. Dai, Illustration of: (a) helical reactor; (b) spiral-shaped microreactor; (c) different meandering channels, pp.6-7, 2015.

T. Abadie, J. Aubin, D. Legendre, and C. Xuereb, Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels, Microfluid. Nanofluidics, vol.12, pp.355-369, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00878398

T. Abadie, C. Xuereb, D. Legendre, and J. Aubin, Mixing and recirculation characteristics of gas-liquid Taylor flow in microreactors, Chem. Eng. Res. Des, vol.91, pp.2225-2234, 2013.

R. S. Abiev and I. V. Lavretsov, Intensification of mass transfer from liquid to capillary wall by Taylor vortices in minichannels, bubble velocity and pressure drop, Chem. Eng. Sci, vol.74, pp.59-68, 2012.

T. Aillet, K. Loubière, O. Dechy-cabaret, and L. Prat, Microreactors as a Tool for Acquiring Kinetic Data on Photochemical Reactions, Chem. Eng. Technol, vol.39, pp.115-122, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01927694

D. Ambrosini, D. Paoletti, and N. Rashidnia, Overview of diffusion measurements by optical techniques, Opt. Lasers Eng, vol.46, pp.852-864, 2008.

L. Anderson, S. M. Wittkopp, C. J. Painter, J. J. Liegel, R. Schreiner et al., , 2012.

, Methylene Blue-Catalyzed Air Oxidation of Glucose, J. Chem. Educ, vol.89, pp.1425-1431

Z. Anxionnaz-minvielle, M. Cabassud, C. Gourdon, and P. Tochon, Influence of the meandering channel geometry on the thermo-hydraulic performances of an intensified heat exchanger/reactor, Chem. Eng. Process. Process Intensif, vol.73, pp.67-80, 2013.

Z. Anxionnaz, Etude de l'influence de la géométrie des canaux sur les performances d'un réacteur/échangeur, 2009.

Z. Anxionnaz, M. Cabassud, C. Gourdon, and P. Tochon, Heat exchanger/reactors (HEX reactors): Concepts, technologies: State-of-the-art, Chem. Eng. Process. Process Intensif, vol.47, pp.2029-2050, 2008.
DOI : 10.1016/j.cep.2008.06.012

G. Astaria, D. W. Savage, and A. Bisio, Gas treating with chemical solvents, 1983.

H. Benbelkacem, Modélisation du transfert de matière couplé avec une réaction chimique en réacteur fermé, 2002.

G. Ber?i? and A. Pintar, The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries, Chem. Eng. Sci, vol.52, pp.3709-3719, 1997.

C. Butler, E. Cid, and A. Billet, Modelling of mass transfer in Taylor flow: Investigation with the PLIF-I technique, Chem. Eng. Res. Des, vol.115, pp.292-302, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01411112

J. Canny, A Computational Approach to Edge Detection, IEEE Trans. Pattern Anal. Mach. Intell. PAMI, vol.8, pp.679-698, 1986.

J. Commenge and L. Falk, Methodological framework for choice of intensified equipment and development of innovative technologies, Chem. Eng. Process. Process Intensif, vol.84, pp.109-127, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01923733

J. Crank, The mathematics of diffusion, 1975.

C. Culbertson, Diffusion coefficient measurements in microfluidic devices, Talanta, vol.56, pp.365-373, 2002.
DOI : 10.1016/s0039-9140(01)00602-6

Z. Dai, D. F. Fletcher, and B. S. Haynes, Influence of Tortuous Geometry on the Hydrodynamic Characteristics of Laminar Flow in Microchannels, Chem. Eng. Technol, vol.38, pp.1406-1415, 2015.

Z. Dai, D. F. Fletcher, and B. S. Haynes, Impact of tortuous geometry on laminar flow heat transfer in microchannels, Int. J. Heat Mass Transf, vol.83, pp.382-398, 2015.

F. Darvas, G. Dorman, and V. Hessel, Flow chemistry, 2014.

A. Dessimoz, P. Raspail, C. Berguerand, and L. Kiwi-minsker, Quantitative criteria to define flow patterns in micro-capillaries, Chem. Eng. J, vol.160, pp.882-890, 2010.
DOI : 10.1016/j.cej.2010.01.011

N. Dietrich, K. Loubière, M. Jimenez, G. Hébrard, and C. Gourdon, A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel, Chem. Eng. Sci, vol.100, pp.172-182, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875909

N. Dietrich, N. Mayoufi, S. Poncin, N. Midoux, and H. Z. Li, Bubble formation at an orifice: A multiscale investigation, Chem. Eng. Sci, vol.92, pp.118-125, 2013.
DOI : 10.1016/j.ces.2012.12.033

URL : https://hal.archives-ouvertes.fr/hal-02050034

N. Dietrich, S. Poncin, N. Midoux, and H. Z. Li, Bubble Formation Dynamics in Various Flow-Focusing Microdevices, Langmuir, vol.24, pp.13904-13911, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00379309

Z. Dong, C. Yao, Y. Zhang, G. Chen, Q. Yuan et al., Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors, AIChE J, vol.62, pp.1294-1307, 2016.

S. Elgue, T. Aillet, K. Loubiere, A. Conté, O. Dechy-cabaret et al., Flow photochemistry: A meso-scale reactor for industrial applications, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01362104

, Chim. Oggi/Chemistry Today, vol.33, pp.58-61

R. E. Erb and M. H. Ehlers, Resazurin Reducing Time as an Indicator of Bovine Semen Fertilizing Capacity, J. Dairy Sci, vol.33, pp.853-864, 1950.

L. Falk and J. Commenge, Performance comparison of micromixers, Chem. Eng. Sci, vol.65, pp.405-411, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01922974

H. Fehling, Die quantitative Bestimmung von Zucker und Stärkmehl mittelst Kupfervitriol, 1849.

, Ann. der Chemie und Pharm, vol.72, pp.106-113

A. Fick, Ueber Diffusion, Ann. der Phys. und Chemie, vol.170, pp.59-86, 1855.

D. M. Fries and P. R. Von-rohr, Liquid mixing in gas-liquid two-phase flow by meandering microchannels, Chem. Eng. Sci, vol.64, pp.1326-1335, 2009.

D. M. Fries, S. Waelchli, and P. Rudolf-von-rohr, Gas-liquid two-phase flow in meandering microchannels, Chem. Eng. J, vol.135, pp.37-45, 2008.

A. Günther, S. Khan, M. Thalmann, F. Trachsel, and K. F. Jensen, Transport and reaction in microscale segmented gas-liquid flow, Lab Chip, vol.4, p.278, 2004.

P. Galambos and F. K. Forster, Micro-Fluidic Diffusion Coefficient Measurement, Micro Total Analysis Systems '98, pp.189-192, 1998.

P. Garstecki, M. J. Fuerstman, H. Stone, and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip, vol.6, p.437, 2006.

M. D. Giavedoni and F. A. Saita, The rear meniscus of a long bubble steadily displacing a Newtonian liquid in a capillary tube, Phys. Fluids, vol.11, p.786, 1999.

C. Gourdon, S. Elgue, and L. Prat, What are the needs for Process Intensification?, Oil Gas Sci. Technol.-Rev. d'IFP Energies Nouv, vol.70, pp.463-473, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01931353

A. Günther, M. Jhunjhunwala, M. Thalmann, M. A. Schmidt, and K. F. Jensen, Micromixing of Miscible Liquids in Segmented Gas?Liquid Flow, vol.21, pp.1547-1555, 2005.

A. Günther, S. Khan, M. Thalmann, F. Trachsel, and K. F. Jensen, Transport and reaction in microscale segmented gas-liquid flow, Lab Chip, vol.4, pp.278-286, 2004.

S. Haase and T. Bauer, New method for simultaneous measurement of hydrodynamics and reaction rates in a mini-channel with Taylor flow, Chem. Eng. J, pp.65-74, 2011.

S. Haase, D. Y. Murzin, and T. Salmi, Review on hydrodynamics and mass transfer in minichannel wall reactors with gas-liquid Taylor flow, Chem. Eng. Res. Des, vol.113, pp.304-329, 2016.

M. Haghnegahdar, S. Boden, and U. Hampel, Mass transfer measurement in a square millichannel and comparison with results from a circular channel, Int. J. Heat Mass Transf, vol.101, pp.251-260, 2016.

W. Hauf and U. Grigull, Optical methods in heat transfer, Advances in Heat Transfer, vol.6, 1970.

K. Hecht, M. Kraut, and A. Kölbl, Microstructured mixing devices: an efficient tool for the determination of chemical kinetic data? AIChE. Spring Meet, pp.22-26, 2007.

V. Hessel, P. Angeli, A. Gavriilidis, and H. Löwe, Gas?Liquid and Gas?Liquid?Solid Microstructured Reactors: Contacting Principles and Applications, Ind. Eng. Chem. Res, vol.44, pp.9750-9769, 2005.

J. E. Hesselgreaves, L. Richard, and R. David, Compact Heat Exchangers: Selection, Design and Operation, 2016.

R. Higbie, The rate of absorption of a pure gas into still liquid during short periods of exposure, Inst. Chem. Eng, vol.35, pp.36-60, 1935.

H. Hikita, S. Asai, H. Ishikawa, and M. Honda, The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method, Chem. Eng. J, vol.13, pp.7-12, 1977.

W. Izquierdo-guerra and E. García-reyes, Background Division, A Suitable Technique for Moving Object Detection, in: Iberoamerican Congress on Pattern Recognition, pp.121-127, 2010.
DOI : 10.1007/978-3-642-16687-7_20

URL : https://link.springer.com/content/pdf/10.1007%2F978-3-642-16687-7_20.pdf

M. Jimenez, N. Dietrich, A. Cockx, and G. Hébrard, Experimental study of O2 diffusion coefficient measurement at a planar gas-liquid interface by planar laser-induced fluorescence with inhibition, AIChE J, vol.59, pp.325-333, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268214

M. Jimenez, N. Dietrich, J. R. Grace, and G. Hébrard, Oxygen mass transfer and hydrodynamic behaviour in wastewater: Determination of local impact of surfactants by visualization techniques, Water Res, vol.58, pp.111-132, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268763

A. E. Kamholz, E. A. Schilling, and P. Yager, Optical Measurement of Transverse Molecular Diffusion in a Microchannel, Biophys. J, vol.80, pp.1967-1972, 2001.

C. M. Karale, S. S. Bhagwat, and V. V. Ranade, Flow and heat transfer in serpentine channels, AIChE J, vol.59, pp.1814-1827, 2013.
DOI : 10.1002/aic.13954

M. N. Kashid, A. Renken, and L. Kiwi-minsker, Gas-liquid and liquid-liquid mass transfer in microstructured reactors, Chem. Eng. Sci, vol.66, pp.3876-3897, 2011.
DOI : 10.1016/j.ces.2011.05.015

S. Kastens, S. Hosoda, M. Schlüter, and A. Tomiyama, Mass Transfer from Single Taylor Bubbles in Minichannels, Chem. Eng. Technol, vol.38, pp.1925-1932, 2015.
DOI : 10.1002/ceat.201500065

A. Kherbeche, J. Milnes, M. Jimenez, N. Dietrich, G. Hébrard et al., Multi-scale analysis of the influence of physicochemical parameters on the hydrodynamic and gasliquid mass transfer in gas/liquid/solid reactors, Chem. Eng. Sci, vol.100, pp.515-528, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268234

H. S. Ko and C. Gau, Local heat transfer process and pressure drop in a micro-channel integrated with arrays of temperature and pressure sensors, Microfluid. Nanofluidics, vol.10, pp.563-577, 2011.

W. B. Kolb and R. L. Cerro, Coating the inside of a capillary of square cross section, Chem. Eng. Sci, vol.46, pp.2181-2195, 1991.

M. T. Kreutzer, F. Kapteijn, J. Moulijn, and J. J. Heiszwolf, Multiphase monolith reactors: Chemical reaction engineering of segmented flow in microchannels, Chem. Eng. Sci, vol.60, pp.5895-5916, 2005.

S. Kuhn and K. F. Jensen, A pH-Sensitive Laser-Induced Fluorescence Technique To Monitor Mass Transfer in Multiphase Flows in Microfluidic Devices, Ind. Eng. Chem. Res, vol.51, pp.8999-9006, 2012.

S. K. Kurt, F. Warnebold, K. D. Nigam, and N. Kockmann, Gas-liquid reaction and mass transfer in microstructured coiled flow inverter, Chem. Eng. Sci, pp.1-15, 2017.
DOI : 10.1016/j.ces.2017.01.017

D. Kuzmin, A guide to numerical methods for transport equations, 2010.

D. G. Leaist, The effects of aggregation, counterion binding, and added sodium chloride on diffusion of aqueous methylene blue, Can. J. Chem, vol.66, pp.2452-2457, 1988.

A. Leclerc, R. Philippe, V. Houzelot, D. Schweich, and C. De-bellefon, Gas-liquid Taylor flow in square micro-channels: New inlet geometries and interfacial area tuning, Chem. Eng. J, vol.165, pp.290-300, 2010.
DOI : 10.1016/j.cej.2010.08.021

URL : https://hal.archives-ouvertes.fr/hal-00533115

S. S. Leung, Y. Liu, D. F. Fletcher, and B. S. Haynes, Heat transfer in well-characterised Taylor flow, Chem. Eng. Sci, vol.65, pp.6379-6388, 2010.
DOI : 10.1016/j.ces.2010.09.014

N. Mohan and P. Rastogi, Recent developments in digital speckle pattern interferometry, Opt. Lasers Eng, vol.40, pp.439-588, 2003.

M. J. Nieves-remacha, A. A. Kulkarni, and K. F. Jensen, Gas-Liquid Flow and Mass Transfer in an Advanced-Flow Reactor, Ind. Eng. Chem. Res, vol.52, pp.8996-9010, 2013.

J. O'brien, I. Wilson, T. Orton, and F. Pognan, Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, Eur. J. Biochem, vol.267, pp.5421-5426, 2000.

Z. Pan, X. Zhang, Y. Xie, and W. Cai, Instantaneous Mass Transfer under Gas-Liquid Taylor Flow in Circular Capillaries, Chem. Eng. Technol, vol.37, pp.495-504, 2014.

J. Pelleter and F. Renaud, Facile, Fast and Safe Process Development of Nitration and Bromination Reactions Using Continuous Flow Reactors, Org. Process Res. Dev, vol.13, pp.698-705, 2009.

R. Pohorecki, P. Sobieszuk, K. Kula, W. Moniuk, M. Zielinski et al., Hydrodynamic regimes of gas-liquid flow in a microreactor channel, Chem. Eng. J, vol.135, pp.185-190, 2008.

D. Qian and A. Lawal, Numerical study on gas and liquid slugs for Taylor flow in a Tjunction microchannel, Chem. Eng. Sci, vol.61, pp.7609-7625, 2006.

J. Quinn, C. H. Lin, and J. L. Anderson, Measuring diffusion coefficients by Taylor's method of hydrodynamic stability, AIChE J, vol.32, pp.2028-2033, 1986.

C. Robinson, The Diffusion Coefficients of Dye Solutions and their Interpretation, Proc. R. Soc. Lond. A. Math. Phys. Sci, vol.148, pp.681-695, 1935.

C. Roizard, G. Wild, and J. Charpentier, Absorption avec réaction chimique, 1997.

M. Roudet, A. Billet, S. Cazin, F. Risso, and V. Roig, Experimental investigation of interfacial mass transfer mechanisms for a confined high-reynolds-number bubble rising in a thin gap, AIChE J, vol.63, pp.2394-2408, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595794

M. Roudet, K. Loubiere, C. Gourdon, and M. Cabassud, Hydrodynamic and mass transfer in inertial gas-liquid flow regimes through straight and meandering millimetric square channels, Chem. Eng. Sci, vol.66, pp.2974-2990, 2011.

M. Roustan, Transferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux, Dec&Doc Pa, 2003.

F. Ruiz-bevia, J. Fernandez-sempere, A. Celdran-mallol, and C. Santos-garcia, Liquid diffusion measurement by holographic interferometry, Can. J. Chem. Eng, vol.63, pp.765-771, 1985.

N. Shao, A. Gavriilidis, and P. Angeli, Flow regimes for adiabatic gas-liquid flow in microchannels, Chem. Eng. Sci, vol.64, pp.2749-2761, 2009.

N. Shao, . Gavriilidis, and P. Angeli, Mass transfer during Taylor flow in microchannels with and without chemical reaction, Chem. Eng. J, vol.160, pp.873-881, 2010.

O. Shvydkiv, C. Limburg, K. Nolan, and M. Oelgemöller, Synthesis of Juglone (5-Hydroxy1,4-Naphthoquinone) in a Falling Film Microreactor, J. Flow Chem, vol.2, issue.2, pp.52-55, 2012.

. Sigma-aldrich®,

P. Sobieszuk, J. Aubin, and R. Pohorecki, Hydrodynamics and Mass Transfer in Gas-Liquid Flows in Microreactors, Chem. Eng. Technol, vol.35, pp.1346-1358, 2012.

P. Sobieszuk and R. Pohorecki, Gas-side mass transfer coefficients in a falling film microreactor, Chem. Eng. Process. Process Intensif, vol.49, pp.820-824, 2010.

P. Sobieszuk, R. Pohorecki, P. Cyga?ski, and J. Grzelka, Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel, Chem. Eng. Sci, vol.66, pp.6048-6056, 2011.

A. I. Stankiewicz and J. Moulijn, Process Intensification : transforming chemical engineering, Chem. Eng. Prog, pp.22-34, 2000.

Y. Su, V. Hessel, and T. Noël, A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations, AIChE J, vol.61, pp.2215-2227, 2015.

T. Taha and Z. F. Cui, Hydrodynamics of slug flow inside capillaries, Chem. Eng. Sci, vol.59, pp.1181-1190, 2004.

J. Tan, Y. C. Lu, J. H. Xu, and G. S. Luo, Mass transfer performance of gas-liquid segmented flow in microchannels, Chem. Eng. J, pp.229-235, 2012.
DOI : 10.1016/j.cej.2011.11.067

J. Tan, Y. C. Lu, J. H. Xu, and G. S. Luo, Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel, Chem. Eng. J, pp.314-320, 2012.

G. Taylor, Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.219, pp.186-203, 1953.

G. I. Taylor, Deposition of a viscous fluid on a plane surface, J. Fluid Mech, vol.9, 1961.
DOI : 10.1017/s0022112060001055

F. Théron, Z. Anxionnaz-minvielle, M. Cabassud, C. Gourdon, and P. Tochon, Characterization of the performances of an innovative heat-exchanger/reactor, Chem. Eng. Process. Process Intensif, vol.82, pp.30-41, 2014.

T. C. Thulasidas, M. A. Abraham, and R. L. Cerro, Flow patterns in liquid slugs during bubbletrain flow inside capillaries, Chem. Eng. Sci, vol.52, pp.2947-2962, 1997.
DOI : 10.1016/s0009-2509(97)00114-0

P. Tochon, R. Couturier, Z. Anxionnaz, S. Lomel, H. Runser et al., Toward a Competitive Process Intensification: A New Generation of Heat Exchanger-Reactors, Oil Gas Sci. Technol.-Rev. d'IFP Energies Nouv, vol.65, pp.785-792, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01937562

F. Trachsel, A. Günther, S. Khan, and K. F. Jensen, Measurement of residence time distribution in microfluidic systems, Chem. Eng. Sci, vol.60, pp.5729-5737, 2005.
DOI : 10.1016/j.ces.2005.04.039

K. A. Triplett, S. M. Ghiaasiaan, S. I. Abdel-khalik, and D. L. Sadowski, Gas-liquid twophase flow in microchannels Part I: two-phase flow patterns, Int. J. Multiph. Flow, vol.25, pp.377-394, 1999.
DOI : 10.1016/s0301-9322(98)00054-8

A. N. Tsoligkas, M. J. Simmons, and J. Wood, Influence of orientation upon the hydrodynamics of gas-liquid flow for square channels in monolith supports, Chem. Eng. Sci, vol.62, pp.4365-4378, 2007.

J. M. Van-baten and R. Krishna, CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries, Chem. Eng. Sci, vol.59, pp.2535-2545, 2004.

D. W. Van-krevelen and P. J. Hoftijzer, Kinetics of gas-liquid reactions part I. General theory, Recl. des Trav. Chim. des Pays-Bas, vol.67, pp.563-586, 1948.

C. O. Vandu, H. Liu, and R. Krishna, Mass transfer from Taylor bubbles rising in single capillaries, Chem. Eng. Sci, vol.60, pp.6430-6437, 2005.

N. Völkel, Design and characterization of gas-liquid microreactors, 2009.

W. R. Dean, Fluid motion in a curved channel, Proc. R. Soc. London A Math. Phys. Eng. Sci, vol.121, pp.402-420, 1928.

S. Waelchli and P. Rudolf-von-rohr, Two-phase flow characteristics in gas-liquid microreactors, Int. J. Multiph. Flow, vol.32, pp.791-806, 2006.
DOI : 10.1016/j.ijmultiphaseflow.2006.02.014

X. Wang, Y. Yong, C. Yang, Z. Mao, and D. Li, Investigation on pressure drop characteristic and mass transfer performance of gas-liquid flow in micro-channels, 2014.

, Microfluid. Nanofluidics, vol.16, pp.413-423

C. R. Wilke and P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J, vol.1, pp.264-270, 1955.
DOI : 10.1002/aic.690010222

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690010222

L. W. Winkler, Die Bestimmung des im Wasser gelösten Sauerstoffes, Berichte der Dtsch. Chem. Gesellschaft, vol.21, pp.2843-2854, 1888.
DOI : 10.1002/cber.188802102122

URL : https://zenodo.org/record/1425535/files/article.pdf

R. Xiong and J. N. Chung, Flow characteristics of water in straight and serpentine microchannels with miter bends, Exp. Therm. Fluid Sci, vol.31, pp.805-812, 2007.

L. Yang, N. Dietrich, G. Hébrard, K. Loubière, and C. Gourdon, Optical methods to investigate the enhancement factor of an oxygen-sensitive colorimetric reaction using microreactors, AIChE J, vol.63, pp.2272-2284, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01601916

L. Yang, N. Dietrich, K. Loubière, C. Gourdon, and G. Hébrard, Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors, Chem. Eng. Sci, vol.143, pp.364-368, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01886381

L. Yang, K. Loubière, N. Dietrich, C. Le-men, C. Gourdon et al., Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel, Chem. Eng. Sci, vol.165, pp.192-203, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01600809

L. Yang, J. Tan, K. Wang, and G. Luo, Mass transfer characteristics of bubbly flow in microchannels, Chem. Eng. Sci, vol.109, pp.306-314, 2014.

T. Yano, Electrochemical Behavior of Highly Conductive Boron-Doped Diamond Electrodes for Oxygen Reduction in Alkaline Solution, J. Electrochem. Soc, vol.145, p.1870, 1998.

C. Yao, Z. Dong, Y. Zhao, and G. Chen, Gas-liquid flow and mass transfer in a microchannel under elevated pressures, Chem. Eng. Sci, vol.123, pp.137-145, 2015.
DOI : 10.1016/j.ces.2014.11.005

C. Yao, Z. Dong, Y. Zhao, and G. Chen, An online method to measure mass transfer of slug flow in a microchannel, Chem. Eng. Sci, vol.112, pp.15-24, 2014.

J. Yoshida, Basics of Flow Microreactor Synthesis, SpringerBriefs in Molecular Science, 2015.

J. Yue, G. Chen, Q. Yuan, L. Luo, and Y. Gonthier, Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel, Chem. Eng. Sci, vol.62, pp.2096-2108, 2007.
DOI : 10.1016/j.ces.2006.12.057

URL : https://hal.archives-ouvertes.fr/hal-00529660

J. Yue, L. Luo, Y. Gonthier, G. Chen, and Q. Yuan, An experimental study of air-water Taylor flow and mass transfer inside square microchannels, Chem. Eng. Sci, vol.64, pp.3697-3708, 2009.
DOI : 10.1016/j.ces.2009.05.026

P. Zaloha, J. Kristal, V. Jiricny, N. Völkel, C. Xuereb et al., Characteristics of liquid slugs in gas-liquid Taylor flow in microchannels, Chem. Eng. Sci, vol.68, pp.640-649, 2012.

Y. Zhang, P. Song, Q. Fu, M. Ruan, and W. Xu, Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics, Nat. Commun, vol.5, p.4238, 2014.
DOI : 10.1038/ncomms5238

URL : https://www.nature.com/articles/ncomms5238.pdf

Y. Zhao, Y. Su, G. Chen, and Q. Yuan, Effect of surface properties on the flow characteristics and mass transfer performance in microchannels, Chem. Eng. Sci, vol.65, pp.1563-1570, 2010.

C. Zhu, C. Li, X. Gao, Y. Ma, and D. Liu, Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel, Int. J. Heat Mass Transf, vol.73, pp.492-499, 2014.

N. Zuber and J. A. Findlay, Average Volumetric Concentration in Two-Phase Flow Systems, J. Heat Transfer, vol.87, pp.453-468, 1965.
DOI : 10.1115/1.3689137