D. E. Jaalouk and J. Lammerding, Mechanotransduction gone awry, Nat. Rev. Mol. Cell Biol, vol.10, pp.63-73, 2009.
DOI : 10.1038/nrm2597

URL : http://europepmc.org/articles/pmc2668954?pdf=render

L. Chin, Y. Xia, D. E. Discher, and P. A. Janmey, Mechanotransduction in cancer, Curr. Opin. Chem. Eng, vol.11, pp.77-84, 2016.

C. M. Lo, H. B. Wang, M. Dembo, and Y. L. Wang, Cell movement is guided by the rigidity of the substrate, Biophys. J, vol.79, pp.144-152, 2000.

A. J. Engler, Matrix elasticity directs stem cell lineage specification, Cell, vol.126, pp.677-89, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : https://doi.org/10.1016/j.cell.2006.06.044

S. A. Ruiz and C. S. Chen, Emergence of Patterned Stem Cell Differentiation Within Multicellular Structures, Stem Cells, vol.26, pp.2921-2927, 2008.

D. Riveline, Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism, J. Cell Biol, vol.153, pp.1175-1186, 2001.

C. Grashoff, Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics, Nature, vol.466, pp.263-269, 2010.

Y. Cui, Cyclic stretching of soft substrates induces spreading and growth, Nat. Commun, vol.6, p.6333, 2015.

S. Jungbauer, H. Gao, J. P. Spatz, and R. Kemkemer, Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates, Biophys. J, vol.95, pp.3470-3478, 2008.

A. Livne, E. Bouchbinder, and B. Geiger, Cell reorientation under cyclic stretching, Nat. Commun, vol.5, p.3938, 2014.
DOI : 10.1016/j.bpj.2013.11.309

URL : https://doi.org/10.1016/j.bpj.2013.11.309

C. Sears and R. Kaunas, The many ways adherent cells respond to applied stretch, J. Biomech, vol.49, pp.1347-1354, 2016.

H. L. Sweeney, . Discher, and A. J. Engler, Matrix elasticity directs stem cell lineage specification, Cell, 2006.

D. Kim, P. K. Wong, J. Park, A. Levchenko, and Y. Sun, Microengineered platforms for cell mechanobiology, Annu. Rev. Biomed. Eng, vol.11, pp.203-233, 2009.
DOI : 10.1146/annurev-bioeng-061008-124915

K. Haase and A. E. Pelling, Investigating cell mechanics with atomic force microscopy, J. R. Soc. Interface, vol.12, p.20140970, 2015.

N. Wang, J. P. Butler, and D. E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, pp.1124-1127, 1993.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys. J, vol.76, pp.1145-51, 1999.

A. M. Quinlan, L. N. Sierad, A. K. Capulli, L. E. Firstenberg, and L. Kristen, Combining Dynamic Stretch and Tunable Stiffness to, Probe Cell Mechanobiology In Vitro, vol.6, 2011.

R. Krishnan, Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness, PLoS One, vol.4, p.5486, 2009.

N. J. Sniadecki, Magnetic microposts as an approach to apply forces to living cells, Proc. Natl. Acad. Sci. USA, vol.104, pp.14553-14561, 2007.

J. Digabel, Magnetic micropillars as a tool to govern substrate deformations, Lab Chip, vol.11, p.2630, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01378197

K. Nagayama, T. Inoue, Y. Hamada, and T. Matsumoto, A novel patterned magnetic micropillar array substrate for analysis of cellular mechanical responses, J. Biomech, vol.65, pp.194-202, 2017.

E. A. Cavalcanti-adam, Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands, Biophys. J, vol.92, pp.2964-74, 2007.

M. T. Frey, I. Y. Tsai, T. P. Russell, S. K. Hanks, and Y. Wang, Cellular responses to substrate topography: role of myosin II and focal adhesion kinase, Biophys. J, vol.90, pp.3774-3782, 2006.

S. R. Roberts, M. M. Knight, D. Lee, and D. L. Bader, Mechanical compression influences intracellular Ca2+ signaling in chondrocytes seeded in agarose constructs, J. Appl. Physiol, vol.90, pp.1385-1391, 2001.

J. D. Szafranski, Chondrocyte mechanotransduction: Effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis, Osteoarthr. Cartil, vol.12, pp.937-946, 2004.

N. Desprat, W. Supatto, P. Pouille, E. Beaurepaire, and E. Farge, Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos, Dev. Cell, vol.15, pp.470-477, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324225

G. Cheng, J. Tse, R. K. Jain, and L. L. Munn, Micro-Environmental Mechanical Stress Controls Tumor Spheroid Size and Morphology by Suppressing Proliferation and Inducing Apoptosis in Cancer Cells, PLoS One, vol.4, p.4632, 2009.

F. Montel, Stress clamp experiments on multicellular tumor spheroids, Phys. Rev. Lett, vol.107, pp.1-4, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01138973

J. M. Tse, Mechanical compression drives cancer cells toward invasive phenotype, Proc Natl Acad Sci, vol.109, pp.911-916, 2012.

M. Kustov, Magnetic characterization of micropatterned Nd-Fe-B hard magnetic films using scanning Hall probe microscopy, J. Appl. Phys, vol.108, p.63914, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00544416

, SCIeNtIfIC REPORTs |, vol.8, 2018.

N. M. Dempsey, Micro-magnetic imprinting of high field gradient magnetic flux sources, Appl. Phys. Lett, vol.104, p.262401, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01341124

Q. Tseng, A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels, Lab Chip, vol.11, pp.2231-2240, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00611335

J. Crocker and D. Grier, Methods of Digital Video Microscopy for Colloidal Studies, J. Colloid Interface Sci, vol.179, pp.298-310, 1996.

B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, High resolution traction force microscopy based on experimental and computational advances, Biophys. J, vol.94, pp.207-227, 2008.

H. G. Döbereiner, Lateral membrane waves constitute a universal dynamic pattern of motile cells, Phys. Rev. Lett, vol.97, pp.10-13, 2006.

D. J. Barry, C. H. Durkin, J. V. Abella, and M. Way, Open source software for quantification of cell migration, protrusions, and fluorescence intensities, J. Cell Biol, vol.209, pp.163-180, 2015.

A. R. Babu and N. Gundiah, Role of Crosslinking and Entanglements in the Mechanics of Silicone Networks, Exp. Mech, vol.54, pp.1177-1187, 2014.

S. V. Plotnikov, B. Sabass, U. S. Schwarz, and C. M. Waterman, High-resolution traction force microscopy, Methods in cell biology, vol.123, 2014.

C. N. Holenstein, U. Silvan, and J. G. Snedeker, High-resolution traction force microscopy on small focal adhesions-improved accuracy through optimal marker distribution and optical flow tracking, Sci. Rep, vol.7, p.41633, 2017.

T. Das, T. K. Maiti, and S. Chakraborty, Traction force microscopy on-chip: shear deformation of fibroblast cells, Lab Chip, vol.8, pp.1308-1326, 2008.

S. J. Han, Y. Oak, A. Groisman, and G. Danuser, Traction microscopy to identify force modulation in subresolution adhesions, Nat. Methods, vol.12, pp.653-656, 2015.

J. P. Butler, I. M. Toli?-nørrelykke, B. Fabry, and J. J. Fredberg, Traction fields, moments, and strain energy that cells exert on their surroundings, Am. J. Physiol. Cell Physiol, vol.282, pp.595-605, 2002.

P. Kollmannsberger, C. M. Bidan, J. W. Dunlop, and P. Fratzl, The physics of tissue patterning and extracellular matrix organisation: how cells join forces, Soft Matter, vol.7, pp.9549-9560, 2011.

N. Q. Balaban, Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates, Nat. Cell Biol, vol.3, pp.466-472, 2001.

L. Trichet, Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness, Proc Natl Acad Sci, vol.108, pp.6933-6938, 2012.

N. Shoham and A. Gefen, The influence of mechanical stretching on mitosis, growth, and adipose conversion in adipocyte cultures, Biomech. Model. Mechanobiol, vol.11, pp.1029-1045, 2012.

S. Na, Rapid signal transduction in living cells is a unique feature of mechanotransduction, Proc. Natl. Acad. Sci. USA 105, pp.6626-6631, 2008.

N. W. Goehring and S. W. Grill, Cell polarity: Mechanochemical patterning, Trends in Cell Biology, vol.23, pp.72-80, 2013.

F. Khademolhosseini, Magnetically actuated microstructured surfaces can actively modify cell migration behaviour, Biomed. Microdevices, vol.1, issue.11, 2016.

F. J. Segerer, Versatile method to generate multiple types of micropatterns, Biointerphases, vol.11, p.11005, 2016.

, Protocoles de transfection Pour obtenir des cellules exprimant un plasmide qui code pour un uorophore simple ou un biosenseur, nous décongelons les bactéries contenant ce plasmide et nous en faisons une culture. Puis nous purions l'ADN plasmidique selon les étapes du protocole "Xtra Midi Finalizers , high copy" : 1. Centrifuger dans un falcon de 50mL à 5000 rpm pendant 15 min à 4 ? C

, Resuspendre avec le milieu RES 8 ml. Aspirer refouler pour bien diluer le culot

, Ajouter le milieu LYS 8 ml, remuer en fermant 5 fois. Incuber pendant 5 min à température ambiante

, Ajouter le milieu NEU 8 ml, agiter doucement en renversant le tube jusqu'à ce que le milieu devienne blanc

, Centrifuger à 6500 g pendant 10 min

, Placer la colonne avec son ltre dans falcon de 50 ml et les laver avec le milieu EQU 12 ml en le versant sur les bords du ltre

. Verser-le-lysat-contenant-l'adn-dans-le-ltre,

. Enlever-le-ltre,

, Mettre la colonne sur un tube NEUF (ADN récupéré ici)

, Verser le milieu ELU 8 ml

, Enlever la colonne et ajouter l'isopropanol 3,5 ml

, Nous pouvons ensuite réaliser la transfection à proprement parler : 2. Dégazer 30 min sous cloche à vide 3. Nettoyer la galette en silicium avec de l'isopropanol et de l'air propre 4. Verser le mélange de PDMS sur le wafer dans une boîte de pétri 5

, Décoller le PDMS cuit du wafer et le découper avec un cutter Impression des protéines d'adhérence : 1. Préparer une solution de 97 µl PBS + 2 µl Fibronectine + 1 µl Fibrinogène 2. Déposer cette solution sur le tampon et incuber 5 min

, Aspirer la solution et bien sécher le tampon à l'argon propre 4. Poser le tampon sur le PDMS mou, appuyer légèrement 5

C. Lo, H. Wang, M. Dembo, and Y. Wang, Cell movement is guided by the rigidity of the substrate, Biophysical journal, vol.79, issue.1, p.144152, 2000.

S. Adam-j-engler, L. Sen, D. E. Sweeney, and . Discher, Matrix elasticity directs stem cell lineage specication, Cell, vol.126, issue.4, p.677689, 2006.

A. Sami, C. Ruiz, and . Chen, Emergence of patterned stem cell dierentiation within multicellular structures, Stem cells, vol.26, issue.11, p.29212927, 2008.

M. Claire, M. Wells, and . Parsons, Cell migration : developmental methods and protocols, 2011.

M. Valignat, O. Theodoly, A. Gucciardi, N. Hogg, and A. C. Lellouch, T lymphocytes orient against the direction of uid ow during lfa-1-mediated migration, Biophysical journal, vol.104, issue.2, p.322331, 2013.

A. Maggie, N. F. Ostrowski, T. W. Huang, T. Walker, C. Verwijlen et al., Microvascular endothelial cells migrate upstream and align against the shear stress eld created by impinging ow, Biophysical journal, vol.106, issue.2, p.366374, 2014.

B. Martinac, Mechanosensitive ion channels : molecules of mechanotransduction, Journal of cell science, vol.117, issue.12, p.24492460, 2004.
DOI : 10.1242/jcs.01232

URL : http://espace.library.uq.edu.au/view/UQ:111607/UQ111607_OA.pdf

B. Coste, J. Mathur, M. Schmidt, T. J. Earley, S. Ranade et al., Piezo1 and piezo2 are essential components of distinct mechanically activated cation channels, Science, vol.330, issue.6000, p.5560, 2010.
DOI : 10.1126/science.1193270

URL : http://europepmc.org/articles/pmc3062430?pdf=render

. Bifeng-pan, S. Gwenaelle, Y. Géléoc, . Asai, C. Georey et al., Tmc1 and tmc2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear, Neuron, vol.79, issue.3, p.504515, 2013.

M. John, M. Y. Tarbell, and . Pahakis, Mechanotransduction and the glycocalyx, Journal of internal medicine, vol.259, issue.4, p.339350, 2006.

M. John, . Tarbell, . Eno, and . Ebong, The endothelial glycocalyx : a mechano-sensor and-transducer, Science signaling, vol.1, issue.40, pp.8-8, 2008.

V. Singla and J. F. Reiter, The primary cilium as the cell's antenna : signaling at a sensory organelle, science, vol.313, issue.5787, p.629633, 2006.

. Nicolas-f-berbari, K. Amber, C. J. Connor, B. Haycraft, and . Yoder, The primary cilium as a complex signaling center, Current biology, vol.19, issue.13, pp.526-535, 2009.

S. David-a-hoey, S. Tormey, . Ramcharan, J. Fergal, C. O'brien et al., Primary cilia-mediated mechanotransduction in human mesenchymal stem cells, Stem cells, vol.30, issue.11, p.25612570, 2012.

L. M. Muhammad-h-zaman, A. L. Trapani, D. Sieminski, H. Mackellar, . Gong et al., Migration of tumor cells in 3d matrices is governed by matrix stiness along with cell-matrix adhesion and proteolysis, Proceedings of the National Academy of Sciences, vol.103, issue.29, p.1088910894, 2006.

A. Theresa, E. M. Ulrich, J. De, S. Pardo, and . Kumar, The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells, Cancer research, vol.69, issue.10, p.41674174, 2009.

X. Ma, M. E. Schickel, D. Mark, A. L. Stevenson, . Sarang-sieminski et al., Fibers in the extracellular matrix enable long-range stress transmission between cells, Biophysical journal, vol.104, issue.7, p.14101418, 2013.

S. Ido-nitsan, . Drori, E. Yair, S. Lewis, S. Cohen et al., Mechanical communication in cardiac cell synchronized beating, Nature Physics, vol.12, issue.5, p.472477, 2016.

K. Austen, P. Ringer, A. Mehlich, A. Chrostek-grasho, C. Kluger et al., Extracellular rigidity sensing by talin isoform-specic mechanical linkages, Nature cell biology, vol.17, issue.12, p.1597, 2015.

D. Iain, . Campbell, H. Mark, and . Ginsberg, The talintail interaction places integrin activation on ferm ground, Trends in biochemical sciences, vol.29, issue.8, p.429435, 2004.

H. Wolfgang, . Ziegler, D. Robert-c-liddington, and . Critchley, The structure and regulation of vinculin, Trends in cell biology, vol.16, issue.9, p.453460, 2006.

J. Parsons, A. R. Horwitz, and M. Schwartz, Cell adhesion : integrating cytoskeletal dynamics and cellular tension, Nature reviews Molecular cell biology, vol.11, issue.9, p.633, 2010.
DOI : 10.1038/nrm2957

URL : http://europepmc.org/articles/pmc2992881?pdf=render

E. Christopher and . Turner, Paxillin and focal adhesion signalling, Nature cell biology, vol.2, issue.12, p.231, 2000.

. Tracee-s-panetti, Tyrosine phosphorylation of paxillin, fak, and p130cas : eects on cell spreading and migration, Front Biosci, vol.7, pp.143-150, 2002.

M. Rühl, M. Johannsen, J. Atkinson, D. Manski, E. Sahin et al., Soluble collagen vi induces tyrosine phosphorylation of paxillin and focal adhesion kinase and activates the map kinase erk2 in broblasts, Experimental cell research, vol.250, issue.2, p.548557, 1999.

R. Seger, . Edwin, and . Krebs, The mapk signaling cascade, The FASEB journal, vol.9, issue.9, p.726735, 1995.

H. Aberle, H. Schwartz, and R. Kemler, Cadherin-catenin complex : protein interactions and their implications for cadherin function, Journal of cellular biochemistry, vol.61, issue.4, p.514523, 1996.

F. Drees, S. Pokutta, S. Yamada, J. Nelson, and W. Weis, ?-catenin is a molecular switch that binds e-cadherin-?-catenin and regulates actin-lament assembly, Cell, vol.123, issue.5, p.903915, 2005.

J. Craig-d-buckley, K. L. Tan, D. Anderson, N. Hanein, W. I. Volkmann et al., The minimal cadherin-catenin complex binds to actin laments under force, Science, vol.346, issue.6209, p.1254211, 2014.

D. Kevin, W. J. Costa, . Hucker, C. Frank, and . Yin, Buckling of actin stress bers : a new wrinkle in the cytoskeletal tapestry, Cell motility and the cytoskeleton, vol.52, issue.4, p.266274, 2002.

O. Chaudhuri, H. Sapun, D. Parekh, and . Fletcher, Reversible stress softening of actin networks, Nature, vol.445, issue.7125, p.295, 2007.

. George-w-greene, H. Travers, H. Anderson, B. Zeng, J. Zappone et al., Force amplication response of actin laments under conned compression, Proceedings of the National Academy of Sciences, vol.106, issue.2, p.445449, 2009.

C. Anthony, G. M. Schramm, G. A. Hocky, L. Voth, J. Blanchoin et al., Actin lament strain promotes severing and colin dissociation, Biophysical Journal, vol.112, issue.12, p.26242633, 2017.

A. Jégou, G. Carlier, and . Romet-lemonne, Formin mdia1 senses and generates mechanical forces on actin laments, nat commun, vol.4, 1883.

B. Alberts, A. Johnson, J. Lewis, M. Ra, K. Roberts et al., Molecular biology of the cell, 2002.

O. Hamant, G. Marcus, H. Heisler, P. Jönsson, M. Krupinski et al., Developmental patterning by mechanical signals in arabidopsis, science, vol.322, issue.5908, p.16501655, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00412612

, Alexandre Persat. Bacterial mechanotransduction. Current opinion in microbiology, vol.36, p.16, 2017.

C. Christopher, . Dufort, J. Matthew, V. M. Paszek, and . Weaver, Balancing forces : architectural control of mechanotransduction, Nature reviews Molecular cell biology, vol.12, issue.5, p.308, 2011.

Y. Tsukada, K. Aoki, T. Nakamura, Y. Sakumura, M. Matsuda et al., Quantication of local morphodynamics and local gtpase activity by edge evolution tracking, PLoS computational biology, vol.4, issue.11, p.1000223, 2008.

M. Machacek, L. Hodgson, C. Welch, H. Elliott, O. Pertz et al., Coordination of rho gtpase activities during cell protrusion, Nature, vol.461, issue.7260, p.99, 2009.

Y. Anna-karin-e-johnsson, M. Dai, . Nobis, J. Martin, E. J. Baker et al., The rac-fret mouse reveals tight spatiotemporal control of rac activity in primary cells and tissues, Cell reports, vol.6, issue.6, p.11531164, 2014.

, Karl Deisseroth. Optogenetics. Nature methods, vol.8, issue.1, p.26, 2011.

J. E. Toettcher, O. D. Weiner, and . Lim, Using optogenetics to interrogate the dynamic control of signal transmission by the ras/erk module, Cell, vol.155, issue.6, p.14221434, 2013.

J. Robert, Y. Pelham, and . Wang, Cell locomotion and focal adhesions are regulated by substrate exibility, Proceedings of the National Academy of Sciences, vol.94, issue.25, p.1366113665, 1997.

L. Adam-j-engler, . Richert, Y. Joyce, C. Wong, D. E. Picart et al., Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer lms : correlations between substrate stiness and cell adhesion, Surface Science, vol.570, issue.1-2, p.142154, 2004.

A. Engler, L. Bacakova, C. Newman, A. Hategan, M. Grin et al., Substrate compliance versus ligand density in cell on gel responses, Biophysical journal, vol.86, issue.1, p.617628, 2004.

S. Kippenberger, A. Bernd, M. Guschel, J. Müller, R. Kaufmann et al., Signaling of mechanical stretch in human keratinocytes via map kinases, Journal of investigative dermatology, vol.114, issue.3, p.408412, 2000.

T. Guillaume, M. A. Charras, and . Horton, Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation, Biophysical journal, vol.82, issue.6, p.29702981, 2002.

N. Wang, P. James, D. E. Butler, and . Ingber, Mechanotransduction across the cell surface and through the cytoskeleton, Science, vol.260, issue.5111, p.11241127, 1993.

R. Krishnan, C. Y. Park, Y. Lin, J. Mead, R. T. Jaspers et al., Reinforcement versus uidization in cytoskeletal mechanoresponsiveness, PloS one, vol.4, issue.5, p.5486, 2009.

J. Nathan, A. Sniadecki, . Anguelouch, T. Michael, C. M. Yang et al., Magnetic microposts as an approach to apply forces to living cells, Proceedings of the National Academy of Sciences, vol.104, issue.37, p.1455314558, 2007.

K. Nagayama, T. Inoue, Y. Hamada, and T. Matsumoto, A novel patterned magnetic micropillar array substrate for analysis of cellular mechanical responses, Journal of biomechanics, vol.65, p.194202, 2017.

J. L. Digabel, N. Biais, J. Fresnais, J. Berret, P. Hersen et al., Magnetic micropillars as a tool to govern substrate deformations, Lab on a Chip, vol.11, issue.15, p.26302636, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01378197

I. Y. Margo-t-frey, . Tsai, P. Thomas, . Russell, K. Steven et al., Cellular responses to substrate topography : role of myosin ii and focal adhesion kinase, Biophysical journal, vol.90, issue.10, p.37743782, 2006.

S. Ulrich, . Schwarz, . Jérôme, and . Soiné, Traction force microscopy on soft elastic substrates : A guide to recent computational advances, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol.1853, issue.11, p.30953104, 2015.

D. Lev, E. M. Landau, and . Lifshitz, Theory of elasticity, Course of Theoretical Physics, vol.7, p.109, 1986.

S. Ulrich, N. Q. Schwarz, D. Balaban, . Riveline, B. Bershadsky et al., Calculation of forces at focal adhesions from elastic substrate data : the eect of localized force and the need for regularization, Biophysical journal, vol.83, issue.3, p.13801394, 2002.

A. Azioune, M. Storch, M. Bornens, M. Théry, and M. Piel, Simple and rapid process for single cell micro-patterning, Lab on a chip, vol.9, issue.11, p.16401642, 2009.

Q. Tseng, I. Wang, E. Duchemin-pelletier, A. Azioune, N. Carpi et al., A new micropatterning method of soft substrates reveals that dierent tumorigenic signals can promote or reduce cell contraction levels, Lab on a chip, vol.11, issue.13, p.22312240, 2011.

H. J. Choi, N. H. Kim, B. H. Chung, and G. Seong, Micropatterning of biomolecules on glass surfaces modied with various functional groups using photoactivatable biotin, Analytical biochemistry, vol.347, issue.1, p.6066, 2005.

A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, Microcontact printing of proteins, Advanced Materials, vol.12, issue.14, p.10671070, 2000.

E. James and . Kennedy, High-intensity focused ultrasound in the treatment of solid tumours, Nature reviews cancer, vol.5, issue.4, p.321, 2005.

J. , H. Hwang, and L. Crum, Current status of clinical high-intensity focused ultrasound, Annual International Conference of the IEEE, 2009.

G. T. Haar, Therapeutic ultrasound, European Journal of Ultrasound, vol.9, issue.1, p.39, 1999.

C. Ohl, M. Arora, R. Ikink, N. D. Jong, M. Versluis et al., Sonoporation from jetting cavitation bubbles, Biophysical journal, vol.91, issue.11, p.42854295, 2006.
DOI : 10.1529/biophysj.105.075366

URL : https://doi.org/10.1529/biophysj.105.075366

D. Dalecki, Mechanical bioeects of ultrasound, Annu. Rev. Biomed. Eng, vol.6, p.229248, 2004.

I. Henrik, E. B. Elsner, and . Lindblad, Ultrasonic degradation of dna, DNA, vol.8, issue.10, p.697701, 1989.

M. Ward, J. Wu, and J. Chiu, Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents, The Journal of the Acoustical Society of America, vol.105, issue.5, p.29512957, 1999.

L. Randy, J. R. King, . Brown, K. William-t-newsome, and P. Butts, Eective parameters for ultrasound-induced in vivo neurostimulation, Ultrasound in Medicine and Biology, vol.39, issue.2, p.312331, 2013.

Y. Tufail, A. Yoshihiro, S. Pati, M. M. Li, and W. Tyler, Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound, nature protocols, vol.6, issue.9, p.1453, 2011.

L. R. Duarte, The stimulation of bone growth by ultrasound. Archives of orthopaedic and traumatic surgery, vol.101, p.153159, 1983.

L. Claes and B. Willie, The enhancement of bone regeneration by ultrasound. Progress in biophysics and molecular biology, vol.93, p.384398, 2007.

N. Doan, P. Reher, S. Meghji, and M. Harris, In vitro eects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human broblasts, osteoblasts, and monocytes, Journal of oral and maxillofacial surgery, vol.57, issue.4, p.409419, 1999.

H. J. Lee, B. Byung-hyune-choi, and . Min, Young Sook Son, and So Ra Park. Lowintensity ultrasound stimulation enhances chondrogenic dierentiation in alginate culture of mesenchymal stem cells. Articial organs, vol.30, p.707715, 2006.

D. Schumann, . Kujat, . Zellner, . Mk-angele, . Nerlich et al., Treatment of human mesenchymal stem cells with pulsed low intensity ultrasound enhances the chondrogenic phenotype in vitro, Biorheology, vol.43, p.431443, 2006.

R. Takeuchi, A. Ryo, N. Komitsu, Y. Mikuni-takagaki, A. Fukui et al., Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures : a basic science study, Arthritis research & therapy, vol.10, issue.4, p.77, 2008.

M. Z. Sardar, Y. Uddin, and . Qin, Enhancement of osteogenic dierentiation and proliferation in human mesenchymal stem cells by a modied low intensity ultrasound stimulation under simulated microgravity, PLoS One, vol.8, issue.9, p.73914, 2013.

C. Tang, R. Yang, T. Huang, D. Lu, W. Chuang et al., Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and akt pathway in osteoblasts, Molecular pharmacology, vol.69, issue.6, p.20472057, 2006.

R. Yang, W. Lin, Y. Chen, C. Tang, T. Huang et al., Regulation by ultrasound treatment on the integrin expression and dierentiation of osteoblasts, Bone, vol.36, issue.2, p.276283, 2005.

H. Watabe, . Furuhama, Y. Tani-ishii, and . Mikuni-takagaki, Mechanotransduction activates ?5?1 integrin and pi3k/akt signaling pathways in mandibular osteoblasts. Experimental cell research, vol.317, p.26422649, 2011.

M. Claire, . Mahoney, A. Mark-r-morgan, . Harrison, J. Martin et al., Therapeutic ultrasound bypasses canonical syndecan-4 signaling to activate rac1, Journal of Biological Chemistry, vol.284, issue.13, p.88988909, 2009.

J. Roper, A. Harrison, and M. Bass, Induction of adhesion-dependent signals using low-intensity ultrasound, Journal of visualized experiments : JoVE, issue.63, 2012.

K. Bandow, Y. Nishikawa, T. Ohnishi, K. Kakimoto, K. Soejima et al., Low-intensity pulsed ultrasound (lipus) induces rankl, mcp-1, and mip-1? expression in osteoblasts through the angiotensin ii type 1 receptor, Journal of cellular physiology, vol.211, issue.2, p.392398, 2007.

A. C. Nicholas-p-whitney, . Lamb, M. Tobias, A. Louw, and . Subramanian, Integrinmediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes, Ultrasound in Medicine and Biology, vol.38, issue.10, p.17341743, 2012.

K. Sena, K. Robert-m-leven, . Mazhar, R. Dale, A. Sumner et al., Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells, Ultrasound in Medicine and Biology, vol.31, issue.5, p.703708, 2005.

A. Gleizal, S. Li, J. Pialat, and J. Beziat, Transcriptional expression of calvarial bone after treatment with low-intensity ultrasound : an in vitro study, Ultrasound in Medicine and Biology, vol.32, issue.10, p.15691574, 2006.

A. J. Mortimer and . Dyson, The eect of therapeutic ultrasound on calcium uptake in broblasts, Ultrasound in medicine and Biology, vol.14, issue.6, p.499506, 1988.

F. Cheri-x-deng, H. Sieling, J. Pan, and . Cui, Ultrasound-induced cell membrane porosity, Ultrasound in Medicine and Biology, vol.30, issue.4, p.519526, 2004.

J. Parvizi, V. Parpura, J. F. Greenleaf, and M. E. Bolander, Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes, Journal of orthopaedic research, vol.20, issue.1, p.5157, 2002.

É. Costa-alvarenga, R. Rodrigues, A. Caricati-neto, F. C. Silva-filho, E. J. Paredes-gamero et al., Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the p2y receptor : role of the p2y1 receptor, Bone, vol.46, issue.2, p.355362, 2010.

D. Park, B. Jung, H. Park, H. Lee, G. Lee et al., Sound packing dna : packing open circular dna with low-intensity ultrasound, Scientic reports, vol.5, p.9846, 2015.
DOI : 10.1038/srep09846

URL : https://www.nature.com/articles/srep09846.pdf

N. Mizrahi, H. Enhua, G. Zhou, R. Lenormand, D. Krishnan et al., Low intensity ultrasound perturbs cytoskeleton dynamics, Soft matter, vol.8, issue.8, p.24382443, 2012.
DOI : 10.1039/c2sm07246g

URL : http://europepmc.org/articles/pmc3641826?pdf=render

Y. Hu, M. F. Jennifer, C. H. Wan, and . Alfred, Cytomechanical perturbations during low-intensity ultrasound pulsing, Ultrasound in Medicine and Biology, vol.40, issue.7, p.15871598, 2014.
DOI : 10.1016/j.ultrasmedbio.2014.01.003

M. Kumeta, D. Takahashi, K. Takeyasu, H. Shige, and . Yoshimura, Cell type-specic suppression of mechanosensitive genes by audible sound stimulation, PloS one, vol.13, issue.1, p.188764, 2018.

S. Ibsen, A. Tong, C. Schutt, S. Esener, H. Sreekanth et al., Sonogenetics is a non-invasive approach to activating neurons in caenorhabditis elegans, Nature communications, vol.6, p.8264, 2015.

M. Minnaert and . Xvi, on musical air-bubbles and the sounds of running water. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.16, issue.104, p.235248, 1933.

R. Dangla, S. Lee, and C. Baroud, Trapping microuidic drops in wells of surface energy, Physical review letters, vol.107, issue.12, p.124501, 2011.

P. Nghe, S. Boulineau, S. Gude, P. Recouvreux, S. Jeroen-s-van-zon et al., Microfabricated polyacrylamide devices for the controlled culture of growing cells and developing organisms, PloS one, vol.8, issue.9, p.75537, 2013.

N. Zaari, P. Rajagopalan, K. Sooyoung, A. J. Kim, J. Engler et al., Photopolymerization in microuidic gradient generators : microscale control of substrate compliance to manipulate cell response, Advanced Materials, vol.16, p.21332137, 2004.

I. Bernard, A. A. Doinikov, P. Marmottant, D. Rabaud, C. Poulain et al., Controlled rotation and translation of spherical particles or living cells by surface acoustic waves, vol.17, p.24702480, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01640119

X. Ding, B. Sz-chin-steven-lin, H. Kiraly, S. Yue, I. Li et al., On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves, Proceedings of the National Academy of Sciences, vol.109, issue.28, p.1110511109, 2012.

L. Schmid, A. David, T. Weitz, and . Franke, Sorting drops and cells with acoustics : acoustic microuidic uorescence-activated cell sorter, Lab on a Chip, vol.14, issue.19, p.37103718, 2014.

V. Madusanka, Jablonski diagram. Web course, 2017.

. Joseph-r-lakowicz, Principles of uorescence spectroscopy, 1999.

C. Grasho, D. Brenton, . Homan, D. Michael, R. Brenner et al., Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics, Nature, vol.466, issue.7303, p.263, 2010.

N. Borghi, M. Sorokina, G. Olga, W. I. Shcherbakova, B. L. Weis et al., E-cadherin is under constitutive actomyosin-generated tension that is increased at cellcell contacts upon externally applied stretch, Proceedings of the National Academy of Sciences, vol.109, issue.31, p.1256812573, 2012.

L. Beth, A. R. Pruitt, W. I. Dunn, W. Weis, and . Nelson, Mechano-transduction : from molecules to tissues, PLoS biology, vol.12, issue.11, p.1001996, 2014.

A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano, Y. Sei-iida et al., Direct observation of specic messenger rna in a single living cell under a uorescence microscope, Biophysical journal, vol.78, issue.6, p.32603274, 2000.

S. Kim-e-sapsford, J. Sun, Y. Francis, A. Kostov, D. Rasooly et al., Energy transfer-based biosensing of protease activity measured using an electroluminescent platform, Frontiers in Pathogen Detection : From Nanosensors to Systems, vol.7167, p.71670, 2009.

H. Li, D. S. Lyles, J. Michael, W. Thomas, M. G. Pan et al., Structural determination of lipid-bound apoa-i using uorescence resonance energy transfer, Journal of Biological Chemistry, vol.275, issue.47, p.3704837054, 2000.

. Thomas-d-pollard, C. William, J. Earnshaw, G. Lippincott-schwartz, and . Johnson, Cell Biology E-Book, 2016.

R. Roskoski, Src kinase regulation by phosphorylation and dephosphorylation. Biochemical and biophysical research communications, vol.331, p.114, 2005.
DOI : 10.1016/j.bbrc.2005.03.012

Y. Wang, L. Elliot, Y. Botvinick, . Zhao, W. Michael et al., Visualizing the mechanical activation of src, Nature, vol.434, issue.7036, p.1040, 2005.

C. Sun, M. Ouyang, Z. Cao, S. Ma, H. Alqublan et al., Electroporation-delivered uorescent protein biosensors for probing molecular activities in cells without genetic encoding, Chemical Communications, vol.50, issue.78, p.1153611539, 2014.

D. A. Henry-r-bourne, F. Sanders, and . Mccormick, The gtpase superfamily : conserved structure and molecular mechanism, Nature, vol.349, issue.6305, p.117, 1991.

K. Aoki and M. Matsuda, Visualization of small gtpase activity with uorescence resonance energy transfer-based biosensors, nature protocols, vol.4, issue.11, p.1623, 2009.

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai et al., Spatio-temporal images of growth-factor-induced activation of ras and rap1, Nature, vol.411, issue.6841, p.1065, 2001.

. Ep-buurman, . Sanders, . Draaijer, . Hc-gerritsen, P. M. Van-veen et al., Fluorescence lifetime imaging using a confocal laser scanning microscope, Scanning, vol.14, issue.3, p.155159, 1992.

. Hc-gerritsen, A. V. Mah-asselbergs, . Agronskaia, and . Van-sark, Fluorescence lifetime imaging in scanning microscopes : acquisition speed, photon economy and lifetime resolution, Journal of microscopy, vol.206, issue.3, p.218224, 2002.

W. Becker, M. A. Bergmann, . Hink, . König, C. Benndorf et al., Fluorescence lifetime imaging by time-correlated single-photon counting, Microscopy research and technique, vol.63, issue.1, pp.58-66, 2004.
DOI : 10.1002/jemt.10421

O. Desmond and . Connor, Time-correlated single photon counting, 2012.

S. Padilla-parra, N. Audugé, M. Coppey-moisan, and M. Tramier, Quantitative fret analysis by fast acquisition time domain im at high spatial resolution in living cells, Biophysical journal, vol.95, issue.6, p.29762988, 2008.

H. Yamada, S. Padilla-parra, S. Park, T. Itoh, M. Chaineau et al., Dynamic interaction of amphiphysin with n-wasp regulates actin assembly, Journal of Biological Chemistry, vol.284, issue.49, p.3424434256, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00503018

V. R. Michelle-a-digman, M. Caiolfa, E. Zamai, and . Gratton, The phasor approach to uorescence lifetime imaging analysis, Biophysical journal, vol.94, issue.2, pp.14-16, 2008.

A. Leray, . Spriet, . Trinel, Y. Blossey, L. Usson et al., Quantitative comparison of polar approach versus tting method in time domain im image analysis, Cytometry Part A, vol.79, issue.2, p.149158, 2011.

P. Hernan-e-grecco, P. Roda-navarro, and . Verveer, Global analysis of time correlated single photon counting fret-im data, Optics Express, vol.17, issue.8, p.64936508, 2009.

J. Matko, A. Jenei, L. Matyus, M. Ameloot, and S. Damjanovich, Mapping of cell surface protein-patterns by combined uorescence anisotropy and energy transfer measurements, Journal of Photochemistry and Photobiology B : Biology, vol.19, issue.1, p.6973, 1993.
DOI : 10.1016/1011-1344(93)80096-r

. Ds-lidke, . Nagy, . Bg-barisas, J. N. Heintzmann, K. A. Post et al., Imaging molecular interactions in cells by dynamic and static uorescence anisotropy (rim and emfret), 2003.

M. Tramier, T. Piolot, I. Gautier, V. Mignotte, and J. Coppey, Klaus Kemnitz, Christiane Durieux, and Maïté Coppey-Moisan. [homo-fret versus hetero-fret to probe homodimers in living cells, In Methods in enzymology, vol.360, p.580597, 2003.

M. Vladimir and . Mekler, A photochemical technique to enhance sensitivity of detection of uorescence resonance energy transfer, Photochemistry and photobiology, vol.59, issue.S1, p.615620, 1994.

. Eb-van-munster, M. Gj-kremers, . Adjobo-hermans, . Th, and . Gadella, Fluorescence resonance energy transfer (fret) measurement by gradual acceptor photobleaching, Journal of microscopy, vol.218, issue.3, p.253262, 2005.

. Russell-m-young, D. A. Kenneth-arnette, B. Roess, and . Barisas, Quantitation of uorescence energy transfer between cell surface proteins via uorescence donor photobleaching kinetics, Biophysical journal, vol.67, issue.2, p.881888, 1994.

T. Ha, A. Y. Ting, J. Liang, B. Caldwell, A. Ashok et al., Single-molecule uorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism, Proceedings of the National Academy of Sciences, vol.96, issue.3, pp.893-898, 1999.

M. Dahan, A. Ashok, T. Deniz, . Ha, S. Daniel et al., Ratiometric measurement and identication of single diusing molecules, Chemical Physics, vol.247, issue.1, p.85106, 1999.
DOI : 10.1016/s0301-0104(99)00132-9

A. Miyawaki, J. Llopis, R. Heim, M. Mccaery, J. A. Adams et al., Fluorescent indicators for ca 2+ based on green uorescent proteins and calmodulin, Nature, vol.388, issue.6645, p.882, 1997.
DOI : 10.1038/42264

C. M. Silva, M. M. Yang-youvan, and D. C. , Fluorescent indicators for ca 2+ based on green uorescent proteins and calmodulin, Biotechnology, 1997.

G. Gerald-w-gordon, X. H. Berry, B. Liang, B. Levine, and . Herman, Quantitative uorescence resonance energy transfer measurements using uorescence microscopy, Biophysical journal, vol.74, issue.5, p.27022713, 1998.

Z. Xia and Y. Liu, Reliable and global measurement of uorescence resonance energy transfer using uorescence microscopes, Biophysical journal, vol.81, issue.4, p.23952402, 2001.

T. Zal, . Nicholas, and . Gascoigne, Photobleaching-corrected fret eciency imaging of live cells, Biophysical journal, vol.86, issue.6, p.39233939, 2004.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, Spectral imaging and linear un-mixing enables improved fret eciency with a novel gfp2yfp fret pair, FEBS letters, vol.531, issue.2, p.245249, 2002.

C. Thaler, V. Srinagesh, P. S. Koushik, S. Blank, and . Vogel, Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer, Biophysical journal, vol.89, issue.4, p.27362749, 2005.

W. Becker, A. Bergmann, C. Biskup, T. Zimmer, N. Klöcker et al., Multiwavelength tcspc lifetime imaging, Multiphoton microscopy in the biomedical sciences, vol.II, p.7985, 2002.

P. De-beule, D. M. Owen, H. B. Manning, B. Cliord, J. Talbot et al., Rapid hyperspectral uorescence lifetime imaging, Microscopy research and technique, vol.70, issue.5, p.481484, 2007.

K. Lekadir, J. Daniel-s-elson, C. Requejo-isidro, J. Dunsby, N. Mcginty et al., Tissue characterization using dimensionality reduction and uorescence imaging, International Conference on Medical Image Computing and Computer-Assisted Intervention, p.586593, 2006.

T. Ha, T. Enderle, D. F. Ogletree, S. Daniel, . Chemla et al., Probing the interaction between two single molecules : uorescence resonance energy transfer between a single donor and a single acceptor, Proceedings of the National Academy of Sciences, vol.93, issue.13, pp.6264-6268, 1996.

N. K. Achillefs-n-kapanidis, T. A. Lee, S. Laurence, E. Doose, S. Margeat et al., Fluorescence-aided molecule sorting : analysis of structure and interactions by alternatinglaser excitation of single molecules, Proceedings of the National Academy of Sciences of the United States of America, vol.101, issue.24, p.89368941, 2004.

N. K. Lee, N. Achillefs, Y. Kapanidis, X. Wang, J. Michalet et al., Accurate fret measurements within single diusing biomolecules using alternating-laser excitation, Biophysical journal, vol.88, issue.4, p.29392953, 2005.

E. Margeat, N. Achillefs, P. Kapanidis, Y. Tinnefeld, J. Wang et al., Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes, Biophysical journal, vol.90, issue.4, p.14191431, 2006.

W. M. Reichert and G. A. Truskey, Total internal reection uorescence (tirf) microscopy. i. modelling cell contact region uorescence, Journal of cell science, vol.96, issue.2, p.219230, 1990.

D. Axelrod, Total internal reection uorescence microscopy in cell biology, Trac, vol.2, issue.11, pp.764-774, 2001.

E. Gutierrez, E. Tkachenko, A. Besser, P. Sundd, K. Ley et al., High refractive index silicone gels for simultaneous total internal reection uorescence and traction force microscopy of adherent cells, PLoS One, vol.6, issue.9, p.23807, 2011.

A. Hoppe, K. Christensen, and . Swanson, Fluorescence resonance energy transferbased stoichiometry in living cells, Biophysical journal, vol.83, issue.6, p.36523664, 2002.

H. Chen, . Henry-l-puhl-3rd, V. Srinagesh, . Koushik, S. Steven et al., Measurement of fret eciency and ratio of donor to acceptor concentration in living cells, Biophysical journal, vol.91, issue.5, pp.39-41, 2006.

. Mark-a-rizzo, H. Gerald, B. Springer, D. W. Granada, and . Piston, An improved cyan uorescent protein variant useful for fret, Nature biotechnology, vol.22, issue.4, p.445, 2004.

K. E. Andrew-s-lacroix, M. E. Rothenberg, . Berginski, N. Aarti, B. D. Urs et al., Construction, imaging, and analysis of fret-based tension sensors in living cells, In Methods in cell biology, vol.125, p.161186, 2015.

T. Nagai, K. Ibata, E. S. Park, M. Kubota, K. Mikoshiba et al., A variant of yellow uorescent protein with fast and ecient maturation for cell-biological applications, Nature biotechnology, vol.20, issue.1, p.87, 2002.

A. Savitzky, . Marcel, and . Golay, Smoothing and dierentiation of data by simplied least squares procedures, Analytical chemistry, vol.36, issue.8, p.16271639, 1964.

V. Steinmetz, Traitement d'images. Web course, 2017.

S. Dey, Some image processing and computational photography : Convolution, ltering and edge detection with python, 2017.

H. Lohninger, Funfamentals of statistics. Web course, 2014.

H. Srinagesh-v-koushik, C. Chen, H. L. Thaler, I. Puhl, and S. Vogel, Cerulean, venus, and venusy67c fret reference standards, Biophysical journal, vol.91, issue.12, pp.99-101, 2006.

V. Srinagesh, P. S. Koushik, S. Blank, and . Vogel, Anomalous surplus energy transfer observed with multiple fret acceptors, PloS one, vol.4, issue.11, p.8031, 2009.

N. Gavara and R. Chadwick, Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips, Nature nanotechnology, vol.7, issue.11, p.733, 2012.

J. Small, T. Stradal, E. Vignal, and K. Rottner, The lamellipodium : where motility begins, Trends in cell biology, vol.12, issue.3, p.112120, 2002.

, Nikon Instruments Inc. Introduction to uorescent proteins. Web article, 2018.