A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diusion equations, Journal of Computational Physics, vol.160, p.241282, 2000.

A. Kurganov, S. Noelle, and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton-jacobi equations, Journal on Scientic Computing, vol.23, p.707740, 2001.

R. Issa, Solution of the implicitly discretised uid ow equations by operatorsplitting, Journal of Computational Physics, vol.62, p.4065, 1986.

M. Meldi and A. Poux, A reduced order model based on kalman ltering for sequential data assimilation of turbulent ows, Journal of Computational Physics, vol.347, p.207234, 2017.

W. F. Noh, Cel :a time-dependent two-space dimensional coupled eulerian-lagrangian code, Methods in Computational Physics, vol.3, p.117179, 1964.

R. M. Franck and R. B. Lazarus, Mixed eulerian-lagrangian method, Methods in Computational Physics : Fundamental methods in Hydrodynamics, vol.3, p.4767, 1964.

J. G. Trulio, Theory and structure of the afton codes, p.227253, 1966.

C. W. Hirt, A. A. Amsden, and J. L. Cook, An arbitrary lagrangian-eulerian computing method for all ow speeds, Journal of Computational Physics, vol.14, p.227253, 1974.

J. Steger and F. D. Benek, A chimera grid scheme, Advances in Grid GEneration, vol.5, p.5969, 1983.

A. J. Chorin, Numerical solution of the navier-stokes equations, Mathematics of Computation, vol.22, p.745762, 1968.

C. S. Peskin, Flow patterns around heart valves : a numerical method, Journal of Computational Physics, vol.10, p.252271, 1972.

T. J. Chung, Computational uid dynamics, 2010.

R. P. Beyer and R. J. Leveque, Analysis of a one-dimensional model for the immersed boundary method, SIAM Journal on Numerical Analysis, vol.29, p.332364, 1992.

F. Örley, V. Pasquariello, S. Hickel, and N. A. Adams, Cut-element based immersed boundary method for moving geometries in compressible liquid ows with cavitation, Journal of Computational Physics, vol.33, p.122, 2015.

C. Günther, D. Hartmann, L. Schneiders, M. Meinke, and W. Schröder, A cartesian cut-cell method for sharp moving boundaries, 2011.

W. Coirier and K. Powell, Solution-adaptive cartesian cell approach for viscous and inviscid ows, AIAA Journal, vol.34, p.938945, 1996.

M. Chung, Cartesian cut cell approach for simulating incompressible ows with rigid bodies of arbitrary shape, Computers and Fluids, vol.35, issue.606623, 2006.

J. H. Seo and R. Mittal, A sharp interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations, Journal of Computational Physics, vol.230, p.73477363, 2011.

J. Mohd-yusof, Combined immersed-boundary/b-spline methods for simulations of ow in complex geometries, p.317327, 1997.

A. G. Kravchenko, P. Moin, and R. Moser, Zonal embedded grids for numerical simulations of wall-bounded turbulent ows, Journal of Computational Physics, vol.127, p.412423, 1996.

J. Mohd-yusof, Development of immersed boundary methods for complex geometries, p.325336, 1998.

E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-yusof, Combined immersedboundary nite-dierence methods for three-dimensional complex ow simulations, Journal of Computational Physics, vol.161, p.3560, 2000.

J. Kim, D. Kim, and H. Choi, An immersed-boundary nite-volume method for simulations of ow in complex geometries, Journal of Computational Physics, vol.171, pp.132-150, 2001.

M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate ows, Journal of Computational Physics, vol.209, p.448476, 2005.

A. M. Roma, C. S. Peskin, and M. J. Berger, An adaptive version of the immersed boundary method, Journal of Computational Physics, vol.153, p.509534, 1999.

A. Pinelli, I. Z. Naqavi, U. Piomelli, and J. Favier, Immersed-boundary methods for general nite-dierence and nite-volume navierstokes solvers, Journal of Computational Physics, vol.229, p.90739091, 2010.

W. K. Liu, Y. Chen, R. A. Uras, and C. T. Chang, Generalized multiple scale reproducing kernel particle methods, Computer Methods in Applied Mechanics and Engineering, vol.139, p.91157, 1996.

. , 75 2.1.2 Formulation analytique des termes de forçage, p.78

. .. Bibliographie,

R. P. Beyer and R. J. Leveque, Analysis of a one-dimensional model for the immersed boundary method, SIAM Journal on Numerical Analysis, vol.29, p.332364, 1992.

E. M. Saiki and S. Biringen, Numerical simulation of a cylinder in uniform ow : application of a virtual boundary method, Journal of Computational Physics, vol.123, pp.450-465, 1996.

C. S. Peskin, The immersed boundary method, Acta Numerica, vol.11, p.479517, 2002.

M. C. Lai and C. S. Peskin, An immersed boundary method with formal secondorder accuracy and reduced numerical viscosity, Journal of Computational Physics, vol.160, p.705719, 2000.

A. Pinelli, I. Naqavi, U. Piomelli, and J. Favier, Immersed-boundary methods for general nite-dierence and nite-volume navierstokes solvers, Journal of Computational Physics, vol.229, p.90739091, 2010.

A. M. Roma, C. S. Peskin, and M. J. Berger, An adaptive version of the immersed boundary method, Journal of Computational Physics, vol.153, p.509534, 1999.

W. K. Liu, Y. Chen, R. A. Uras, and C. T. Chang, Generalized multiple scale reproducing kernel particle methods, Computer Methods in Applied Mechanics and Engineering, vol.139, p.91157, 1996.

E. Goncalves and R. Houdeville, Reassessment of the wall functions approach for rans computations, Aerospace Science and Technology, vol.5, p.114, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01493440

E. Constant, J. Favier, M. Meldi, P. Meliga, and E. Serre, An immersed boundary method in openfoam : verication and validation, Computers & Fluids, vol.157, p.5572, 2017.

H. Riahi, M. Meldi, J. Favier, E. Serre, and E. Goncalves, A pressure-corrected immersed boundary method for the numerical simulation of compressible ows, Journal of Computational Physics, vol.374, p.361383, 2018.

, Validation numérique des solveurs IBM Sommaire 3.1 Écoulement compressible autour d'un cylindre circulaire 2D 88

. .. Domaine-de-calcul, 88 3.1.2 Écoulement incompressible (Ma = 0.05,Re = 40 et 100). .. . 89 3.1.3 Écoulement subsonique (Ma = 0.3, Re = 300), p.98

. .. Écoulement-compressible-autour-d'un-cylindre-circulaire-chaué-2d,

. .. Domaine-de-calcul,

.. .. Écoulement-stationnaire,

. , Écoulement instationnaire(Ma = 0.025)

. Écoulement-autour-d'un-cylindre-chaué and . Oscillant, Re = 100)

2. .. Écoulement, , p.123, 1000.

. .. Bibliographie,

E. Constant, J. Favier, M. Meldi, P. Meliga, and E. Serre, An immersed boundary method in openfoam : verication and validation, Computers & Fluids, vol.157, p.5572, 2017.

E. Stålberg, A. Brüger, P. Lötstedt, A. Johansson, and D. Henningson, High order accurate solution of ow past a circular cylinder, Journal of Scientic Computing, vol.27, p.431441, 2006.

D. Tritton, Experiments on the ow past a circular cylinder at low reynolds numbers, Journal Fluid Mechanics, vol.6, p.547567, 1959.

D. Le, B. Khoo, and J. Peraire, An immersed interface method for viscous incompressible ows involving rigid and exible boundaries, Journal of Computational Physics, vol.220, p.109138, 2006.

S. Dennis and G. Chang, Numerical solutions for steady ow past a circular cylinder at reynolds numbers up to 100, Journal Fluid Mechanics, vol.42, p.471489, 1970.

M. Coutanceau and R. Bouard, Experimental determination of the main features of the viscous ow in the wake of a circular cylinder in uniform translation. i. steady ow, Journal Fluid Mechanics, vol.79, p.231256, 1977.

R. Gautier, D. Biau, and E. Lamballais, A reference solution of the ow over a circular cylinder at re=40, Computers & Fluids, vol.75, p.103111, 2013.

P. Chiu, R. Lin, and T. W. Sheu, A dierentially interpolated direct forcing immersed boundary method for predicting incompressible navier stokes equations in time-varying complex geometries, Journal of Scientic Computing, vol.12, p.44764500, 2010.

K. Taira and T. Colonius, The immersed boundary method : A projection approach, Journal of Computational Physics, vol.225, p.21182137, 2007.

C. Brehm, C. Hader, and H. Fasel, A locally stabilized immersed boundary method for the compressible navier stokes equations, Journal of Computational Physics, vol.295, p.475504, 2015.

E. Berger and R. Wille, Periodic ow phenomena, Annual Review of Fluid Mechanics, vol.4, p.313340, 1972.

F. White, Viscous uid ow, 1991.

D. Russell and Z. Wang, A cartesian grid method for modeling multiple moving objects in 2d incompressible viscous ow, Journal of Computational Physics, vol.191, pp.177-205, 2003.

C. Liu, X. Zheng, and C. Sung, Preconditioned multigrid methods for unsteady incompressible ows, Journal of Computational Physics, vol.139, p.3557, 1998.

S. Takahashi, T. Nonomura, and K. Fukuda, A numerical scheme based on an immersed boundary method for compressible turbulent ows with shocks applications to two-dimensional ows around cylinders, Journal of Applied Mathematics, vol.121, 2014.

F. Billig, Shock-wave shapes around spherical and cylindrical-nosed bodies, Journal of Spacecraft and Rockets, vol.4, p.822823, 1967.

M. Al-marouf and R. Samtaney, A versatile embedded boundary adaptive mesh method for compressible ow in complex geometry, Journal of Computational Physics, vol.337, p.339378, 2017.

M. De-tullio, P. Palma, G. Iaccarino, G. Pascazio, and M. Napolitano, An immersed boundary method for compressible ows using local grid renement, Journal of Computational Physics, vol.225, p.20982117, 2007.

V. Bashkin, A. Vaganov, I. Egorov, D. Ivanov, and G. Ignatova, Comparison of calculated and experimental data on supersonic ow past a circular cylinder, Fluid Dynamics, vol.37, p.473483, 2002.

H. M. Blackburn and R. D. Henderson, A study of two-dimensional ow past an oscillating cylinder, Journal of Fluid Mechanics, vol.385, p.255286, 1999.

R. D. Henderson, Details of the drag curve near the onset of vortex shedding, Physics of Fluids, vol.79, p.21022104, 1995.

C. Norberg, An experimental investigation of the ow around a circular cylinder : inuence of aspect ratio, Journal of Fluid Mechanics, vol.258, p.287316, 1994.

F. Örley, V. Pasquariello, S. Hickel, and N. A. Adams, Cut-element based immersed boundary method for moving geometries in compressible liquid ows with cavitation, Journal of Computational Physics, vol.283, p.122, 2015.

C. Liao, Y. Chang, C. Lin, and J. M. Mcdonough, Simulating ows with moving rigid boundary using immersed-boundary method, Computers and Fluids, vol.39, p.152167, 2010.

S. E. Hurlbut, M. L. Spaulding, and F. M. White, Numerical solution for laminar two dimensional ow about a cylinder oscillating in a uniform stream, Journal of Fluids Engineering, vol.104, p.214220, 2015.

S. Su, M. Lai, and C. Lin, An immersed boundary technique for simulating complex ows with rigid boundary, Computers and Fluids, vol.36, p.313324, 2007.

K. Luo, A ghost-cell immersed boundary method for simulations of heat transfer in compressible ows under dierent boundary conditions, International Journal of Heat and Mass Transfer, vol.92, p.708717, 2016.

E. M. Sparrow, J. P. Abraham, and J. C. Tong, Archival correlations for average heat transfer coecientsfor non-circular and circular cylinders andfor spheres in cross-ow, International Journal of Heat and Mass Transfer, vol.47, p.52855296, 2004.

A. A. Soares, J. M. Ferreira, and R. P. Chhabra, Flow and forced convection heat transfer in crossow of non-newtonian uids over a circular cylinder, Industrial & Engineering Chemistry Research, vol.44, p.58155827, 2005.

R. P. Bharti, R. P. Chhabra, and V. Eswaran, Steady ow of power-law uids across a circular cylinder, The Canadian Journal of Chemical Engineering, vol.84, p.406421, 2006.

H. M. Badr, A theoretical study of laminar mixed convection from a horizontal cylinder in a cross stream, International Journal of Heat and Mass Transfer, vol.26, pp.639-653, 1983.

S. C. Dennis, J. D. Hudson, and N. Smith, Steady laminar forced convection from a circular cylinder at low reynolds numbers, International Journal of Heat and Mass Transfer, vol.11, p.933940, 1968.
DOI : 10.1063/1.1692061

P. D. Palma, M. D. De-tullio, G. Pascazio, and M. Napolitano, An immersedboundary method for compressible viscous ows, Computers and Fluids, vol.35, p.693702, 2006.

A. Wang, Z. Travnicek, and K. Chia, On the relationship of eective reynolds number and strouhal number for the laminar vortex shedding of a heated circular cylinder, Physics of Fluids, vol.12, p.14011410, 2000.

W. Zhang and R. Samtaney, A direct numerical simulation investigation of the synthetic jet frequency eects on separation control of low-re ow past an airfoil, Physics of Fluids, vol.27, p.55101, 2015.

P. Kunz and I. Kroo, Analysis, design and testing of airfoils for use at ultra-low reynolds numbers, Proceedings of a Workshop on Fixed and Flapping Flight at Low Reynolds Numbers, 2000.

R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas et al., A versatile sharp interface immersed boundary method for incompressible ows with complex boundaries, Journal of Computational Physics, vol.227, p.48254852, 2008.
DOI : 10.1016/j.jcp.2008.01.028

URL : http://europepmc.org/articles/pmc2834215?pdf=render

Y. L. Qiu, C. Shu, J. Wu, Y. Sun, L. M. Yang et al., A boundary conditionenforced immersed boundary method for compressible viscous ows, Computers and Fluids, vol.136, p.104113, 2016.

A. Dervieux, B. Van-leer, J. Periaux, and A. Rizzi, Numerical simulation of compressible euler ows :a gamm workshop, Notes on Numerical Fluid Mechanics, vol.26, 1989.

P. Jawahar and H. Kamath, A high-resolution procedure for euler and naviarstokes computations on unstructured grids, Journal of Computational Physics, vol.164, pp.165-203, 2016.
DOI : 10.1006/jcph.2000.6596

. , Les régimes d'écoulement autour d'une sphère pour des Reynolds laminaires

, Émergence des régimes caractéristiques des écoulements laminaires compressibles : une étude paramétrique, p.134

. , Investigation de l'écoulement subsonique instationnaire autour d'une sphère

. .. , Analyse plus ne des régimes transoniques, p.137

, Investigation de l'écoulement supersonique autour d'une sphère138

, Écoulement autour d'une sphère en rotation, p.139

. .. Transfert-de-chaleur, 2 L'inuence de r ? sur le régime de l'écoulement(Ma = 0.8, Re = 300)

. , Investigation d'écoulement supersonique autour d'une sphère chauffée

. .. Bibliographie, , vol.149, p.129

É. Sp,

T. Johnson and V. Patel, Flow past a sphere up to a reynolds number of 300, Journal Fluid Mechanics, vol.378, 1970.

A. Sansica, J. Ch, F. Robinet, E. Alizard, and . Goncalves, Three-dimensional instability of the ow around a sphere : Mach evolution of the rst and second bifurcations, Submitted to Journal of Fluid Mechanics, 2018.

T. Nagata, T. Nonomura, S. Takahashi, Y. Mizuno, and K. Fukuda, Investigation on subsonic to supersonic ow around a sphere at low reynolds number of between 50 and 300 by direct numerical simulation, Physics of Fluids, p.28, 2016.

É. Sp,

V. Krumins, A review of sphere drag coecients applicable to atmospheric density sensing, 1972.

K. Hida, An approximate study on the detached shock wave in front of a circular cylinder and a sphere, Journal of the Physical Society of Japan, vol.8, p.740745, 1953.

J. W. Heberle, G. P. Wood, and P. B. Gooderum, Data on sphere and location of detached shock waves on cones and spheres, 1950.

A. Ambrosio and A. Wortman, Stagnation point shock detachment distance for ow around spheres and cylinders, Journal of the Aerospace Sciences, vol.32, p.875875, 1962.

C. B. Henderson, Drag coecients of spheres in continuum and rareed ows, AIAA Journal, vol.6, p.707708, 1976.

R. W. Hermsen, Review of particle drag models. JANAF Performance Standardization Subcommittee 12th Meeting Minutes, Chemical Propulsion Information Agency, p.113133, 1979.

T. Nagata, T. Nonomura, S. Takahashi, Y. Mizuno, and K. Fukuda, Direct numerical simulation of ow around a heated/cooled isolated sphere up to a reynolds number of 300 under subsonic to supersonic conditions, International Journal of Heat and Mass Transfer, vol.120, p.284299, 2018.

F. M. Sauer, Convective heat transfer from spheres in a free-molecule ow, Journal of the Aeronautical Sciences, vol.18, p.353354, 1951.

T. W. Fox, C. W. Rackett, and J. A. Nicholls, Shock wave ignition of magnesium powders, Proceedings of 11th International Symposium on Shock Tubes and Wave, p.262268, 1978.

. , 3 Investigation de l'écoulement subsonique instationnaire autour d'un drone, Écoulement compressible autour d'un drone Sommaire 5.1 Introduction, vol.2