M. , dB SPL), la suppression controlatérale est majoritairement due au SEOCM alors qu'à basse intensité (25-35 dB SPL), la suppression controlatérale est due aux réflexes des muscles de l'oreille moyenne, Chez l'animal anesthésié, la contribution du SEOCM dépend des paramètres du stimulus, quand le stimulus ipsilatéral est de forte intensité, pp.70-80, 2012.

K. King and D. Stephens, Auditory and psychological factors in "auditory disability with normal hearing, Scand Audiol, vol.21, pp.109-114, 1992.

P. F. King, Psychogenic deafness, J Laryngol Otol, vol.68, pp.623-635, 1954.

S. G. Kujawa and M. C. Liberman, Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss, Hear. Res, vol.330, pp.191-199, 2015.

S. G. Kujawa and M. C. Liberman, Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth, J. Neurosci, vol.26, pp.2115-2123, 2006.

L. Calvez, S. Avan, P. Gilain, L. Romand, and R. , CD1 hearing-impaired mice. I: Distortion product otoacoustic emission levels, cochlear function and morphology, Hear. Res, vol.120, pp.37-50, 1998.

L. Calvez, S. Guilhaume, A. Romand, R. Aran, J. M. Avan et al., CD1 hearingimpaired mice. II. Group latencies and optimal f2/f1 ratios of distortion product otoacoustic emissions, and scanning electron microscopy, Hear. Res, vol.120, pp.51-61, 1998.

M. C. Liberman, M. J. Epstein, S. S. Cleveland, H. Wang, and S. F. Maison, Toward a Differential Diagnosis of Hidden Hearing Loss in Humans, PLoS ONE, vol.11, 2016.

B. C. Moore, Cochlear hearing loss: Physiological, psychological, and technical issues, 2007.

S. N. Merchant and J. B. Nadol, Schuknecht's Pathology of the Ear, vol.3, 2010.

T. Moser and A. Starr, Auditory neuropathy-neural and synaptic mechanisms, Nat Rev Neurol, vol.12, issue.3, pp.135-184, 2016.

F. E. Musiek and G. D. Chermak, Handbook of central auditory processing disorder: Volume I: Auditory Neuroscience and Diagnosis, p.448, 2007.

A. J. Oxenham, Predicting the Perceptual Consequences of Hidden Hearing Loss, Trends Hear, vol.20, p.2331216516686768, 2016.

G. Rance and A. Starr, Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy, Brain, vol.138, pp.3141-3158, 2015.

L. Robles and M. A. Ruggero, Mechanics of the mammalian cochlea, Physiol. Rev, vol.81, pp.1305-1352, 2001.

G. H. Saunders and M. P. Haggard, The clinical assessment of obscure auditory dysfunction-1. Auditory and psychological factors, Ear Hear, vol.10, pp.200-208, 1989.

H. F. Schuknecht, R. S. Kimura, and P. M. Naufal, The pathology of sudden deafness, Acta Otolaryngol, vol.76, pp.75-97, 1973.

G. Shone, Y. Raphael, and J. M. Miller, Hereditary deafness occurring in cd/1 mice, Hear. Res, vol.57, pp.153-156, 1991.

A. Starr, T. W. Picton, Y. Sininger, L. J. Hood, and C. I. Berlin, Auditory neuropathy, Brain, vol.119, pp.741-753, 1996.

R. J. Smith, J. F. Bale, and K. R. White, Sensorineural hearing loss in children, Lancet, vol.365, pp.879-890, 2005.

A. C. Wong and A. F. Ryan, Mechanisms of sensorineural cell damage, death and survival in the cochlea, Front Aging Neurosci, vol.7, p.58, 2015.

T. Wu and D. C. Marcus, Age-related changes in cochlear endolymphatic potassium and potential in CD-1 and CBA/CaJ mice, J. Assoc. Res. Otolaryngol, vol.4, pp.353-362, 2003.

T. Yamasoba, F. R. Lin, S. Someya, A. Kashio, T. Sakamoto et al., Current concepts in age-related hearing loss: epidemiology and mechanistic pathways, Hear. Res, vol.303, pp.30-38, 2013.

F. Zeng, Y. Kong, H. J. Michalewski, and A. Starr, Perceptual consequences of disrupted auditory nerve activity, J. Neurophysiol, vol.93, pp.3050-3063, 2005.

H. Amieva, C. Ouvrard, C. Giulioli, C. Meillon, L. Rullier et al., SelfReported Hearing Loss, Hearing Aids, and Cognitive Decline in Elderly Adults: A 25-Year Study, J Am Geriatr Soc, vol.63, pp.2099-2104, 2015.

A. Andersson, J. Fagerberg, R. Lewensohn, E. , and H. , Pharmacokinetics of cisplatin and its monohydrated complex in humans, J Pharm Sci, vol.85, pp.824-827, 1996.

J. Ashmore, Cochlear outer hair cell motility, Physiol. Rev, vol.88, pp.173-210, 2008.

P. Avan, B. Büki, and C. Petit, Auditory distortions: origins and functions, Physiol. Rev, vol.93, pp.1563-1619, 2013.

P. Avan and P. Bonfils, , 1991.

, Acta Otorhinolaryngol Belg, vol.45, pp.115-154

M. K. Bassim, R. L. Miller, E. Buss, and D. W. Smith, , 2003.

, DPOAE in humans: binaural and contralateral stimulation effects, Hear. Res, vol.182, pp.140-152

H. M. Bharadwaj, S. Verhulst, L. Shaheen, M. C. Liberman, and B. G. Shinn-cunningham, Cochlear neuropathy and the coding of supra-threshold sound, Front Syst Neurosci, vol.8, p.26, 2014.

J. I. Berger, B. Coomber, T. M. Shackleton, A. R. Palmer, W. et al., A novel behavioural approach to detecting tinnitus in the guinea pig, J. Neurosci. Methods, vol.213, pp.188-195, 2013.

M. Beurg, S. Safieddine, I. Roux, Y. Bouleau, C. Petit et al., Calcium-and otoferlin-dependent exocytosis by immature outer hair cells, J. Neurosci, vol.28, pp.1798-1803, 2008.

D. Beutner, T. Voets, E. Neher, and T. Moser, Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse, Neuron, vol.29, pp.681-690, 2001.

B. Biacabe, T. Mom, P. Avan, and P. Bonfils, Oto-rhinolaryngologie, vol.7, 1999.

B. A. Bohne and G. W. Harding, Degeneration in the cochlea after noise damage: primary versus secondary events, Am J Otol, vol.21, pp.505-509, 2000.

J. Bourien, Y. Tang, C. Batrel, A. Huet, M. Lenoir et al., Contribution of auditory nerve fibers to compound action potential of the auditory nerve, J. Neurophysiol, vol.112, pp.1025-1039, 2014.

M. R. Bowl, D. , and S. J. , The mouse as a model for age-related hearing loss-a mini-review, Gerontology, vol.61, pp.149-157, 2015.

A. Brandt, J. Striessnig, and T. Moser, CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells, J. Neurosci, vol.23, pp.10832-10840, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00757396

W. E. Brownell, C. R. Bader, D. Bertrand, and Y. De-ribaupierre, Evoked mechanical responses of isolated cochlear outer hair cells, Science, vol.227, pp.194-196, 1985.

W. E. Brownell, Outer hair cell electromotility and otoacoustic emissions, Ear Hear, vol.11, pp.82-92, 1990.

R. J. Cersosimo, Oxaliplatin-Associated Neuropathy: A Review, Annals of Pharmacotherapy, vol.39, pp.128-135, 2005.

A. R. Chambers, K. E. Hancock, S. F. Maison, M. C. Liberman, and D. B. Polley, , 2012.

, Sound-evoked olivocochlear activation in unanesthetized mice, J. Assoc. Res. Otolaryngol, vol.13, pp.209-217

C. R. Culy, D. Clemett, and L. R. Wiseman, Oxaliplatin. A review of its pharmacological properties and clinical efficacy in metastatic colorectal cancer and its potential in other malignancies, Drugs, vol.60, pp.895-924, 2000.

D. Dalian, J. Haiyan, F. Yong, L. Yongqi, R. Salvi et al., , 2013.

, Ototoxic Model of Oxaliplatin and Protection from Nicotinamide Adenine Dinucleotide, J Otol, vol.8, pp.63-71

P. Dallos, Cochlear amplification, outer hair cells and prestin, Curr. Opin. Neurobiol, vol.18, pp.370-376, 2008.

P. Dammeyer, V. Hellberg, I. Wallin, G. Laurell, M. Shoshan et al., Cisplatin and oxaliplatin are toxic to cochlear outer hair cells and both target thioredoxin reductase in organ of Corti cultures, Acta Otolaryngol, vol.134, pp.448-454, 2014.

W. Dandy and E. , Effects on hearing after subtotal section of the cochlear branch of the auditory nerve, Johns Hopkins Hosp. Bull, vol.55, pp.240-243, 1934.

K. N. Darrow, S. F. Maison, and M. C. Liberman, Cochlear efferent feedback balances interaural sensitivity, Nat. Neurosci, vol.9, pp.1474-1476, 2006.

J. Descoeur, V. Pereira, A. Pizzoccaro, A. Francois, B. Ling et al., Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors, EMBO Mol Med, vol.3, pp.266-278, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00731456

D. L. Ding, J. Wang, R. Salvi, D. Henderson, B. H. Hu et al., Selective loss of inner hair cells and type-I ganglion neurons in carboplatin-treated chinchillas. Mechanisms of damage and protection, Ann. N. Y. Acad. Sci, vol.884, pp.152-170, 1999.

D. Ding, B. L. Allman, and R. Salvi, Review: ototoxic characteristics of platinum antitumor drugs, Anat Rec (Hoboken), vol.295, pp.1851-1867, 2012.

A. A. Dror, A. , and K. B. , Hearing impairment: a panoply of genes and functions, Neuron, vol.68, pp.293-308, 2010.

D. Dulon, J. M. Aran, and J. Schacht, Potassium-depolarization induces motility in isolated outer hair cells by an osmotic mechanism, Hear. Res, vol.32, pp.123-129, 1988.

F. Duprat, F. Lesage, A. J. Patel, M. Fink, G. Romey et al., The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK, 2000.

, Mol. Pharmacol, vol.57, pp.906-912

H. Ehrsson, I. Wallin, Y. , and J. , Pharmacokinetics of oxaliplatin in humans, 2002.

, Med. Oncol, vol.19, pp.261-265

A. Fuente, The olivocochlear system and protection from acoustic trauma: a mini literature review, Front Syst Neurosci, vol.9, p.94, 2015.

K. A. Fernandez, P. W. Jeffers, K. Lall, M. C. Liberman, and S. G. Kujawa, Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears, J. Neurosci, vol.35, pp.7509-7520, 2015.

A. C. Furman, S. G. Kujawa, and M. C. Liberman, Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates, J. Neurophysiol, vol.110, pp.577-586, 2013.

E. Glowatzki and P. A. Fuchs, Transmitter release at the hair cell ribbon synapse, Nat. Neurosci, vol.5, pp.147-154, 2002.

S. S. Goodman, K. , and D. H. , Simultaneous measurement of noise-activated middleear muscle reflex and stimulus frequency otoacoustic emissions, J. Assoc. Res. Otolaryngol, vol.7, pp.125-139, 2006.

J. D. Goutman, Transmitter release from cochlear hair cells is phase locked to cyclic stimuli of different intensities and frequencies, J. Neurosci, vol.32, pp.17025-17035, 2012.

W. Grisold, G. Cavaletti, and A. J. Windebank, Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention, Neuro-Oncology, 2012.

A. Grothey, Oxaliplatin-safety profile: neurotoxicity, Semin. Oncol, vol.30, pp.5-13, 2003.

J. J. Guinan, Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans, Ear Hear, vol.27, pp.589-607, 2006.

J. J. Guinan, How are inner hair cells stimulated? Evidence for multiple mechanical drives, Hear. Res, vol.292, pp.35-50, 2012.

J. J. Guinan, Olivocochlear efferent function: issues regarding methods and the interpretation of results, Front Syst Neurosci, vol.8, p.142, 2014.

M. G. Güvenç, D. Dizdar, S. K. Dizdar, S. K. Okutur, and G. Demir, Sudden hearing loss due to oxaliplatin use in a patient with colon cancer, J Chemother, vol.28, pp.341-342, 2016.

H. E. Heffner and I. A. Harrington, Tinnitus in hamsters following exposure to intense sound, Hear. Res, vol.170, pp.83-95, 2002.

V. Hellberg, I. Wallin, S. Eriksson, E. Hernlund, E. Jerremalm et al., Cisplatin and oxaliplatin toxicity: importance of cochlear kinetics as a determinant for ototoxicity, J. Natl. Cancer Inst, vol.101, pp.37-47, 2009.

H. Hibino and Y. Kurachi, Molecular and physiological bases of the K+ circulation in the mammalian inner ear, Physiology (Bethesda), vol.21, pp.336-345, 2006.

A. E. Hickox and M. C. Liberman, Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus?, J. Neurophysiol, vol.111, pp.552-564, 2014.

F. Z. Hijri, S. Arifi, N. Ouattassi, N. Mellas, and O. Mesbahi, Oxaliplatin-induced ototoxicity in adjuvant setting for colorectal cancer: unusual side effect, J Gastrointest Cancer, vol.45, pp.106-108, 2014.

R. Hinojosa and E. L. Rodriguez-echandia, The fine structure of the stria vascularis of the cat inner ear, Am. J. Anat, vol.118, pp.631-663, 1966.

R. Hoben, G. Easow, S. Pevzner, P. , and M. A. , Outer Hair Cell and Auditory Nerve Function in Speech Recognition in Quiet and in Background Noise, Front Neurosci, vol.11, p.157, 2017.

A. J. Hudspeth, The cellular basis of hearing: the biophysics of hair cells, Science, vol.230, pp.745-752, 1985.

S. Irving, D. R. Moore, M. C. Liberman, and C. J. Sumner, Olivocochlear efferent control in sound localization and experience-dependent learning, J. Neurosci, vol.31, pp.2493-2501, 2011.

M. Jacobson, S. Kim, J. Romney, X. Zhu, and R. D. Frisina, Contralateral suppression of distortion-product otoacoustic emissions declines with age: a comparison of findings in CBA mice with human listeners, Laryngoscope, vol.113, pp.1707-1713, 2003.

J. B. Jensen, A. C. Lysaght, M. C. Liberman, K. Qvortrup, and K. M. Stankovic, , 2015.

, Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice, PLoS ONE, vol.10, 125160.

D. L. Jewett, M. N. Romano, and J. S. Williston, Human auditory evoked potentials: possible brain stem components detected on the scalp, Science, vol.167, pp.1517-1518, 1970.

K. Kamiya, V. Michel, F. Giraudet, B. Riederer, I. Foucher et al., An unusually powerful mode of low-frequency sound interference due to defective hair bundles of the auditory outer hair cells, Proc. Natl. Acad. Sci, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01115196

U. S. , , vol.111, pp.9307-9312

R. Kanjhan, C. L. Balke, G. D. Housley, M. C. Bellingham, and P. G. Noakes, , 2004.

, Developmental expression of two-pore domain K+ channels, TASK-1 and TREK-1, in the rat cochlea, Neuroreport, vol.15, pp.437-441

P. Kazmierczak, H. Sakaguchi, J. Tokita, E. M. Wilson-kubalek, R. A. Milligan et al., Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells, Nature, vol.449, pp.87-91, 2007.

D. T. Kemp, Stimulated acoustic emissions from within the human auditory system, J. Acoust. Soc. Am, vol.64, pp.1386-1391, 1978.

D. T. Kemp and A. M. Brown, Ear canal acoustic and round window electrical correlates of 2f1-f2 distortion generated in the cochlea, Hear. Res, vol.13, pp.39-46, 1984.

Y. Kikkawa, Y. Seki, K. Okumura, Y. Ohshiba, Y. Miyasaka et al., Advantages of a mouse model for human hearing impairment, Exp. Anim, vol.61, pp.85-98, 2012.

T. Kikuchi, R. S. Kimura, D. L. Paul, T. Takasaka, A. et al., Gap junction systems in the mammalian cochlea, Brain Res. Brain Res. Rev, vol.32, pp.163-166, 2000.

Y. Kim and J. R. Holt, Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear, J. Gen. Physiol, vol.142, pp.207-223, 2013.

R. S. Kimura, The ultrastructure of the organ of Corti, Int. Rev. Cytol, vol.42, pp.173-222, 1975.

M. Kobel, C. G. Le-prell, J. Liu, J. W. Hawks, B. et al., Noise-induced cochlear synaptopathy: Past findings and future studies, Hear. Res, vol.349, pp.148-154, 2017.

S. G. Kujawa and M. C. Liberman, Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig, J. Assoc. Res. Otolaryngol, vol.2, pp.268-278, 2001.

S. G. Kujawa and M. C. Liberman, Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss, J. Neurosci, vol.29, pp.14077-14085, 2009.

S. G. Kujawa and M. C. Liberman, Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss, Hear. Res, vol.330, pp.191-199, 2015.

L. Calvez, S. Avan, P. Gilain, L. , R. et al., CD1 hearing-impaired mice. I: Distortion product otoacoustic emission levels, cochlear function and morphology, Hear. Res, vol.120, pp.37-50, 1998.

L. Calvez, S. Guilhaume, A. Romand, R. Aran, J. M. et al., CD1 hearingimpaired mice. II. Group latencies and optimal f2/f1 ratios of distortion product otoacoustic emissions, and scanning electron microscopy, Hear. Res, vol.120, pp.51-61, 1998.

A. C. Léger, B. C. Moore, and C. Lorenzi, Abnormal speech processing in frequency regions where absolute thresholds are normal for listeners with high-frequency hearing loss, Hear. Res, vol.294, pp.95-103, 2012.

M. C. Liberman, Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections, Hear. Res, vol.3, pp.45-63, 1980.

M. C. Liberman, Single-neuron labeling in the cat auditory nerve, Science, vol.216, pp.1239-1241, 1982.

M. C. Liberman and L. W. Dodds, Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves, Hear. Res, vol.16, pp.55-74, 1984.
DOI : 10.1016/0378-5955(84)90023-6

M. C. Liberman, L. D. Liberman, M. , and S. F. , Efferent feedback slows cochlear aging, J. Neurosci, vol.34, pp.4599-4607, 2014.
DOI : 10.1523/jneurosci.4923-13.2014

URL : http://www.jneurosci.org/content/34/13/4599.full.pdf

M. C. Liberman, M. J. Epstein, S. S. Cleveland, H. Wang, M. et al., Toward a Differential Diagnosis of Hidden Hearing Loss in Humans, PLoS ONE, vol.11, 2016.

M. C. Liberman and S. G. Kujawa, Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms, Hear. Res, vol.349, pp.138-147, 2017.
DOI : 10.1016/j.heares.2017.01.003

E. Lobarinas, R. Salvi, and D. Ding, Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas, Hear. Res, vol.302, pp.113-120, 2013.

S. F. Maison, J. C. Adams, and M. C. Liberman, Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization, J. Comp. Neurol, vol.455, pp.406-416, 2003.
DOI : 10.1002/cne.10490

URL : http://europepmc.org/articles/pmc1805785?pdf=render

S. F. Maison, H. Usubuchi, D. E. Vetter, A. B. Elgoyhen, S. A. Thomas et al., Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway, J. Neurophysiol, vol.108, pp.491-500, 2012.
DOI : 10.1152/jn.01050.2011

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404795/pdf

C. A. Makary, J. Shin, S. G. Kujawa, M. C. Liberman, and S. N. Merchant, Age-related primary cochlear neuronal degeneration in human temporal bones, J. Assoc. Res. Otolaryngol, vol.12, pp.711-717, 2011.
DOI : 10.1007/s10162-011-0283-2

URL : https://link.springer.com/content/pdf/10.1007%2Fs10162-011-0283-2.pdf

N. K. Malhotra, R. Aslam, S. P. Lipman, and V. J. Bilski, Acute ototoxicity from a single infusion of oxaliplatin, Ear Nose Throat J, vol.89, pp.258-261, 2010.

S. L. Mcfadden, D. Ding, H. Jiang, and R. J. Salvi, Time course of efferent fiber and spiral ganglion cell degeneration following complete hair cell loss in the chinchilla, Brain Res, vol.997, pp.40-51, 2004.

G. Mehraei, A. E. Hickox, H. M. Bharadwaj, H. Goldberg, S. Verhulst et al., Auditory Brainstem Response Latency in Noise as a Marker of Cochlear Synaptopathy, J. Neurosci, vol.36, pp.3755-3764, 2016.

A. Merchan-perez and M. C. Liberman, Ultrastructural differences among afferent synapses on cochlear hair cells: correlations with spontaneous discharge rate, J. Comp. Neurol, vol.371, pp.208-221, 1996.
DOI : 10.1002/(sici)1096-9861(19960722)371:2<208::aid-cne2>3.0.co;2-6

J. M. Miller, D. H. Chi, L. J. O&apos;keeffe, P. Kruszka, Y. Raphael et al., , 1997.

, Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss, Int. J. Dev. Neurosci, vol.15, pp.631-643

B. C. Moore, A. , and J. I. , The use of psychophysical tuning curves to explore dead regions in the cochlea, Ear Hear, vol.22, pp.268-278, 2001.

B. C. Moore, Basic auditory processes involved in the analysis of speech sounds, Philos. Trans. R. Soc. Lond., B, Biol. Sci, vol.363, pp.947-963, 2008.

T. Moser and A. Starr, Auditory neuropathy-neural and synaptic mechanisms, Nat Rev Neurol, vol.12, pp.135-149, 2016.

K. K. Ohlemiller, Contributions of mouse models to understanding of age-and noiserelated hearing loss, Brain Res, vol.1091, pp.89-102, 2006.

K. K. Ohlemiller, A. R. Dahl, and P. M. Gagnon, Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae, J. Assoc. Res. Otolaryngol, vol.11, pp.605-623, 2010.

K. K. Ohlemiller, S. M. Jones, J. , and K. R. , Application of Mouse Models to Research in Hearing and Balance, J. Assoc. Res. Otolaryngol, vol.17, pp.493-523, 2016.

H. C. Ou, G. W. Harding, and B. A. Bohne, An anatomically based frequency-place map for the mouse cochlea, Hear. Res, vol.145, pp.123-129, 2000.

A. J. Oxenham, Predicting the Perceptual Consequences of Hidden Hearing Loss, Trends Hear, vol.20, p.2331216516686768, 2016.

J. O. Pickles, C. , and D. P. , Mechanoelectrical transduction by hair cells, Trends Neurosci, vol.15, pp.254-259, 1992.

C. J. Plack, D. Barker, P. , and G. , , 2014.

L. Poupon, Etude de l'implication de canaux ioniques, 2015.

J. L. Puel, Chemical synaptic transmission in the cochlea, Prog. Neurobiol, vol.47, pp.449-476, 1995.

R. Pujol and J. L. Puel, Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings, Ann. N. Y. Acad. Sci, vol.884, pp.249-254, 1999.

R. D. Rabbitt and W. E. Brownell, Efferent modulation of hair cell function, Curr Opin Otolaryngol Head Neck Surg, vol.19, pp.376-381, 2011.

R. Rajan and K. E. Cainer, Ageing without hearing loss or cognitive impairment causes a decrease in speech intelligibility only in informational maskers, Neuroscience, vol.154, pp.784-795, 2008.

N. A. Ramakrishnan, M. J. Drescher, K. M. Khan, J. S. Hatfield, and D. G. Drescher, , 2012.

, HCN1 and HCN2 proteins are expressed in cochlear hair cells: HCN1 can form a ternary complex with protocadherin 15 CD3 and F-actin-binding filamin A or can interact with HCN2

, J. Biol. Chem, vol.287, pp.37628-37646

Y. Raphael, A. , and R. A. , Structure and innervation of the cochlea, Brain Res. Bull, vol.60, pp.397-422, 2003.

G. P. Richardson, J. B. De-monvel, and C. Petit, How the genetics of deafness illuminates auditory physiology, Annu. Rev. Physiol, vol.73, pp.311-334, 2011.

C. Riva, E. Donadieu, J. Magnan, and J. Lavieille, Age-related hearing loss in CD/1, 2007.

, mice is associated to ROS formation and HIF target proteins up-regulation in the cochlea, Exp. Gerontol, vol.42, pp.327-336

D. Robertson, Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea, Hear. Res, vol.9, pp.263-278, 1983.

M. D. Ross, The tectorial membrane of the rat, Am. J. Anat, vol.139, pp.449-481, 1974.

I. Roux, S. Safieddine, R. Nouvian, M. Grati, M. Simmler et al., Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse, Cell, vol.127, pp.277-289, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00111976

J. Ruel, J. Wang, G. Rebillard, M. Eybalin, R. Lloyd et al., , 2007.

, pharmacology and plasticity at the inner hair cell synaptic complex, Physiology, vol.227, pp.19-27

J. Ruel, J. Wang, R. Pujol, A. Hameg, M. Dib et al., Neuroprotective effect of riluzole in acute noise-induced hearing loss, Neuroreport, vol.16, pp.1087-1090, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00266028

M. A. Ruggero, Responses to sound of the basilar membrane of the mammalian cochlea, 1992.

, Curr. Opin. Neurobiol, vol.2, pp.449-456

I. J. Russell and P. M. Sellick, Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells, J. Physiol, vol.338, pp.179-206, 1983.

M. A. Rutherford, P. , and T. , Molecular anatomy and physiology of exocytosis in sensory hair cells, Cell Calcium, vol.52, pp.327-337, 2012.

L. P. Rybak, Mechanisms of cisplatin ototoxicity and progress in otoprotection, Curr Opin Otolaryngol Head Neck Surg, vol.15, pp.364-369, 2007.

N. Saroul, F. Giraudet, L. Gilain, T. Mom, and P. Avan, Physiologie cochléaire : bases anatomiques, cellulaires et électrophysiologiques, EMC, vol.20, issue.4, 2015.

R. Schaette, M. , and D. , Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model, J. Neurosci, vol.31, pp.13452-13457, 2011.

H. F. Schuknecht and R. C. Woellner, Hearing losses following partial section of the cochlear nerve, Laryngoscope, vol.63, pp.441-465, 1953.

Y. Sergeyenko, K. Lall, M. C. Liberman, and S. G. Kujawa, Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline, J. Neurosci, vol.33, pp.13686-13694, 2013.

G. Shone, Y. Raphael, and J. M. Miller, Hereditary deafness occurring in cd/1 mice, Hear. Res, vol.57, pp.153-156, 1991.

E. Simon, X. Perrot, and P. Mertens, Neurochirurgie, vol.55, pp.120-126, 2009.

H. Sohmer and M. Feinmesser, Cochlear action potentials recorded from the external ear in man, Ann. Otol. Rhinol. Laryngol, vol.76, pp.427-435, 1967.

H. Spoendlin, Innervation densities of the cochlea, Acta Otolaryngol, vol.73, pp.235-248, 1972.

H. Spoendlin, Retrograde degeneration of the cochlear nerve, Acta Otolaryngol, vol.79, pp.266-275, 1975.

H. Spoendlin, Factors inducing retrograde degeneration of the cochlear nerve, Ann Otol Rhinol Laryngol Suppl, vol.112, pp.76-82, 1984.

A. Starr, T. W. Picton, Y. Sininger, L. J. Hood, and C. I. Berlin, Auditory neuropathy, Brain, vol.119, pp.741-753, 1996.

T. Stöver and M. Diensthuber, Molecular biology of hearing, GMS Curr Top Otorhinolaryngol Head Neck Surg, vol.10, 2011.

J. Suzuki, G. Corfas, and M. C. Liberman, Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure, Sci Rep, vol.6, p.24907, 2016.

S. Takeuchi, M. Ando, and A. Kakigi, Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis, Biophys. J, vol.79, pp.2572-2582, 2000.

V. Tsuprun and P. Santi, Structure of outer hair cell stereocilia side and attachment links in the chinchilla cochlea, J. Histochem. Cytochem, vol.50, pp.493-502, 2002.

J. G. Turner, T. J. Brozoski, C. A. Bauer, J. L. Parrish, K. Myers et al., Gap detection deficits in rats with tinnitus: a potential novel screening tool, 2006.

, Behav. Neurosci, vol.120, pp.188-195

M. W. Van-ruijven, J. C. De-groot, S. F. Klis, and G. F. Smoorenburg, The cochlear targets of cisplatin: an electrophysiological and morphological time-sequence study, Hear. Res, vol.205, pp.241-248, 2005.

E. Verpy, M. Leibovici, N. Michalski, R. J. Goodyear, C. Houdon et al., Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane, J. Comp. Neurol, vol.519, pp.194-210, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01472846

E. Verpy, D. Weil, M. Leibovici, R. J. Goodyear, G. Hamard et al.,

J. Hardelin, G. P. Richardson, and P. Avan, Stereocilin-deficient mice reveal the origin of cochlear waveform distortions, Nature, vol.456, pp.255-258, 2008.

H. Versnel, V. F. Prijs, and R. Schoonhoven, Auditory-nerve fiber responses to clicks in guinea pigs with a damaged cochlea, J. Acoust. Soc. Am, vol.101, pp.993-1009, 1997.

L. M. Viana, J. T. O&apos;malley, B. J. Burgess, D. D. Jones, C. A. Oliveira et al., Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue, Hear. Res, vol.327, pp.78-88, 2015.

V. Bekesy and G. , , 1955.

, Arch Ohren Nasen Kehlkopfheilkd, vol.167, pp.238-255

J. Wang, M. Dib, M. Lenoir, P. Vago, M. Eybalin et al., Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig, Neuroscience, vol.111, pp.635-648, 2002.

A. C. Wong, R. , and A. F. , Mechanisms of sensorineural cell damage, death and survival in the cochlea, Front Aging Neurosci, vol.7, p.58, 2015.

T. Yamasoba, F. R. Lin, S. Someya, A. Kashio, T. Sakamoto et al., Current concepts in age-related hearing loss: epidemiology and mechanistic pathways, Hear. Res, vol.303, pp.30-38, 2013.

S. Yüce, M. M. Seker, S. Koç, I. O. Uysal, T. Kaçan et al., Oxaliplatin and ototoxicity: is it really safe for hearing?, Turk J Med Sci, vol.44, pp.586-589, 2014.

F. Zeng, Y. Kong, H. J. Michalewski, and A. Starr, Perceptual consequences of disrupted auditory nerve activity, J. Neurophysiol, vol.93, pp.3050-3063, 2005.

S. Zhang, K. S. Lovejoy, J. E. Shima, L. L. Lagpacan, Y. Shu et al., Organic cation transporters are determinants of oxaliplatin cytotoxicity, Cancer Res, vol.66, pp.8847-8857, 2006.

J. Zheng, W. Shen, D. Z. He, K. B. Long, L. D. Madison et al., Prestin is the motor protein of cochlear outer hair cells, Nature, vol.405, pp.149-155, 2000.

X. Zhu, O. N. Vasilyeva, S. Kim, M. Jacobson, J. Romney et al.,

R. D. Frisina, Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice, J. Comp. Neurol, vol.503, pp.593-604, 2007.