode mixity dependence of the

interfacial toughness needs to be taken into account.
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Case of mode mixity dependent interface fracture

In the case of the buckling-driven delamination of a straight blister, the crack front is submit-

ted to a mixed mode I and mode II loading [ 48]. It is then important to de�ne the proportion

in which mode II contributes to the crack tip opening compared to mode I during the prop-

agation of the crack front. To do so, we use the mode mixity angle parameter  as derived

in [ 48]:

tan(  ) =

p
12M cos(! ) + h� N sin(! )

�
p

12M sin(! ) + h� N cos(! )
(1.42)

where ! is a non-dimensional coef�cient depending on Dundur's parameters � and � , and

M and � N are the moment per unit length and the change in resultant stress at the crack

front respectively (see �gure 1.1). Figure 1.13shows curves of ! as a function of � for two

different values of � , � = 0 and � = �
4 for a thin �lm on an in�nite substrate. We notice

that if the same material is taken for the �lm and for the substrate i.e � = � = 0 then

! ' 52� . Another important value of ! corresponds to the case where� = 0 (This choice

greatly simpli�es crack tip �elds as explained in 1.2.3) and � = � 1 which corresponds to an

in�nitely rigid substrate which leads to ! ' 45� .

FIGURE 1.13: Curves of! = ! (�; � ), from [48]

By replacing � N et M by their literal expressions given by equations 1.9and 1.6respec-

tively in equation 1.42, we obtain:

tan(  ) =
4 cos(! ) +

p
3 �

h sin(! )

� 4 sin(! ) +
p

3 �
h cos(! )

=
2 cos(! ) +

q
�
� c

� 1 sin(! )

� 2 sin(! ) +
q

�
� c

� 1 cos(! )
(1.43)

Figure 1.14 shows the evolution of  as a function of �
� c

. It is important to note that

as the crack propagates i.eb increases,� c decreases (equation1.10) and thus �
� c

increases

(the loading being maintained constant during the propagation of the blister) leading to

an increase in the quantity j j. The previous reasoning leads to the conclusion that the
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proportion of mode II to mode I increases as the crack propagates and so does the interfacial

toughness (refer equation 1.35: Gc( ) = GIc
�
1 + tan 2(� )

�
)

FIGURE 1.14: Mixed mode angle at the crack tip as a function of the normalized
stress�=� c, from [48]

This increase in the interfacial toughness Gc along with the blister's propagation is suf-

�cient to reverse the tendency of the curve G
Gc

and make the propagation of the blister stop

reaching its �nal half-width b� as shown in �gure 1.15.

FIGURE 1.15: ,Evolution of the ratioG
G c

during straight blister's propagation based
on mode mixity dependent toughness, from [48]

This example highlights the strong coupling between buckling and adhesion in thin �lms

delamination and makes mode mixity dependence a necessary condition to explain why the

blister reaches an equilibrium state.

Destabilization of straight blisters

It has been observed in literature that straight blisters (primary buckling), can destabilize

into secondary buckling structures such as telephone cord blisters which are among the most

commonly observed buckling structures [ 15, 42, 70, 71, 72]. An example of the transition of

the straight to telephone cord morphology is presented in �gure 1.16.
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FIGURE 1.16: Buckling structures formed on a 300 nm tungsten �lm. Straight
buckles formed initially from left to right (direction of arrow). The straight blisters

widened initially until destabilizing into telephone cord morphology [15]

In the previous paragraphs, the calculations concerning buckling-driven delamination

were performed by assuming the stability of the initial buckling con�guration. To test the

stability of such con�guration, Audoly performed in [ 4] a linear stability analysis of the Eu-

ler column solution, taking into account the longitudinal compression that remains present

after Euler buckling: � xx = � (1 � � )� 0 (see �gure 1.1 for geometrical conventions). This

residual stress was found to induce a secondary buckling of the Euler column under certain

conditions. The stability analysis was performed by introducing a small perturbation that is

harmonic in the x-direction near the Euler solution. Lateral growth of the pre-existing blis-

ter was allowed. Symmetric and antisymmetric modes in the y-direction have been sought

independently for different values of Poisson's ratio � .

The analysis showed that above a critical width of the buckle bc, the secondary critical

buckling stress (associated to the secondary buckling) becomes smaller than� 0 causing the

destabilization of the straight blister. In particular, for low Poisson's ratios ( � < � c where

� c is determined numerically to be 0:255 � 0:001), the most unstable mode is symmetric

and takes the form of varicose, while for � > � c, telephone cord formation is more likely

to happen. It should be noted that the destabilization of the Euler column can result from

the lateral growth of the blister as well as from the increase of compressive stress due to the

similarity of their effect on the ratio � 0
� c

.

In most experiments however, telephone-cord blisters do not result from the destabiliza-

tion of a pre-existing, in�nite, straight blister: they wave as they spread forward. Recently,

Faou et al. provided numerically in [ 31] an explanation of the propagation mechanism of

telephone cord blister. They highlighted in particular the importance of the coupling be-

tween instability and mode mixity dependent adhesion in the formation of the wavy mor-

phology. Although very interesting, these results will not be further discussed as they are

beyond the scope of this study.
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1.3.2 Growth and con�gurational stability of circular blisters

In a similar approach to that presented in subsection 1.3.1, we consider in this subsection

the case of an elastic �lm deposited on an in�nitely rigid substrate. The �lm is initially de-

bonded over a circular region of radius R0. The origin of polar coordinates is considered

to be at the centre of this region. In the adherent part ( r > R 0), the interface behaviour is

governed by a mode mixity dependent toughness Gc as presented in equation 1.35. When

the �lm is subjected to compressive stress of amplitude � , and if � > � c, the �lm buckles

and propagates if the energy release rateG satis�es Grif�th criterion G � Gc. The energy

release rate can be derived using the moment and resultant stress change quantities in the

unbuckled area of the �lm and can be expressed as a function the elastic properties of the

�lm, � 0 and � c as following [ 49]:

G =
(1 � � )c1

E
h(� � � c)( � + � c) (1.44)

where E is Young's modulus, � Poisson's ratio, h the thickness of the �lm and c1 = [1 + 0 :9021(1� � )]� 1.

During the propagation of the circular blister, the energy release rate G given in equation

1.39increases monotonically with increasing radius r . However, j j also increases with in-

creasingr which causesGc( ) to increase. As a result of this competition, the blister reaches

an equilibrium point for which G
Gc

(b) = 1 and the radial expansion stops. This phenomenon

has already been explained in the case of propagation of straight blister and is illustrated by

�gure 1.15.

FIGURE 1.17: (a) Growth of a circular defect. (b) Destabilization of a circular
defect. (c) Growth of destabilized crack fronts.

The above-mentioned approach, used the hypothesis of a stable static circular shape

which is not consistent with the observed destabilization of circular blisters [ 30, 49]. The

mechanism of destabilization of a circular blisters has been �rst studied by Hutchinson et al.

in [ 49] and is very similar to the mechanism of destabilization of straight blisters. In �gure

1.17, we have an example of the destabilization of a circular blister into 4 lobes (n = 4 ).

The authors studied the sensitivity of the circular crack front to harmonic perturbation of

the form R(� ) = R(1+ � cos(n� )) . This perturbation introduces n lobes and has the amplitude

� . The authors then studied the distribution of crack driving force along the crack front to

determine whether the perturbation is stable or not. The expression of the ratio G
Gc ( ) for a
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FIGURE 1.18: destabilization of circular blister: Number of lobes as a function
of the loading ratio � 0

� c
for � = 1 and � = 1

3

given perturbation is given by equation 1.45.

F =
G

f ( )
= F0(

� 0

� c
) + �F 1(

� 0

� c
; n) cos(n� ) (1.45)

where f ( ) = 1 + (tan( � ))2, F0 is the value of F in the axisymmetric state and F1 is the

Fourier coef�cient associated with the nth order perturbation. The stability with respect to a

perturbation of the crack front with a given n depends on the sign of F1. Let us �rst notice

that the outward lobes are associated with cos(n� ) = 1 whereas the inward depressions

are obtained for cos(n� ) = � 1. Hence if F1 < 0, G will be smaller at outward lobes than

at depressions and the crack will resume its circular shape as it expands. This is a stable

con�guration. On the other hand, if F1 > 0, G will be higher at outward lobes than at inner

depressions, leading the lobes to develop faster whereas the inner depressions linger back.

This is an unstable con�guration.

The study showed that for a given loading ratio � 0
� c

and mode mixity dependence co-

ef�cient � , the circular blister destabilizes for a unique mode n. typically, the �rst non-

axisymmetric instability occurs for n = 2 with � = 1 and the ratio � 0
� c

in the range 5 � 9.

As � 0
� c

increases, instability occurs with higher modes. Figure 1.18summarizes the different

destabilization modes as a function of the ratio � 0
� c

for � = 1 .

1.4 Conclusion

This chapter gathers the most important results and tools when it comes to studying the

buckling driven-delamination of elastic thin �lms on rigid substrates. In section 1.1, we
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reviewed the elastic buckling of thin �lms and highlighted the non-linear aspect of the so-

lution due to large out-of-plane displacements. We provided the buckling solution for both

straight and circular cases which are the cases of interest in this research work that are stud-

ied numerically in the frame of elastic-plastic behaviour in chapter 3.

In section 1.2, we presented some fundamental concepts of fracture mechanics at inter-

faces including fracture modes, Dundur's parameters and the expression of stress �elds at

the crack tip and the de�nition of a parameter de�ning the mode mixity of the loading.

We closed the section by introducing the concept of cohesive zone model and the traction-

separation constitutive law which is an important ingredient in the implementation of our

buckling-driven delamination model.

Finally, we presented the analytical model for the coupling between buckling and de-

lamination and discussed the stability of linear buckling solution (straight sided and cir-

cular blisters). We introduced the phenomenon of secondary buckling (destabilization of

primary buckling) and highlighted the importance of mode mixity dependence of the in-

terfacial toughness on the �nal buckling shape for both straight and circular blisters. These

results serve as benchmark when presenting the model of buckling-driven delamination of

elastic-plastic thin �lms in chapter 4 and discussing the corresponding results.
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Chapter 2

Questions raised by experiments
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Various observations of gold thin �lm deposited by sputtering on Si(100) substrates have

been carried out [18] and showed unusual shapes of buckling structures. It has been evi-

denced that such buckling structures can not be explained in the framework of continuum

elasticity. Elastic-plastic behaviour of the �lm and damage are invoked as possible expla-

nations for the unusual blister pro�les. Moreover, up to date, no study has considered in

details the effect of an elastic-plastic behaviour on the buckling of thin �lms.

In this chapter, we will present two experimental buckling shapes that motivated the

implementation of the �nite element model accounting for an elastic-plastic response of the

�lm presented in section 3.1.2. The �rst example concerns the case of a straight buckle ob-

served in the context of a collaboration with Dr. Coupeau, from P' Institute. The second

case is a circular buckling structure as presented in [18]. In the �rst part of this chapter, we

present the methodology used for the deposition of the thin �lm. Then, we present the re-

sults of the mechanical characterization of the thin �lm and the measurement of the residual

stresses resulting from the deposition process. Finally, these observations are discussed in

the last part of this chapter and questions about the role of the plastic behaviour of the thin

�lm during the buckling process are raised.
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and which mechanical properties are investigated. For instance, three-sided pyramidal ge-

ometries such as Berkovich or cube-corner indenters are particularly used to measure the

hardness of metallic thin �lms. This choice can be explained by the fact that three-sided

pyramids can have a tip apex manufactured with better precision compared to four-sided

Vickers or cone indenters which allows a better precision when it comes to measuring the

contact area at small penetration depth. The geometries of Berkovich and cube-corner in-

denters are detailed in �gure 2.5. On the one hand, a Berkovich type indenter has a trian-

gular base and an angle of 65:3° between the axis of the pyramid and its faces. On the other

hand, a cube corner indenter, as its name implies, is a three-sided pyramidal tip with per-

pendicular faces like the corner of a cube. It has an angle of 35:3° between the centreline and

its faces.

Berkovich Shape Cube Corner Shape

63.5 ° 35.3 °

FIGURE 2.5: Berkovich and cube corner indenter tip geometries

2.2.1 Nanoindentation analysis method

The nanoindentation technique relies on the analysis of a load-displacement curve recorded

during a loading-unloading cycle. During the loading, the load P applied on the sample

increases at a given rate until reaching a maximum value Pmax corresponding to a maxi-

mum displacement hmax . Then during unloading, the load P decreases until completely

vanishing when there is no more contact between the indenter and the sample.

The evolution of the load-displacement curve depends strongly on the material proper-

ties. If the material of the sample is supposed perfectly elastic, then the load and unload

curves are reversible. However, if it has an elastic-plastic behaviour, then the two curves are

distinct and the sample still presents a residual imprint of depth hf when completely un-

loaded. The loading-unloading cycle as well as the corresponding load-displacement curve

are illustrated in �gure 2.6.

At the end of a nanoindentation test, three different parameters can be accessed: the

load, the displacement of the tip and the contact stiffness S de�ned as follow

S =
�

dPunloading

dh

�

h= hmax

(2.1)



34 Chapter 2. Questions raised by experiments

FIGURE 2.6: (Left) Illustration of an indentation loading-unloading cycle performed
by a rigid cone into an elastic-plastic thin �lm. At a given time during loading: P
refers to the applied load,h is to the total displacement into the sample,hc is the
distance along which there is contact between the sample and the indenter (contact
depth),hs is the displacement of the surface at the perimeter of the contact anda is
the half width of the contact area. After load removal:hf is the residual displacement
anda is the equivalent contact radius. (right) A schematic representation of a load-

displacement curve. From [74]

The derivation of the elastic properties from the load-displacement curve can be per-

formed using the method developed by W. Oliver and G.Pharr [ 74] on homogeneous semi-

in�nite materials. This technique lies on on the work of Sneddon who showed that in many

simple indentation problems the load-displacement relationship can be expressed as follow

[93]

P = � (h � hf )m = � (hc)m : (2.2)

where P, h, hf and hc correspond to the convention presented in �gure 2.6and � and m

are m are constants that depend on the sample's material and the geometry of the indenter

1:2 � m � 1:6 [81].

By differentiating equation 2.2with respect to h, Sneddon established the following rela-

tionship between the contact stiffness S and the projected area of the elastic contactA which

showed to be relevant for all axisymmetric indenters [ 8, 74]

S =
2

p
�

Er

p
Ac: (2.3)

where Ac is the contact area and Er is the reduced modulus de�ned in equation 2.5. The

contact area is related to the equivalent contact radius ac via the equation

ac =

r
Ac

�
: (2.4)
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The reduced modulus Er takes into account the effect of non-rigid indenters on the load-

displacement response and is de�ned as follow

1
Er

=
1 � � 2

E
+

1 � � 2
i

E i
: (2.5)

where E and � are the Young's modulus and the Poisson's ratio of the sample while E i and

� i are those of the indenter.

The O. Pharr assumption is a partition of the elastic and plastic displacement and is only

valid for materials with large � y
E ratio. They proposed

hc = h � �
P
S

(2.6)

with � ' 0:75 for a cone indenter.

Thus, the indenter tip geometry can be deduced from calibration on known E material

providing A(hc). Once we haveA(hc), knowing the indentation depth h on the tested mate-

rial, we can deduce the reduced modulus Er and thus the Young's modulus of the material

E .

The yield stress of the thin �lm can be approximated roughly using Tabor's relationship

between the hardnessH and the �ow stress � [95] at maximum load Pmax :

H = 2 :8 � (2.7)

The value of the hardness can be determined easily using the value of the load Pmax and

the corresponding projected area of contact Ac. It is de�ned as

H =
Pmax

Ac
(2.8)

The previous results can be obtained using only one type of indenter, typically a Berkovich

indenter. To study the elastic-plastic properties of the �lm and in particular its strain hard-

ening, Bucaille et. al proposed in [ 7] a technique that uses two different indenters: Berkovich

and cube corner which allow the determination of the �ow stress for a chosen representative

strain of 3:3%and 12:6%respectively.

2.2.2 Experimental methods

The nano-indentation measurements were performed by Dr. Marc Verdier at the SIMaP

laboratory using an XP (MTS) nano-indenter. Two different diamond pyramidal indenters

were used: a Berkovich and a cube corner indenter. A continuous stiffness measurement

mode was used with a frequency of 45 Hz and a displacement amplitude of 2 nm. During

the test, the indenter was loaded at a strain rate of 5 � 10� 2: s� 1 until reaching the substrate.

At least 5 tests per sample were performed and only tests with a minimum average drift

less than 0:05 nm s� 1 were retained. A minimum distance of 50µm between neighbouring

indents was maintained to avoid possible interferences. Finally, special attention has been
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paid to other factors affecting nano-indentation such as initial penetration depth and instru-

ment compliance. The measurements were performed on a sample of 400 nmgold thin �lm

deposited on silicon substrate (sample � ).

The acquisition of the hardness as a function of the normalized contact radius a
t (t is the

thickness of the thin �lm) as well as the calculation of Young's modulus were �rst performed

automatically using the method of Oliver and Pharr [ 74]. However, since the sample consists

of a �lm deposited on a substrate, a composite behaviour in E(h) and H (h) is expected. It is

necessary therefore to measure realAc using atomic force microscopy. This approach allows

the calculation of E and H with better accuracy especially as the material showed pile-up

effect.

Berkovich cube corner

FIGURE 2.7: AFM micrographs of Berkovich (left) and cube corner (right) residual
imprints on400 nmgold thin �lm.

The micrographs presented in �gure 2.7 show the residual imprints obtained using the

Berkovich and the cube corner indenters. The pile up effect is observed in both micrographs

due to the constrained geometry soft �lm ( Au) / hard Si substrate. However it seems more

important in the case of cube corner indentation. This observation can be explained by

the fact that cube corner indenter has a sharper tip compared to Berkovich indenter which

results in more material deformation and thus more pile-up. Finally, we can observe that in

the case of cube corner indentation, the imprint reveals a defect in the geometry of the cube

corner indenter near the tip. The presence of this defect can in�uence the calculation of the

contact area and thus distort the calculated values of the thin �lm properties.

2.2.3 Experimental results and discussion

The measurements of hardness and the indentation modulus as a function of normalized

equivalent contact radius ac
t are given in �gure 2.8. These results were obtained using the

manual measurements of the contact area in both the cases of Berkovich and cube corner

indenter geometries.

We can observe that in the case of the indentation modulus, Berkovich and cube corner

data points are in good agreement. Only the data points obtained by cube corner inden-

tation at a
t = 0 :5 seem to be inconsistent. The Young's modulus can be derived from the

average modulus curve and is equal to the indentation modulus at the limit a
t = 0 . It is thus

approximately equal to 85 GPa. This value is close to the Young's modulus of bulk gold [ 39]

(79 GPa) and is comparable to gold thin �lms' Young's moduli values found in literature.
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For example, nano-crystalline gold thin �lm samples of 10 � 60 µm thickness and a mean

grain size of 26 � 60 nm exhibited Young's modulus of 73:6 � 0:6 GPa [90]. Other measure-

ments using X-ray diffraction performed on gold thin �lms of 560 nm thickness showed a

Young's modulus of 97� 10 GPa[33].

cube-cornerBerkovich
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FIGURE 2.8: Indentation modulus and hardness as function of normalized equiva-
lent contact radiusa

t for 400 nm gold thin �lm deposited on silicon substrate. The
red circles correspond to Berkovich indenter data while the blue squares correspond to

cube-corner indenter data.

Concerning the measurements of the hardness as a function of a
t , the results of Berkovich
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geometry indenter and cube corner geometry do not show signi�cant difference and show

a small increase in H with a
t . This observation means that the gold thin �lm exhibits small

strain hardening between � = 3 :3% and � = 12:6%. Indeed, a non self-similar deformation

pattern is present in the case of plastic Au �lm on elastic Si substrate. If the material was

perfectly plastic, hardness would have been constant through the thickness. The fact that

H increases for both geometries indicate the presence of a small work hardening. Similar

results can be found in the literature concerning thin �lms of Au � Cu alloys [11] and Ni

thin �lms [ 7]. The yield stress can thus be derived for 400 nm gold thin �lm deposited on

silicon substrate using Tabor's equation and is estimated to be of the order of few hundred

of MPa ( 400 MPa) at 3:3% strain. Although this value is much higher than the typical

yield strength of bulk gold estimated at 30 MPa at 2% strain, it is consistent with recent

studies demonstrating a yield stress of 350 MPa for 800 nmgold thin �lms [ 27] reaching up

to 700 MPain the case of200 nmgold �lm [ 44].

In comparison, the Young's modulus and yield stress measured automatically without

manual measurement of the contact area are respectively equal to140 GPaand 800 MPa.

Considering nano-hardness test results and their consistency with values found in the

literature, we chose set the value of Young's modulus E to 85 GPa and considered in our

simulations several values of elastic limit � y ranging from 400 MPato 800 MPa. Concerning

the strain hardening, we chose to work mainly with small hardening coef�cients. In particu-

lar, when using linear or Ludwik's law we worked with small hardening modulus typically

50 MPa.

2.3 Stress measurement

Measurement of the residual stresses in the deposited thin �lms is crucial to ensure a proper

understanding of the mechanical conditions that lead to the onset of the buckling structures

observed in samples � and  . Several techniques can be used to measure the stress in thin

�lm : XRD [ 18, 76, 83], Raman spectroscopy [57] and curvature measurements [94].

2.3.1 Stoney method

Thin �lms' residual stresses can often be determined using the Stoney formula via the mea-

surements of the substrate curvature. However, the use of this method requires the veri�ca-

tion of the following conditions [ 69]:

• the substrate thickness is thin compared to the in-plane dimensions

• the coating thickness is small compared to the substrate thickness

• the coating and the substrate are homogeneous, isotropic and can be described using

linear elasticity

• the �lm is subject to a homogeneous in-plane stress

• only small deformations and rotations are considered
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• the curvature of the substrate mid-plane is considered uniform in all direction (spher-

ical deformation). This is actually a consequence of small deformations and linear

elasticity.

Although the required hypotheses are not completely ful�lled, in particular the 3rd one

due to the development of plasticity during deposition, we used the Stoney formula pre-

sented in equation 2.9 in order to calculate residual stresses in the �lm. The radius of cur-

vature was measured, before and after coating by a contact pro�lometer in the full length of

the sample.

� i = (
1

R2
�

1
R1

)
Es

6(1 � � s)
t2
s

t f
(2.9)

where � i is the average internal stress in the �lm, R1 and R2 in-plane curvatures of the

substrate before and after the coating deposition, t f the thickness of the �lm and Es and � s

and ts the Young's modulus and Poisson's ratio respectively.

The calculations using Stoney formula result in a value of residual stresses in compres-

sion around 220 MPafor the sample � . To have a suitable point of comparison for this value,

we can calculate the critical buckling stress as provided in equation 1.8. We consider the me-

chanical properties of gold: E = 85 GPa and � = 0 :44. The thickness of the �lm is h = 400

nm and the blister's half width is b ' 5 � m (see �gure 2.3). The calculations lead to a critical

stress of � c = 555 MPa in the case of sample� (similarly for circular blister, h = 630 nm and

b ' 27 � m which gives � c = 67 MPa). Thus in the case of the circular blister( ), we have

� 0 � 7 � � c which is suf�cient to cause buckling. However, in the case of the straight blister

(� ), we have � 0 < � c, which means that according to Föppl von Kármán plate theory the

thin �lm is not supposed to buckle, if it has a purely elastic behaviour. We decided to check

the results using X-ray diffraction tests.

2.3.2 X-ray diffraction

In order to get a second estimation of the stress level involved in the buckling structures, a

stress mapping has been carried out on the sample � . X-ray diffraction experiments were

conducted by Dr. P.O. Renault, from P' Institute in Poitiers using a SEIFERT diffractometer

employing monochromatic Cu K � radiation ( � = 1 :54 Å). The analysis was performed on

the < 111 > family of planes by using a punctual beam and rotating the sample � . The

analysis revealed that the gold thin �lm is highly textured in the (111) direction and the

compressive residual stresses were found to be around 300 MPa in sample � . These results

are consistent with curvature calculations and are nonetheless still intriguing as the residual

stresses in the case of the straight blister are not suf�cient to cause the buckling of the thin

�lm according to Föppl von Kármán plate theory. This indicates that plastic deformation

may have occurred in sample � .

Concerning the sample  , the residual stresses were found to be around 500 MPa [18]

which is suf�cient to cause the buckling of the thin �lm according to Föppl von Kármán

plate theory.
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2.4 Experimental results discussion

In this section, we have presented two different buckling structures: straight � and circu-

lar  blisters that have been respectively observed in gold thin �lms of 400 nmand 630 nm

thickness deposited on silicon substrates (see �gure 2.3and 2.4). For both samples, the resid-

ual stresses have been characterized using curvature measurements and DRX-method. The

measured residual stresses in the case of the circular blister were demonstrated to be suf�-

cient to cause the buckling of the structure according to elastic analysis ( � 0 = 500 MPa and

� c = 67 MPa). However, this is not the case for the straight blister as the measured resid-

ual stresses are signi�cantly lower than the corresponding critical buckling stress ( � 0 = 300

MPa and � c = 515 MPa).

These results suggest that the whole �lm went through plastic deformation. Indeed, a

small tangent modulus E0 in the the � = f (� ) relation due to a global plastic deformation

causes a loss of bending stiffness which favours buckling by lowering the critical buckling

load. The in�uence of a global plastic deformation of the material on the tangent stiffness

is depicted in �gure 2.9. In this case, the results concerning the residual stresses in the �lm

should be considered carefully as they are measured after the deposition process and we

have no data concerning the stress variation during deposition (i.e we did not perform in-

situ stress measurements).

E

E0
�� y

��

��
FIGURE 2.9: Representation of the difference in the tangent modulus between the

purely elastic (E ) and the plastic (E0) states.

We can observe thus that an elastic analysis is not appropriate to predict the onset of

buckling in all cases, nor the pro�le of the blister obtained in the post-buckling regime.

Bearing these limitations in mind, we formulated the following hypotheses to interpret the

mismatch between analytical predictions and the experimental results

• The buckling at lower values of critical stresses compared to the elastic case is due to

a plastic deformation of the whole �lm [ 18].
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• The history of the loading during the deposition must have allowed such a plastic

deformation before reaching the �nal state [ 1, 29])

• The properties of the interface between the �lm and the substrate may also in�uence

the height and morphology of the blister [ 30].

The �rst hypothesis can be the cause of the early buckling of the straight blister, as nano-

indentation measurements showed a yield stress � y = 400 MPa which is particularly close

to the measured residual stresses� f = 300 MPa. However considered along with the second

hypothesis, plasticity can have a signi�cant impact on the buckling process if the thin �lm

reaches higher compressive stresses during the deposition process.

These hypotheses will �rst be tested in the frame of elastic-plastic buckling of thin �lms

without delamination in chapter 3. Then in chapter 4, the hypothesis of buckling-driven

delamination will be examined along with the effect of the �lm's plasticity and the loading

history.
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Elastic-plastic buckling of thin �lms
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The aim of this chapter is to study the in�uence of an elastic-plastic behaviour of thin

�lms on the buckling process of straight and circular blisters in order to gain better insight

into the possible mechanisms that lead to the formation of the experimental buckles pre-

sented in chapter 2. In the �rst part of this chapter, we will present the mechanical problem

of the buckling of ductile thin �lms along with its numerical implementation by means of

�nite element analysis. We will �rst apply this model to the case of purely elastic buckling

and highlight its limits by comparing the simulation results with experimental data. Then

we will introduce an elastic-plastic behaviour to the thin �lm and study the in�uence of the

yield stress on the �nal morphology of the blister. Finally,we will further develop the study

by discussing the importance of the loading history and/or the boundary conditions of the

�nal morphology of the straight and circular blisters.

3.1 Mechanical model

The aim of this section, is to present the mechanical problem of elastic-plastic buckling of

a clumped thin �lm and its numerical implementation. We will particularly focus on the

implementation of the following aspects: the geometry and boundary conditions, unilateral

contact, elastic-plastic response, loading and resolution method.
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3.1.1 Presentation of the mechanical problem

The mechanical system considered here consists of an elastic-plastic thin �lm deposited on

a rigid substrate. The lower part of the �lm is perfectly bounded to the substrate, except for

a strip of the �lm of width 2b, that is unbounded (see �gure 3.1). The unbounded part of

the �lm is thus able to buckle away from the substrate, once suf�cient compressive stress is

applied. This problem is highly non-linear, and requires a numerical simulation in order to

be solved. There are 3 sources of non-linearity involved:

• Geometric non-linearities due to the large values of the out-of-plane displacement.

This type of non-linearity can be accounted for by performing the calculations within

the framework of large displacements using the Green Lagrange strain tensor.

• Unilateral buckling, i.e. the equilibrium must satisfy ! > 0 in the whole �lm domain.

This is done by implementing a rigid contact between the �lm and the substrate.

• The material of the �lm is elastic-plastic. A plastic deformation based on a J2 �ow

theory with isotropic hardening is chosen.

As far as boundary conditions are concerned the �lm is clamped at its basis ( z = 0 )

except for the rectangular unbounded area. In order to generate the isotropic compressive

stress (� xx = � yy = � 0, with � 0 < 0; � xy = 0 ), a thermal strain � 0 = � � T is applied.

Because the total strain is zero due to clamping of the �lm basis, equibiaxial stresses are

generated (� xx = � yy = � E
1� � � � T , � xy = 0 during elastic regime). Note that the thermal

strain is mimicking the deposition strain of the �lm, witch is formally equivalent as far as

the mechanical modelling is concerned.

(Oy)

(Oz)

(+b)(-b)

(Ox)
Thin �� lm

Rigid substrate

Encastre Encastre Initial defect (zoom) 

FIGURE 3.1: Mechanical model for the buckling of a thin �lm.

3.1.2 Implementation of the numerical model

In order to solve the problem of the buckling of a ductile thin �lm on a rigid substrate,

we performed FEM calculations using the �nite elements code ABAQUS. Various elements

have been used : continuum 3D elements and thick shell elements. Although thick shell

elements are supposed to handle plasticity, we wanted to compare the results with those

obtained using continuum elements with quadratic interpolation, which are supposed to

better handle strain localization.
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strain � 0 can be linked to the the applied temperature � T:

� 0 = � � T (3.4)

For the sake of simplicity, we take � = 1 , which leads to � 0 = � T. As mentioned before,

this is mimicking the deposition strain, which is formally completely equivalent.

Because of the clamped conditions, the total strain in the �lm � tot remains equal to zero

during the loading. It can be decomposed into three components: the elastic strain � el, the

plastic strain � pl and the thermal strain � 0 as given in the following equation:

� tot = � el + � pl + � 0 = 0 (3.5)

We consider � 0, the �nal amplitude of the compressive stress in the unbuckled region of

the �lm, with � 0 > 0. Then � xx = � yy = � � 0 and � xy = 0 in this unbuckled part.

Let us derive the temperature variation � T that must be set to have a uniform equibiax-

ial compression state of amplitude � 0 in the planar, bounded part of the �lm, i.e � xx = � yy =

� � 0. In this case, we have thus � eq = j� xx j = � 0.

As long as � eq < � y , we have � el + � 0 = 0 . As � 0 = � � T and � xx = � � 0 we have:

� T =
1 � �

E
� 0

�
(3.6)

When � eq > � y , some plastic strain is generated. We have� p
xx = � p

yy for symmetry reasons

and � zz = � 2� p
xx because of plastic incompressibility ( tr( ��� p) = 0 ). In these conditions,

� p
eq =

r
2
3

� p
xx (1 + 1 + 4) = 2 j� p

xx j.

Hence, � p
xx = � 1

2 � p
eq = �

1
2

�
� eq � � y

K

� 1
n

= �
1
2

�
� 0 � � y

K

� 1
n

.

Because of the clamped type boundary conditions, we have � el
xx + � p

xx + � 0 = 0 . By

replacing each of the terms by in the equality by their respective expressions computed

above, we obtain:

� T =
�

1 � �
E

� 0

�

�
+

1
2�

�
� 0 � � y

K

� 1
n

(3.7)

To sum up:

� T =

8
>>><

>>>:

1� �
E

� 0
� ; if � 0 � � y

� 1� �
E

� 0
�

�
+ 1

2�

�
� 0 � � y

K

� 1
n ; otherwise

(3.8)

Resolution method

Implicit and Explicit are two types of approaches that can be used to solve �nite element

problems and in particular non-linear problems. In our problem, non-linearities can arise
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from large-displacement effects (buckling), material non-linearity or also boundary condi-

tions such as contact. The implicit approach uses Newton-Raphson method to solve the

non-linear equilibrium equations and has generally the advantage of providing a bigger

control on precision of the results than explicit methods. However, when dealing with

highly non-linear problems, this method can encounter convergence issues. In the case of

buckling problems without delamination, using implicit integration along with small incre-

ments ( � t
total step time � 1e � 5 ) proved suf�cient to handle convergence issues with relatively

reasonable calculation time when using parallel computing.

3.2 The limits of an elastic model

The aim of this part is to test and understand to which extend it is possible to describe the

buckling of ductile thin �lms using a purely elastic model.

To do so, we use a FEM model that accounts for non-linear geometry as described in

section 3.1, to model the buckling structures observed in gold thin �lm deposited on silicon

substrate. A linear elastic constitutive law is assumed for the �lm. The �rst case study

consists of a circular blister observed on the 630 nmthick gold thin �lm referred to as sample

 . The second case study consists of a straight blister observed in a400 nmthick gold thin

referred to as sample � . Both cases are presented in subsection2.1.1.

The geometry of the plate is hence chosen to be rectangular in the case� and circular

in the case  . The elastic properties are taken from the characterization of gold thin �lms

(subsection 3.1.2), the geometry such as the thickness of the �lm ( h) and the blister's width

(2b) are also taken from the experimental observations of samples � (�gure 2.3) and  (�gure

2.4). These parameters are summarized in table3.1.

- E (GPa) � (-) h (nm) 2b(µm) � 0 (MPa)
circular blister (sample  ) 85 0.44 630 53 500
straight blister (sample( � ) 85 0.44 400 11 300

TABLE 3.1: Summary of the gold thin �lm elastic properties (E : Young's modulus,
� : Poisson's ratio), blisters geometries (h: thin �lm's thickness,2b: blister's diameter)

and thin �lm residual stresses (� 0) for both samples� and

We have conducted various simulations for both straight and circular blisters using their

respective parameters given in table 3.1. The aim is to compare in each case, the experimen-

tal pro�le to the one predicted by the FEM calculation. The results are presented in �gure

3.4.

We recall that in the experimental case of the circular blister (  ), the residual stress is es-

timated to be around 500 MPa and the buckle has a maximum de�ection of approximately

2500 nm. Numerical predictions obtained using identical initial stress values ( 500 MPa)

show signi�cantly lower buckling pro�les (�gure 3.4) with a maximum de�ection of roughly
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FIGURE 3.6: Equivalent plastic strain mapping for the cases� 0
� y

= 0 :66, � 0
� y

= 0 :88
and � 0

� y
= 1 :03. All cases are subject to the same residual stresses (� 0 = 800 MPa).

The elastic-plastic behaviour is described by Ludwik hardening with the following
�xed parametersK = 130 MPa, n = 0 :25. We vary� y
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To do so, we considered the same geometrical con�guration (�lm thickness h = 400 nm

and 2b = 11 µm) and the same �nal stress in the unbuckled area ( � 0 = 800 MPa) in all our

simulations. We chose to use Ludwik hardening law (its expression is given by equation

3.1) with low hardening rate. We �xed the hardening modulus K = 130 MPa and the strain

hardening exponent n = 0 :25. Then, we tested various values of the yield stress so that we

have different values of � 0
� y

varying form 0:66 to 1:07.

The predicted pro�les are presented in �gure 3.5. In �gure 3.6, we present for each

case the mapping of plastic strain distribution at the base of the blister. We notice that for

an identical �nal stress ( � 0 = 800 MPa), thin �lms with elastic-plastic behaviour exhibit

buckling structures with larger maximum de�ections compared to the purely elastic case.

The difference in maximum de�ection is observed for values of � 0
� y

as low as0:66and is more

spectacular for � 0
� y

� 1. This tendency is thus closely linked to the plastic strain generated

inside the �lm. Indeed, for � 0
� y

= 0 :66, the equivalent plastic strain does not exceed 5% and

is con�ned in a small area near the base of the buckle while the rest of the �lm remains free

of plastic strain (see �gure 3.6). This observation is not true for � 0
� y

� 1. In particular, in

the case � 0
� y

= 1 :07, the equivalent strain mapping shows a global plastic deformation with

values that do not exceed 3% in the unbuckled area but reach 41%locally at the folded area

(�gure 3.6(d) ).

When � 0
� y

� 1, the unbuckled area of the �lm naturally shows no plastic deformation

since � eq < � y . However, there is plastic deformation mainly localized at the folded area

of the buckle. For instance, the case with � 0
� y

= 0 :66 shows very little plastic deformation

exclusively near the folded area (�gure 3.6(a) ). Its maximum value reaches roughly 5%and

the effect on the maximum de�ection of the buckle is small, with a de�ection very close to

the one obtained in the purely elastic case.

To summarize, depending on the ratio � 0
� y

, plastic deformation can either be exclusively

localized near the folded area ( � 0
� y

� 1) or global ( � 0
� y

� 1) with maximum plastic strain near

the folded area. However, the results obtained for � 0
� y

� 1 should be considered cautiously as

Ludwik hardening law is not meant to describe high plastic deformation in metals. Extreme

cases such as� 0
� y

= 1 :07 may then not re�ect to full extend what occur in metallic thin �lms

undergoing large plastic strain.

Effect of the elastic-plastic behaviour on folding angle on the blister base

As noted previously, the pro�les predicted in the case of purely elastic and elastic-plastic

buckling models can be different in particular with regards to their shape and maximum

de�ection. Recent studies [ 18] suggest that the buckling structures observed in ductile thin

�lms can exhibit higher folding angles compared to elastic thin �lms. Such structure have

especially been observed for circular blisters.

In order to evaluate if there plasticity cause a noticeable rotation at the base of the straight

blister, we compare the pro�le obtained with a purely elastic �lm and the one obtained

with an elastic-plastic �lm with high deformation ( � 0
� y

= 1 :07). Even if the angle at the

edge (� = (
d!
dx

)(x= � b) ) seems higher for the plastic �lm, it is interesting to compare the
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elastic case. For� 0
� y

� 1:01, the data points remain very close to those of a purely elastic �lm

and the critical buckling stress can still be predicted using Föppl von Kármán plate theory.

On the contrary, for the case � 0
� y

= 1 :05, the data points do not �t the analytical case and

buckling seem to occur at stresses as low as0:2� c. Figure 3.9 provides a mapping of the

equivalent plastic strain for the datum point � 0
� y

= 1 :05 and � 0
� c

= 0 :5. We notice that the

equivalent plastic strain in the unbuckled area of the �lm is around 2% while it reaches the

value of 16%in the folded area. This gives clear evidence that high plastic deformation can

trigger earlier buckling of the thin �lm.

FIGURE 3.9: Equivalent plastic mapping of the case (� 0
� c

= 0 :5, � 0
� y

= 1 :05)

In �gure 3.10, we plotted the buckling pro�les corresponding to the case of purely elastic

buckling and elastic-plastic buckling with � 0
� y

= 1 :05 for the loading ratios � 0
� c

= 0 :5 and
� 0
� c

= 9 :4. In the case � 0
� c

= 0 :5, the elastic thin �lm is clearly unbuckled while the elastic-

plastic �lm is buckled with a maximum de�ection approximating the thickness of the �lm.

In the case � 0
� c

= 9 :4, both elastic and elastic-plastic models show buckled structures with

sensibly higher maximum de�ection in the later case.

To gain better insight into the in�uence of plasticity on the onset of buckling and the

pro�le of the blister, we carried out various simulations with different ratios � y
� c

collecting

over 5000 different data points ( � 0
� c

, � y
� c

, �
h ). By plotting these points into a 3D graph and

using a Delaunay triangulation, we generated the surface corresponding to the function
�
h = f ( � 0

� c
; � y

� c
) as shown in �gure 3.11.

We can notice that the curve can be decomposed visually into two parts: a part for which

� y > � 0 and a part where � y � � 0 . The two parts are separated by the plane � 0
� c

= � y
� c

(i.e.

� 0 = � y) plotted in �gure 3.11. In the part � y > � 0, plasticity has little in�uence on the

�nal de�ection of the blister and the curve has the typical square root form of the analytical

solution of pure elastic buckling given by equation 1.10. However, in the part corresponding

to � y � � 0, the material undergoes high plastic deformations and normalized de�ection

increases sharply as function of � 0
� c

.

Thus, as we tend towards high values of � y
� c

, the fraction of the curve described by a

square root function becomes more important and we tend towards a purely elastic be-

haviour. Conversely, as the ratio � y
� c

decreases, we tend towards a purely plastic behaviour

and buckling can occur for � 0 < � c.
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and we have an in�nite number of solutions.

FIGURE 3.12: 2D projection of normalized de�ection�h as function of� 0
� c

. The graph
features different level lines of� y

� c
. These curve are plotted for a Ludwik hardening:

K = 130 MPa andn = 0 :25.

This observation can be made more easily if we consider the projection of the 3D curve

on the plane x � z as shown in �gure 3.12. The �gure features the function �
h = f ( � 0

� c
) plot-

ted for different iso-value lines � y
� c

. For instance, if a straight blister with a sinusoidal shape

is observed experimentally, by plotting the horizontal line corresponding to its normalized

maximum de�ection, we obtain a variety of possible elastic-plastic solutions that could pos-

sibly lead to its formation. An example is given in �gure 3.12), where the elastic-plastic

buckling solutions obtained correspond to a Ludwik hardening with a coef�cient K = 130

MPa and a strain hardening exponent n of 0:25. For the amplitude of a straight sided blister

corresponding to the horizontal dashed line, the residual stress value � 0 that be identi�ed

varies of a ratio from 1 to 5.

A Ludwik law with a larger hardening coef�cient, for example k = 500 MPa, leads to a

more curved surface for the part corresponding to � y � � 0 in the 3D plot as presented in

�gure 3.13.

These observations lead us to the conclusion that the simple observation of a blister with

a sinusoidal shape is not suf�cient to state that the �lms has undergone a purely elastic

deformation. In this case, the residual compressive stresses in the �lm should be measured

and the value of the analytically predicted de�ection of the blister ( � analytical ) should be
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exhibits small plastic strain in the unbuckled area of the �lm ( 0:03%). However, in the case of

linear hardening, the �lm exhibits an equivalent plastic strain of 5%in the unbuckled area of

the �lm and pretty large values at the folded area (over 100%deformation). In addition, the

area of material with an equivalent plastic strain larger than 5%is much more extended than

in the case of Ludwik hardening. This causes higher bending of the �lm and a maximum

de�ection that is four times the one obtained with Ludwik hardening.

FIGURE 3.16: Effect of the hardening law on plastic strain at the base of straight
blisters (� 0 = 802 MPa)

It should be noted that in �gure 3.15, the in�uence of hardening is studied for � 0 > � c.

Indeed � 0 is equal to either 700or 802 MPa which is larger than the value of critical stress

corresponding to this con�guration ( � c ' 550 MPa). To have a complementary understand-

ing of the effect of hardening for cases with � 0 < � c, we carried out similar a similar study

with an elastic limit � y = 400 MPa and the same hardening laws presented in table 3.2. For

each of the hardening laws, we considered a case corresponding to� 0 < � y ( � 0
� y

= 0 :875) and

a case corresponding to� 0 > � y ( � 0
� y

= 1 :01). In �gure 3.18, we present the different buckling

responses.

In all cases corresponding to � 0 < � y , no buckling occurred and there seem to be no

plastic deformation in the �lm. The materials characterized by a Ludwik type hardening

exhibit small plastic deformation that does not exceed 0:5% even for � 0 > � y (see �gure

3.17). These low levels of plastic deformation seem to be correlated with small buckling

structures. However, in the case of linear hardening, the levels of plastic deformation are

at least 10 times more important than in the cases of Ludwik hardening ( around 8%) and

result in higher buckling structure. Indeed in the case of linear hardening we evolved from

the absence of buckling for � 0 < � y to a buckling structure with a maximum de�ection that

exceeds the thickness of the �lm!

Finally, the difference in pro�les between the cases � 0 < � y and � 0 > � y is more spec-

tacular for � 0 < � c (�gure 3.18) compared to � 0 > � c (�gure 3.15). Precise characterization
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3.3.2 Considering the internal stresses evolution during the deposition process

Experimental evidence of non monotonic variations of internal stress during thin �lms'

deposition

Thin �lms grown by plasma vapour deposition (PVD) often exhibit large intrinsic stresses

that can lead to �lm failure. Measurements of stresses during the early stages of polycrys-

talline thin �lms deposition have been widely studied in literature [ 10, 29, 58, 61, 98]. It is

largely acknowledged that the physical origins of growth induced stresses are related to the

�lm micro-structural evolution during deposition. Two different types of growth can take

place depending on adatoms/surface interaction: if the interaction between adatoms are

stronger than between atoms of the substrate and adatoms, then we have a Volmer-Weber

(VW) growth characterized by the formation of 3D islands. On the contrary, if the interac-

tion between the substrate surface and adatoms is stronger than that between adatoms, we

have Frank-Van der Merwe (FM) growth which is a layer-by-layer �lm growth [ 73].

In this part, we will consider the Volmer-Weber (VW) growth mechanism as it corre-

sponds to our case study (gold thin �lm grown by magnetron sputtering at room temper-

ature). In VW growth, discrete islands of different crystallographic orientations form at

the beginning of the deposition process. Upon additional deposition, these isolated islands

grow in diameter and new islands may nucleate which eventually leads to the formation of

a continuous polycrystalline thin �lm. These different stages are depicted in �gure 3.19

FIGURE 3.19: The regimes of microstructural evolution during Volmer-Weber �lm
growth. [35]

Depending on the homologous temperature of the system (de�ned by Th = Ts
Tm

where Ts

is the substrate temperature during growth and Tm is the melting temperature of the �lms

material) and the adatom mobility, two types of intrinsic behaviours have been identi�ed

in VW grown �lms [ 35, 61]. On the one hand, refractory materials with low adatom mo-

bility such as Molybdenum (Mo) at room temperature exhibit tensile stresses that increase

monotonicly during deposition and reach a plateau once the �lm becomes fully continuous.

On the other hand, FCC materials with high adatom mobility such as gold (Au), silver (Ag)

or copper (Cu) at room temperature have tensile stresses that peak in the early stages of

�lm growth before decreasing and becoming compressive for thick continuous �lms. The

measurements of intrinsic stresses are generally performed by substrate curvature measure-

ments which can be linked to intrinsic stresses using Stoney equation [ 94]. Precise real-time

stress measurements during the growth of thin �lms has been only made possible due to the

development of in-situ curvature measurement such as multiple beam optical stress sensor



64 Chapter 3. Elastic-plastic buckling of thin �lms

(MOSS) [1, 29, 34]. In-situ stress evolution curves during deposition process at room tem-

perature of Au, Pd and Ag are presented in �gure 3.20. In the case of gold thin �lm, we

clearly notice the formation of tensile stresses for low �lm thickness that reach a peak at

hcont before decreasing and becoming compressive.

FIGURE 3.20: Film force evolution during sputter deposition of Ag, Au and Pd �lms
on a-SiOx. The �lm thickness corresponding to the tensile peak is referred ashcont

[1].

It should also be noted that stress evolution in thin �lms can be highly dependent on

the deposition parameters such as substrate potential or oxygen doping of the �lm as high-

lighted in [ 29]. Indeed, �gure 3.21shows clearly how the shape of real-time stress evolution

curve as well as maximum compressive stresses values can vary depending on the sputter-

ing parameters.

To conclude, stress variation during thin �lm deposition is not necessarily monotonic. It

can reach a maximum value in the compressive regime before decreasing. This means that

the stress value measured by XRD technique and presented in section2.3.2only depicts the

�nal stress state of the �lm and is thus not indicative of the history of stress evolution.

Limits of monotonic loading: Experiments versus modelling results

We �rst perform calculations accounting for a monotonic increase of the intrinsic stress dis-

tribution. The stress loading starts from zero and reaches the �nal stress values predicted

from curvature measurements. For both straight and circular blisters, �nal stress values,

materials properties and thickness inputs are presented in table 3.3.

For each con�guration (circular and straight blister), we consider different yield stress

values varying from � y = 400 MPa to � y = 800 MPa. As a reminder, the value � y = 400

MPa corresponds to the yield stress measured using nanoindentation technique in sample �

where the straight blister has been observed. For the experimental case of the circular blister
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straight blister observed experimentally with FEM modelling using monotonically increas-

ing loading, we performed a parametric study with an elastic-plastic �lm and values of � 0

varying from 300 MPato 4200 MPa.

Figure 3.23shows that a stress slightly beyond the yield stress (� y = 400 MPa) is needed

for the straight blister to reach the experimental height. It should be noted that these sim-

ulations were performed using ludwik hardening ( K = 50 MPa, n = 0 :25). If a lower

hardening rate is used, similar results with lower stresses � 0 would be expected to reach the

same maximum de�ection.

To summarize, the study of thin �lms buckling using an elastic-plastic model for the �lm

and a monotonically increasing loading provide pro�les of straight blister that are different

from those observed experimentally, even if the applied stress � 0 is the one measured ex-

perimentally in the �nal state of the system. To reach de�ection values that are close to the

experimental ones, residual stresses at least as high as the yield stress are needed. In the case of

circular blister, the uncertainty concerning the value of yield stress make it dif�cult to state

whether the measured �nal stress in the �lm is suf�cient to capture the experimental pro�le

or not. These results considered along with the experimental aspects of stress evolution dur-

ing the deposition process as discussed in the previous paragraph, invite us to consider an

elastic-plastic FEM model with non-monotonic loading in terms of intrinsic stresses during

deposition.

monotonic versus non-monotonic loading

In order to test the in�uence of non-monotonic intrinsic stress loading on the �nal morphol-

ogy of the blister, we propose a preliminary model which accounts for a non-monotonic

stress variation during deposition. This model does not account for thickness change dur-

ing deposition but a non-monotonic variation of � 0 is considered during deposition which

is a good starting point to test this hypothesis. In this section, we propose to test two differ-

ent loading histories: the former loading represented in �gure 3.24by an orange line, and

a non-monotonic one plotted in blue. During the non-monotonic loading, the stress in the

�lm �rst reaches linearly a maximum stress value � max which is slightly above the yield

stress before decreasing until the �nal stress corresponding to the experimental measure-

ments. For the sake of discussion, we applied non-monotonic loading not only for the case

of the straight blister but also for the case of the circular blister. For the straight blister case,

we used an elastic-plastic response with the yield stress � y = 400 MPa while for the circular

blister, we chose a yield stress of � y = 800 MPa. In both cases a Ludwik hardening with

small hardening is applied K = 50 MPa and n = 0 :25.

The corresponding predicted pro�les are plotted in �gure 3.25. Different values for � max

have been tested. The main challenge is to choose the proper value of� max that maintains

the structure of the buckle at the right height at the end of the unloading phase. We no-

ticed that if � max is set to a lower value than � y , the buckling structure quickly collapses

during unloading and regains a similar pro�le to the one obtained using monotonic load-

ing to the value � 0. As shown in section 3.3.1, a target stress lower than the yield stress

generates plastic deformation that is only localized in the folded area of the blister. We can
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the absence of delamination in the present model.

To sum up, the non-monotonic loading model, that can be justi�ed on physical grounds

(physics of the deposition process), have shown promising results even-though it does not

take into account thickness variation during the deposition process. It showed consistent

results with experimental observations especially in the case of the circular blister. Never-

theless, in the case of the straight blister, the numerically obtained pro�le differs from the

experimental one. This model can be enhanced by taking into account thickness variation

during deposition process. It might also provide more accurate results if we account for a

possible delamination between the �lm and the substrate. The later option will be examined

in the next chapter.

3.4 Conclusion

In this chapter, we focused on the study of buckling of ductile thins �lms on rigid substrates,

without delamination. We discussed the in�uence of plasticity on the buckling mechanism.

We have �rst studied the in�uence of the ratio � 0
� y

on the buckling of thin �lm subject to

monotonic loading. We have evidenced that the elastic-plastic behaviour of the �lm causes

higher de�ections of the blister compared to the elastic case. In particular, the de�ection of

the blister is an increasing function of � 0
� y

. This behaviour is due to the increase in the plastic

deformation levels and their concentration at the basis of the blister with increasing values

of � 0
� y

. Another interesting observation is that for � 0
� y

> 1, we could cause the buckling of

the �lm even if the value of residual stresses � 0 are lower than the critical buckling stress

derived in the frame of non-linear elastic mechanics. However, even for high values of � 0
� y

and a �nely meshed plate, the generic sinusoidal shape of the blister seems to be maintained.

This last point is somehow treacherous as someone could conclude from the experimental

observation of a blister pro�le on a ductile �lm that the linear elastic theory of buckling is

valid for their particular system and deduce a wrong value of the stress in the �lm from the

use of formula 1.10. However, as we showed in our analysis, a given value of the normalized

buckle height �=h can be associated to a whole set of� 0 values depending on the yield stress

in the �lm. So we can strongly recommend a nanoindentation test to estimate the yield

stress, especially in the case of notoriously ductile �lms (e.g. gold, silver, copper).

Then, we have focused on the experimental cases and demonstrated that the use of

monotonic loading with the experimental values of residual and yield stresses seems to

be suf�cient to form circular buckles with pro�les that are (under certain conditions) suf-

�ciently close to the the experimental case in terms of de�ection and shape. However, in

the case of the straight blister, the use of monotonic loading is not even enough to trigger

the buckling of the �lm. In order to solve this issue, we proposed a model that takes into

account the evolution of stress during the deposition of thin �lms by using non-monotonic

loading. During the non-monotonic loading, the stress in the �lm �rst reaches linearly a

maximum stress value � max which is slightly above the yield stress before decreasing until

the �nal stress corresponding to the measurement of the �nal curvature. This method aims

at triggering the buckling of the straight blister (because � 0 is higher than � c). During the
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unloading of the �lm, the plastic deformation of the �lm helps maintain the structure of

the blister which allowed as to generate buckling structures that have a similar maximum

de�ection to the experimental case.

The only issue that remained unsolved using an elastic-plastic buckling model is the

elongated shape of the observed straight blister, since as discussed just above the addition

of plasticity to the buckling problem does not seem to alter the generic sinusoidal shape

of the blister. In order to solve this problem, we decided to account for delamination in

the buckling model and study the in�uence of the interface along with the elastic-plastic

behaviour of the �lm on the equilibrium shape of the blister.
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Residual stresses in thin �lms can be a driving force for delamination. When the strain

energy of a compressed �lm and the related energy release rate exceeds the interface tough-

ness, the buckling of the thin �lm can occur concomitantly with the advancement of the

crack front. This phenomenon is referred to as buckling-driven delamination and can re-

sult in various buckling shapes ranging from circular to telephone cord blisters [ 16]. Linear

symmetric con�gurations, such as circular or straight-sided buckles [ 18, 71] are rarely ob-

served experimentally and tend to destabilize into non-linear and asymmetric morphologies

such as telephone cord buckles [71, 117], varicose (row of bubbles) [ 12, 41], wavy-circular

buckles [30, 49] or more complex buckled con�gurations like snail-shaped buckles [ 18, 46]
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and branching blisters [ 43, 116]. Straight-sided and circular blisters are post buckling so-

lutions of an initially �at plate, and are thus referred to as "primary buckling" equilibria.

Some con�gurations enumerated above derive from a destabilization of the �rst buckling

con�gurations themselves, ad are thus referred to as "secondary buckling" equilibria.

The growth and destabilization of buckling structures have also been investigated both

analytically and numerically. Analytical studies enabled better understanding on the condi-

tion for buckling driven delamination [ 48]. By using a perturbation analysis, it has been evi-

denced that telephone cord blisters, varicose and wavy-circular blisters are manifestations of

the con�gurational instability of the interface crack front of primary buckling structures [ 3,

4, 48, 49]. Numerical investigations by means of �nite element method performed for elastic

con�gurations has proven to be valuable in gaining insight on the mechanisms of thin �lm

secondary buckling and in particular the role of interfacial toughness and mode mixity in

the formation of secondary buckling [ 31, 32, 53]. This approach allowed the derivation of

delamination morphology phase diagram in the case of elastic thin �lms on rigid substrates

[53, 78].

In order to explain some observations such as the stability of circular blisters or the pres-

ence of snail-like structures in ductile thin �lms, assumptions of an elastic-plastic buckling-

driven delamination [ 13, 17, 18] and of plasticity at the interface have been suggested [14].

Different approaches such as molecular dynamics, has been used to study the contribution

of plasticity to the deformation of thin �lms during buckling [ 25, 26]. Other works, fo-

cused on studying the effect of interface plasticity on the buckling of thin �lms by mean

of atomistic simulations [ 87, 88] and coupled �nite-strain elasticity and phase-�eld mod-

elling [ 89]. Up-to-date, in the frame of �nite element analysis, elastic-plastic buckling of

thin �lms has only been investigated by inducing a high folding angle to model the elastic-

plastic behaviour of the �lm [ 46] and the the modelling of elastic-plastic buckling-driven

delamination of thin �lms remains an open issue.

In this chapter, we will �rst present the mechanical model of elastic-plastic buckling-

driven delamination of thin �lms and its underlying assumptions. We will mainly focus on

presenting the constitutive laws used to describe the interface delamination and its imple-

mentation. Then, we will consider the typical case of the straight blister, and study the effect

of plasticity on the buckling shapes and the energy equilibrium during its propagation.

Finally, we will consider the case of circular blisters and study the effect of plasticity on

their propagation and destabilization.

4.1 Mechanical model

This section aims at presenting the mechanical problem of buckling-driven delamination

of thin �lms and its numerical implementation. For the sake of clarity, our efforts will go

towards presenting the problem of buckling-driven delamination of straight blisters. The

main difference between the implementation of straight and circular blisters is strictly geo-

metric and consists of the shape of the initial defect which is rectangular for straight blisters
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and circular for circular blisters. Further details concerning the two models are provided in

the following subsections.

4.1.1 Presentation of the analytical problem

We consider an elastic-plastic thin �lm, deposited on a rigid substrate. The plasticity of the

�lm is modelled using J2 plastic �ow theory with an isotropic hardening and the �lm is

described as a3D solid.

The interface between the �lm and the substrate is described by a cohesive model pre-

sented in section 4.1.2. In order to trigger the buckling delamination, a defect area of width

2bin the case of straight blisters (see �gure 4.1) and of radius R in the case of circular blisters

is introduced. These areas are not only debonded zones, they also exhibit a very small out

of plane displacement (� = 0 :01 h) which triggers the buckling driven delamination of the

�lm provided that the �lm presents enough residual stress.

(Oy)

(Oz)

(+b)(-b)

(Ox)
Thin �� lm

Rigid substrate

Cohesive
behaviour

Initial defect (zoom) Cohesive
behaviour

FIGURE 4.1: Mechanical model of buckling-driven delamination of thin �lm on rigid
substrate.

The �lm is subjected to an initial isotropic compressive stress that mimics the residual

stresses due to the deposition process. Due to the large values of the out-of-plane displace-

ment of buckled structures, the analysis is carried out within the framework of large dis-

placements using the Green Lagrange strain tensor.

4.1.2 Implementation of the numerical model

In this section, we present the �nite element model used to analyse the effect of plasticity on

buckling-driven delamination of thin �lms. Compared to the buckling model presented in

chapter 3, the main difference consists in the implementation of a cohesive model to allow

delamination of the �lm from the substrate along the interface. In the following section, we

will thus mainly focus on the implementation of cohesive behaviour and mode mixity and

provide only a quick reminder concerning the geometry, elastic-plastic behaviour, loading

and boundary conditions.

Geometry,loading and boundary conditions

The �lm is modelled by a rectangular plate in the case of straight blister and by a squared

plate in the case of circular blister to allow axisymmetric growth. The plate is deposited on a
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rigid substrate with an unilateral contact condition ( w(x; y) � 0). Nodes that are part of the

lateral edges parallel to x axis have fully built-in conditions. For the edges parallel to the y

axis, the displacement is only allowed along the z axis and no rotation is allowed about the

y and z axis (see �gure 4.1).

The elastic-plastic behaviour of the thin �lm is modelled using a J2 �ow theory with an

isotropic hardening law that is adapted for the elastic-plastic response of the �lm. The value

of the yield stress is set according to the experimental results presented in section 2.2while

we investigate the in�uence of the hardening response (see section 3.1.2).

The loading consists of a thermal eigenstrain � th = � th � T > 0 applied uniformly to the

plate (� xx = �yy = � th ) at time t = 0 . The magnitude of � T and the equibiaxial compres-

sive stresses generated in the �at adherent part of the �lm are related by equation 3.8. The

loading is performed following two steps:

• 1st step: We perform a linearly increasing loading of the �lm until reaching the target

value for internal stresses � 0. The loading is performed fast enough to prevent the

onset of buckling-driven delamination during the loading.

• 2nd step: The beginning of this step corresponds to the time t = 0 . The internal stress

values have reached their �nal value � 0 and buckling driven-delamination can thus

occur under constant loading.

The aim of this strategy is to mimic at best experimental conditions where the buckling

occurs usually after the deposition process, at a constant internal stress. Another similar

method tested in this chapter consists of a two steps loading. During the �rst step, the

�lm displacement in the out-of-plane direction is blocked to prevent any buckling. This

constraint is released at the beginning of the second step, and the �lm can then buckle-

delaminate under a constant compression stress.

The buckling is triggered thanks to a small out-of-plane imperfection of very small am-

plitude 0:01 h of the �lm in the initial defect region. This region is rectangular in the case

of straight blisters and circular in the case of circular blisters. It allows the nucleation of the

delamination front during the 2nd step.

In order to accurately capture plastic deformation, solid elements of a size smaller than
h
5 are used (see the study conducted in Appendix A about the in�uence of mesh size on

the plastic deformation distribution). Quadrilateral cohesive elements are used in order to

model the interface behaviour. These elements are inserted along the interface between the

�lm and the substrate except in the defect area. The upper surface of the cohesive elements

is tied to the lower surface of the �lm, whereas the lower surface of cohesive elements has

fully-built in condition since the substrate is rigid.

Cohesive zone implementation

An essential ingredient in the modelling of the buckling-driven delamination process is the

description of the interfacial behaviour as damage is occurring between the �lm and the

substrate. To do so, we chose to introduce cohesive elements between the �lm and the
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substrate. Cohesive element formulation is detailed in [ 21]. In this section, we will �rst

introduce the formulation of a traction-separation law to describe the cohesive behaviour.

Then we will explain the implementation of a mode mixity dependent interface energy.

Traction-separation law The interface constitutive law used for our model, consists of a

bi-linear traction-separation relationship which represents the evolution of the traction ~T as

a function of the relative displacement ~� between the two separating surfaces or "crack lips"

as depicted in �gure 4.2.

FIGURE 4.2: Schematic representation of the linear traction-separation law used to
model the interfacial damage occurring between the �lm and the substrate.The inter-
facial toughness is mode-mixity dependent (Gc( )) and represents the total energy

needed to break a cohesive element (grey area).

Starting from the reference state where the two surfaces are perfectly bounded, the rela-

tionship between the traction and the opening � stays linear and reversible until an initiation

criterion is ful�lled (described bellow). This linear relationship writes:

~T = K ~� (4.1)

with K a spring constant, T the traction and � the opening.

The nominal traction stress and corresponding opening vectors ( ~T ;~� ) can be decom-

posed into normal and shear components: The normal components (Tn ; � n ) are used to

describe the normal opening process (mode I contribution), while their shear components

(Tt ; � t ) are used to describe the shear opening process (mode II contribution). The traction

component that corresponds to a mode III contribution can be neglected in comparison to

mode I and mode II contributions.The amplitude T of the traction and � of the separation

writes:

8
<

:
T =

q
Tn

2 + Tt
2

� =
q

� 2
n + � 2

t

(4.2)
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For the initiation, we chose to use a quadratic criterion. Thus, the peak traction T i will

be reached by any value of the traction ~T i = ( T i
n ; T i

t ) verifying 1:

�
< T i

n >
Tn

0

� 2

+
�

T i
t

Tt
0

� 2

= 1 (4.3)

where T0
n is the maximum mode I traction and T0

t the maximum mode II traction.

Once the maximum traction is reached (< T > = T i ), debonding and irreversible damage

takes place. Thus, if the condition expressed equation 4.3 is reached for any given combi-

nation of the traction components (Tn ; Tt ), irreversible damage will occur as the opening

continues increasing .

To implement irreversible decohesion, linear softening is used by allowing the cohesive

traction T to irreversibly and linearly decrease from Ti to 0 as the interfacial separation �

continues increasing from � i to � f . The softening can thus be expressed as a reduction of the

cohesive zone stiffnessK by a factor (1� d) where d represents a damage variable. This leads

to the formulation of the following de�nition for the cohesive traction during the softening:

T = K (1 � d)� (4.4)

the variable d is de�ned as

d =
� f

�
� � � i

� f � � i ; for � > � i (4.5)

where � is the amplitude of the opening as expressed in 4.2 and � i the amplitude of the

opening at maximum traction T i . � = � i corresponds to the onset of debonding while the

separation between the two surfaces is complete at � = � f .

Mode mixity As highlighted in section 1.3, mode mixity dependence of the interface en-

ergy is a necessary condition to understand the stabilization of growing buckles. Thus the

separation energy per unit surface, Gc( ), is assumed to follow a mixed mode dependency

characterized by the following relationship:

Gc( ) = GIc (1 + tan 2(� )) (4.6)

where GIc is the mode I separation energy,  the mode mixity angle and � a parameter that

varies between 0 and 1 and characterizes the dependence upon mode mixity. When � = 0 ,

the interface has a brittle-like behaviour, and as � increases, the dependence upon mode

mixity increases. This means that it becomes much harder to break the interface in shear

than in normal mode (see �gure 4.3).

It should be noted that the de�nition of  we use here differs from the one classically

used in linear elastic fracture which can only be expressed at a reference distance l ahead

of the crack. The mode mixity angle de�nition we use here is tan(  ) = T i
t =Ti

n and can be

expressed in any point of the interface as long as the separation process is not completed.

1Here, <> stands for the Macaulay brackets, which are leaving the quantity unchanged if positive, but return
0 when the quantity is negative. Indeed, a compressive value of the normal traction can not trigger damage.
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delamination and elastic-plastic buckling-driven delamination. We will also study the ef-

fect of cohesive zone parameters on straight blister's morphology. The last subsection will

be dedicated to the study of the effect of the loading history on the morphology of straight

blisters.

4.2.1 Elastic buckling driven delamination

The study presented in this subsection aims at understanding the effects of cohesive parame-

ters and mode mixity on the process of buckling-driven delamination of thin �lms deposited

on rigid substrate.

To do so, we implemented the numerical model presented in subsection 4.1.2. For the

parameters, we �xed the material properties, the geometry of the plate and performed a

parametric study with regards to interfacial properties. The �xed parameters are presented

in table 4.1.

Elastic properties Geometry Loading Interface
E (GPa) � (-) h (nm) 2b0 (µm) L (µm) l (µm) � 0 (MPa) GIc (J=m2)

85 0:44 400 9 135 1:2 700 0:3

TABLE 4.1: Parameters used in the elastic buckling-driven delamination simula-
tions. The described parameters are the following: Gold thin �lm elastic properties
(E : Young's modulus,� : Poisson's ratio), blisters geometries (h: thin �lm's thick-
ness,2b: blister's diameter,L : �lm's length, l : �lm's width ), �nal residual stresses in

thin �lm ( � 0) and modeI interfacial toughness (GIc ).

The elastic properties including Young's modulus ( E) and Poisson's ratio (� ) are set as

in chapter 3 and correspond to the gold thin �lm elastic properties. The thickness of the �lm

is derived from the experimental measurements performed on sample ( � ) and presented in

section 2.1. The length of the defect area is set to a smaller value than the �nal width of

the experimental blister in sample � to allow some delamination before reaching the exper-

imental width.

The thin �lm is modelled by a rectangular plate of solid elements. The length of the plate

is set to L = 40b0, which allows growth and propagation of the blister with little in�uence

of the borders of the computational cell. As the solution is invariant along the x-axis (see

�gure 4.1), the width of the plate can be set to a small value to minimize calculation costs.

We �xed the width to ( l = 0 :25b0). To allow buckling, the �nal stress in the �lm is chosen to

be larger than the corresponding critical stress (� c = 637 MPa). We set� 0 = 700 MPa.

Concerning the value of mode I interfacial toughness of the 630 nm gold thin �lm on

silicon substrate, no measurements of interfacial energy have been conducted within the

frame of our experimental work. So, we chose values of GIc in accordance with the values

found in literature. For instance, values of work of adhesion ( WA ) of metal thin �lms on

silicon are reported to be in the range of 0:2 to 5 J=m2 in the literature [ 38, 109]. Other

interesting examples include air-bonded gold thin �lm on sapphire for which the work of

adhesion is reported to be between 0:6 and 0:9 J=m2 [66, 82], and Cu=SiO2 system with a

40� 1000 nmcopper thin �lm thickness variation for which the interfacial toughness varies
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from 0:6 to 10 J=m2 [109]. In accordance with the results presented above, we set GIc to

a relatively low adhesion ( GIc = 0 :3 J=m2) which is a middle range adhesion regarding

experimental values.

The remaining parameters including maximum mode I traction ( T0
n ), maximum mode

II traction ( T0
t ) as well as the mode mixity dependence parameter � , will be subject to a

parametric study to understand their effect on the propagation and the equilibrium pro�le

of straight blisters.

In�uence of the cohesive parameters on the morphology of the blister

For a matter of clarity, we chose in this section to study elastic buckling-driven delamination

using only two different values of mode mixity dependence: � = 0 :65 and � = 0 :7. These

values have been chosen in agreement with the study of plexiglass/epoxy interface mode

mixity dependence which can be estimated to � = 0 :65 [48]. In our case, modelling the

interfacial behaviour with a mode mixity dependence parameter � of 0:6 or lower resulted a

total delamination of the �lm. On the contrary, choosing values higher or equal to � = 0 :75

resulted in little delamination ( bf < 0:1b0) which does not allow interface damage study.

These observations can be con�rmed by the diagram presented in �gure 4.4. The graph

presents the evolution of the ratio
Gc(	)

GIc
as function of the mode mixity angle 	 for several

values of � ranging form 0:6 to 0:9. The horizontal dotted line represents the ratio
G0(	)

Gc
I

(see equation1.40) calculated using the parameters presented in table 4.1. We can notice that

for � = 0 :6,
Gc(	)

GIc
�

G0(	)
GIc

, which means that the blister can propagate inde�nitely. On

the contrary, for high values of � (for example � = 0 :9), the horizontal line
G0(	)

Gc
I

intercepts

the toughness curve at small values of mode mixity angle ( 	 � 60� ) which means that the

propagation stops at smaller values of bf .

Concerning the values of maximum tractions, we �xed the maximum mode I traction T i
n

to an arbitrary value of 75 MPa which corresponds to a critical normal opening � f
n of 2%h

and we varied the values of maximum mode II traction T0
t . The values chosen for T0

t are

80 MPa and 120 MPa. In the case of � = 0 :65, these values correspond to a critical shear

opening � f
n of 5%h, 3%h and 2%h respectively.

The different pro�les are presented in �gure 4.5. The blue curves correspond to an in-

terfacial mode mixity dependence of 0:65, while the red curves correspond to an interfacial

mode mixity dependence of 0:6.

According to equation 1.35, the interfacial toughness Gc( ) is a monotonously increasing

function of � for a given mode mixity angle. This means that it is harder to break the interface

in the case� = 0 :7 compared to the case� = 0 :65 and explains why the delamination area

is more important in the blue curves compared to the red ones. Let us consider now a

given value of � , for instance 0:65. We notice that as the value of maximum shear traction
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To conclude, the energy and mode mixity angle studies allowed the comparison be-

tween the analytical predictions and the corresponding numerical results in the case of elas-

tic buckling-driven delamination. The cohesive zone model with mode mix dependency

shows good consistency with the linear elastic fracture mechanics approach, both qualita-

tively and quantitatively.

4.2.2 Choice of element and integration type in the case of buckling driven de-
lamination

The aim of this section is to determine the appropriate element type and numerical inte-

gration method for the study of buckling-driven delamination of thin �lms with an elastic-

plastic behaviour.

Limits of implicit approach

According to the study presented in appendix A, solid quadratic bricks (C3D20) seem to

capture accurately the elastic plastic deformation at the basis of the buckle compared to

quadratic tetrahedrons (C3D10) or continuum shell elements (linear interpolation). Thus

we decided at �rst to test the same elements (quadratic bricks) along with implicit method

as in chapter 3.

It should be noted that the problem of buckling-driven delamination has four sources

of non-linearity rather than three:

• Geometric non-linearities due to the large values of the out-of-plane displacement.

This type of non-linearity can be accounted for by performing the calculations within

the framework of large displacements using the Green Lagrange strain tensor.

• Unilateral buckling, i.e. the equilibrium must satisfy ! > 0 on the whole �lm domain.

This is done by implementing a rigid contact between the �lm and the substrate.

• The elastic-plastic behaviour of the �lm.

• The bi-linear traction-separation law that describes the cohesive behaviour of the in-

terface

In particular, the debonding part of the traction-separation law, may cause convergence

dif�culties at the point where the crack �rst initiates. To avoid these instabilities, a viscous

regularization of the constitutive equations de�ning cohesive behaviour can be used [ 21].

This regularization scheme works by introducing a viscous damage variable d characterized

by a relaxation time of the viscous system � which provides a dissipating mechanism during

unstable debonding. When used, values of viscosity should be chosen much smaller than

the total time step � in order to ensure the convergence of the model without compromising

the results [40]. The amount of energy associated with viscous regularization should also

remain small compared to the total energy of the system ( < 1%) to ensure the accuracy of

the solution.
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difference lies in computational costs that are minimized in the case of shell elements. In

the following sections, we will thus mainly use a stack of at least 5 shell elements through

thickness along with an explicit dynamic analysis. However, when changing the loading

cycles or boundary conditions, the results are always double checked using quadratic tetra-

hedrons.

4.2.3 Elastic-plastic buckling-driven delamination using linear loading

The aim of this section is to study the in�uence of plasticity on the growth and the �nal

morphology of straight blisters. To this end, we will �rst study the in�uence of different

values of the yield stress (or different values of the ratio � 0
� y

) on the �nal morphology of a

straight blister under a �xed loading � 0. We will then try to explain the difference in the �nal

equilibrium shape between elastic and elastic-plastic thin �lm by comparing their energy

balance during the propagation of the blister and by examining the values of mode mixity

angles  at the crack front. Eventually, we will study the effect of plasticity on the onset

of buckling-driven delamination and determine under which conditions buckling-driven

delamination can occur in con�gurations with compressive residual stress � 0 lower than the

critical buckling stress � c computed for an elastic �lm.

In this section, we will exclusively use a linearly increasing loading. Simulations are

usually composed of two steps:

• 1st step: we perform linear loading of the �lm until reaching the target value for in-

ternal compressive stress of amplitude � 0. The loading is performed fast enough to

prevent the onset of delamination during the loading. The loading rate should how-

ever be performed at reasonable rate to avoid undesirable dynamic effects.

• 2nd step: the beginning of this step corresponds to the time t = 0 of delamination. The

internal stress values have reached their �nal value � 0 and buckling driven-delamination

can thus occur under constant loading.

In�uence of yield stress on the morphology of the blister

To study the in�uence of the yield stress on the morphology of straight blisters, we chose to

work with a single value of internal stresses � 0 and vary the yield stress to obtain different � 0
� y

values. The values tested range from0:5 to 1. The parameters used to model the decohesion

between the �lm and the substrate are the same as those used in the previous section and

are given in the table below.

The different blisters' pro�les are presented in �gure 4.12 for the case � 0 < � y along

with the pro�le of a purely elastic that serves as a reference. The plasticity seems to modify

the equilibrium pro�le. Indeed, the upper part of the blister (its peak) seems to be sharper

in the case of elastic-plastic buckling. This is likely due to the plastic deformation that is

mainly concentrated at the top and the base of the straight blister as shown in �gure 4.13. As

the ratio � 0
� y

decreases, the in�uence of plasticity is less important and the maximum value

of equivalent plastic deformation decreases. This results on a rounder tip of the blister.
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energy dissipated at the interface between the elastic and the elastic-plastic case is thus not

trivial. Nevertheless, it seems that the stabilization of elastic-plastic blisters at smaller width

is related to the increase of the ratio of shear to normal stress at the interface (i.e mode mix-

ity) compared to the elastic case, rather than dissipating by plastic deformation during crack

propagation.

4.2.4 Could plasticity in�uence the onset of buckling-driven delamination?

We demonstrated in the former section how the elastic-plastic response of the �lm can in-

�uence the propagation and the �nal morphology of the blister. The results considered

previously correspond to values of residual stresses (700 MPa) above the theoretical critical

limit of buckling in the frame of elastic mechanics ( � c = 685 MPa). However, as explained

in chapter 2 the residual compressive stresses measured by DRX in the case of the sample�

are approximately equal to 300 MPa which is signi�cantly lower than the critical buckling

stress calculated in the frame of elastic mechanics.

The aim of this section is to consider a case study with a thermal loading and an yield

stress that are the closest possible to the experimental case presented in chapter2. We will

�rst carry out �nite element simulations that account for a yield stress of 400 MPa(the value

of yield stress measured by nano-indentation) and values of residual stresses between 300

and 420 MPato study the effect of the ratio � 0
� y

on the onset of buckling-driven delamination.

Then we will study the combined effect of the cohesive parameters and plasticity on the

shape of the blister at equilibrium.

In�uence of the ratio � 0
� y

In this paragraph, we consider a rectangular plate with an initial defect width 2b0 of 9 � m.

The thin �lm has an elastic-plastic response governed by Ludwik hardening with an yield

stress of 400 MPa. The �lm is subjected to compressive stresses with amplitude ranging

from 300to 420 MPawhich is below the critical stress of the system if considered elastically

(� c = 685) MPa. The parameters governing the response of the interface have been adapted

to allow delamination. All the parameters used in this study are detailed in table 4.5.

Geometry Elastic properties Plasticity
h (nm) 2b0 (µm E (GPa) � (-) � y (MPa) K (MPa) n (-)

400 9 85 0:44 400 50 0:25
Interface loading
GIc (J=m2) � (-) T i

t (MPa) T i
n (MPa) � 0 (MPa)

0:2 0:65 120 60 variable

TABLE 4.5: Summary of the parameters' values used in the modelling of elastic-
plastic buckling-driven delamination.

We start our study by considering the response of the plate to compressive stresses equal

to the experimentally measured compressive stresses� 0 = 300 MPa. As shown in �gure

4.16, this loading is not large enough to trigger the buckling of the �lm. Then we consider

values of compressive stresses larger than the yield stress. We can notice in �gure 4.16that as
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the value of T0
t varies. We notice that as T0

t decreases, the maximum de�ection increases.

This increase in the maximum de�ection is correlated to the increases of the ratio of the pro-

cess zone to the �nal width of the blister bf ( lP Z
bf

) which is consistent with the trend observed

in the case of elastic buckling-driven delamination in section 4.2.1. The ratio lP Z
bf

increases

from 2% in the caseT0
n < T 0

t to approximately 27%in the caseT0
n > T 0

t . Although a value

of 27%exceeds the order of magnitude of 10%typically used for
lP Z

bf
to ensure consistency

with numerical results obtained using cohesive zone model and the analytical predictions,

the presence of an extended process zone is consistent with the apparent damage of the in-

terface observed for values of x
b0

lower than � 2 (refer to �gure 4.18). This non-planarity of

the interface might be the sign of interface damage.

In order to visualize more clearly the effect of interface properties in the case of elastic-

plastic buckling on the equilibrium shape of the blister, we re-scaled all the graphs of �gure

4.18 and normalized their out-of-plane displacement and the x� values by the maximum

de�ection � max and the �nal blister's width bf respectively. We also plotted a normalized

curve corresponding to the sinusoidal shape of elastic analytical pro�les. These curves are

displayed in �gure 4.19.

We can notice that the experimental curve as well as the elastic-plastic FEM solutions are

more curved at their basis compared to the sinusoidal shape. The con�guration that seems

to �t the most the experimental case is obtained for T0
n = T0

t = 60 MPa. Thus, among the

tested con�gurations, the latter seems to be the most adapted to model the buckling-driven

delamination that lead to the buckling structure observed experimentally in sample � .

To conclude, in this section, we have pointed out the possibility of the onset of buckling

in ductile thin �lms with values of �nal compressive stresses that are lower than the critical

stress predicted by the elastic analytical model. This result might give us an interesting clue

about the conditions that lead to the buckling of the �lm in sample � . However,experimental

measurements showed the presence of residual compressive stresses that are lower than the

yield stress. This issues leads to the importance of considering the full history of the loading

when modelling the elastic-plastic response of thin �lms.
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FIGURE 4.20: Different loading histories: Linear loading (red) and tri-linear loading
(blue)

exceed the value415 MPato ensure that the unloading process does not cause the de�ection

to become lower than the experimental value . We chose to work with a value of maximum

stress � max = 418 MPa. The corresponding predicted pro�les are plotted in �gure 4.21.

The dotted blue curve corresponds to the pro�le of the straight blister at equilibrium for

� = � max while the plain red curve corresponds to the pro�le of the blister at the end of the

unloading process. The grey curve represents the pro�le of the unbuckled state obtained if

a simple linear loading is performed to reach the �nal stress value � 0.

We can notice that due to the high plastic deformation encountered by the �lm at � =

� max , the maximum de�ection of the �lm does not vary drastically once the unloading ap-

plied. Moreover, the blister's pro�le obtained after the unloading process is close enough to

the experimental shape of the blister.
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FIGURE 4.22: Scheme of the steps applied to ensure the occurrence of buckling-
driven delamination at constant load� 0. In the �rst step, the bottom nodes of the
defect area of the �lm are blocked along thez � axis and the thermal loading of the
�lm is performed. In the2nd step, the defect nodes are released and a small pressure
is applied ton trigger buckling. In the �nal step, buckling-driven delamination occurs

at constant loading.

then 1% of the residual stress of the �lm is applied at the bottom of the free part of the

�lm along the z � axis to trigger buckling. During the last step, we can thus observe the

buckling-driven delamination of the thin �lm occurring at constant internal stress. This

method is presented schematically in �gure 4.22.

To test this method and determine if there is any signi�cant difference between the two

loading strategies, we carried out two simulations with the parameters given in table 4.4,

� 0 = 700 MPa and different loading methods. We compared these results in terms of equi-

librium pro�les and equivalent plastic distribution presented in �gures 4.23 and 4.24 re-

spectively. The pro�les shown in �gure 4.23are very similar. They both exhibit a sharp tip
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4.3 Growth and destabilization of circular blisters

The aim of this part is to study the mechanism of growth and destabilization of circular

blisters and understand how the plasticity of the �lm can in�uence the equilibrium state.

To do so, a �nite element model that takes into account the non-linearity of the �lm and the

delamination at the the interface has been elaborated. First, the mechanism of growth and

destabilization of circular blisters is considered in the case of a purely elastic thin �lms and

in particular, the in�uence of interfacial mode mixity � on the equilibrium state is studied.

These modelling results are then compared with the analytical results presented in 1.3.2to

assess the accuracy of the model. Finally, the in�uence of the plasticity of the �lm on the

stability of circular blisters is studied and the results are discussed in the light of elastic

predictions.

4.3.1 Presentation of the model and the parameters

In the frame of this study, we adapt the model used to study the propagation of straight

blisters to �t the circular case. In particular, we implement a circular defect area (deprived

of adhesion) with a squared plate to allow an axisymmetric growth of the blister. The width

of the defect and the thickness of the plate are set according to the experimental case study

 ( 2b0 = 50 µm and h = 630 nm). We use the same elastic propertiesE and � as in part 4.2

and choose a relatively moderate adhesion GIc = 0 :5 J=m2 to allow for the delamination of

the �lm at values of compressive stresses close to the measured residual stresses (500 MPa).

As highlighted in section 4.2.1, this value of mode I interfacial toughness is consistent with

values of work of adhesion of metal thin �lms on silicon substrate which are in the range of

0:2 to 5 J=m2 [38, 109]. High values of mode mixity dependence (typically � = 0 :9) are used

in order to perform a meaningful comparison with the analytical study performed using �

close to 1 [49]. Finally values of maximum normal and shear tractions T0
n and T0

t are set to

allow for a maximum process zone of 10%of the width of the blister. These parameters are

summarized in table 4.6.

Elastic properties Geometry Interface
E (GPa) � (-) h (nm) 2b0 (µm) GIc (J=m2) � (-) T i

n (MPa) T i
t (MPa)

85 0:44 630 50 0:5 0:9 40 180

TABLE 4.6: Parameters used for the elastic buckling-driven delamination of circular
blisters. Gold thin �lm elastic properties (E : Young's modulus,� : Poisson's ratio),
blisters geometries (h: thin �lm's thickness,2b: blister's radius) and interface param-
eters (GIc : interfacial toughness,� : mode mixity dependence,T i

n : maximum normal
traction,T i

t : maximum shear traction )

The thermal loading is performed so that the propagation of the blister and its destabi-

lization occur at constant compressive stress � 0.
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implemented this method it in the case of an elastic-plastic behaviour of the �lm. The results

are presented in �gure 4.29.

According to the results presented in �gure 4.29, the elastic-plastic behaviour of the �lm

seems to either stabilize circular shapes or favour the destabilization into 4 lobes for very

high values of the stress. We could not observe the destabilization into 2 or 3 lobes in the

case of elastic-plastic thin �lms. This result is very interesting and might explain why we

could not so far observe a destabilized blister in the case of gold thin �lm experimentally.

Given the elastic properties and the thickness of the gold thin �lm as well as the geometry

of the defect area in the experimental case , we will need residual compressive stresses to

observe destabilized blisters. With a value of residual stresses of 500 MPa, the experimental

case present a loading ratio � 0
� c

= 8 and lies then in the area where the circular blister is

stable.

4.4 Conclusion

In this chapter, we focused on understanding how coupling an elastic-plastic response of

the �lm with the delamination of the interface can in�uence the �nal morphology of the

blister. The results were presented under two main sections: buckling-driven delamination

of straight blisters and the growth and destabilization of circular blisters.

Straight blister In the study of the buckling-driven delamination of thins �lm, we started

by studying a purely elastic case. In particular, we studied the in�uence of the different

parameters that govern the delamination of the interface and highlighted the importance

of mode mixity in the stabilization of the blister. Then we explained how the elastic-plastic

model has been implemented and we the different dif�culties encountered when trying to

carry out buckling-driven delamination simulations using 3D elements with an implicit and

explicit approach.

The �rst simulation results were presented in section 4.2.3and aimed at studying the

in�uence of the ratio � 0
� y

on the propagation and the morphology of the blister. It has been

evidenced that as the ratio � 0
� y

increases, the levels of plastic deformation in the plate increase

causing the blister to form a sharp tip compared to the sinusoidal shape of elastic blisters.

Moreover, the development of plasticity at the interface during the propagation of the blister

seems to stabilize it and limit its �nal width compared to the corresponding elastic case.

This trend seems to be caused by the modi�cation of the shear to normal stress ratio at the

interface rather than by a decrease in the dissipated energy at the interface. The results

presented so far represent rather a theoretical study of the effects of the plasticity on the

equilibrium state of straight blisters.

The experimental case of the straight blister observed in sample � has been more closely

examined in part 4.2.4and it has been demonstrated that it is possible to cause the buckling-

driven delamination of ductile thin �lms when a ratio � 0
� y

> 1 is considered. Subsequently,

we combined this approach with a non-monotonous loading that goes through three stages:

a linear loading of the �lm until a value of � max larger that the yield stress is reached, a
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maintain at � max until the blister reaches its equilibrium pro�le and �nally the unloading

of the �lm to a target value � 0 that is lower then the initial yield stress � y and equal to the

values of residual stress measured experimentally. This approach proved to be ef�cient in

generating buckles at �nal residual stresses lower than the initial yield stress of the �lm and

the critical buckling stress calculated in the frame of elastic mechanics. It also provides us

with a plausible scenario about the causes of the appearance on buckling structures in a

ductile thin �lm with such low compressive residual stresses.

We closed the discussion about elastic-plastic buckling of thin �lms by considering an

alternative way of stress loading that uses boundary conditions to prevent the onset of

buckling-driven delamination from happening before the desired stress � 0 is reached. This

method is thought to better mimic the onset of buckling in experimental cases which seem

generally to take place once the deposition process is completed and the �nal residual

stresses in the �lm reached. The results obtained using this method seem to be consistent

with those obtained using the former loading which validates our approach.

Circular blister In the study of the growth and destabilization of circular blisters, we

started by considering the growth and destabilizations of blisters in a purely elastic thin

�lms and we considered the evolution of the number of destabilized lobes at equilibrium

as function of the loading ratio. It has been observed that the same number of lobes n is

formed at a larger loading ratio compared to analytical results which is consistent with ref.

[53] and is thought to be due to the in�uence of the process zone and its extent. Our contri-

bution in the study of growth and destabilization of circular blisters in the frame of elastic

mechanics comes from the study of the in�uence of mode mixity dependence parameter � .

Indeed we demonstrated that using lower values of � for instance 0:6 and 0:7 resulted in the

stabilization of the circular shape compared to the case � = 0 :9. However, to have a better

understanding of the mechanism of such stabilization, further investigation concerning the

mode mixity distribution and energy balance should be conducted.

The last part of this study is dedicated to the investigation of the effect of plastic defor-

mation of the �lm on the destabilization of the blister. By implementing an elastic-plastic

behaviour in the case of circular blisters growth and destabilization, we could demonstrate

that plastic dissipation helps stabilize the circular shape of the blister. The mechanism of

stabilization of circular blisters in ductile thin �lm is however not totally clari�ed. Plastic

dissipation is thought to in�uence mode mixity which leads to a stabilization. Nevertheless

this hypothesis needs to be con�rmed via a study of the evolution of mode mixity during

the growth of the circular blister.
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Conclusion

In this study, we have developed a 3D mechanical model to study the buckling delamination

of ductile thin �lms on rigid substrates. The model has been implemented under the �nite el-

ement code ABAQUS and takes into account isotropic plasticity, geometrically non-linearity

contact with on a rigid substrate. Delamination of the �lm from the substrate is also taken

into account by a a mode mixity dependent cohesive zone model. The main parameters

used in this the model to describe the geometry of the �lm, its elastic-plastic behaviour and

the value of residual stresses were measured experimentally on a gold thin �lm of 400 nm

thick, deposited by sputtering on a Si(100) substrate. The pro�les of the buckling patterns

have been characterized using atomic force microscopy and it has been evidenced that these

pro�les cannot be simply explained in the framework of linear elasticity. In particular, the

straight blister present an unusually elongated shape with a curved basis, while the circular

blisters showed a strong bending of the �lm at the delamination front. The internal stresses

have been determined by the X -ray diffraction method to be around a few hundreds MPa,

typically 300 MPain compression in the case of the straight blister. Finally, the elastic-plastic

response of the thin �lm has been studied using the nano-indentation technique. In partic-

ular, the Young's modulus of the �lm is shown to be around 85 GPaand and its yield stress

around 400 MPa. The �lm showed little hardening and we chose to model its elastic-plastic

behaviour using a Ludwik law with a small hardening coef�cient (approximately 50 MPa).

One remarkable observation from this experimental study was the obvious possibility

of triggering the buckling of ductile thin �lms with residual stresses that are lower than the

theoretical critical buckling stress predicted for a purely elastic �lm. Indeed, in the case of

the straight blister, the residual stress � f = 300 MPa is lower than the critical stress calcu-

lated using the geometric and elastic properties of the �lm � c ' 550 MPa. One aim of the

numerical study was thus to study the in�uence of plasticity on the morphology of straight

and circular blisters. Another objective was to understand another remarkable observation

concerning circular gold blisters on silicon substrates. Those observations are suggesting

that this circular shape can be stable, whereas theoretical derivations in the framework of

pure elasticity showed that it should not.

In chapter 3, we focused on the study of buckling of ductile thins �lms without delam-

ination and discussed the in�uence of plasticity on the buckling mechanism. We have �rst

studied the in�uence of the ratio � f
� y

on the buckling of thin �lm subjected to monotonic

loading. We have evidenced that the elastic-plastic behaviour of the �lm causes higher de-

�ections of the blister compared to the elastic case. In particular, the de�ection of the blister
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is an increasing function of � f
� y

. This behaviour is due to the increase in the plastic defor-

mation levels and their concentration at the base of the blister with increasing values of � f
� y

.

Another interesting observation is that for � f
� y

> 1, we could cause the buckling of the �lm

even if the value of residual stresses � f are lower than the critical buckling stress derived

for a purely elastic �lm. However, even for high values of � f
� y

and a �nely meshed plate, the

generic sinusoidal shape of the blister seems to be maintained.

Then, we have focused on the experimental cases and demonstrated that the use of

monotonic loading with the experimental values of residual and yield stresses seems to

be suf�cient to form circular buckles with pro�les that are (under certain conditions) suf�-

ciently close to the the experimental case in terms of de�ection and shape. However, in the

case of the straight blister, the use of monotonic loading is not even enough to trigger the

buckling of the �lm.

In order to solve this issue, we proposed a model that takes into account the evolution

of stress during the deposition of thin �lms by using non-monotonic loading. During the

non-monotonic loading, the stress in the �lm �rst reaches linearly a maximum stress value

� max which is slightly above the initial yield stress before decreasing until the �nal stress

corresponding to the measurement of the �nal curvature. This method aims at triggering

the buckling of the straight blister (because � f is higher than � c). During the unloading of

the �lm, the plastic deformation of the �lm helps maintain the structure of the blister which

allowed as to generate buckling structures that have a similar maximum de�ection to the

experimental case.

The only issue that remained unsolved using an elastic-plastic buckling model is the

elongated shape of the observed straight blister. Indeed, the addition of plasticity to the

buckling problem does not seem to alter the sinusoidal shape of the blister. In order to solve

this problem, we decided to account for delamination in the buckling model and study the

in�uence of the interface along with the elastic-plastic behaviour of the �lm on the equilib-

rium shape of the blister which is presented in chapter 4.

The addition of cohesive zone behaviour proved to be a key ingredient in modifying

the sinusoidal shape of the blister. Indeed by setting the appropriate cohesive parameters

that allow for the onset and the propagation of interfacial damage and choosing values of

applied stresses that are higher than the yield stress, we achieved elongated straight blisters

with shapes that are comparable to the experimentally observed pro�le. The mechanism

leading to the formation of such shapes as well as the in�uence of plasticity on the interfacial

damage response have been studied thoroughly. In particular, we have demonstrated that

the elastic-plastic response of thin �lms causes higher mode mixity values a the crack front,

making it more dif�cult to delaminate than elastic �lm under the same loading conditions.

In the last part of this thesis, we have studied the in�uence of the mode mixity depen-

dence parameter and the plasticity on the growth and destabilization of circular blisters. In

particular, we have demonstrated that plasticity helps stabilize the circular shape during its

growth. This result is important and might explain why we could not so far observe a non-

axisymmetric structures in ductile thin �lm. This work should be completed by the study of
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the evolution of mode mixity during the propagation of circular blister in the case of elastic-

plastic thin �lms and compare it to the elastic case in order to clarify the mechanism behind

the stabilization of circular shapes.

Outlook

Coupling of Finite Element Modelling and Discrete Dislocation Dynamic

b(a)

(b)

FIGURE 4.30: (a) Edge-screw discretization of a dislocation line. Blue lines are edge
dislocations and red lines are screw dislocations. (b) Coupling �nite element method
with discrete dislocation dynamics. The Frank–Read sources are distributed randomly
in a rectangular single crystal that represents the thin �lm. Different colours repre-

sent different slip systems.

In the case of thin �lms undergoing plastic deformations, size effects are often observed.

One way of taking this phenomenon into account while staying in a continuum framework

is to use strain gradient plasticity models. One another way is to use a coupled approach

between �nite element method and discrete dislocation dynamics (DDD). During this the-

sis, we started a collaboration with Dr. M. Fivel in order to model the buckling of ductile

thin �lms using the coupling between discrete dislocation dynamics simulation and �nite

element method. This method provides a complementary approach to the �nite element

model discussed in the chapters 3 and 4 in which a macroscopic plastic law is implemented.

The model is implemented using the code Cast3m as the �nite element solver and TRIDIS

for dislocation dynamics. TRIDIS is an edge-screw 3D Discrete Dislocation Dynamics code

developed at SIMaP Laboratory by M.Fivel and M. Verdier [ 107]. The concept of 3D dislo-

cation dynamics method has been imagined by L. Kubin, Y. Bréchet and G. Canova in the
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early 1990s [20, 62]. In such model, the dislocation lines are discretized into sets of edge and

screw dislocations segments embedded in a continuum medium as shown in �gure 4.30(a)

and each of the segments generates a long range elastic stress �eld within the simulated

body.

In the case of our model, a �xed number of Frank–Read sources are distributed ran-

domly in a rectangular single crystal that represents the thin �lm at the beginning of the

simulation. The geometry and a random distribution of Frank-read sources is presented in

�gure 4.30(b). During the simulation, the desired loading of the �lm is then applied linearly

as function of time. During each load increment, the equilibrium elastic stress �eld inside

the bulk material is calculated using the �nite element solver and the results of the previous

discrete dislocation dynamics calculation. The stress acting on each dislocation segment is

then actualized and the segments are displaced accordingly. The dislocation motion is re-

peated until all the dislocations reach their equilibrium state. The algorithm then moves to

the next loading increment in the FEM problem.

For the moment, we are working on the compensation of the traction at the free surfaces

of the �lm by implementing image stresses [ 47]. Preliminary results of the buckling thin

�lms obtained using FEM/DDD coupling should however be obtained soon.

Other questions raised by experiments

In the frame of our study, we considered exclusively two simple buckling structures which

are straight and circular blisters. However, the observations of the buckling structures in

ductile thin �lms reveal more complex structures. For instance, a snail-like structure have

been observed in a630 nmgold thin �lm deposited on a Si( 100) substrate[18] and is shown

in �gure 4.31(a). It is thought that such structures result from the successive growth of a

circular blister during the thin �lm deposition. To model such structures, a model taking

into account the variation of the thickness during the loading should be developed.

Another interesting structure has been observed in a 200 nm thin �lm and features a

straight blister segment with two circular blisters at its ends, as shown in �gure 4.31(b).

When observing the circular blister located at the top of �gure 4.31(b), we can also notice

two growing straight blisters in the form of branches. This structure could result either from

the interaction between a straight and a circular blister or from the destabilization of the

circular blister itself into a straight one. The study of the interaction of a straight blister and

a circular one should be feasible using the 3D �nite element model developed in this work.
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FIGURE 4.31: Examples of unresolved cases of buckling delamination structures in
gold thin �lm. (a) Signal error-mode atomic force microscopy image of a snail like
blister. The rings result from the successive growth of one circular blister in a gold
thin �lm, labelled from initial state 1 to the �nal position 5. – Au(630 nm) on Si [18].
(b) interaction between straight and circular blisters – Au(200 nm) on Si.(Courtesy

of C. Coupeau, Institut P')
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Appendix A

In�uence of mesh size on

elastic-plastic response

Choosing the right element type and size is a fundamental part in any FEM simulation

process. It in�uences the accuracy, convergence and speed of the solution especially in

non-linear problems with high local deformation and high stress concentration, which are

encountered in elastic-plastic buckling problems. In this part, we will focus therefore on in-

vestigating the effect of elements type and discretization on the buckling pro�les and plastic

deformation of elastic-plastic thin �lms. Once the choice of element's type set, we will in-

vestigate the effect of mesh density on the �nal result and choose a density that provides

good balance between accuracy and calculations' speed. In order to have reasonably short

running times, we chose to perform this study using only a straight blister geometry.

A.1 selection of the appropriate element's type

During elastic-plastic buckling, thin �lms undergo large deformations and can exhibit large

stress concentration resulting in plastic deformations especially near the interface between

the �lm and the rigid substrate. In order to solve this non-linear problem numerically opti-

mally, one needs to perform non-linear analysis and use 3D elements that can sustain rigid

contact, plasticity and large deformations. Moreover, quadratic interpolation is known to

provide higher accuracy than �rst order interpolation in bending problems, and to favor lo-

calization of plastic strains. Among quadratic 3D elements available in ABAQUS elements'

library, one can �nd tetrahedrons and bricks. Although tetrahedral elements are very con-

venient to mesh complex shapes and perform re�ned meshing, they can exhibit poor con-

vergence rates especially in problems involving hard contact. For this reason, we mainly

used quadratic uniform bricks in buckling problems. We also tested (as presented in the

next paragraph) a combination of quadratic bricks and tetrahedrons: We used re�ned bricks

near the base of the blister where shear stress and plastic deformation are the highest, and

meshed the remaining parts automatically with tetrahedrons as presented in �gure A.5 .

In our case study, because the thickness is small compared to the in-plane dimensions, it
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can be very tempting to uses shell elements in order to reduce computational costs. How-

ever, it should be noted that in the formulation of conventional shell elements, the con-

stitutive equations are projected onto the shell reference surface which is usually the mid-

surface. It is clear that such a formulations is not suitable with the application of three-

dimensional elastic-plastic constitutive equations. To encounter this issue, the use of 3D

shell elements called continuum shell elements instead of the conventional ones is recom-

mended in ABAQUS. In fact, continuum shells have several integration points through

thickness which make it possible to discretize an entire three-dimensional body and esti-

mate its through-thickness section forces. So, from a modelling point of view, these elements

are three-dimensional elements with the kinematics of conventional shell elements [ 21].

a b c

FIGURE A.1: Shell and solid elements: (a) Continuum shell linear elements (8-node
brick, SC8R), (b) Solid quadratic element (20-node brick, C3D20), (c) Solid quadratic

element (10-node tetrahedron, C3D10)

It should be noted that continuum shell elements can be stacked to provide more re�ned

through-thickness response allowing a richer transverse shear stress and force prediction.

To sum up, the elements used in the frame of this study are the following (see �g A.1):

• SC8R: continuum shell element, 8-node linear brick, reduced integration

• C3D20: solid element, 20-node quadratic brick, full integration

• C3D10: solid element, 10-node quadratic tetrahedron, full integration

A.1.1 Solid elements versus continuum shells

Although continuum shell elements seem to properly discretize a three-dimensional body,

especially when several elements are stacked through the thickness, we decided to verify to

what extend the overall deformation sustained by these elements is consistent with that of

solid elements. We ran several simulations using continuum shell elements (SC8R) and solid

quadratic bricks (C3D20) and compared their respective responses to different � 0
� y

ratios in

terms of �nal blister shape and equivalent plastic strain. The geometry is chosen according

to the experimental case study presented in section 2.1 and we chose to place several ele-

ments through the thickness in both solid and continuum shell simulations, for the sake of

accuracy. We resumed the different parameters in the table A.1.

The different pro�les are plotted in �gure A.2. Curves corresponding to solid element

response are plotted in plain lines whereas those corresponding to continuum shell response

are plotted in dotted lines. We can notice that for ratios � 0
� y

� 1:06, solid and shell curves

are almost superimposed. However for the highest value of � 0
� y

, there is a small difference
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FIGURE A.3: Equivalent plastic strain mapping obtained in the case of solid and
shell elements for the same� 0 = 850 MPa and the same hardening law (Ludwik

� y = 800 MPa, K = 130 MPa, n = 0 :25)

• The maximum PEEQ value is reached at the folding area of the �lm near the interface

between the �lm and the rigid substrates. The top part of the �lm concerned with

folding also have high values of PEEQ (higher than 5%).

• The plane area of the �lm (unbended) has sensibly lower PEEQ values (less than 5%).

On the other hand, the two cases present some differences, caracterized by various PEEQ

distributions and concentration areas:

• In the case of continuum shell elements, the maximum Value is 6:2% (located at the

base of the buckle), whereas in the case of continuum solid elements the value of 26%.

• The area where PEEQ reaches the maximum is more extended in the case of solid

elements

As a conclusion, continuum shell elements do not seem to properly capture the plastic

deformation and have different equivalent plastic strain distribution and values compared

to solid element modelling. This difference have small impact on the pro�le's shape and

hight in the case of simple buckling. However, when delamination is involved such a differ-

ence of plastic deformation can have a signi�cant impact on the �nal diameter of the blister.

Thus, even if it makes calculations costs more important, only solid elements have been

used in the frame of elastic-plastic buckling.

A.2 In�uence of the elements' size

Once the choice of element's type is set (solid element with quadratic interpolation), it is im-

portant to study the effect of global and local mesh re�nement on elastic-plastic buckling in

order to assure good accuracy. The main challenge is to �nd the best compromise between

calculations costs and accuracy. In fact, re�ned meshes guarantee a good accuracy but can be

very demanding in terms of calculation time and convergence rate, whereas bigger elements
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are known to speed the calculations while being less accurate. In this study, we tested sev-

eral solid elements' sizes. The process of mesh re�nement starts by resolving the buckling

problem with a coarse mesh (3 elements through thickness) before moving successively to

�ner meshes and comparing the results between these different meshes in term of buckling

pro�les and plastic strain distribution. The geometry, elastic properties and hardening law

are the same for the different mesh sizes and are identical to those presented in table A.1.

We set the �nal post buckling stress to the value ( � 0
� y

= 1 :03) for all the cases. The different

levels of re�nement are shown in �gure A.5 and consist of the following con�gurations:

• Uniformly re�ned mesh using solid quadratic hexahedrons, 3 elements through the

thickness

• Uniformly re�ned mesh using solid quadratic hexahedrons, 5 elements through the

thickness

• Uniformly re�ned mesh using solid quadratic hexahedrons, 10 elements through the

thickness

• Uniformly re�ned mesh using solid quadratic hexahedrons, 30 elements through the

thickness

• Locally re�ned mesh using solid quadratic hexahedrons at the folding area (20 ele-

ments through the thickness), the remaining part of the �lm is meshed with coarser

tetrahedral elements (4 elements through thickness)

Lets us �rst focus on uniform hexahedral meshes. The equivalent plastic strain mapping

of the coarsest meshing presented in �gure A.5 reveals little plastic strain concentration at

the folding area of the blister. At the interface between the �lm and the substrate, the max-

imum value doesn't exceed 5% and is located within a single layer of elements. It is clear

that this level of re�nement is not suf�cient. Ideally, we would like to observe a concentra-

tion of plastic deformation within multiple element layers. When using 5 elements through

the thickness, the maximum PEEQ value is this time equal to 10:55% and the correspond-

ing area is still located within a single layer of elements. For 10 and 30 elements through

thickness, the maximum PEEQ value is equal to 21:11%and 47%respectively. The area cor-

responding to PEEQ > 5%seems to be more extended alongx direction. However it is still

con�ned within a single layer of elements along the z direction. Computing simulations

with higher number of elements through thickness were dif�cult to perform as it resulted

in higher PEEQ values and convergence problems. The uniform meshes with 10and 30ele-

ments through thickness capture in similar ways the plastic distribution with a difference in

the maximum PEEQ values reached. Moreover, their buckling pro�les presented in �gure

A.4 are also very similar and above those corresponding to 3 and 5 elements through thick-

ness. keeping in mind computational costs, modelling the �lms with 10 elements through

thickness is more convenient and reasonable although less accurate.

In order to get more accurate results at lower or similar convergence rate, we tried elab-

orating a locally re�ned mesh: We used solid hexahedrons at the area of interest (folding
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FIGURE A.5: Effect of mesh re�nement on the equivalent plastic strain distribution.
The pro�les are obtained for the same ratio� 0

� y
= 1 :03, the same hardening law (Lud-

wik � y = 800 MPa, K = 130 MPa, n = 0 :25) and different solid element sizes:
Uniform hexahedral mesh with respectively 3, 5, 10 and 30 elements through thick-
ness. The last case has hybrid meshing with locally re�ned hexahedrons at the folding
area (20 elements) and coarser tetrahedrons in the remaining part. (� 0 = 830 MPa,

� y = 800 MPa, K = 130 MPa, n = 0 :25)
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