J. H. Yen and A. R. Barr, New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L, Nature, vol.232, pp.657-658, 1971.

D. Poinsot, S. Charlat, and H. Merçot, On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts, BioEssays, vol.25, pp.259-265, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427374

L. D. Hurst, The Evolution of Cytoplasmic Incompatibility or When Spite can be Successful, J. theor. BioL, vol.148, pp.269-277, 1991.

J. H. Werren, . Biology, and . Wolbachia, Annu. Rev. Entomol, vol.42, pp.587-609, 1997.

J. Foster, The Wolbachia genome of Brugia malayi: Endosymbiont evolution within a human pathogenic nematode, PLoS Biol, vol.3, pp.599-0614, 2005.

S. Siozios, The Diversity and Evolution of Wolbachia Ankyrin Repeat Domain Genes

, PLoS One, vol.8, p.55390, 2013.

S. G. Sedgwick and S. J. Smerdon, The ankyrin repeat: a diversity of interaction on a common structural framework, Trends Biochem. Sci, pp.311-316, 1999.

O. Duron, Variability and expression of ankyrin domain genes in Wolbachia variants infecting the mosquito Culex pipiens, J. Bacteriol, vol.189, pp.4442-4448, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00424353

J. F. Beckmann and A. M. Fallon, Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: Implications for cytoplasmic incompatibility, Insect Biochem. Mol. Biol, vol.43, pp.867-878, 2013.

J. F. Beckmann, J. A. Ronau, and M. Hochstrasser, Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility, Nat. Microbiol, vol.2, p.17007, 2017.

D. P. Lepage, Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility, Nature, vol.543, pp.243-247, 2017.

E. R. Sutton, S. R. Harris, J. Parkhill, and S. P. Sinkins, Comparative genome analysis of Wolbachia strain wAu, BMC Genomics, vol.15, p.928, 2014.

C. M. Atyame, Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens, PLoS One, vol.9, pp.21-26, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01938100

H. Laven, J. W. Wright, and R. Pal, Genetics of Insect Vectors of Disease, pp.251-275, 1967.

C. M. Atyame, Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations, Mol. Ecol, vol.20, pp.286-298, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649573

C. M. Atyame, F. Delsuc, N. Pasteur, M. Weill, and O. Duron, Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito, Mol. Biol. Evol, vol.28, pp.2761-2772, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01924446

I. Nor, On the genetic architecture of cytoplasmic incompatibility: inference from phenotypic data, Am. Nat, vol.182, pp.15-24, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00837003

L. Klasson, Genome evolution of Wolbachia strain wPip from the Culex pipiens group

, Mol. Biol. Evol, vol.25, pp.1877-1887, 2008.

L. Baldo, Multilocus sequence typing system for the endosymbiont Wolbachia pipientis

, Appl. Environ. Microbiol, vol.72, pp.7098-7110, 2006.

N. Lo, Taxonomic status of the intracellular bacterium Wolbachia pipientis, Int. J. Syst

, Evol. Microbiol, vol.57, pp.654-657, 2007.

J. L. Pons and G. Labesse, @TOME-2: A new pipeline for comparative modeling of proteinligand complexes, Nucleic Acids Res, vol.37, pp.485-491, 2009.

M. A. Andrade, C. Perez-iratxeta, and C. P. Ponting, Protein Repeats: Structures, Functions, and Evolution, J. Struct. Biol, vol.134, pp.117-131, 2001.

S. R. Bordenstein, M. L. Marshall, A. J. Fry, U. Kim, and J. J. Wernegreen, The Tripartite Associations between Bacteriophage , Wolbachia , and Arthropods, PLoS Pathog, vol.2, p.43, 2006.

J. D. Wright, F. S. Sjostrand, J. K. Portaro, and A. R. Barr, The ultrastructure of the rickettsia

J. H. Werren, L. Baldo, and M. E. Clark, Wolbachia: master manipulators of invertebrate biology, 2008.

, Nat. Rev. Microbiol, vol.6, pp.741-751

M. J. Taylor, C. Bandi, and A. Hoerauf, Wolbachia bacterial endosymbionts of filarial nematodes, Advances in Parasitology, pp.245-284, 2005.

E. Ferri, New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species, PLoS One, vol.6, 2011.

K. Hilgenboecker, P. Hammerstein, P. Schlattmann, A. Telschow, and J. H. Werren, How many species are infected with Wolbachia? a statistical analysis of current data, FEMS Microbiol, 2008.

. Lett, , vol.281, pp.215-220

J. H. Werren, L. Baldo, and M. E. Clark, Wolbachia: master manipulators of invertebrate biology, Nat Rev Microbiol, vol.6, pp.741-751, 2008.

K. Hilgenboecker, P. Hammerstein, P. Schlattmann, A. Telschow, and J. H. Werren, How many species are infected with Wolbachia? a statistical analysis of current data, FEMS Microbiol Lett, vol.281, pp.215-220, 2008.

R. Zug and P. Hammerstein, Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected, PLoS One, vol.7, p.38544, 2012.

J. H. Yen and A. R. Barr, The etiological agent of cytoplasmic incompatibility in Culex pipiens, J Invertebr Pathol, vol.22, pp.242-250, 1973.

G. Callaini, M. G. Riparbelli, R. Giordano, and R. Dallai, Mitotic Defects Associated with Cytoplasmic Incompatibility in Drosophila simulans, J Invertebr Pathol, vol.67, pp.55-64, 1996.

J. Engelstädter and A. Telschow, Cytoplasmic incompatibility and host population structure

, Heredity, vol.103, pp.196-207, 2009.

H. Laven, Speciation and evolution in Culex pipiens, Genetics of Insect Vectors of Disease, pp.251-275, 1967.

O. Neill, S. L. Karr, and T. L. , Bidirectional incompatibility between conspecific populations of Drosophila simulans, Nature, vol.348, pp.178-180, 1990.

J. Breeuwer and J. H. Werren, Microorganisms associated with chromosome destruction and reproductive isolation between two insect species, Nature, vol.346, pp.558-560, 1990.

S. R. Bordenstein, O. Hara, F. P. Werren, and J. H. , Wolbachia-induced incompatibility precedes other

D. K. Aanen, H. H. De-fine-licht, A. J. Debets, N. A. Kerstes, R. F. Hoekstra et al., High Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites, Science, vol.326, pp.1103-1106, 2009.

T. Adachi-hagimori, K. Miura, and R. Stouthamer, A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera, Proc. R. Soc. B Biol. Sci, vol.275, pp.2667-2673, 2008.

M. Z. Ahmed, J. W. Breinholt, and A. Y. Kawahara, Evidence for common horizontal transmission of Wolbachia among butterflies and moths, BMC Evol. Biol, vol.16, pp.1-16, 2016.

H. Akashi, N. Osada, and T. Ohta, Weak selection and protein evolution, Genetics, vol.192, pp.15-31, 2012.

A. Gündüz, E. Douglas, and A. E. , Symbiotic bacteria enable insect to use a nutritionally inadequate diet, Proc. R. Soc. B Biol. Sci, vol.276, pp.987-991, 2012.

M. T. Aliota, S. A. Peinado, I. D. Velez, and J. E. Osorio, The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti, Sci. Rep, vol.6, pp.1-7, 2016.

M. T. Aliota, E. C. Walker, A. Uribe-yepes, D. Velez, I. Christensen et al., The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti, PLoS Negl. Trop. Dis, vol.10, p.4677, 2016.

S. Alizon, A. Hurford, N. Mideo, and M. Van-baalen, Virulence evolution and the trade-off hypothesis: History, current state of affairs and the future, J. Evol. Biol, vol.22, pp.245-259, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01567938

H. Alout, P. Labbé, A. Berthomieu, N. Pasteur, and M. Weill, Multiple duplications of the rare ace-1 mutation F290V in Culex pipiens natural populations, Insect Biochem. Mol. Biol, vol.39, pp.884-891, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01938164

M. Altinli, F. Gunay, B. Alten, M. Weill, and M. Sicard, Wolbachia diversity and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey, Parasites and Vectors, vol.11, pp.1-9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01943939

K. L. Anders, C. Indriani, R. A. Ahmad, W. Tantowijoyo, E. Arguni et al., The AWED trial (Applying Wolbachia to Eliminate Dengue) to assess the efficacy of Wolbachiainfected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: Study protocol for a cluster randomised controlled trial, Trials, vol.19, pp.1-16, 2018.

T. H. Ant, C. S. Herd, V. Geoghegan, A. A. Hoffmann, and S. P. Sinkins, The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti, PLoS Pathog, vol.14, pp.1-19, 2018.

N. Arakaki, T. Miyoshi, and H. Noda, Wolbachia-mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta), Proc. R. Soc. B Biol. Sci, vol.268, pp.1011-1016, 2001.

R. A. Aras, J. Kang, A. I. Tschumi, Y. Harasaki, and M. J. Blaser, Extensive repetitive DNA facilitates prokaryotic genome plasticity, Proc. Natl. Acad. Sci, vol.100, pp.13579-13584, 2003.

B. S. Atanassov, E. Koutelou, and S. Y. Dent, The role of deubiquitinating enzymes in chromatin regulation, FEBS Lett, vol.585, pp.2016-2023, 2011.

C. M. Atyame, J. Cattel, C. Lebon, O. Flores, J. S. Dehecq et al., Wolbachia-based population control strategy targeting Culex quinquefasciatus mosquitoes proves efficient under semi-field conditions, PLoS One, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01145019

C. M. Atyame, F. Delsuc, N. Pasteur, M. Weill, and O. Duron, Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito, Mol. Biol. Evol, vol.28, pp.2761-2772, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01924446

C. M. Atyame, O. Duron, P. Tortosa, N. Pasteur, P. Fort et al., Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations, Mol. Ecol, vol.20, pp.286-298, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649573

C. M. Atyame, P. Labbé, E. Dumas, P. Milesi, S. Charlat et al., Wolbachia Divergence and the Evolution of Cytoplasmic Incompatibility in Culex pipiens, PLoS One, vol.9, p.87336, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01938100

C. M. Atyame, P. Labbé, F. Rousset, M. Beji, P. Makoundou et al., Stable coexistence of incompatible Wolbachia along a narrow contact zone in mosquito field populations, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01285420

, Mol. Ecol, vol.24, pp.508-521

C. M. Atyame, N. Pasteur, E. Dumas, P. Tortosa, M. L. Tantely et al., Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean, PLoS Negl. Trop. Dis, vol.5, p.1440, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01274608

A. A. Augustinos, D. Santos-garcia, E. Dionyssopoulou, M. Moreira, A. Papapanagiotou et al., Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled?, PLoS One, vol.6, p.28695, 2011.

M. Badawi, B. Moumen, I. Giraud, P. Grève, and R. Cordaux, Investigating the Molecular Genetic Basis of Cytoplasmic Sex Determination Caused by Wolbachia Endosymbionts in Terrestrial Isopods, Genes (Basel), vol.9, p.290, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01891929

M. K. Balcewicz-sablinska, J. Keane, H. Kornfeld, and H. G. Remold, Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha, J. Immunol, vol.161, pp.2636-2677, 1998.

L. Baldo, J. C. Hotopp, K. Jolley, S. R. Bordenstein, S. Biber et al., Multilocus sequence typing system for the endosymbiont Wolbachia pipientis, Appl. Environ. Microbiol, vol.72, pp.7098-7110, 2006.

L. Baldo, L. Prendini, A. Corthals, and J. H. Werren, Wolbachia are present in Southern African scorpions and cluster with supergroup F, Curr. Microbiol, vol.55, pp.367-373, 2007.

C. Bandi, A. M. Dunn, and G. D. Hurst,

T. Rigaud, Inherited microorganisms, sex-specific virulence and reproductive parasitism, Trends Parasitol, vol.17, pp.88-94, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00123771

A. R. Barr, The Distribution of Culex P. Pipiens and C. P. Quinquefasciatus in North America, Am. J. Trop. Med. Hyg, vol.6, pp.153-165, 1957.

R. Barr, Cytoplasmic incompatibility in natural populations of a mosquito, Culex pipiens, Nature, vol.283, pp.71-72, 1980.

A. J. Bateman, Intra-sexual selection in Drosophila, Heredity, vol.2, pp.349-368, 1948.

J. F. Beckmann and A. M. Fallon, Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: Implications for cytoplasmic incompatibility, Insect Biochem. Mol. Biol, vol.43, pp.867-878, 2013.

J. F. Beckmann, J. A. Ronau, and M. Hochstrasser, A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility, Nat. Microbiol, vol.2, p.17007, 2017.

S. M. Behar, C. J. Martin, M. G. Booty, T. Nishimura, X. Zhao et al., Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis, Mucosal Immunol, vol.4, pp.279-287, 2011.

G. Bell, The Evolution of Empty Flowers, J. Theor. Biol, vol.118, pp.253-258, 1986.

S. Beltran-bech and F. J. Richard, Impact of infection on mate choice, Anim. Behav, vol.90, pp.159-170, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956254

H. Ben-cheikh, Z. Ben-ali-haouas, M. Marquine, and N. Pasteur, Resistance to Organophosphorus and Pyrethroid Insecticides in Culex pipiens (Diptera: Culicidae) from Tunisia, 1998.
URL : https://hal.archives-ouvertes.fr/halsde-00201297

, J. Med. Entomol, vol.35, pp.251-260

J. K. Bentley, Z. Veneti, J. Heraty, and G. D. Hurst, The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa, BMC Biol, vol.5, pp.1-7, 2007.

G. Bian, D. Joshi, Y. Dong, P. Lu, G. Zhou et al., Wolbachia Invades Anopheles stephensi. Science, vol.340, pp.748-751, 2013.

G. Bian, Y. Xu, P. Lu, Y. Xie, and Z. Xi, The Endosymbiotic Bacterium Wolbachia Induces Resistance to Dengue Virus in Aedes aegypti, PLoS Pathog, vol.6, p.1000833, 2010.

C. W. Birky, Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution, Proc. Natl. Acad. Sci, vol.92, pp.11331-11338, 1995.

M. S. Blagrove, C. Arias-goeta, C. Di-genua, A. B. Failloux, and S. P. Sinkins, A Wolbachia wMel Transinfection in Aedes albopictus Is Not Detrimental to Host Fitness and Inhibits Chikungunya Virus, PLoS Negl. Trop. Dis, vol.7, p.2152, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01680359

M. S. Blagrove, C. Arias-goeta, A. Failloux, and S. P. Sinkins, Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus, Proc. Natl. Acad. Sci, vol.109, pp.255-260, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00647866

C. Bleidorn and M. Gerth, A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia, FEMS Microbiol. Ecol, vol.94, pp.1997-1998, 2018.

M. Bonneau, C. Atyame, M. Beji, F. Justy, M. Cohen-gonsaud et al., Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia, Nat. Commun, vol.9, p.319, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01728878

M. Bonneau, B. Caputo, A. Ligier, R. Caparros, S. Unal et al., The cytoplasmic incompatibility mod diversity is governed by Wolbachia cidB gene and not by cidA gene in Culex pipiens mosquitoes, Proc. R. Soc. B Biol. Sci, 2018.

M. Bonneau, F. Landmann, P. Labbé, F. Justy, M. Weill et al., The cellular phenotype of cytoplasmic incompatibility in Culex pipiens in the light of cidB diversity, PLoS Pathog. Minor Revision, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938013

S. Bordenstein and R. B. Rosengaus, Discovery of a novel Wolbachia supergroup in isoptera, Curr. Microbiol, vol.51, pp.393-398, 2005.

S. R. Bordenstein and S. R. Bordenstein, Eukaryotic association module in phage WO genomes from Wolbachia, Nat. Commun, vol.7, pp.1-10, 2016.

S. R. Bordenstein and S. R. Bordenstein, Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility, PLoS One, vol.6, p.29106, 2011.

S. R. Bordenstein, C. Paraskevopoulos, J. C. Dunning-hotopp, P. Sapountzis, N. Lo et al., Parasitism and mutualism in Wolbachia: What the phylogenomic trees can and cannot say, 2009.

, Mol. Biol. Evol, vol.26, pp.231-241

S. R. Bordenstein and W. S. Reznikoff, Mobile DNA in obligate intracellular bacteria, Nat. Rev. Microbiol, vol.3, pp.688-699, 2005.

S. R. Bordenstein, J. J. Uy, and J. H. Werren, Host genotype determines cytoplasmic incompatibility type in the haplodiploid genus Nasonia, Genetics, vol.164, pp.223-256, 2003.

S. R. Bordenstein and J. J. Wernegreen, Bacteriophage flux in endosymbionts (Wolbachia): Infection frequency, lateral transfer, and recombination rates, Mol. Biol. Evol, vol.21, pp.1981-1991, 2004.

S. R. Bordenstein and J. H. Werren, Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia, Heredity, vol.99, pp.278-287, 2007.

S. R. Bordenstein and J. H. Werren, Effects of A and B Wolbachia and host genotype on interspecies cytoplasmic incompatibility in Nasonia, Genetics, vol.148, pp.1833-1844, 1998.

K. Bourtzis, S. L. Dobson, Z. Xi, J. L. Rasgon, M. Calvitti et al., Harnessing mosquito-Wolbachia symbiosis for vector and disease control, Acta Trop, vol.132, pp.150-163, 2014.

K. Bourtzis, R. S. Lees, J. Hendrichs, and M. J. Vreysen, More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations, Acta Trop, vol.157, pp.115-130, 2016.

E. F. Boyd and H. Brüssow, Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved, Trends Microbiol, vol.10, pp.521-529, 2002.

E. F. Boyd, B. M. Davis, and B. Hochhut, Bacteriophage-bacteriophage interactions in the evolution of pathogenic bacteria, Trends Microbiol, vol.9, pp.137-144, 2001.

L. Boyle, S. L. O'neill, H. M. Robertson, and T. L. Karr, Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila, Science, vol.260, pp.1796-1799, 1993.

C. Braquart-varnier, M. Altinli, R. Pigeault, F. D. Chevalier, P. Grève et al., The mutualistic side of Wolbachia-isopod interactions: Wolbachia mediated protection against pathogenic intracellular bacteria, Front. Microbiol, vol.6, pp.1-15, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01266760

C. Braquart-varnier, P. Grève, C. Félix, and G. Martin, Bacteriophage WO in Wolbachia infecting terrestrial isopods, Biochem. Biophys. Res. Commun, vol.337, pp.580-585, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00121332

J. A. Breeuwer, Wolbachia and cytoplasmic incompatibility in the spider mites, Tetranychus urticae and T. turkestani. Heredity, vol.79, pp.41-47, 1997.

J. A. Breeuwer and G. Jacobs, Wolbachia: Intracellular manipulators of mite reproduction, Exp. Appl. Acarol, vol.20, pp.421-434, 1996.

J. A. Breeuwer and J. H. Werren, Microorganisms associated with chromosome destruction and reproductive isolation between two insect species, Nature, vol.346, pp.558-560, 1990.
DOI : 10.1038/346558a0

C. L. Brelsfoard, Y. Séchan, and S. L. Dobson, Interspecific hybridization yields strategy for South Pacific filariasis vector elimination, PLoS Negl. Trop. Dis, vol.2, pp.1-6, 2008.
DOI : 10.1371/journal.pntd.0000129

URL : https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0000129&type=printable

P. W. Brian, Obligate parasitism in fungi, Proc. R. Soc. London. Ser. B, Biol. Sci, vol.168, pp.101-118, 1966.

J. L. Bronstein, Conditional outcomes in mutualistic interactions, Trends Ecol. Evol, vol.9, pp.214-217, 1994.
DOI : 10.1016/0169-5347(94)90246-1

J. L. Bronstein, The exploitation of mutualisms, Ecol. Lett, vol.4, pp.277-287, 2001.

J. L. Bronstein, J. L. Barker, E. M. Lichtenberg, L. L. Richardson, and R. E. Irwin, The behavioral ecology of nectar robbing: why be tactic constant?, Curr. Opin. Insect Sci, vol.21, pp.14-18, 2017.

P. Buchner, Endosymbiosis of Animals with Plant Microorganisms, 1965.

J. J. Bull and W. R. Rice, Distinguishing mechanisms for the evolution of co-operation, J. Theor. Biol, vol.149, pp.63-74, 1991.

G. Callaini, R. Dallai, and M. G. Riparbelli, Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans, J. Cell Sci, vol.110, pp.271-80, 1997.

G. Callaini, M. G. Riparbelli, R. Giordano, and R. Dallai, Mitotic Defects Associated with Cytoplasmic Incompatibility in Drosophila simulans, J. Invertebr. Pathol, vol.67, pp.55-64, 1996.
DOI : 10.1006/jipa.1996.0009

C. Canchaya, G. Fournous, S. Chibani-chennoufi, M. L. Dillmann, and H. Brüssow, Phage as agents of lateral gene transfer, Curr. Opin. Microbiol, vol.6, pp.417-424, 2003.

M. Casiraghi, T. J. Anderson, C. Bandi, C. Bazzochi, and C. Genchi, A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts, Parasitology, vol.122, pp.93-103, 2001.

M. Casiraghi, S. R. Bordenstein, L. Baldo, N. Lo, T. Beninati et al., Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree, Microbiology, vol.151, pp.4015-4022, 2005.

E. Caspari and G. S. Watson, On the Evolutionary Importance of Cytoplasmic Sterility in Mosquitoes, Evolution, vol.13, p.568, 1959.

N. Cerveau, S. Leclercq, E. Leroy, D. Bouchon, and R. Cordaux, Short-and long-term evolutionary dynamics of bacterial insertion sequences: Insights from Wolbachia endosymbionts, 2011.
DOI : 10.1093/gbe/evr096

URL : https://hal.archives-ouvertes.fr/hal-00637836

, Genome Biol. Evol, vol.3, pp.1175-1186

M. E. Chafee, D. J. Funk, R. G. Harrison, and S. R. Bordenstein, Lateral Phage Transfer in Obligate Intracellular Bacteria (Wolbachia): Verification from Natural Populations, Mol. Biol. Evol, vol.27, pp.501-505, 2010.
DOI : 10.1093/molbev/msp275

URL : https://academic.oup.com/mbe/article-pdf/27/3/501/6316121/msp275.pdf

E. W. Chambers, L. Hapairai, B. A. Peel, H. Bossin, and S. L. Dobson, Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions, PLoS Negl. Trop. Dis, vol.5, pp.1-6, 2011.

S. Charlat, J. Engelstädter, E. A. Dyson, E. A. Hornett, A. Duplouy et al., Competing Selfish Genetic Elements in the Butterfly Hypolimnas bolina, Curr. Biol, vol.16, pp.2453-2458, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00427917

S. Charlat, G. D. Hurst, and H. Merçot, Evolutionary consequences of Wolbachia infections, Trends Genet, vol.19, pp.217-223, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427501

S. Charlat, L. Le-chat, and H. Merçot, Characterization of non-cytoplasmic incompatibility inducing Wolbachia in two continental African populations of Drosophila simulans, Heredity (Edinb), vol.90, pp.49-55, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427375

S. Charlat, A. Nirgianaki, and K. Bourtzis, Evolution of Wolbachia-Induced Cytoplasmic Incompatibility in Drosophila Simulans and D, Sechellia, vol.56, pp.1735-1742, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00427252

T. C. Cheng, Is parasitism symbiosis ? A definition of terms and the evolution of concepts, 1991.

E. Chrostek, M. S. Marialva, S. S. Esteves, L. A. Weinert, J. Martinez et al., Wolbachia Variants Induce Differential Protection to Viruses in Drosophila melanogaster: A Phenotypic and Phylogenomic Analysis, PLoS Genet, vol.9, p.1003896, 2013.

D. Clancy and A. A. Hoffmann, Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans, Entomol. Exp. Appl, vol.86, pp.13-24, 1998.

D. J. Clancy and . Hoffmann, Cytoplasmic incompatibility in Drosophila simulans: evolving complexity, Trends Ecol. Evol. (Personal Ed, vol.11, pp.145-146, 1996.

C. Combes, Parasitism: the ecology and evolution of intimate interactions. Interspecific interactions. The University of Chicago, 2001.

C. Combes, L. Gavotte, C. Moulia, and M. Sicard, Parasitisme: Ecologie et évolution des interactions durables, 2018.

R. Cordaux, D. Bouchon, and P. Grève, The impact of endosymbionts on the evolution of host sexdetermination mechanisms, Trends Genet, vol.27, pp.332-341, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00626381

R. Cordaux, A. Michel-salzat, and D. Bouchon, Wolbachia infection in crustaceans: Novel hosts and potential routes for horizontal transmission, J. Evol. Biol, vol.14, pp.237-243, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00123774

R. Cordaux, A. Michel-salzat, M. Frelon-raimond, T. Rigaud, and D. Bouchon, Evidence for a new feminizing Wolbachia strain in the isopod Armadillidium vulgare: evolutionary implications, Heredity, vol.93, pp.78-84, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00121257

L. M. Cosmides and J. Tooby, Cytoplasmic Inheritance and Intragenomic Conflict. Phys. Basis Hered, vol.89, pp.83-129, 1981.

C. Covacin and S. C. Barker, Supergroup F Wolbachia bacteria parasitise lice (Insecta: Phthiraptera), Parasitol. Res, vol.100, pp.479-485, 2007.

J. A. Coyne, Genetics and speciation, Nature, vol.355, pp.511-515, 1992.

J. L. Crainey, J. Hurst, P. H. Lamberton, R. A. Cheke, C. E. Griffin et al., The genomic architecture of novel simulium damnosum wolbachia prophage sequence elements and implications for onchocerciasis epidemiology, Front. Microbiol, vol.8, pp.1-17, 2017.

C. Cubeñas-potts and M. J. Matunis, SUMO: A Multifaceted Modifier of Chromatin Structure and Function, Dev. Cell, vol.24, pp.1-12, 2013.

A. C. Darby, S. D. Armstrong, G. S. Bah, G. Kaur, M. A. Hughes et al., Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis, Genome Res, vol.22, pp.2467-2477, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00771127

R. Dawkins, The Extended Phenotype: The Long Reach of the Gene, 1982.

F. Dedeine, M. Boulétreau, and F. Vavre, Wolbachia requirement for oogenesis: Occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida, Heredity, vol.95, pp.394-400, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00427734

F. Dedeine, F. Vavre, F. Fleury, B. Loppin, M. E. Hochberg et al., Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp, Proc. Natl. Acad. Sci, vol.98, pp.6247-6252, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00427163

F. Dedeine, F. Vavre, D. D. Shoemaker, and M. Boulétreau, Intra-individual coexistence of a Wolbachia strain required for host oogenesis with two strains inducing cytoplasmic incompatibility in the wasp Asobara tabida, Evolution, vol.58, pp.2167-2174, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427570

R. J. Deshaies, SCF and Cullin/RING H2-Based Ubiquitin Ligases, Annu. Rev. Cell Dev. Biol, vol.15, pp.435-467, 1999.

S. L. Dobson, K. Bourtzis, H. R. Braig, B. F. Jones, W. Zhou et al., Wolbachia infections are distributed throughout insect somatic and germ line tissues, Insect Biochem. Mol. Biol, vol.29, pp.153-160, 1999.

S. L. Dobson, C. W. Fox, and F. M. Jiggins, The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems, Proc. R. Soc. B Biol. Sci, vol.269, pp.437-445, 2002.

S. L. Dobson, E. J. Marsland, and W. Rattanadechakul, Mutualistic Wolbachia infection in Aedes albopictus: Accelerating cytoplasmic drive, Genetics, vol.160, pp.1087-1094, 2002.

S. L. Dobson, E. J. Marsland, and W. Rattanadechakul, Wolbachia-induced cytoplasmic incompatibility in single-and superinfected Aedes albopictus (Diptera: Culicidae), J. Med. Entomol, vol.38, pp.382-387, 2001.

A. E. Douglas, Nutirional interactions in insect-microbial symbiosies: Aphids and Their Symbiotic Bacteria Buchnera, Annu. Rev. Entomol, vol.43, pp.17-37, 1998.

E. Dumas, C. M. Atyame, P. Milesi, D. M. Fonseca, E. V. Shaikevich et al., Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species, BMC Evol. Biol, vol.13, p.181, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01944586

A. M. Dunn and J. E. Smith, Microsporidian life cycles and diversity: the relationship between virulence and transmission, Microbes Infect, vol.3, pp.381-388, 2001.

O. Duron, J. Bernard, C. M. Atyame, E. Dumas, and M. Weill, Rapid evolution of Wolbachia incompatibility types, Proc. R. Soc. B Biol. Sci, vol.279, pp.4473-4480, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01944590

O. Duron, D. Bouchon, S. Boutin, L. Bellamy, L. Zhou et al., The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone, BMC Biol, vol.6, p.27, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00293355

O. Duron, A. Boureux, P. Echaubard, A. Berthomieu, C. Berticat et al., Variability and expression of ankyrin domain genes in Wolbachia variants infecting the mosquito Culex pipiens, J. Bacteriol, vol.189, pp.4442-4448, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02267393

O. Duron, P. Fort, and M. Weill, Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens, Proc. R. Soc. B-Biological Sci, vol.273, pp.495-502, 2006.
URL : https://hal.archives-ouvertes.fr/halsde-00300411

O. Duron, P. Fort, and M. Weill, Influence of aging on cytoplasmic incompatibility, sperm modification and Wolbachia density in Culex pipiens mosquitoes, Heredity, vol.98, pp.368-374, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02267394

O. Duron, J. Lagnel, M. Raymond, K. Bourtzis, P. Fort et al., Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: Evidence of genetic diversity, superinfection and recombination, Mol. Ecol, vol.14, pp.1561-1573, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02267414

O. Duron, M. Raymond, and M. Weill, Many compatible Wolbachia strains coexist within natural populations of Culex pipiens mosquito, Heredity, vol.106, pp.986-993, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01944606

O. Duron and M. Weill, Wolbachia infection influences the development of Culex pipiens embryo in incompatible crosses, Heredity, vol.96, pp.493-500, 2006.
URL : https://hal.archives-ouvertes.fr/halsde-00300430

O. Duron, C. Bernard, S. Unal, A. Berthomieu, C. Berticat et al., Tracking factors modulating cytoplasmic incompatibilities in the mosquito Culex pipiens, Mol. Ecol, vol.15, pp.3061-3071, 2006.
URL : https://hal.archives-ouvertes.fr/halsde-00300493

H. L. Dutra, M. N. Rocha, F. B. Dias, S. B. Mansur, E. P. Caragata et al., Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes, Cell Host Microbe, vol.19, pp.771-774, 2016.

M. A. Ebbert, The Interaction Phenotype in the Drosophila willistoni-Spiroplasma Symbiosis, Evolution, vol.45, pp.971-988, 1991.

D. Ebert, The Epidemiology and Evolution of Symbionts with Mixed-Mode Transmission, Annu. Rev. Ecol. Evol. Syst, vol.44, pp.623-643, 2013.

J. Engelstädter and G. D. Hurst, The Ecology and Evolution of Microbes that Manipulate Host Reproduction, Annu. Rev. Ecol. Evol. Syst, vol.40, pp.127-149, 2009.

J. Engelstädter and A. Telschow, Cytoplasmic incompatibility and host population structure, Heredity, vol.103, pp.196-207, 2009.

H. Everett and G. Mcfadden, Apoptosis: An innate immune response to virus infection, Trends Microbiol, vol.7, pp.160-165, 1999.

P. Ewald and G. De-leo, Alternative transmission modes and the evolution of virulence, Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, pp.10-25, 2002.

J. B. Ferdy, N. Liu, and M. Sicard, Transmission modes and the evolution of feminizing symbionts, J. Evol. Biol, vol.29, pp.2395-2409, 2016.

P. E. Fine, On the dynamics of symbiote-dependent cytoplasmic incompatibility in culicine mosquitoes, J. Invertebr. Pathol, vol.31, pp.10-18, 1978.

P. E. Fine, Vectors and Vertical Transmission: an Epidemiologic Perspective, Ann. N. Y. Acad. Sci, vol.266, pp.173-194, 1975.

R. A. Fisher, The Genetical Theory of Natural Selection, 1930.

M. Flor, P. Hammerstein, and A. Telschow, Wolbachia-induced unidirectional cytoplasmic incompatibility and the stability of infection polymorphism in parapatric host populations, J. Evol. Biol, vol.20, pp.696-706, 2007.

H. A. Flores and S. L. Neill, Controlling vector-borne diseases by releasing modified mosquitoes, Nat. Rev. Microbiol, vol.16, pp.508-518, 2018.

J. Foster, M. Ganatra, I. Kamal, J. Ware, K. Makarova et al., The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode, PLoS Biol, vol.3, p.121, 2005.

S. A. Frank, Host-symbiont conflict over the mixing of symbiotic lineages, Proc. R. Soc. B Biol. Sci, vol.263, pp.339-344, 1996.

A. J. Fry, M. R. Palmer, and D. M. Rand, Variable fitness effects of Wolbachia infection in Drosophila melanogaster, Heredity, vol.93, pp.379-389, 2004.

T. Fukatsu and T. Hosokawa, Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima, Appl. Environ. Microbiol, vol.68, pp.389-396, 2002.

V. M. Gantz, N. Jasinskiene, O. Tatarenkova, A. Fazekas, V. M. Macias et al., Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi, Proc. Natl. Acad. Sci, vol.112, pp.6736-6743, 2015.

L. Y. Gao and Y. Abu-kwaik, Hijacking of apoptotic pathways by bacterial pathogens, Microbes Infect, vol.2, pp.1705-1719, 2000.

L. Gavotte, H. Henri, R. Stouthamer, D. Charif, S. Charlat et al., A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia, Mol. Biol. Evol, vol.24, pp.427-435, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434685

L. Gavotte, F. Vavre, H. Henri, M. Ravallec, R. Stouthamer et al., Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species, Insect Mol. Biol, vol.13, pp.147-153, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427580

M. Gebiola, M. Giorgini, S. E. Kelly, M. R. Doremus, P. M. Ferree et al., Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia, Proc. R. Soc. B Biol. Sci, vol.284, 2017.

G. P. Georghiou, R. L. Metcalf, and F. E. Gidden, Carbamate-resistance in mosquitos, Bull. World Health Organ, vol.35, pp.691-708, 1966.

K. Gerdes and E. Maisonneuve, Bacterial Persistence and Toxin-Antitoxin Loci, Annu. Rev. Microbiol, vol.66, pp.103-123, 2012.

R. L. Gherna, J. H. Werren, W. Weisburg, R. Cote, C. R. Woese et al., Arsenophonus nasoniae gen. nov., sp. nov., the Causative Agent of the Son-Killer Trait in the Parasitic Wasp Nasonia vitripennis, Int. J. Syst. Bacteriol, vol.41, pp.563-565, 1991.

F. S. Gilbert, N. Haines, and K. Kickson, Empty flowers, Funct. Ecol, vol.5, pp.29-39, 1991.

M. H. Glickman and A. Ciechanover, The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction, Physiol. Rev, vol.82, pp.373-428, 2002.

E. Glowska, A. Dragun-damian, M. Dabert, and M. Gerth, New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae), Infect. Genet. Evol, vol.30, pp.140-146, 2015.

T. Gotoh, H. Noda, and S. Ito, Cardinium symbionts cause cytoplasmic incompatibility in spider mites, Heredity, vol.98, pp.13-20, 2007.

Y. Gottlieb, E. Zchori-fein, J. H. Werren, and T. L. Karr, Diploidy restoration in Wolbachiainfected Muscidifurax uniraptor (Hymenoptera: Pteromalidae), J. Invertebr. Pathol, vol.81, pp.166-174, 2002.

S. Grenier, B. Pintureau, A. Heddi, F. Lassabliere, C. Jager et al., Successful horizontal transfer of Wolbachia symbionts between Trichogramma wasps, Proc. R. Soc. Lond. B. Biol. Sci, vol.265, pp.1441-1445, 1998.

T. Guillemaud, N. Pasteur, and F. Rousset, Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquito Culex pipiens, Proc. R. Soc. B Biol. Sci, vol.264, pp.245-251, 1997.
URL : https://hal.archives-ouvertes.fr/halsde-00201307

A. Haegeman, B. Vanholme, J. Jacob, T. T. Vandekerckhove, M. Claeys et al., An endosymbiotic bacterium in a plant-parasitic nematode: Member of a new Wolbachia supergroup, Int. J. Parasitol, vol.39, pp.1045-1054, 2009.

T. Hagimori, Y. Abe, S. Date, and K. Miura, The first finding of a Rickettsia bacterium associated with parthenogenesis induction among insects, Curr. Microbiol, vol.52, pp.97-101, 2006.

W. D. Hamilton, Extraordinary sex ratios, Science, vol.156, pp.477-488, 1967.

T. Harumoto, H. Anbutsu, and T. Fukatsu, Male-Killing Spiroplasma Induces Sex-Specific Cell Death via Host Apoptotic Pathway, PLoS Pathog, vol.10, 2014.

T. Harumoto and B. Lemaitre, Male-killing toxin in a Drosophila bacterial symbiont, Nature, vol.557, pp.252-255, 2018.

B. D. Heath, R. D. Butcher, W. G. Whitfield, and S. F. Hubbard, Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism, Curr. Biol, vol.9, pp.313-316, 1999.

R. Hershberg and D. A. Petrov, Evidence that mutation is universally biased towards AT in bacteria, PLoS Genet, vol.6, p.100115, 2010.

M. Hertig, The Rickettsia, Wolbachia pipientis (gen. et sp.n.) and Associated Inclusions of the Mosquito, Culex pipiens, Parasitology, vol.28, pp.453-486, 1936.

M. Hertig and S. B. Wolbach, Studies on Rickettsia-Like Micro-Organisms in Insects, J. Med. Res, vol.44, pp.329-374, 1924.

F. Hildebrand, A. Meyer, and A. Eyre-walker, Evidence of selection upon genomic GC-content in bacteria, PLoS Genet, vol.6, p.1001107, 2010.

K. Hilgenboecker, P. Hammerstein, P. Schlattmann, A. Telschow, and J. H. Werren, How many species are infected with Wolbachia? a statistical analysis of current data, FEMS Microbiol. Lett, vol.281, pp.215-220, 2008.

M. Hochstrasser, H. Chen, J. F. Beckmann, J. A. Ronau, and J. Berk, Toxin-Antitoxin Modules Drive Cytoplasmic Incompatibility by Intracellular Wolbachia Bacteria. Wolbachia Conf, 2018.

A. A. Hoffmann, D. Clancy, and J. Duncan, Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility, Heredity, vol.76, pp.1-8, 1996.

A. A. Hoffmann, I. Iturbe-ormaetxe, A. G. Callahan, B. L. Phillips, K. Billington et al., Stability of the wMel Wolbachia Infection following Invasion into Aedes aegypti Populations, PLoS Negl. Trop. Dis, vol.8, p.3115, 2014.

A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-ormaetxe, P. H. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.476, pp.454-457, 2011.

A. A. Hoffmann, M. Turelli, and L. G. Harshman, Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans, Genetics, vol.126, pp.933-948, 1990.

A. A. Hoffmann, M. Turelli, and G. M. Simmons, Unidirectional Incompatibility between Populations of Drosophila simulans, Evolution, vol.40, pp.692-701, 1986.

E. A. Hornett, S. Charlat, A. M. Duplouy, N. Davies, G. K. Roderick et al., Evolution of male-killer suppression in a natural population, PLoS Biol, vol.4, pp.1643-1648, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00427974

S. Hoshizaki and T. Shimada, PCR-based detection of Wolbachia, cytoplasmic incompatibility microorganisms, infected in natural populations of Laodelphax striatellus (Homoptera: Delphacidae) in central Japan: has the distribution of Wolbachia spread recently?, Insect Mol. Biol, vol.4, pp.237-243, 1995.

T. Hosokawa, Y. Kikuchi, and T. Fukatsu, How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect-bacterium mutualism?, Mol. Ecol, vol.16, pp.5316-5325, 2007.

T. Hosokawa, Y. Kikuchi, N. Nikoh, M. Shimada, and T. Fukatsu, Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria, PLoS Biol, vol.4, pp.1841-1851, 2006.

T. Hosokawa, R. Koga, Y. Kikuchi, X. Meng, and T. Fukatsu, Wolbachia as a bacteriocyteassociated nutritional mutualist, Proc. Natl. Acad. Sci, vol.107, pp.769-774, 2010.

G. L. Hughes, R. Koga, P. Xue, T. Fukatsu, and J. L. Rasgon, Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae, PLoS Pathog, vol.7, pp.3-10, 2011.

M. E. Huigens, R. P. De-almeida, P. A. Boons, R. F. Luck, and R. Stouthamer, Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps, Proc. R. Soc. B Biol. Sci, vol.271, pp.509-515, 2004.

M. S. Hunter, S. J. Perlman, and S. E. Kelly, A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella, Proc. R. Soc. B Biol. Sci, vol.270, pp.2185-2190, 2003.

G. D. Hurst, C. Bandi, L. Sacchi, A. G. Cochrane, D. Bertrand et al., Adonia variegata (Coleoptera: Coccinellidae) bears maternally inherited Flavobacteria that kill males only, Parasitology, vol.118, pp.125-134, 1999.

G. D. Hurst and C. L. Frost, Reproductive Parasitism: Maternally Inherited Symbionts in a Biparental World, Cold Spring Harb. Perspect. Biol, vol.7, p.17699, 2015.

G. D. Hurst and M. E. Majerus, Why do maternally inherited microorganisms kill males?, Heredity, vol.71, pp.81-95, 1993.

G. D. Hurst, M. E. Majerus, and L. E. Walker, The importance of cytoplasmic male killing elements in natural populations of the two spot ladybird, Adalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae), Biol. J. Linn. Soc, vol.49, pp.195-202, 1993.

G. D. Hurst and M. Schilthuizen, Selfish genetic elements and speciation, Heredity (Edinb), vol.80, pp.2-8, 1998.

G. D. Hurst and J. H. Werren, The role of selfish genetic elements in eukaryotic evolution, Nat. Rev. Genet, vol.2, pp.597-606, 2001.

L. D. Hurst, The evolution of cytoplasmic incompatibility or when spite can be successful, J. Theor. Biol, vol.148, pp.269-277, 1991.

L. D. Hurst, The Incidences and Evolution of Cytoplasmic Male Killers, Proc. R. Soc. B Biol. Sci, vol.244, pp.91-99, 1991.

T. Ikeda, H. Ishikawa, and T. Sasaki, Infection density of Wolbachia and level of cytoplasmic incompatibility in the Mediterranean flour moth, Ephestia kuehniella, J. Invertebr. Pathol, vol.84, pp.1-5, 2003.

J. E. Ironside, J. E. Smith, M. J. Hatcher, R. G. Sharpe, D. Rollinson et al., Two species of feminizing microsporidian parasite coexist in populations of Gammarus duebeni, J. Evol. Biol, vol.16, pp.467-473, 2003.

R. Irving-bell, Cytoplasmic incompatibility within and between Culex molestus and Culex quinquefasciatus (Diptera: Culcidae), J. Med. Entomol, vol.20, pp.44-48, 1983.

R. E. Irwin and A. K. Brody, Nectar-robbing bumble bees reduce the fitness of Ipomopsis aggregata (Polemoniaceae), Ecology, vol.80, pp.1703-1712, 1999.

I. Iturbe-ormaetxe, G. R. Burke, M. Riegler, and S. L. O'neill, Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis, J. Bacteriol, vol.187, pp.5136-5145, 2005.

J. Jaenike, K. A. Dyer, C. Cornish, and M. S. Minhas, Asymmetrical reinforcement and Wolbachia infection in Drosophila, PLoS Biol, vol.4, pp.1852-1862, 2006.

A. C. James and J. W. Ballard, Expression of cytoplasmic incompatibility in Drosophila simulans and its impact on infection frequencies and distribution of Wolbachia pipientis, Evolution, vol.54, pp.1661-1672, 2000.

W. Jamnongluk, P. Kittayapong, K. J. Baisley, and S. L. Neill, Wolbachia infection and expression of cytoplasmic incompatibility in Armigeres subalbatus (Diptera: Culicidae), J. Med. Entomol, vol.37, pp.53-57, 2000.

F. M. Jiggins, G. D. Hurst, and M. E. Majerus, Sex-ratio-distorting Wolbachia causes sex-role reversal in its butterfly host, Proc. R. Soc. B Biol. Sci, vol.267, pp.69-73, 2000.

S. Kambhampati, K. S. Rai, and D. M. Verleye, Frequencies of mitochondrial DNA haplotypes in laboratory cage populations of the mosquito, Aedes albopictus. Genetics, vol.132, pp.205-209, 1992.

Z. Kambris, A. M. Blagborough, S. B. Pinto, M. S. Blagrove, H. C. Godfray et al., Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae, PLoS Pathog, vol.6, p.1001143, 2010.

Y. Katakura, Endocrine and genetic control of sex differentiation in the Malacostracan Crustacea, Invertebr. Reprod. Dev, vol.16, pp.177-181, 1989.

M. J. Keeling, F. M. Jiggins, and J. M. Read, The invasion and coexistence of competing Wolbachia strains, Heredity (Edinb), vol.91, pp.382-388, 2003.

B. N. Kent, L. J. Funkhouser, S. Setia, and S. R. Bordenstein, Evolutionary genomics of a temperate bacteriophage in an obligate intracellular bacteria (Wolbachia), PLoS One, vol.6, p.24984, 2011.

B. N. Kent, L. Salichos, J. G. Gibbons, A. Rokas, I. L. Newton et al., Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture, Genome Biol. Evol, vol.3, pp.209-218, 2011.

P. Kittayapong, P. Mongkalangoon, V. Baimai, and S. L. O'neill, Host age effect and expression of cytoplasmic incompatibility in feld populations of Wolbachia-superinfected Aedes albopictus, Heredity, vol.88, pp.270-274, 2002.

L. Klasson, T. Walker, M. Sebaihia, M. J. Sanders, M. Quail et al., Genome evolution of Wolbachia strain wPip from the Culex pipiens group, Mol. Biol. Evol, vol.25, pp.1877-1887, 2008.

L. Klasson, J. Westberg, P. Sapountzis, K. Naslund, Y. Lutnaes et al., The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans, Proc. Natl. Acad. Sci, vol.106, pp.5725-5730, 2009.

H. Kose and T. L. Karr, Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody, Mech. Dev, vol.51, pp.275-288, 1995.

N. Kremer, D. Charif, H. Henri, M. Bataille, G. Prévost et al., A new case of Wolbachia dependence in the genus Asobara: Evidence for parthenogenesis induction in Asobara japonica, Heredity, vol.103, pp.248-256, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428410

F. Landmann, G. A. Orsi, B. Loppin, and W. Sullivan, Wolbachia-Mediated Cytoplasmic Incompatibility Is Associated with Impaired Histone Deposition in the Male Pronucleus, PLoS Pathog, vol.5, p.1000343, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00425204

F. Landmann, D. Voronin, W. Sullivan, and M. J. Taylor, Anti-filarial activity of antibiotic therapy is due to extensive apoptosis after Wolbachia depletion from filarial nematodes, PLoS Pathog, vol.7, pp.1-12, 2011.

C. W. Lassy and T. L. Karr, Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans, Mech. Dev, vol.57, pp.47-58, 1996.

H. Laven, Cytoplasmic Inheritance in Culex, Nature, vol.177, pp.141-142, 1956.

H. Laven, Eradication of Culex pipiens fatigans through Cytoplasmic Incompatibility, Nature, vol.216, pp.383-384, 1967.

H. Laven, Speciation and evolution in Culex pipiens, Genetics of Insect Vectors of Disease, pp.251-275, 1967.

L. Clec'h, W. Chevalier, F. D. Genty, L. Bertaux, J. Bouchon et al., Cannibalism and Predation as Paths for Horizontal Passage of Wolbachia between Terrestrial Isopods, PLoS One, vol.8, p.60232, 2013.

L. Clec'h, W. Raimond, M. Guillot, S. Bouchon, D. Sicard et al., Horizontal transfers of feminizing versus non-feminizing Wolbachia strains: From harmless passengers to pathogens, Environ. Microbiol, vol.15, pp.2922-2936, 2013.

S. Leclercq, J. Thézé, M. A. Chebbi, I. Giraud, B. Moumen et al., Birth of a W sex chromosome by horizontal transfer of Wolbachia bacterial symbiont genome, Proc. Natl. Acad. Sci, vol.113, pp.15036-15041, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01415929

M. T. Lee, A. A. Bakir, K. N. Nguyen, and J. Bachant, The SUMO isopeptidase Ulp2p is required to prevent recombination-induced chromosome segregation lethality following DNA replication stress, PLoS Genet, vol.7, pp.20-22, 2011.

E. Lefoulon, O. Bain, B. L. Makepeace, C. Haese, S. Uni et al., Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts, PeerJ, vol.4, p.1840, 2016.

E. Lefoulon, L. Gavotte, K. Junker, M. Barbuto, S. Uni et al., A new type F Wolbachia from Splendidofilariinae (Onchocercidae) supports the recent emergence of this supergroup, Int. J. Parasitol, vol.42, pp.1025-1036, 2012.

J. J. Legrand and P. Juchault, Nouvelles données sur le déterminisme génétique et épigénétique de la monogénie chez le Crustacé Isopode terrestre Armadillidium vulgare Latr, Genet. Sel. Evol, vol.16, pp.57-84, 1984.

B. A. Leigh, J. D. Shropshire, E. Van-opstal, K. S. Ngo, and B. , What is the role of phage WO in cytoplasmic incompatibility ? Wolbachia Conf, 2018.

D. Lepage and S. R. Bordenstein, Wolbachia: Can we save lives with a great pandemic?, Trends Parasitol, vol.29, pp.385-393, 2013.

D. P. Lepage, J. A. Metcalf, S. R. Bordenstein, J. On, J. I. Perlmutter et al., Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility, Nature, vol.543, pp.243-247, 2017.

P. A. Lind and D. I. Andersson, Whole-genome mutational biases in bacteria, Proc. Natl. Acad. Sci, vol.105, pp.17878-17883, 2008.

A. R. Lindsey, D. W. Rice, S. R. Bordenstein, A. W. Brooks, S. R. Bordenstein et al., Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia, Genome Biol. Evol, vol.10, pp.434-451, 2018.

N. Lo, M. Casiraghi, E. Salati, C. Bazzocchi, and C. Bandi, How Many Wolbachia Supergroups Exist?, Mol. Biol. Evol, vol.19, pp.341-346, 2002.

M. D. Lorenzen, A. Gnirke, J. Margolis, J. Garnes, M. Campbell et al., The maternal-effect, selfish genetic element Medea is associated with a composite Tc1 transposon, Proc. Natl. Acad. Sci, vol.105, pp.10085-10089, 2008.

M. H. Lu, K. J. Zhang, and X. Y. Hong, Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae, Exp. Appl. Acarol, vol.58, pp.207-220, 2012.

Y. Ma, W. J. Chen, Z. H. Li, F. Zhang, Y. Gao et al., Revisiting the phylogeny of Wolbachia in Collembola, Ecol. Evol, vol.7, pp.2009-2017, 2017.

M. J. Mackinnon and A. F. Read, Genetic Relationships between Parasite Virulence and Transmission in the Rodent Malaria Plasmodium chabaudi, Evolution, vol.53, pp.689-703, 1999.

M. J. Mackinnon and A. F. Read, The effects of host immunity on virulence-transmissibility relationships in the rodent malaria parasite Plasmodium chabaudi, Parasitology, vol.126, pp.103-112, 2003.

M. Magnin, N. Pasteur, and M. Raymond, Multiple incompatibilities within populations of Culex pipiens L. in southern France, Genetica, vol.74, pp.125-130, 1987.

J. W. Mains, C. L. Brelsfoard, R. I. Rose, and S. L. Dobson, Female adult aedes Albopictus suppression by Wolbachia-infected male mosquitoes, Sci. Rep, vol.6, pp.1-7, 2016.

E. Mann, C. M. Stouthamer, S. E. Kelly, M. Dzieciol, M. S. Hunter et al., Transcriptome Sequencing Reveals Novel Candidate Genes for Cardinium hertigii-Caused Cytoplasmic Incompatibility and Host-Cell Interaction, vol.2, pp.1-16, 2017.

J. F. Marshall and J. Staley, Some notes regarding the morphological and biological differentiation of Culex pipiens Linnaeus and Culex molestus Forskal (Diptera, Culicidae), Proc. R. Entomol. Soc. London. Ser. A, Gen. Entomol, vol.12, pp.17-26, 1937.

G. Martin, O. Sorokine, M. Moniatte, P. Bulet, C. Hetru et al., The structure of a glycosylated protein hormone responsible for sex determination in the isopod, Armadillidium vulgare, Eur. J. Biochem, vol.262, pp.727-736, 1999.

J. Martin, T. Chong, and P. M. Ferree, Male killing Spiroplasma preferentially disrupts neural development in the Drosophila melanogaster embryo, PLoS One, vol.8, p.79368, 2013.

S. Masui, S. Kamoda, T. Sasaki, and H. Ishikawa, Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in Arthropods, J. Mol. Evol, vol.51, pp.491-497, 2000.

S. Masui, H. Kuroiwa, T. Sasaki, M. Inui, T. Kuroiwa et al., Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods, Biochem. Biophys. Res. Commun, vol.283, pp.1099-1104, 2001.

S. Maynard, The Evolution of Sex, 1978.

A. Mcaleenan, V. Cordon-preciado, A. Clemente-blanco, I. C. Liu, N. Sen et al., SUMOylation of the ?-kleisin subunit of cohesin is required for DNA damage-induced cohesion, Curr. Biol, vol.22, pp.1564-1575, 2012.

J. P. Mccutcheon, B. R. Mcdonald, and N. A. Moran, Convergent evolution of metabolic roles in bacterial co-symbionts of insects, Proc. Natl. Acad. Sci, vol.106, pp.15394-15399, 2009.

J. P. Mccutcheon and N. Moran, Extreme genome reduction in symbiotic bacteria, Nat. Rev. Microbiol, vol.10, pp.13-26, 2012.

J. P. Mccutcheon and N. A. Moran, Parallel genomic evolution and metabolic interdependence in an ancient symbiosis, Proc. Natl. Acad. Sci, vol.104, pp.19392-19397, 2007.

E. Mcgraw, D. J. Merritt, J. N. Droller, and S. L. Neill, Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila, Proc. Biol. Sci, vol.268, pp.2565-2570, 2001.

H. Merçot and S. Charlat, Wolbachia infections in Drosophila melanogaster and D. simulans: polymorphism and levels of cytoplasmic incompatibility, Genetica, vol.120, pp.51-59, 2004.

H. Merçot and D. Poinsot, Rescuing Wolbachia have been overlooked and discovered on Mount Kilimanjaro, Nature, vol.391, pp.853-853, 1998.

E. Miao and S. I. Miller, Bacteriophages in the evolution of pathogen-host interactions, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.9452-9454, 1999.

B. R. Miller, M. B. Crabtree, and H. M. Savage, Phylogeny of fourteen Culex mosquito species, including the Culex pipiens complex, inferred from the internal transcribed spacers of ribosomal DNA, Insect Mol. Biol, vol.5, pp.93-107, 1996.

N. Moran, J. P. Mccutcheon, and A. Nakabachi, Genomics and evolution of heritable bacterial symbionts, Annu. Rev. Genet, vol.42, pp.165-90, 2008.

N. A. Moran, Accelerated evolution and Muller's rachet in endosymbiotic bacteria, Proc. Natl. Acad. Sci, vol.93, pp.2873-2878, 1996.

N. A. Moran and H. E. Dunbar, Sexual acquisition of beneficial symbionts in aphids, Proc. Natl. Acad. Sci, vol.103, pp.12803-12806, 2006.

L. A. Moreira, I. Iturbe-ormaetxe, J. A. Jeffery, G. Lu, A. T. Pyke et al., A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium, vol.139, pp.1268-1278, 2009.

R. Moretti and M. Calvitti, Male mating performance and cytoplasmic incompatibility in a wPip Wolbachia trans-infected line of Aedes albopictus (Stegomyia albopicta), Med. Vet. Entomol, vol.27, pp.377-386, 2013.

L. Mousson, K. Zouache, C. Arias-goeta, V. Raquin, P. Mavingui et al., The Native Wolbachia Symbionts Limit Transmission of Dengue Virus in Aedes albopictus, PLoS Negl. Trop. Dis, vol.6, p.1989, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01680937

Y. Nakamura, F. Yukuhiro, M. Matsumura, and H. Noda, Cytoplasmic incompatibility involving Cardinium and Wolbachia in the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae), Appl. Entomol. Zool, vol.47, pp.273-283, 2012.

S. Narita, D. Kageyama, M. Nomura, and T. Fukatsu, Unexpected mechanism of symbiontinduced reversal of insect sex: Feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development, Appl. Environ. Microbiol, vol.73, pp.4332-4341, 2007.

I. L. Newton, M. E. Clark, B. N. Kent, S. R. Bordenstein, J. Qu et al., Comparative genomics of two closely related Wolbachia with different reproductive effects on hosts, Genome Biol Evol, vol.8, pp.1526-1542, 2016.

D. T. Nguyen, J. L. Morrow, R. N. Spooner-hart, and M. Riegler, Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations, Evolution, vol.71, pp.995-1008, 2017.

A. Nirgianaki, G. K. Banks, D. R. Frohlich, Z. Veneti, H. R. Braig et al., Wolbachia infections of the whitefly Bemisia tabaci, Curr. Microbiol, vol.47, pp.93-101, 2003.

T. Nishino and K. Morikawa, Structure and function of nucleases in DNA repair: Shape, grip and blade of the DNA scissors, Oncogene, vol.21, pp.9022-9032, 2002.

H. Noda, Y. Koizumi, Q. Zhang, and K. Deng, Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera, Insect Biochem, 2001.

, Mol. Biol, vol.31, pp.727-737

I. Nor, J. Engelstädter, O. Duron, M. Reuter, M. Sagot et al., On the genetic architecture of cytoplasmic incompatibility: inference from phenotypic data, Am. Nat, vol.182, pp.15-24, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00837003

I. Nor, D. Hermelin, S. Charlat, J. Engelstadter, M. Reuter et al., Mod/Resc parsimony inference: Theory and application, Inf. Comput, vol.213, pp.23-32, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763405

S. V. Nyholm and M. J. Mcfall-ngai, The winnowing: Establishing the squid-Vibrios symbiosis, Nat. Rev. Microbiol, vol.2, pp.632-642, 2004.

L. O'connor, C. Plichart, A. C. Sang, C. L. Brelsfoard, H. C. Bossin et al., Open Release of Male Mosquitoes Infected with a Wolbachia Biopesticide: Field Performance and Infection Containment, PLoS Negl. Trop. Dis, vol.6, p.1797, 2012.

S. L. O'neill and T. L. Karr, Bidirectional incompatibility between conspecific populations of Drosophila simulans, Nature, vol.348, pp.178-180, 1990.

S. L. O'neill and H. E. Paterson, Crossing type variability associated with cytoplasmic incompatibility in Australian populations of the mosquito Culex quinquefasciatus Say, Med. Vet. Entomol, vol.6, pp.209-216, 1992.

T. Ohta, Very slightly deleterious mutations and the molecular clock, J. Mol. Evol, vol.26, pp.1-6, 1987.

A. Okuno, Y. Hasegawa, and H. Nagasawa, Purification and Properties of Androgenic Gland Hormone from the Terrestrial Isopod Armadillidium vulgare, Zoolog. Sci, vol.14, pp.837-842, 1997.

K. M. Oliver, J. Campos, N. A. Moran, and M. S. Hunter, Population dynamics of defensive symbionts in aphids, Proc. R. Soc. B Biol. Sci, vol.275, pp.293-299, 2008.

K. M. Oliver, P. H. Degnan, M. S. Hunter, and N. A. Moran, Bacteriophages encode factors required for protection in a symbiotic mutualism, Science, vol.325, pp.992-994, 2009.

K. M. Oliver, J. A. Russell, N. A. Moran, and M. S. Hunter, Facultative bacterial symbionts in aphids confer resistance to parasitic wasps, Proc. Natl. Acad. Sci, vol.100, pp.1803-1807, 2003.

K. Panaram and J. L. Marshall, F supergroup Wolbachia in bush crickets: What do patterns of sequence variation reveal about this supergroup and horizontal transfer between nematodes and arthropods, Genetica, vol.130, pp.53-60, 2007.

B. Pannebakker, L. P. Pijnacker, B. J. Zwaan, and L. W. Beukeboom, Cytology of Wolbachiainduced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae), Genome, vol.47, pp.299-303, 2004.

B. A. Pannebakker, B. Loppin, C. P. Elemans, L. Humblot, and F. Vavre, Parasitic inhibition of cell death facilitates symbiosis, Proc. Natl. Acad. Sci, vol.104, pp.213-215, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00180908

B. A. Pannebakker, N. S. Schidlo, G. J. Boskamp, L. Dekker, T. J. Van-dooren et al., Sexual functionality of Leptopilina clavipes (Hymenoptera: Figitidae) after reversing Wolbachia-induced parthenogenesis, J. Evol. Biol, vol.18, pp.1019-1028, 2005.

C. Paraskevopoulos, S. R. Bordenstein, J. J. Wernegreen, J. H. Werren, and K. Bourtzis, Toward a Wolbachia multilocus sequence typing system: Discrimination of Wolbachia strains present in Drosophila species, Curr. Microbiol, vol.53, pp.388-395, 2006.

T. Penz, S. Schmitz-esser, S. E. Kelly, B. N. Cass, A. Müller et al., Comparative Genomics Suggests an Independent Origin of Cytoplasmic Incompatibility in Cardinium hertigii, PLoS Genet, vol.8, p.1003012, 2012.

J. W. Pijls, H. J. Van-steenbergen, and J. J. Van-alphen, Asexuality cured: The relations and differences between sexual and asexual Apoanagyrus diversicornis, Heredity, vol.76, pp.506-513, 1996.

D. Poinsot, Infection par Wolbachia chez Drosophila simulans : étude des interactions hôtesymbiote, 1997.

D. Poinsot, K. Bourtzis, G. Markakis, C. Savakis, and H. Merçot, Wolbachia Transfer from Drosophila melanogaster into D. simulans: Host Effect and Cytoplasmic Incompatibility Relationships, Genet. Soc. Am, vol.150, pp.227-237, 1998.

D. Poinsot, S. Charlat, and H. Merçot, On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts, BioEssays, vol.25, pp.259-265, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427374

D. Poinsot and H. Merçot, Wolbachia can rescue from cytoplasmic incompatibility while being unable to induce it, From symbiosis to eukaryotism: Endocytobiology VII, pp.221-334, 1999.

M. Poirié and C. Coustau, The evolutionary ecology of aphids' immunity, Invertebr. Surviv. J, vol.8, pp.247-255, 2011.

L. M. Provencher, G. E. Morse, R. Weeks, and B. B. Normak, Parthenogenesis in the Aspidiotus nerii complex (Hemiptera: Diaspididae): a single origin of a worldwide, polyphagous lineage associated with Cardinium bacteria, Ann. Entomol. Soc. Am, vol.98, pp.629-635, 2005.

D. J. Rankin, E. P. Rocha, and S. P. Brown, What traits are carried on mobile genetic elements, and why ?, Heredity, vol.106, pp.1-10, 2011.

J. L. Rasgon and T. W. Scott, Wolbachia and Cytoplasmic Incompatibility in the California Culex pipiens Mosquito Species Complex: Parameter Estimates and Infection Dynamics in Natural Populations, Genetics, vol.165, pp.2029-2038, 2003.

R. Raychoudhury, L. Baldo, D. C. Oliveira, and J. H. Werren, Modes of acquisition of Wolbachia: Horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex, Evolution, vol.63, pp.165-183, 2009.

M. Raymond, M. Magnin, N. Pasteur, G. Pasteur, and G. Sinegre, Cytoplasmic incompatibility in the mosquito Culex-pipiens L. from southern france-implications for the selection and dispersal of insecticide resistance genes in natural-populations, Genetica, vol.70, pp.113-118, 1986.

K. M. Reed and J. H. Werren, Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): A comparative study of early embryonic events, Mol. Reprod. Dev, vol.40, pp.408-418, 1995.

J. U. Regus, K. A. Gano, A. C. Hollowell, and J. L. Sachs, Efficiency of partner choice and sanctions in Lotus is not altered by nitrogen fertilization, Proc. R. Soc. B Biol. Sci, vol.281, p.20132587, 2014.

D. B. Resnik, Ethical issues in field trials of genetically modified disease-resistant mosquitoes, Dev. World Bioeth, vol.14, pp.37-46, 2014.

F. E. Reyes-turcu, K. H. Ventii, and K. D. Wilkinson, Regulation and Cellular Roles of UbiquitinSpecific Deubiquitinating Enzymes, Annu. Rev. Biochem, vol.78, pp.363-397, 2009.

K. T. Reynolds and A. Hoffmann, Male age, host effects and the weak expression or nonexpression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia, Genet. Res, vol.80, pp.79-87, 2002.

K. T. Reynolds, L. J. Thomson, and A. A. Hoffmann, The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster, Genetics, vol.164, pp.1027-1034, 2003.

M. Riegler, S. Charlat, C. Stauffer, and H. Merçot, Wolbachia Transfer from Rhagoletis cerasi to Drosophila simulans: Investigating the Outcomes of Host-Symbiont Coevolution, Appl. Environ. Microbiol, vol.70, pp.273-279, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427642

T. Rigaud, Inherited microorganisms and sex determination of arthropod host, Influential Passenger: Inherited Microorganisms and Arthropod Reproduction, pp.91-101, 1997.

T. Rigaud, D. Antoine, I. Marcade, and P. Juchault, The effect of temperature on sex ratio in the isopod Porcellionides pruinosus: Environmental sex determination or a by-product of cytoplasmic sex determination?, Evol. Ecol, vol.11, pp.205-215, 1997.

T. Rigaud and P. Juchault, Genetic control of the vertical transmission of a cytoplasmic sex factor in Armadihidium vulgare latr. (crustacea, oniscidea), Heredity, vol.68, pp.47-52, 1992.

T. Rigaud and P. Juchault, Success and failure of horizontal transfers of feminizing Wolbachia endosymbionts in woodlice, J. Evol. Biol, vol.8, pp.249-255, 1995.

T. Rigaud, P. Juchault, and J. P. Mocquard, The evolution of sex determination in isopod crustaceans, BioEssays, vol.19, pp.409-416, 1997.

T. Rigaud, J. Moreau, and P. Juchault, Wolbachia infection in the terrestrial isopod Oniscus asellus: Sex ratio distortion and effect on fecundity, Heredity, vol.83, pp.469-475, 1999.

T. Rigaud, P. S. Pennings, and P. Juchault, Wolbachia bacteria effects after experimental interspecific transfers in terrestrial isopods, J. Invertebr. Pathol, vol.77, pp.251-257, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00123786

T. Rigaud, C. Souty-grosset, R. Raimond, J. Mocquard, and P. Juchault, Feminizing endocytobiosis in the terrestrial crustacean Armadillidium vulgare Latr. (Isopoda): Recent acquisitions, Endocyto Cell Res, vol.7, pp.259-273, 1991.

E. P. Rocha and A. Danchin, Base composition bias might result from competition for metabolic resources, Trends Genet, vol.18, pp.291-294, 2002.

T. P. Rodgers-gray, J. E. Smith, A. E. Ashcroft, R. E. Isaac, and A. M. Dunn, Mechanisms of parasite-induced sex reversal in Gammarus duebeni, Int. J. Parasitol, vol.34, pp.747-753, 2004.

V. I. Ros, V. M. Fleming, E. J. Feil, and J. A. Breeuwer, How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae), Appl. Environ. Microbiol, vol.75, pp.1036-1043, 2009.

F. Rousset and M. Raymond, Cytoplasmic incompatibility in insects: Why sterilize females?, Trends Ecol. Evol, vol.6, pp.54-57, 1991.

F. Rousset, M. Raymond, and F. Kjellberg, Cytoplasmic incompatibilities in the mosquito Culex pipiens: How to explain a cytotype polymorphism?, J. Evol. Biol, vol.4, pp.69-81, 1991.

F. Rousset and M. Solignac, Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simulans complex, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.6389-6393, 1995.

S. M. Rowley, R. J. Raven, and E. A. Mcgraw, Wolbachia pipientis in Australian spiders, Curr. Microbiol, vol.49, pp.208-214, 2004.

T. Ruang-areerate, P. Kittayapong, V. Baimai, and S. L. O'neill, Molecular phylogeny of Wolbachia endosymbionts in Southeast Asian mosquitoes (Diptera: Culicidae) based on wsp gene sequences, J. Med. Entomol, vol.40, pp.1-5, 2003.

S. L. Ryan and G. B. Saul, Post-fertilization effect of incompatibility factors in Mormoniella, MGG Mol. Gen. Genet, vol.103, pp.29-36, 1968.

S. L. Salzberg, D. Puiu, D. D. Sommer, V. Nene, and N. H. Lee, Genome sequence of the Wolbachia endosymbiont of Culex quinquefasciatusJHB, J. Bacteriol, vol.191, p.1725, 2009.

Y. O. Sanogo and S. L. Dobson, WO bacteriophage transcription in Wolbachia-infected Culex pipiens, Insect Biochem. Mol. Biol, vol.36, pp.80-85, 2006.

C. L. Scarborough, J. Ferrari, and H. C. Godfray, Aphid Protected from Pathogen by Endosymbiont, Science, vol.310, pp.1781-1781, 2005.

A. Schmitz, C. Anselme, M. Ravallec, C. Rebuf, J. C. Simon et al., The cellular immune response of the pea aphid to foreign intrusion and symbiotic challenge, PLoS One, vol.7, p.42114, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01208596

J. D. Schnell and L. Hicke, Non-traditional functions of ubiquitin and ubiquitin-binding proteins, J. Biol. Chem, vol.278, pp.35857-35860, 2003.

T. W. Scott, W. Takken, B. G. Knols, and C. Boëte, The ecology of genetically modified mosquitoes, Science, vol.298, pp.117-119, 2002.

K. Servick, Winged warriors, Science, vol.354, pp.164-167, 2016.

M. Shaheen, I. Shanmugam, and R. Hromas, The role of PCNA posttranslational modifications in translesion synthesis, J. Nucleic Acids, vol.2010, pp.1-8, 2010.

J. D. Shropshire, J. On, E. M. Layton, H. Zhou, and S. R. Bordenstein, One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster, Proc. Natl. Acad. Sci, vol.115, pp.4987-4991, 2018.

M. Sicard, D. Bouchon, L. Ceyrac, R. Raimond, M. Thierry et al., Bidirectional cytoplasmic incompatibility caused by Wolbachia in the terrestrial isopod Porcellio dilatatus, J. Invertebr. Pathol, vol.121, pp.28-36, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078481

F. Vavre, F. Fleury, D. Lepetit, P. Fouillet, and M. Boulétreau, Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations, Mol. Biol. Evol, vol.16, pp.1711-1723, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00428457

F. Vavre, F. Fleury, J. Varaldi, P. Fouillet, and M. Boulétreau, Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations, Heredity, vol.88, pp.361-365, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00427307

E. B. Vinogradova, Culex pipiens pipiens Mosquitoes: Taxonomy, Distribution, 2000.

M. K. Waldor and J. J. Mekalanos, Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin, Science, vol.272, pp.1910-1914, 1996.

T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-ormaetxe, F. D. Frentiu et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.476, pp.450-455, 2011.

T. Walker, L. Klasson, M. Sebaihia, M. J. Sanders, N. R. Thomson et al., Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group, BMC Biol, vol.5, pp.1-9, 2007.

G. H. Wang, B. F. Sun, T. L. Xiong, Y. K. Wang, K. E. Murfin et al., Bacteriophage WO can mediate horizontal gene transfer in endosymbiotic Wolbachia genomes, Front. Microbiol, vol.7, pp.1-16, 2016.

N. Wang, S. Jia, H. Xu, Y. Liu, and D. Huang, Multiple horizontal transfers of bacteriophage WO and host Wolbachia in fig wasps in a closed community, Front. Microbiol, vol.7, pp.1-10, 2016.

Z. Wang, X. M. Su, J. Wen, L. Y. Jiang, and G. X. Qiao, Widespread infection and diverse infection patterns of Wolbachia in Chinese aphids, Insect Sci, vol.21, pp.313-325, 2014.

M. Watanabe, Y. Tagami, K. Miura, D. Kageyama, and R. Stouthamer, Distribution Patterns of Wolbachia Endosymbionts in the Closely Related Flower Bugs of the Genus Orius: Implications for Coevolution and Horizontal Transfer, Microb. Ecol, vol.64, pp.537-545, 2012.

A. R. Weeks and J. A. Breeuwer, Wolbachia-induced parthenogenesis in a genus of phytophagous mites, Proc. R. Soc. B Biol. Sci, vol.268, pp.2245-2251, 2001.

J. H. Werren, Biology of Wolbachia, Annu. Rev. Entomol, vol.42, pp.587-609, 1997.

J. H. Werren, L. Baldo, and M. E. Clark, Wolbachia: master manipulators of invertebrate biology, Nat. Rev. Microbiol, vol.6, pp.741-751, 2008.

J. H. Werren and L. W. Beukeboom, Sex Determination , Sex Ratios , and genetic conflict, Annu. Rev. Ecol. Syst, vol.29, pp.233-61, 1998.

D. L. Williamson, B. Sakaguchi, K. J. Hackett, R. F. Whitcomb, J. G. Tully et al., Spiroplasma poulsonii sp. nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly, Int. J. Syst. Bacteriol, vol.49, pp.611-618, 1999.

J. D. Wright, F. S. Sjostrand, J. K. Portaro, and A. R. Barr, The ultrastructure of the rickettsia-like microorganism Wolbachia pipientis and Associated virus-like bodies in the mosquito Culex pipiens, J. Ultrasructure Res, vol.63, pp.79-85, 1978.

S. Wright, The roles of mutation, inbreeding, crossbreeding and selection in evolution, Proceedings of the Sixth International Congress on Genetics, vol.1, pp.356-366, 1932.

M. Wu, L. V. Sun, J. Vamathevan, M. Riegler, R. Deboy et al., Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements, PLoS Biol, vol.2, pp.327-341, 2004.

Z. Xi, C. C. Khoo, and S. L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, vol.310, pp.326-328, 2005.

Y. Yamaguchi, J. Park, and M. Inouye, Toxin-Antitoxin Systems in Bacteria and Archaea, Annu. Rev. Genet, vol.45, pp.61-79, 2011.

J. H. Yen and A. R. Barr, New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L, Nature, vol.232, pp.657-658, 1971.

D. W. Zeh, J. A. Zeh, and M. M. Bonilla, Wolbachia, sex ratio bias and apparent male killing in the harlequin beetle riding pseudoscorpion, Heredity, vol.95, pp.41-49, 2005.

R. Zug and P. Hammerstein, Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected, PLoS One, vol.7, p.38544, 2012.

J. H. Yen and A. R. Barr, New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L, Nature, vol.232, pp.657-658, 1971.

D. Poinsot, S. Charlat, and H. Merçot, On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts, BioEssays, vol.25, pp.259-265, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427374

L. D. Hurst, The evolution of cytoplasmic incompatibility or when spite can be successful, J. Theor. Biol, vol.148, pp.269-277, 1991.

J. H. Werren, . Biology, and . Wolbachia, Annu. Rev. Entomol, vol.42, pp.587-609, 1997.

J. Foster, The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode, PLoS Biol, vol.3, pp.599-0614, 2005.

S. Siozios, The diversity and evolution of Wolbachia ankyrin repeat domain genes, PLoS ONE, vol.8, p.55390, 2013.

S. G. Sedgwick and S. J. Smerdon, The ankyrin repeat: a diversity of interaction on a common structural framework, Trends Biochem. Sci, vol.24, pp.311-316, 1999.

O. Duron, Variability and expression of ankyrin domain genes in Wolbachia variants infecting the mosquito Culex pipiens, J. Bacteriol, vol.189, pp.4442-4448, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00424353

J. F. Beckmann and A. M. Fallon, Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: Implications for cytoplasmic incompatibility, Insect Biochem. Mol. Biol, vol.43, pp.867-878, 2013.

J. F. Beckmann, J. A. Ronau, M. Hochstrasser, D. Tillett, and K. A. Ginalski, Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility, Nat. Microbiol, vol.2, p.17007, 2017.

D. P. Lepage, Prophage WO genes recapitulate and enhance Wolbachiainduced cytoplasmic incompatibility, Nature, vol.543, pp.243-247, 2017.

E. R. Sutton, S. R. Harris, J. Parkhill, and S. P. Sinkins, Comparative genome analysis of Wolbachia strain wAu, BMC Genomics, vol.15, p.928, 2014.

C. M. Atyame, Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens, PLoS ONE, vol.9, pp.21-26, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01938100

H. Laven, J. W. Wright, and R. Pal, Genetics of Insect Vectors of Disease, pp.251-275, 1967.

C. M. Atyame, Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations, Mol. Ecol, vol.20, pp.286-298, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649573

C. M. Atyame, F. Delsuc, N. Pasteur, M. Weill, and O. Duron, Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito, Mol. Biol. Evol, vol.28, pp.2761-2772, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01924446

I. Nor, On the genetic architecture of cytoplasmic incompatibility: inference from phenotypic data, Am. Nat, vol.182, pp.15-24, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00837003

L. Klasson, Genome evolution of Wolbachia strain wPip from the Culex pipiens group, Mol. Biol. Evol, vol.25, pp.1877-1887, 2008.

L. Baldo, Multilocus sequence typing system for the endosymbiont Wolbachia pipientis, Appl. Environ. Microbiol, vol.72, pp.7098-7110, 2006.

N. Lo, Taxonomic status of the intracellular bacterium Wolbachia pipientis, Int. J. Syst. Evol. Microbiol, vol.57, pp.654-657, 2007.

J. L. Pons and G. Labesse, @TOME-2: A new pipeline for comparative modeling of protein-ligand complexes, Nucleic Acids Res, vol.37, pp.485-491, 2009.

M. A. Andrade, C. Perez-iratxeta, and C. P. Ponting, Protein repeats: structures, functions, and evolution, J. Struct. Biol, vol.134, pp.117-131, 2001.

S. R. Bordenstein, M. L. Marshall, A. J. Fry, U. Kim, and J. J. Wernegreen, The Tripartite associations between bacteriophage, Wolbachia, and arthropods, PLoS. Pathog, vol.2, p.43, 2006.

J. D. Wright, F. S. Sjostrand, J. K. Portaro, and A. R. Barr, The ultrastructure of the rickettsia-like microorganism Wolbachia pipientis and associated virus-like bodies in the mosquito Culex pipiens, J. Ultra Res, vol.63, pp.79-85, 1978.

C. D. Aakre, Evolving new protein-protein interaction specificity through promiscuous intermediates, Cell, vol.163, pp.594-606, 2015.

E. Dumas, Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species, BMC Evol. Biol, vol.13, p.181, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01944586

K. M. Ellegaard, L. Klasson, K. Näslund, K. Bourtzis, and S. G. Andersson, Comparative genomics of Wolbachia and the bacterial species concept, PLoS Genet, vol.9, p.1003381, 2013.

M. Gouy, S. Guindon, and O. Gascuel, SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building
URL : https://hal.archives-ouvertes.fr/lirmm-00511794

, Mol. Biol. Evol, vol.27, pp.221-224, 2010.

D. Bryant and V. Moulton, Neighbor-Net: an agglomerative method for the construction of phylogenetic networks, Mol. Biol. Evol, vol.21, pp.255-265, 2004.

D. H. Huson and D. Bryant, Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol, vol.23, pp.254-267, 2006.

C. Paraskevopoulos, S. R. Bordenstein, J. J. Wernegreen, J. H. Werren, and K. Bourtzis, Toward a Wolbachia multilocus sequence typing system: Discrimination of Wolbachia strains present in Drosophila species, Curr. Microbiol, vol.53, pp.388-395, 2006.

. Bonneau, The first sequence is used as a reference for defining the polymorphic region. For greater clarity, only the polymorphic positions of the alignment are represented, and amino-acid positions are not contiguous. When more than two contiguous amino acids were variable the, Alignment of protein sequences for the CidA_IV variants previously identified in natural populations from North Africa, China and Turkey

J. H. Werren, L. Baldo, and M. E. Clark, Wolbachia: master manipulators of invertebrate biology, Nat Rev Microbiol, vol.6, p.18794912, 2008.

K. Hilgenboecker, P. Hammerstein, P. Schlattmann, A. Telschow, and J. H. Werren, How many species are infected with Wolbachia? a statistical analysis of current data, FEMS Microbiol Lett, vol.281, p.18312577, 2008.

R. Zug and P. Hammerstein, Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected, PLoS One, vol.7, p.22685581, 2012.

J. H. Yen and A. R. Barr, The etiological agent of cytoplasmic incompatibility in Culex pipiens, J Invertebr Pathol, vol.22, p.4206296, 1973.

G. Callaini, M. G. Riparbelli, R. Giordano, and R. Dallai, Mitotic Defects Associated with Cytoplasmic Incompatibility in Drosophila simulans, J Invertebr Pathol, vol.67, pp.55-64, 1996.

J. Engelstädter and A. Telschow, Cytoplasmic incompatibility and host population structure, Heredity, vol.103, p.19436325, 2009.

H. Laven, Speciation and evolution in Culex pipiens, Genetics of Insect Vectors of Disease, pp.251-275, 1967.

O. Neill, S. L. Karr, and T. L. , Bidirectional incompatibility between conspecific populations of Drosophila simulans, Nature, vol.348, p.2234083, 1990.

J. Breeuwer and J. H. Werren, Microorganisms associated with chromosome destruction and reproductive isolation between two insect species, Nature, vol.346, p.2377229, 1990.

S. R. Bordenstein, O. Hara, F. P. Werren, and J. H. , Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia, Nature, vol.409, p.11217858, 2001.

D. Ol, C. Bernard, S. Unal, A. Berthomieu, C. Berticat et al., Tracking factors modulating cytoplasmic incompatibilities in the mosquito Culex pipiens, Mol Ecol, vol.15, p.16911221, 2006.

C. M. Atyame, F. Delsuc, N. Pasteur, M. Weill, and O. Duron, Diversification of Wolbachia Endosymbiont in the Culex pipiens Mosquito, Mol Biol Evol, vol.28, p.21515811, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01924446

H. Merçot and S. Charlat, Wolbachia infections in Drosophila melanogaster and D. simulans: polymorphism and levels of cytoplasmic incompatibility, Genetica, vol.120, pp.51-59, 2004.

O. Duron, P. Fort, and M. Weill, Influence of aging on cytoplasmic incompatibility, sperm modification and Wolbachia density in Culex pipiens mosquitoes, PMID: 17519957 Cellular phenotype of CI in Culex pipiens PLOS Pathogens, vol.98, p.25, 2007.
URL : https://hal.archives-ouvertes.fr/halsde-00353682

S. R. Bordenstein and J. H. Werren, Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia, Heredity, vol.99, p.17519968, 2007.

K. Bourtzis, A. Nirgianaki, G. Markakis, and C. Savakis, Wolbachia infection and cytoplasmic incompatibility in Drosophila species, Genetics, vol.144, p.8913750, 1996.

J. A. Breeuwer and J. H. Werren, Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis, Genetics, vol.135, p.8244014, 1993.

C. Bressac and F. Rousset, The Reproductive Incompatibility System in Drosophila simulans: Dapi-Staining Analysis of the Wolbachia Symbionts in Sperm Cysts, J Invertebr Pathol, vol.61, p.7689622, 1993.

S. R. Bordenstein, J. J. Uy, and J. H. Werren, Host genotype determines cytoplasmic incompatibility type in the haplodiploid genus Nasonia, Genetics, vol.164, p.12750334, 2003.

C. W. Lassy and T. L. Karr, Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans, Mech Dev, vol.57, pp.47-58, 1996.

S. L. Ryan and G. B. Saul, Post-fertilization effect of incompatibility factors in Mormoniella, MGG Mol Gen Genet, vol.103, p.5753233, 1968.

F. Landmann, G. A. Orsi, B. Loppin, and W. Sullivan, Wolbachia-Mediated Cytoplasmic Incompatibility Is Associated with Impaired Histone Deposition in the Male Pronucleus, PLoS Pathog, vol.5, p.19300496, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00425204

U. Tram and W. Sullivan, Role of Delayed Nuclear Envelope Breakdown and Mitosis in Wolbachia-Induced Cytoplasmic Incompatibility, Science, vol.296, p.12004132, 2002.

K. M. Reed and J. H. Werren, Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): A comparative study of early embryonic events, Mol Reprod Dev, vol.40, p.7598906, 1995.

G. Callaini, R. Dallai, and M. G. Riparbelli, Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans, J Cell Sci, vol.110, p.9044057, 1997.

E. Jost, Untersuchungen zur Inkompatibilitt imCulex pipiens-Komplex, Wilhelm Roux Arch Entwickl Mech Org, vol.166, p.28304791, 1970.

U. Tram, K. Fredrick, J. H. Werren, and W. Sullivan, Paternal chromosome segregation during the first mitotic division determines Wolbachia-induced cytoplasmic incompatibility phenotype, J Cell Sci, vol.119, p.16912076, 2006.

F. Vavre, F. Fleury, J. Varaldi, P. Fouillet, and M. Bouleatreau, Evidence for female mortality in Wolbachiamediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences, Evolution, vol.54, p.10937195, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00427103

F. Vavre, F. Dedeine, M. Quillon, P. Fouillet, F. Fleury et al., Within-species diversity of Wolbachia-induced cytoplasmic incompatibility in haplodiploid insects, Evolution, vol.55, p.11580031, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00427198

U. Tram, P. M. Ferree, and W. Sullivan, Identification of Wolbachia-host interacting factors through cytological analysis, Microbes Infect, vol.5, p.12941392, 2003.

J. Breeuwer, Wolbachia and cytoplasmic incompatibility in the spider mites, Tetranychus urticae and T. turkestani. Heredity, vol.79, pp.41-47, 1997.

J. H. Werren, . Biology, and . Wolbachia, Annu Rev Entomol, vol.42, p.15012323, 1997.

L. D. Hurst, The evolution of cytoplasmic incompatibility or when spite can be successful, J Theor Biol, vol.148, p.2016892, 1991.

J. F. Beckmann, J. A. Ronau, and M. Hochstrasser, A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility, Nat Microbiol, vol.2, p.28248294, 2017.

D. P. Lepage, J. A. Metcalf, S. R. Bordenstein, J. On, J. I. Perlmutter et al., Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility, Nature, vol.543, p.28241146, 2017.

M. Bonneau, C. Atyame, M. Beji, F. Justy, M. Cohen-gonsaud et al., Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia, Nat Commun, vol.9, p.29358578, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01728878

, Cellular phenotype of CI in Culex pipiens PLOS Pathogens, vol.23, p.25, 2018.

J. F. Beckmann and A. M. Fallon, Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: Implications for cytoplasmic incompatibility, Insect Biochem Mol Biol, vol.43, p.23856508, 2013.

A. Lindsey, D. W. Rice, S. R. Bordenstein, A. W. Brooks, S. R. Bordenstein et al., Evolutionary Genetics of Cytoplasmic Incompatibility Genes cifA and cifB in Prophage WO of Wolbachia, Genome Biol Evol, vol.10, p.29351633, 2018.

L. Klasson, T. Walker, M. Sebaihia, M. J. Sanders, . Quail et al., Genome evolution of Wolbachia strain wPip from the Culex pipiens group, Mol Biol Evol, vol.25, p.18550617, 2008.

J. D. Shropshire, J. On, E. M. Layton, H. Zhou, and S. R. Bordenstein, One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster, Proc Natl Acad Sci, vol.115, p.29686091, 2018.

L. Baldo, J. Hotopp, S. R. Bordenstein, . Biber, and R. R. Choudhury, Multilocus sequence typing system for the endosymbiont Wolbachia pipientis, Appl Environ Microbiol, vol.72, p.16936055, 2006.

C. M. Atyame, P. Labbé, E. Dumas, P. Milesi, S. Charlat et al., Wolbachia Divergence and the Evolution of Cytoplasmic Incompatibility in Culex pipiens, PLoS One, vol.9, p.24498078, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01938100

E. Dumas, C. M. Atyame, P. Milesi, D. M. Fonseca, E. Shaikevich et al., Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species, BMC Evol Biol, vol.13, p.24006922, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01944586

O. Duron and M. Weill, Wolbachia infection influences the development of Culex pipiens embryo in incompatible crosses, Heredity, vol.96, p.16639421, 2006.
URL : https://hal.archives-ouvertes.fr/halsde-00300430

B. S. Atanassov, E. Koutelou, and S. Y. Dent, The role of deubiquitinating enzymes in chromatin regulation, FEBS Lett, vol.585, p.20974139, 2011.

M. Gebiola, M. Giorgini, S. E. Kelly, M. R. Doremus, P. M. Ferree et al., Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia, Proc R Soc B Biol Sci, vol.284, p.28878066, 2017.

T. Penz, S. Schmitz-esser, S. E. Kelly, B. N. Cass, A. Mü-ller et al., Comparative Genomics Suggests an Independent Origin of Cytoplasmic Incompatibility in Cardinium hertigii, PLoS Genet, vol.8, p.23133394, 2012.

J. Breeuwer and J. H. Werren, Effect of genotype on cytoplasmic incompatibility between two species of Nasonia, Heredity, vol.70, pp.428-436, 1993.

C. M. Atyame, O. Duron, P. Tortosa, N. Pasteur, P. Fort et al., Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations, Mol Ecol, vol.20, p.21114563, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649573

O. Duron, J. Bernard, C. M. Atyame, E. Dumas, and M. Weill, Rapid evolution of Wolbachia incompatibility types, Proc R Soc B Biol Sci, vol.279, p.22951738, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01944590

C. D. Aakre, J. Herrou, T. N. Phung, B. S. Perchuk, S. Crosson et al., Evolving New Protein-Protein Interaction Specificity through Promiscuous Intermediates, Cell, vol.163, p.26478181, 2015.

C. Berticat, F. Rousset, M. Raymond, A. Berthomieu, and M. Weill, High Wolbachia density in insecticide-resistant mosquitoes, Proc R Soc B Biol Sci, vol.269, p.12079666, 2002.
URL : https://hal.archives-ouvertes.fr/halsde-00341215

A. N. Clements, The Biology of Mosquitoes: Development, Nutrition and Reproduction, 1992.

M. Weill, C. Berticat, M. Raymond, and C. Chevillon, Quantitative Polymerase Chain Reaction to Estimate the Number of Amplified Esterase Genes in Insecticide-Resistant Mosquitoes, Anal Biochem, vol.285, p.11017713, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01946129

M. Gouy, S. Guindon, and O. Gascuel, SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building, Mol Biol Evol, vol.27, pp.221-224, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511794

D. Best and D. Roberts, Algorithm AS 89: The Upper Tail Probabilities of Spearman's Rho, J R Stat Soc, vol.24, pp.377-379, 1975.

D. F. Bauer, Constructing confidence sets using rank statistics, J Am Stat Assoc, vol.67, pp.687-690, 1972.

. R-core-team, Vienna: R Foundation for Statistical Computing; 2018. Cellular phenotype of CI in Culex pipiens, PLOS Pathogens, vol.24, p.25, 2018.

M. Crawley, . The, and . Book, , 2007.

P. Royston, An extension of Shapiro and Wilk's W test for normality to large samples, Appl Stat, vol.31, pp.115-124, 1982.

F. Korner-nievergelt, T. Roth, F. Sv, J. Guelat, and K. Ab, Bayesian Data Analysis in Ecology using Linear Models with R, BUGS and Stan, 2015.

J. Lebreton, K. P. Burnham, J. Clobert, and D. R. Anderson, Modeling Survival and Testing Biological Hypotheses Using Marked Animals: A Unified Approach with Case Studies, Ecol Monogr, vol.62, pp.67-118, 1992.

D. R. Anderson, K. P. Burnham, and G. C. White, AIC Model Selection in Overdispersed Capture-Recapture Data, Ecology, vol.75, pp.1780-1793, 1994.

, 25 / 25 females infected with different Wolbachia strains, ii) sterile crosses between infected males and uninfected females, and iii) fertile crosses between males and females from the same mosquito line infected or not by Wolbachia, Cellular phenotype of CI in Culex pipiens PLOS Pathogens, 2018.

, No cidA or cidB nucleotide sequence variant was shared between the three wPip groups. However, the wPipII-Lavar CidA_II(?/1) variant and the wPipIII-Slab CidA_III(?/8) variant presented the same amino-acid sequence. Based on their nucleotide sequences wPipIII-Slab exhibited ten variants of cidA, wPipII-Lavar three, wPipI-Tunis four and wPipI Utique seven. However, wPipIII-Slab exhibited only seven variants that differ in their amino-acid sequences since cidA_III(c/6) and cidA_III, Protein sequences alignment of the CidA variants found in the four Wolbachia strains wPipI-Tunis, wPipI-Utique, wPipII-Lavar and wPipIII-Slab (MAL lines)

. Fig, The repertoire of CidB protein variants in the four MAL line wPip strains

, The first sequence is used as a reference to determine the polymorphic region. For more clarity, only polymorphic positions are represented, thus amino-acid positions are not continuous. When more than two contiguous amino-acids were variable the "-" symbol was used between the first and the last variable position of the zone. Colors show polymorphic blocks of residues present in variants regardless of their phylogenetic wPip group (I to III). However, no variant (i.e. complete CidB sequence) is common to wPip strains from different groups. S5 Fig. cidA copy number in the wPip strains infecting the four MAL lines. cidA copy number was measured by quantitative PCR as the ratio between the number of copies of the Wolbachia cidA gene and the Wolbachia wsp gene. The colored dots represent the cidA copy number per wPip genome in a male and the red strips represent the average cidA copy number per wPip genome for ten males per MAL lines, Protein sequences alignment of the CidB variants found in the four Wolbachia strains wPipI-Tunis, wPipI-Utique, wPipII-Lavar and wPipIII-Slab (MAL lines)

, cidB copy number was measured by quantitative PCR as the ratio between the number of copies of the Wolbachia cidB gene and the Wolbachia wsp gene. The colored dots represent the cidB copy number per wPip genome in a male and the red strips represent the average cidB copy number per wPip genome for ten males per MAL lines. Letters represent the different statistical groups, S6 Fig. cidB copy number in the wPip strains infecting the four MAL lines

, S7 Fig. cidA/cidB copy number in the wPip strains infecting the four MAL lines

, The colored dots represent the cidA/cidB copy number per wPip genome in a male and the red strips represent the average cidA/cidB copy number per wPip genome for ten males per MAL lines, cidA/cidB copy number was measured by quantitative PCR as the ratio between the number of copies of the Wolbachia cidB gene and the Wolbachia cidB gene

, cidA expression was measured by quantitative PCR as the ratio between the Wolbachia cidA gene expression and the Wolbachia wsp gene expression. The colored dots represent the cidA expression level per wPip genome in a male and the red strips represent the average cidA expression level per wPip genome for ten males per MAL lines. Expression levels of cidA genes were not significantly different between the, S8 Fig. cidA expression level in the wPip strains infecting the four MAL lines

, cidB expression was measured by quantitative PCR as the ratio between the Wolbachia cidB gene expression and the Wolbachia wsp gene expression. The colored dots represent the cidB expression level per wPip genome in a male and the red strips represent the average cidB expression level per wPip genome for ten males per MAL lines. Expression levels of cidB genes were not significantly different between the, S9 Fig. cidB expression level in the wPip strains infecting the four MAL lines

, S10 Fig. cidA/cidB expression level in the wPip strains infecting the four MAL lines

, The colored dots represent the cidA/cidB expression level per wPip genome in a male and the red strips represent the average cidA/cidB expression per wPip genome for ten males per MAL lines. Letters represent the different statistical groups (i.e. means with the same letter are not significantly different). sous 40° : Rémi, Grand Yoann, cidA/cidB expression levels was measured by quantitative PCR as the ratio between the number of copies of the Wolbachia cidA gene and the Wolbachia cidB gene

. Merci-À-marjo and . Ma-catholique-repentie-préférée, pour avoir été à mes côtés pendant toute la thèse, pour avoir accepté que je te taquine sans jamais bouder, pour être venu bosser le samedi avec moi, pour m'avoir soutenu pendant les moments difficiles, pour toutes ces fois où on est allée courir en râlant sur la thèse

, Merci à tous les autres doctorants : Laura, Alexis, Quentin V, Quentin M (je travaille sur une recette de savon sans huile de palme :p )

. Merci-À-l'équipe-de-d&d-:-marjo, . Yoann, and P. Iago, Coco pour ces

C. Iago, . Marjo, A. Yo, and V. , Marianne pour toutes ces soirées et aprèms piscines jeux de société !

Y. Juliette, . Marion, . Vincent, A. Martin, E. Julie et al., Merci à tous les autres copains de Montpellier et d'ailleurs : Matthis, 2014.