, Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2, :BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.2_4

, (Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POLEXP_2, :BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig), vol.4

, CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.3_4.6(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.3_4.6_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5(Sig:BKGMV2POL2_2.4_4.7(Sig) CB2VWG2_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:BKGMV2POL2_2.4_4.7_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.3_4.6(Sig:BKGMV2POL2_2.2_4.5(Sig) CB2VWG2_BKGMV2POL2_2.3_4.6_Weight=2.0(Sig:BKGMV2POL2_2.2_4.5_Weight=2.0(Sig) CB2VWG2_BKGMV2POL2_2.3_4.6(Sig:BKGMV2POL2_2.3_4.6(Sig)

, Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.2_4.5_SP1.1), :2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0

, Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.2_4.5_SP1.1), .1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5

, Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2, 0_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POLEXP_2.3_4.6(Sig:2.3_4.6_SP1.1)

, Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.4_4.7_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL2_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1), :2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.2_4.5_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5(Sig:2.4_4.7_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.3_4.6_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0

, Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL2_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POL2_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.2_4.5_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2POL2POL3_BKGMV2POLEXP_2.3_4, Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POLEXP_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POLEXP_2.4_4.7(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POLEXP_2.4_4.7_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.2_4.5_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6(Sig:2.3_4.6_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.3_4.6_Weight=2.0(Sig:2.4_4.7_Weight=2.0_SP1.1) CB2VWG2_BKGMV2POL4Cheb_2.4_4.7(Sig:2.3_4.6_SP1.1)

.. .. Standard,

. , Evolution of the strong coupling constant ? s as function of the the energy scale Q [eaPDGte]

. , Sketch of the phase diagram of hadronic matter

, Space-time evolution of the system formed during heavy-ion collisions

. , The Inner Tracking System (ITS)

, momentum/charge) in 0-80 % Pb-Pb collisions at s NN = 2.76 TeV. The solid lines represent a parametrisation of the Bethe-Bloch curve, the TPC versus rigidity, p.13

. , Layout of the Muon Spectrometer in the (z,y) plane (Distances in mm). Figure taken from [CER13a]

C. ]. , 17 2.7 Schematic cross section of a CMOS pixel sensor using TowerJazz 0.18 µm CMOS Imaging Process, figure taken from, MFT layout and position within the ALICE apparatus

. .. , Layout of the final pixel matrix (Bottom), zoom over several pixels (Top Left), the pixel region (Middle) and the pixel geometry (Top Right), p.19

. , 20 2.10 Schematic view of a pALPIDE collection diode with a diode (Left) or PMOS (Right) reset mechanism

, Structure of the ALPIDE AERD circuit, p.21

, Illustration of the triggered (Left) and continuous integration (Right) read-out modes with three in-pixel memory cells, figure taken from, p.22

. .. Alpide-chip, 22 2.14 (Left) Illustration of a threshold scan: number of hits as a function of the injected charge for a single pixel (black points) with a fit (red line), (Right) Example of threshold distribution for 1 % of pixels inside each sector of an pALPIDE-3 chip

. , Example of 2D-maps of treshold (Left) and noise (Right) dependence versus the I THR and V CASN parameters

. , Example of 2D-pulse-shape scan with definition of characteristic parameters 24 2.17 (Left) Layout of the telescope and (Right) setup for test beam at PS (CERN). 24 2.18 (Left) Detection efficiency (in black, legend on the left) and fake hit rate (in red, legend on the right), (Right) spatial resolution (in black, legend on the left) and cluster size (in red, legend on the right) of ALPIDE chips with different irradation levels

, Comparison of the results obtained for the d N/d ?? method in the centrality 20-40% using the V0A, the SPD or the V0C as event plane detector. Boxes for systematic uncertainty contain signal extraction and J/? reconstruction, p.90

. , J

, J, p.91

. , to right) 5-20 %, 20-40 % and 40-60 % using the dimuon v 2 fit technique and the SPD as event plane detector. Boxes for systematic uncertainty contain signal extraction only, T in two rapidity bins for the centrality classes

. , as a function of centrality in two rapidity bins using the dimuon v2 fit technique and the SPD as event plane detector. Boxes for systematic uncertainty contain signal extraction only, J, issue.2

. , Flow vector resolution of SPD, V0A,and V0C sub-detectors as a function of centrality in the 20-40 % class

. , Comparison of the ?v 2 ? results obtained with the event plane and the scalar product methods for semi-central collisions using (Left) the SPD or (Right) the V0A as EP/SP detector. Boxes for systematic uncertainty contain signal extraction and J/? reconstruction. Numerical values can be found in Tab. B.5 and Tab

, Illustration of the in-and out-of-plane regions around the collision, p.95

. , Comparison of nuclear modification factor values from the in-and out-ofplane binning to the ??-integrated analysis

. , Comparison of R AA values integrated in ?? from this analysis with z vertex < 10cm cut (integrated values) to results from previous analysis without z vertex cut (preliminary values [Tar17])

. , Comparison of nuclear modification factor values from the in-and out-ofplane binning analysis to the computed values from integrated R AA and v 2 results for the 20-40% centrality class

. , ALICE projections for (Left) prompt and non-prompt D 0 v 2 in semi-central 30-50 % Pb-Pb collisions and (Right) D 0 , D + s and ? c v 2 with estimated statistical uncertainties at s NN = 5.5 TeV

. .. , III using the d N/d ?? method and the V0A as event plane detector. Boxes represent systematic uncertainty from the signal extraction, Distributions of the V0C EP angles in centrality ranges after each calibration step (from Step0 to Step4) from left to right and top to bottom

. , IX B.4 Systematics for J/? v 2 extraction in the centrality ranges 5-20%, 20-40% and 40-60% using the mean v 2 technique with the EP method and the V0A as

X. B. , XII B.7 Systematics for J/? v 2 extraction in the centrality ranges 20-40% using the mean v 2 technique with the SP method and the V0A as EP detector, 5 Systematics for J/? v 2 extraction in the centrality ranges 5-20%, 20-40% and 40-60% using the mean v 2 technique with the EP method and the SPD as

C. ]. , Geometrical details of the MFT half disks (radius, position, number of sensors and number of ladders), table taken from, vol.18

. .. Mft-sensor-requirements, 18 2.3 pALPIDE-1 sectors

]. .. Sat06, Mass and binding energy of charmonium states, p.44

. , Binding energy, relative dissociation temperature and radius of charmonium and bottomonium resonances [Sat06]

. , Calibration steps of the Q n vector for the SPD, V0A and V0C with the QnVectorCorrections framework

N. , EP resolutions of SPD and V0A detectors for the various centrality ranges considered in this analysis

, Table of data points shown in Fig. 5.3 : J/? v 2 (corrected values) in centrality classes 5-20 %, 20-40 %, and 40-60 % in the rapidity range 2.5 < y < 4 from the d N/d ?? method with the SPD as event plane detector, p.74

, Table of data points shown in Fig. 5.12) J/? v 2 (corrected values) in centrality classes 5-20 %, 20-40 %, and 40-60 %, in the rapidity range 2.5 < y < 4 from the mean v 2 method with the V0A as event plane detector, vol.5, p.77

. .. , 20-40 %, and 40-60 %, in the rapidity range 2.5 < y < 4 from the mean v 2 method with the SPD as event plane detector, Table of data points shown in Fig. 5.13) J/? v 2 (corrected values) in centrality classes 5-20 %

N. , SP resolutions of SPD and V0A detectors for the 20-40 % centrality

. .. , Averages of the nuclear overlap function ?T AA ? and number of participating nucleons ?N part ? for the centrality classes of the analysis, p.98

. .. , 99 5.10 Summary of systematic uncertainties on the R AA measurement. Values with an asterisk are considered as fully correlated with the corresponding variable, vol.100

. , Fractions of primordial and (re)generated J/? at forward rapidity in different p T bins from R AA calculations of TM1 [DR15] in Pb-Pb collisions at s NN = 5.02 TeV for the 20-40 % centrality class

/. and .. .. , 3 p T-dependence of NA60 parameters for J/? signal shape obtained from J/? embedding sample for centrality 0-90% and ?4 < y < ?2.5, CB2 parameters for J/? signal shape obtained from pp collisions for 0 < p T < 12GeV

. , XII B.6 Table of data points shown in Fig. 5.29 : J/? v 2 (corrected values) in the 2040 % centrality range and in the rapidity range ?4 < y < ?2.5 from the ?v 2 ? method with the scalar product and the V0A as event plane detector, the 2040 % centrality range and in the rapidity range ?4 < y < ?2.5

[. E598 and J. J. Aubert, Experimental Observation of a Heavy Particle, J. Phys. Rev. Lett, vol.33, p.44, 1974.

S. and J. E. Augustin, Discovery of a Narrow Resonance in e + e ? Annihilation, Phys. Rev. Lett, vol.33, p.141, 1974.

[. Star and K. H. Ackermann, Elliptic flow in Au+Au collisions at s NN =

. Gev, Phys. Rev. Lett, vol.86, pp.402-407, 2001.

[. Star and C. Adler, Identified particle elliptic flow in Au+Au collisions at s NN = 130 GeV, Phys. Rev. Lett, vol.87, p.182301, 2001.

[. Star and C. Adler, Disappearance of back-to-back high p T hadron correlations in central Au+Au collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.90, p.82302, 2003.

P. and S. S. Adler, Elliptic flow of identified hadrons in Au+Au collisions at s NN = 200 GeV, Nucl. Instrum. Meth, vol.91, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00014208

[. Na49 and C. Alt, Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 40-A-GeV and 158-A-GeV, Phys. Rev, vol.68, p.34903, 2003.

[. Star and J. Adams, Azimuthal anisotropy at RHIC: The First and fourth harmonics, Phys. Rev. Lett, vol.92, p.62301, 2004.

[. , ]. Star, and J. Adams, Particle type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at s NN =

. Gev, Phys. Rev. Lett, vol.92, p.52302, 2004.

[. Star and J. Adams, Azimuthal anisotropy in Au+Au collisions at s NN =

, GeV. Phys. Rev, 2005.

[. , ]. Star, and J. Adams, Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions, Nucl. Phys, vol.757, pp.184-283, 2005.

P. and S. S. Adler, Measurement of single electron event anisotropy in Au+Au collisions at s NN = 200 GeV, Phys. Rev, vol.72, p.24901, 2005.

P. and S. S. Adler, Saturation of azimuthal anisotropy in Au+Au collisions at s NN = 62 GeV to 200 GeV, Phys. Rev. Lett, vol.94, p.232302, 2005.

N. and B. Alessandro, A New measurement of J/? suppression in PbPb collisions at 158 GeV per nucleon, Eur. Phys. J, vol.39, pp.335-345, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00023808

[. Star and B. I. Abelev, Mass, quark-number, and s NN dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions, Phys. Rev, vol.75, p.54906, 2007.

[. Star and B. I. Abelev, Partonic flow and ?-meson production in Au+Au collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.99, p.112301, 2007.

A. Phenix and . Adare, Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.98, p.162301, 2007.

N. and R. Arnaldi, J/? production in indium-indium collisions at 158GeV/nucleon, Phys. Rev. Lett, vol.99, p.48, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00176311

A. and K. Aamodt, The ALICE experiment at the CERN LHC, JINST, vol.3, issue.2, p.8002, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00311441

[. Phenix and S. Afanasiev, High-p T ? 0 Production with Respect to the Reaction Plane in Au+Au Collisions at s NN = 200 GeV, Phys. Rev, vol.80, p.108, 2009.

[. Phenix and S. Afanasiev, Photoproduction of J/? and of high mass e + e ? in ultra-peripheral Au+Au collisions at s NN =, GeV. Phys. Lett, vol.679, pp.321-329, 2009.

A. and K. Aamodt, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett, vol.105, p.31, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00537767

R. Lhcb and . Aaij,

. Tev, Eur. Phys. J, vol.71, p.1645, 2011.

[. Phenix and A. Adare, Heavy Quark Production in p + p and Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at s NN = 200 GeV, Phys. Rev, vol.84, p.44905, 2011.

[. Phenix and A. Adare, J/? suppression at forward rapidity in Au+Au collisions at s NN = 200 GeV, XXV XXXIV BIBLIOGRAPHY [A + 12a, vol.84, p.2100, 2011.

R. Lhcb and . Aaij, Measurement of the ratio of prompt ? c to J/? production in pp collisions at s = 7 TeV, Phys. Lett, vol.718, pp.431-440, 2012.

A. and B. Abelev, Deviation from quark-number scaling of the anisotropy parameter v 2 of pions, kaons, and protons in Au+Au collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.109, p.64914, 2012.

P. and A. Adare, J/? suppression at forward rapidity in Au+Au collisions at s NN = 39 and 62.4 GeV, Phys. Rev

. Tev, Phys. Rev. Lett, vol.111, p.7, 2013.

[. , ]. Alice, and B. Abelev, Centrality determination of Pb-Pb collisions at s NN

, = 2.76 TeV with ALICE, Phys. Rev, vol.88, issue.4, p.44909, 2013.

[. , ]. Alice, and B. Abelev, Coherent J/? photoproduction in ultra-peripheral Pb-Pb collisions at s NN = 2.76 TeV, Phys. Lett, vol.718, pp.1273-1283, 2013.

[. Star and L. Adamczyk, Measurement of J/? Azimuthal Anisotropy in Au+Au Collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.111, issue.5, p.7, 2013.

[. Star and L. Adamczyk, Third Harmonic Flow of Charged Particles in Au+Au Collisions at s NN = 200 GeV, Phys. Rev, vol.88, issue.1, p.14904, 2013.

[. Phenix and A. Adare, Nuclear Modification of ?(2S), ? c , and J/? Production in d+Au Collisions at s NN = 200 GeV, Phys. Rev. Lett, vol.111, issue.20, p.202301, 2013.

[. Phenix and A. Adare, ?(1S+2S+3S) production in d +Au and p +p collisions at s NN = 200 GeV and cold-nuclear matter effects, Phys. Rev, vol.87, issue.4, p.44909, 2013.

R. Lhcb and . Aaij, Study of J/? production and cold nuclear matter effects in p-Pb collisions at s NN = 5 TeV, JHEP, 2014.

R. Lhcb and . Aaij, Study of ? production and cold nuclear matter effects in p-Pb collisions at s NN =5 TeV, JHEP, 2014.

[. , ]. Alice, and . Abelev, Technical Design Report for the Upgrade of the ALICE Inner Tracking System, J. Phys, vol.41, p.3, 2014.

A. and B. Abelev, Azimuthal anisotropy of D meson production in Pb-Pb collisions at s NN = 2.76 TeV, Phys. Rev, vol.41, issue.3, p.6, 1405.

[. , ]. Alice, and B. B. Abelev, J/? production and nuclear effects in p-Pb collisions at S NN = 5.02 TeV, JHEP, vol.02, p.73, 2014.

A. and B. B. Abelev, Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys, vol.29, issue.2, p.1430044, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00949658

[. , ]. Alice, and B. B. Abelev, Suppression of ?(2S) production in p-Pb collisions at s NN = 5.02 TeV, JHEP, vol.12, p.73, 2014.

[. Star and L. Adamczyk, J/? production at low p T in Au+Au and Cu+Cu collisions at s NN = 200 GeV with the STAR detector, Phys. Rev, vol.90, issue.2, p.3563, 2014.

+. , ]. Star, and L. Adamczyk, Suppression of ? production in d+Au and Au+Au collisions at s NN =200 GeV, Phys. Lett, vol.735, pp.127-137, 2014.

, Phys. Lett, vol.743, p.537, 2015.

R. Lhcb and . Aaij, Measurement of the ? c (1S) production cross-section in proton-proton collisions via the decay ? c (1S) ? p ¯ p, Eur. Phys. J, vol.75, issue.7, p.311, 2015.

[. , ]. Alice, and B. B. Abelev, Elliptic flow of identified hadrons in Pb-Pb collisions at s NN 2.76 TeV, JHEP, vol.06, 2015.

[. , ]. Alice, and B. B. Abelev, Production of inclusive ?(1S) and ?(2S) in p-Pb collisions at s NN = 5.02 TeV, Phys. Lett, vol.740, pp.105-117, 2015.

[. , ]. Alice, and J. Adam, Rapidity and transverse-momentum dependence of the inclusive J/? nuclear modification factor in p-Pb collisions at s NN =

. Tev and . Jhep, , vol.06, p.55, 2015.

[. Virgo, B. P. Scientific, and . Abbott, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett, vol.116, issue.6, p.61102, 2016.

A. and J. Adam, Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb, Phys. Rev. Lett, vol.116, issue.13, p.132302, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01247070

, Rev. Lett, vol.116, issue.22, p.222302, 2016.

[. , ]. Alice, and J. Adam, Differential studies of inclusive J/? and ?(2S) production at forward rapidity in Pb-Pb collisions at s NN = 2.76 TeV, JHEP, vol.80, p.96, 2016.

A. and J. Adam, Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb-Pb collisions at s NN = 2.76 TeV, Phys. Lett, vol.35, issue.8, pp.41-56, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01325249

A. and J. Adam, Forward-central two-particle correlations in p-Pb collisions at s NN = 5.02 TeV, Phys. Lett, vol.753, pp.126-139, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01172182

A. and J. Adam, Higher harmonic flow coefficients of identified hadrons in Pb-Pb collisions at s NN = 2.76 TeV, JHEP, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01334579

A. and J. Adam, Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev, vol.93, issue.2, p.24917, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01170086

A. and J. Adam, XXIV [A + 16k] A. Andronic et al. Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J, vol.762, issue.3, p.107, 2016.

[. Lhcb and R. Aaij, Observation of ? c (2S) ? p ¯ p and search for X(3872) ? p ¯ p decays, Phys. Lett, vol.769, pp.305-313, 2017.

[. , ]. Alice, and S. Acharya, J/? elliptic flow in Pb-Pb collisions at s NN =

. Tev, Phys. Rev. Lett, vol.119, issue.24, p.242301, 2017.

[. , ]. Alice, and J. Adam, Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions, Nature Phys, vol.13, pp.535-539, 2017.

A. and J. Adam, Energy dependence of J/? production in Au+Au collisions at s NN = 39, 62.4 and, GeV. Phys. Lett, vol.766, pp.1607-07517, 2017.

+. , ]. Star, and L. Adamczyk, Measurement of D 0 Azimuthal Anisotropy at Midrapidity in Au+Au Collisions at s NN =200 GeV, Phys. Rev. Lett, vol.118, issue.21, p.212301, 2017.

[. , ]. Atlas, and M. Aaboud, Prompt and non-prompt J/? elliptic flow in Pb+Pb collisions at s NN = 2 5.02 TeV with the ATLAS detector, Eur. Phys. J, vol.78, issue.9, p.784, 2018.

A. and S. Acharya, Search for collectivity with azimuthal J/?-hadron correlations in high multiplicity p-Pb collisions at s NN = 5
URL : https://hal.archives-ouvertes.fr/hal-01757943

A. and S. Acharya, Anisotropic flow of identified particles in Pb-Pb collisions at s NN = 5.02 TeV, Phys. Lett, vol.780, pp.7-20, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01801884

[. , ]. Alice, and S. Acharya, Azimuthal anisotropy of heavy-flavour decay electrons in p-Pb collisions at s NN = 5.02 TeV, vol.41, 2018.

A. and S. Acharya, D-meson azimuthal anisotropy in mid-central Pb-Pb collisions at s NN = 5.02 TeV, Phys. Rev. Lett, vol.120, issue.10, p.6, 2018.

A. and S. Acharya, /? production as a function of charged-particle pseudorapidity density in p-Pb collisions at s NN = 5.02 TeV, Phys. Lett, vol.776, pp.91-104, 2018.

N. Armesto, M. A. Braun, E. G. Ferreiro, and C. Pajares, Percolation approach to quark-gluon plasma and J/? suppression, Phys. Rev. Lett, vol.77, pp.3736-3738, 1996.
DOI : 10.1103/physrevlett.77.3736

URL : http://arxiv.org/pdf/hep-ph/9607239

A. Andronic, P. Braun-munzinger, K. Redlich, and J. Stachel, Statistical hadronization of charm in heavy ion collisions at SPS, RHIC and LHC, Phys. Lett, vol.571, p.7, 2003.

A. Andronic, P. Braun-munzinger, and J. Stachel, Thermal hadron production in relativistic nuclear collisions: The Hadron mass spectrum, the horn, and the QCD phase transition, Erratum: Phys. Lett, vol.673, p.59, 2009.

J. F. Amundson, O. J. Eboli, E. M. Gregores, and F. Halzen, Quantitative tests of color evaporation: Charmonium production, Phys. Lett, vol.390, pp.323-328, 1997.

N. Andersson, V. Ferrari, D. I. Jones, K. D. Kokkotas, B. Krishnan et al., Gravitational waves from neutron stars: Promises and challenges, Gen. Rel. Grav, vol.43, pp.409-436, 2011.
DOI : 10.1007/s10714-010-1059-4

URL : http://arxiv.org/pdf/0912.0384

F. Arleo, R. Kolevatov, S. Peigné, and M. Rustamova, Centrality and p T dependence of J/? suppression in proton-nucleus collisions from parton energy loss, JHEP, p.155, 2013.

P. Antonioli, A. Kluge, and W. Riegler, Upgrade of the ALICE Readout & Trigger System, vol.16, p.3

B. Audurier, G. Martinez-garcia, and P. Pillot, Étude de la production inclusive de J/? dans les collisions pp et Pb-Pb à s NN = 5.02 TeV avec le spectromètre à muons de l'expérience ALICE au LHC, p.99, 2017.

F. Arleo and S. Peigne, Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter, JHEP, vol.03, p.122, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00861683

F. Arleo and S. Peigné, Quarkonium suppression in heavy-ion collisions from coherent energy loss in cold nuclear matter, JHEP, vol.10, p.73, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178617

F. Arleo, S. Peigne, and T. Sami, Revisiting scaling properties of medium-induced gluon radiation, Phys. Rev, vol.83, p.114036, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00612919

N. Armesto, Nuclear shadowing, J. Phys, vol.32, pp.367-394, 2006.
DOI : 10.1088/0954-3899/32/11/r01

URL : https://hal.archives-ouvertes.fr/hal-00281172

G. Mark, A. Alford, K. Schmitt, T. Rajagopal, and . Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys, vol.80, pp.1455-1515, 2008.

F. Arleo and V. Tram, A Systematic study of J/? suppression in cold nuclear matter, Eur. Phys. J, vol.55, pp.449-461, 2008.

E. and J. Barrette, Observation of anisotropic event shapes and transverse flow in Au+Au collisions at AGS energy, Phys. Rev. Lett, vol.73, pp.2532-2535, 1994.

E. and J. Barrette, Energy and charged particle flow in a 10.8-A Au+Au collisions, Phys. Rev, vol.55, pp.1420-1430, 1997.

E. and J. Barrette, Directed flow of light nuclei in Au+Au collisions at AGS energies, Phys. Rev, vol.59, pp.884-888, 1999.

P. and B. B. Back, Pseudorapidity and centrality dependence of the collective flow of charged particles in Au+Au collisions at 130 GeV, Phys. Rev. Lett, vol.89, p.222301, 2002.

P. and B. B. Back, Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at s NN = 200 GeV, Phys. Rev, vol.72, p.51901, 2005.

N. and G. Borges, Charmonia production at the CERN/SPS, J. Phys, vol.32, pp.381-390, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00025239

. Sz and . Borsanyi, Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature, vol.539, issue.7627, pp.69-71, 2016.

C. Bedda, M. Agnello, and E. Bruna, The ALICE experiment: D +-meson production in heavy-ion collisions and silicon low noise sensors characterization for the ITS Upgrade, 1925.

F. René-brun, F. Bruyant, S. Carminati, M. Giani, A. Maire et al., GEANT Detector Description and Simulation Tool, p.80, 1994.

G. T. Bodwin, E. Braaten, and G. Peter-lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev, vol.51, pp.1125-1171, 1995.

S. Oliver, P. Bruning, P. Collier, S. Lebrun, R. Myers et al., The LHC Main Ring, vol.1, 2004.

N. Borghini, P. M. Dinh, and J. Ollitrault, A New method for measuring azimuthal distributions in nucleus-nucleus collisions, Phys. Rev, vol.63, p.54906, 2001.

N. Borghini, P. M. Dinh, and J. Ollitrault, Flow analysis from multiparticle azimuthal correlations, Phys. Rev, vol.64, p.54901, 2001.

S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg et al., Full result for the QCD equation of state with 2+1 flavors, Phys. Lett, vol.730, pp.99-104, 2014.

J. D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev, vol.27, issue.5, pp.140-151, 1983.

E. L. Bratkovskaya, A. P. Kostyuk, W. Cassing, and H. Stoecker, Charmonium chemistry in A+A collisions at relativistic energies, Phys. Rev, vol.69, p.54903, 2004.

P. Buncic, . Krzewicki, and . Vyvre, Technical Design Report for the Upgrade of the Online-Offline Computing System, vol.16, p.3, 2015.

P. Braun-munzinger, Quarkonium production in ultra-relativistic nuclear collisions: Suppression versus enhancement, J. Phys, vol.34, pp.471-478, 2007.

P. Braun-munzinger and J. Stachel, Non)thermal aspects of charmonium production and a new look at J/? suppression, Phys. Lett, vol.490, p.7, 2000.

J. , P. Blaizot, and J. Ollitrault, J/? suppression in Pb Pb collisions: A Hint of quark-gluon plasma production?, Phys. Rev. Lett, vol.77, pp.1703-1706, 1996.

N. Borghini and J. Y. Ollitrault, Azimuthally sensitive correlations in nucleusnucleus collisions, Phys. Rev, vol.70, p.64905, 2004.

R. Baier and R. Ruckl, Hadronic Production of J/? and ?: Transverse Momentum Distributions, Phys. Lett, vol.102, p.45, 1981.

A. Sergey and . Butsyk, PHENIX results on open heavy flavor production and flow in Au+Au collisions at s NN = 200 GeV, Nucl. Phys, vol.774, pp.669-672, 2006.

C. and S. Chatrchyan, Event activity dependence of ?(nS) production in s NN = 5.02 TeV p-Pb and s= 2.76 TeV pp collisions, JHEP, vol.04, p.103, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00925493

A. Capella, L. Bravina, E. G. Ferreiro, A. B. Kaidalov, K. Tywoniuk et al., Charmonium dissociation and recombination at RHIC and LHC, Eur. Phys. J, vol.58, p.7, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00202097

, Letter of Intent for A Large Ion Collider Experiment, p.11, 1993.

, The forward muon spectrometer of ALICE: addendum to the technical proposal for a Large Ion Collider experiment at the CERN LHC, LHC Tech. Proposal, p.11, 1996.

. , ALICE time projection chamber, p.12, 2000.

. , ALICE forward detectors: FMD, TO and VO, p.12, 2004.

, Addendum of the Letter of Intent for the upgrade of the ALICE experiment : The Muon Forward Tracker, vol.16, p.3, 2013.

, Upgrade of the ALICE Time Projection Chamber, vol.16, p.3, 2013.

, Technical Design Report for the Muon Forward Tracker, vol.17, p.3, 2015.

A. Capella, E. G. Ferreiro, and A. B. Kaidalov, Nonsaturation of the J/? suppression at large transverse energy in the comovers approach, Phys. Rev. Lett, vol.85, pp.2080-2083, 2000.

A. Capella, A. Kaidalov, A. K. Akil, and C. Gerschel, J/? and ?(2S) suppression in heavy ion collisions, Phys. Lett, vol.393, pp.431-436, 1997.

L. Peter, A. K. Cho, and . Leibovich, Color octet quarkonia production. 2, Phys. Rev, vol.53, pp.6203-6217, 1996.

, Elliptic flow of charm and strange hadrons in high-multiplicity p-Pb collisions at s NN = 8.16 TeV, vol.41, 2018.

, Observation of prompt J/? meson elliptic flow in high-multiplicity p-Pb collisions at s NN = 8.16 TeV, p.119, 2018.

N. Cabibbo and G. Parisi, Exponential Hadronic Spectrum and Quark Liberation, Phys. Lett, vol.59, issue.4, pp.67-69, 1975.

C. John, M. J. Collins, and . Perry, Superdense Matter: Neutrons Or Asymptotically Free Quarks?, Phys. Rev. Lett, vol.34, p.5, 1975.

S. Cremonini, The Shear Viscosity to Entropy Ratio: A Status Report, Mod. Phys. Lett, vol.25, pp.1867-1888, 2011.

R. Granier-de-cassagnac, Heavy flavour and quarkonium experimental overview. Talk at Strangeness in Quark Matter, vol.49, p.7, 2013.

G. David, Hard scattering cross-sections at LHC in the Glauber approach: From pp to p-A and A-A collisions, 2003.

K. Santosh, S. Das, S. Plumari, J. Chatterjee, F. Alam et al., Directed Flow of Charm Quarks as a Witness of the Initial Strong Magnetic Field in Ultra-Relativistic Heavy Ion Collisions, Phys. Lett, vol.768, pp.260-264, 2017.

S. Digal, P. Petreczky, and H. Satz, Quarkonium feed down and sequential suppression, Phys. Rev, vol.64, p.94015, 2001.

X. Du and R. Rapp, Sequential Regeneration of Charmonia in HeavyIon Collisions, Nucl. Phys, vol.943, p.9, 2015.

C. Patrignani, Review of Particle Physics, Chin. Phys. C, vol.40, issue.10, p.100001, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-00532614

K. J. Eskola, H. Paukkunen, and C. A. Salgado, EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions, JHEP, p.65, 2009.

P. and S. Esumi, Identified charged particle azimuthal anisotropy in PHENIX at RHIC, Nucl. Phys, vol.715, pp.599-602, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00012683

E. G. Ferreiro, Charmonium dissociation and recombination at LHC: Revisiting comovers, Phys. Lett, vol.731, p.7, 2014.

E. G. Ferreiro, Excited charmonium suppression in proton-nucleus collisions as a consequence of comovers, Phys. Lett, vol.749, pp.98-103, 2015.

P. Foka, A. Ma?gorzata, and . Janik, An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Bulk properties and dynamical evolution, Rev. Phys, vol.1, pp.154-171, 2016.

Z. Fodor and S. D. Katz, Critical point of QCD at finite T and µ, lattice results for physical quark masses, JHEP, 2004.

H. Fritzsch, Producing Heavy Quark Flavors in Hadronic Collisions: A Test of Quantum Chromodynamics, Phys. Lett, vol.67, p.45, 1977.

H. Fujii and K. Watanabe, Heavy quark pair production in high energy p-A collisions: Open heavy flavors, Nucl. Phys, vol.920, pp.78-93, 2013.

H. Fujii and K. Watanabe, Heavy quark pair production in high energy p-A collisions: Quarkonium, Nucl. Phys, vol.915, pp.1-23, 2013.

N. and M. Gonin, Anomalous J/? suppression in Pb+Pb collisions at 158-A-GeV/c, Nucl. Phys, vol.610, p.7, 1996.
URL : https://hal.archives-ouvertes.fr/in2p3-00014443

V. Greco, C. M. Ko, and R. Rapp, Quark coalescence for charmed mesons in ultrarelativistic heavy ion collisions, Phys. Lett, vol.595, pp.202-208, 2004.

U. Gursoy, D. Kharzeev, and K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions, Phys. Rev, vol.89, issue.5, p.54905, 2014.

H. H. Gutbrod, B. W. Kolb, H. R. Schmidt, A. M. Poskanzer, H. G. Ritter et al., A New Component of the Collective Flow in Relativistic Heavy Ion Collisions, Phys. Lett, vol.216, p.31, 1989.

X. Guo, S. Shi, N. Xu, Z. Xu, and P. Zhuang, Magnetic Field Effect on Charmonium Production in High Energy Nuclear Collisions, Phys. Lett, vol.751, p.9, 2015.

P. and Y. Gu, PHENIX Measurements of Higher-order Flow Harmonics for Identified Charged Hadrons in Au+Au collisions at s NN = 39-200 GeV

. Phys, A904-905:353c-356c, 2013.

D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories-I, Phys. Rev, vol.8, issue.3, pp.3633-3652, 1973.

D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories. 2, Phys. Rev, vol.9, issue.3, pp.980-993, 1974.

F. Halzen, Cvc for Gluons and Hadroproduction of Quark Flavors, Phys. Lett, vol.69, p.45, 1977.

M. He, R. J. Fries, and R. Rapp, D s-Meson as Quantitative Probe of Diffusion and Hadronization in Nuclear Collisions, Phys. Rev. Lett, vol.110, issue.11, p.112301, 2013.

M. He, R. J. Fries, and R. Rapp, Heavy Flavor at the Large Hadron Collider in a Strong Coupling Approach, Phys. Lett, vol.735, pp.445-450, 2014.

K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, Constraints on neutron star radii based on chiral effective field theory interactions, Phys. Rev. Lett, vol.105, pp.1007-1746, 2010.

K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, Equation of state and neutron star properties constrained by nuclear physics and observation, Astrophys. J, vol.773, p.11, 2013.

P. Huovinen, Hydrodynamical description of collective flow, pp.600-633, 2003.

[. K-+-10, ]. Cms, and V. Khachatryan, Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC, JHEP, 2010.

[. K-+-17, ]. Cms, and V. Khachatryan, Suppression and azimuthal anisotropy of prompt and nonprompt J/? production in Pb-Pb collisions at s NN = 2

, Eur. Phys. J, vol.77, issue.4, p.7, 2017.

D. Krieg and M. Bleicher, Negative Elliptic Flow of J/? 's: A Qualitative Signature for Charm Collectivity at RHIC, Eur. Phys. J, vol.39, pp.1-4, 2009.

F. Peter, U. W. Kolb, and . Heinz, Hydrodynamic description of ultrarelativistic heavy ion collisions, vol.30, pp.634-714, 2003.

M. Klasen, Theory of hard photoproduction, Rev. Mod. Phys, vol.74, pp.1221-1282, 2002.

F. Karsch, M. T. Mehr, and H. Satz, Color Screening and Deconfinement for Bound States of Heavy Quarks, Z. Phys, vol.37, p.46, 1988.

P. Kovtun, D. T. Son, and A. O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett, vol.94, p.111601, 2005.

D. Kharzeev and K. Tuchin, Signatures of the color glass condensate in J/? production off nuclear targets, Nucl. Phys, vol.770, pp.40-56, 2006.

O. Linnyk, E. L. Bratkovskaya, and W. Cassing, Evidence for non-hadronic interactions of charm degrees of freedom in heavy-ion collisions at relativistic energies, Nucl. Phys, vol.807, pp.79-104, 2008.

A. L. Fevre, Y. Leifels, C. Hartnack, and J. Aichelin, On the Origin of the Elliptic Flow and its Dependence on the Equation of State in Heavy Ion Reactions at Intermediate Energies, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01439265

D. Zi-wei-lin and . Molnar, Quark coalescence and elliptic flow of charm hadrons, Phys. Rev, vol.68, p.44901, 2003.

M. Luzum and J. Ollitrault, Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions, Phys. Rev, vol.87, issue.4, p.44907, 2013.

M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at s NN = 200 GeV, Phys. Rev, vol.78, p.34, 2008.

C. Lourenco, R. Vogt, and H. K. Woehri, Energy dependence of J/? absorption in proton-nucleus collisions, JHEP, 2009.

Y. Liu, N. Xu, and P. Zhuang, J/? elliptic flow in relativistic heavy ion collisions, Nucl. Phys, vol.834, p.55, 2010.

J. Martin-maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys, vol.38, p.33, 1998.

J. S. Moreland, J. E. Bernhard, and S. A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev, vol.92, issue.1, p.11901, 2015.

D. Molnar and M. Gyulassy, Saturation of elliptic flow and the transport opacity of the gluon plasma at RHIC, Erratum: Nucl. Phys, vol.697, pp.495-520, 2002.

D. Molnar, Elliptic flow form quark coalescence: Mass ordering or quark number scaling?, 2004.

D. Molnar, Heavy quarks at RHIC from parton transport theory, Eur. Phys. J, vol.49, pp.181-186, 2007.

A. Mocsy and P. Petreczky, Can quarkonia survive deconfinement?, Phys. Rev, vol.77, p.14501, 2008.

M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci, vol.57, p.97, 2007.

T. Matsui and H. Satz, J/? Suppression by Quark-Gluon Plasma Formation, Phys. Lett, vol.178, p.6, 1986.

D. Guy, D. Moore, and . Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev, vol.71, p.7, 2005.

J. L. Nagle, I. G. Bearden, and W. A. Zajc, Quark-Gluon Plasma at RHIC and the LHC: Perfect Fluid too Perfect?, New J. Phys, vol.13, p.75004, 2011.

H. Niemi, K. J. Eskola, R. Paatelainen, and K. Tuominen, Predictions for 5.023 TeV Pb+Pb collisions at the CERN Large Hadron Collider, Phys. Rev, vol.93, issue.1, p.14912, 2016.

J. Noronha-hostler, M. Luzum, and J. Ollitrault, Hydrodynamic predictions for 5.02 TeV Pb-Pb collisions, Phys. Rev, vol.93, issue.3, p.34912, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01323552

J. Noronha, -. Hostler, and C. Ratti, Signatures of thermalized charm quarks in all charged flow observables, vol.39, 2018.

S. Necco and R. Sommer, The N(f) = 0 heavy quark potential from short to intermediate distances, Nucl. Phys, vol.622, pp.328-346, 2002.

J. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev, vol.46, p.29, 1992.

J. Ollitrault, Relativistic hydrodynamics for heavy-ion collisions, Eur. J. Phys, vol.29, pp.275-302, 2008.

J. Ollitrault, A. M. Poskanzer, and S. A. Voloshin, Effect of flow fluctuations and nonflow on elliptic flow methods, Phys. Rev, vol.80, p.14904, 2009.

V. Pacik, Elliptic flow coefficients of identified hadrons in pp and p-Pb collisions measured with ALICE. Talk at Quark Matter, p.39, 2018.

S. Peigné and R. Kolevatov, Medium-induced soft gluon radiation in forward dijet production in relativistic proton-nucleus collisions, JHEP, vol.01, p.141, 2015.

G. Policastro, D. T. Son, and A. O. Starinets, The Shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett, vol.87, p.5, 2001.

M. Arthur, S. A. Poskanzer, and . Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev, vol.58, pp.1671-1678, 1998.

J. Rafelski and B. Muller, Strangeness Production in the Quark-Gluon Plasma, Phys. Rev. Lett, vol.48, p.2334, 1982.

L. Ravagli and R. Rapp, Quark Coalescence based on a Transport Equation, Phys. Lett, vol.655, pp.126-131, 2007.

F. Reidt, J. Stachel, and L. Musa, Studies for the ALICE Inner Tracking System Upgrade, p.25, 2016.

R. Rapp and H. Van-hees, Heavy Quarks in the Quark-Gluon Plasma, Quark-gluon plasma 4, pp.903-1096, 2010.

M. Riordan and W. A. Zajc, The first few microseconds, Sci. Am, vol.294, issue.5, p.29, 2006.

C. and A. M. Sirunyan, Pseudorapidity and transverse momentum dependence of flow harmonics in p-Pb and Pb-Pb collisions, vol.33, 2017.

[. Cms and A. M. Sirunyan, Elliptic flow of charm and strange hadrons in highmultiplicity p-Pb collisions at s NN =8.16 TeV, Phys. Rev. Lett, vol.121, issue.8, p.82301, 2018.

[. S-+-18b, ]. Cms, and A. M. Sirunyan, Suppression of Excited ? States Relative to the Ground State in Pb-Pb Collisions at s NN = 5.02 TeV, Phys. Rev. Lett, vol.120, issue.14, p.142301, 2018.

H. Satz, Colour deconfinement and quarkonium binding, J. Phys, vol.32, p.25, 2006.

C. Shen, U. Heinz, P. Huovinen, and H. Song, Radial and elliptic flow in Pb+Pb collisions at the Large Hadron Collider from viscous hydrodynamic, Phys. Rev, vol.84, p.44903, 2011.

E. V. Shuryak, Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Psions, Phys. Lett, vol.78, p.5, 1978.

E. V. Shuryak, The Azimuthal asymmetry at large p T seem to be too large for a 'jet quenching, Phys. Rev, vol.66, p.27902, 2002.

P. and C. Silvestre, PHENIX first measurement of the J/? elliptic flow parameter v(2) in Au+Au collisions at s NN = 200 GeV, J. Phys, vol.35, issue.104136, p.7, 2008.

R. Snellings, Elliptic Flow: A Brief Review, New J. Phys, vol.13, p.55008, 2011.

I. Selyuzhenkov and S. Voloshin, Effects of non-uniform acceptance in anisotropic flow measurement, Phys. Rev, vol.77, p.34904, 2008.

A. and A. Szczepankiewicz, Readout of the upgraded ALICE-ITS, Nucl. Instrum. Meth, vol.824, pp.465-469, 2016.

M. Tarhini, Measurement of charmonium production at forward rapidity in Pb-Pb collisions at s NN = 5.02 TeV with ALICE, QM2017, vol.100, 2017.

R. L. Thews, Quarkonium formation at high-energy, Nucl. Phys, vol.702, p.7, 2002.

V. Hendrik-van-hees, R. Greco, and . Rapp, Heavy-quark probes of the quark-gluon plasma at RHIC, Phys. Rev, vol.73, issue.034913, 2006.

J. Willem-van-hoorn, M. Krammer, and P. Riedler, Study and Development of a novel Silicon Pixel Detector for the Upgrade of the ALICE Inner Tracking System, p.25, 2015.

H. Van-hees, M. Mannarelli, V. Greco, and R. Rapp, Nonperturbative heavyquark diffusion in the quark-gluon plasma, Phys. Rev. Lett, vol.100, 2008.

M. Varga-kofarago, R. Snellings, and J. F. Grosse-oetringhaus, Anomalous Broadening of Jet-Peak Shapes in Pb-Pb Collisions and Characterization of Monolithic Active Pixel Sensors for the ALICE Inner Tracking System Upgrade, p.25, 2017.

R. Vogt, Cold Nuclear Matter Effects on J/? and ? Production at the LHC, Phys. Rev, vol.81, p.46, 2010.

S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt-Bornstein, vol.23, p.94, 2010.

S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys, vol.70, pp.665-672, 1996.

P. Yang, Low-power priority Address-Encoder and Reset-Decoder datadriven readout for Monolithic Active Pixel Sensors for tracker system, Nucl. Instrum. Meth, vol.785, pp.61-69, 2015.

L. Yan, P. Zhuang, and N. Xu, Competition between J/? suppression and regeneration in quark-gluon plasma, Phys. Rev. Lett, vol.97, p.232301, 2006.

K. Zhou, Z. Chen, C. Greiner, and P. Zhuang, Thermal Charm and Charmonium Production in Quark Gluon Plasma, Phys. Lett, vol.758, pp.434-439, 2016.

B. Zhang, L. Chen, and C. Ko, Charm elliptic flow at RHIC, Phys. Rev, vol.72, p.24906, 2005.

X. Zhao, A. Emerick, and R. Rapp, In-Medium Quarkonia at SPS, RHIC and LHC. Nucl. Phys., A904-905:611c-614c, vol.110, p.9, 2013.

S. and W. Zha, Excess of J/? yield at very low transverse momenta in Au+Au collisions at s NN and U+U at s NN with STAR, J. Phys. Conf. Ser, vol.779, issue.1, p.46, 2017.

W. Zha, Recent highlights from STAR. Talk at Strangeness in Quark Matter, vol.54, 2017.

B. Zhang, C. Ko, and W. Liu, Thermal charm production in a quark-gluon plasma in Pb-Pb collisions at s NN = 5.5 TeV, Phys. Rev, vol.77, p.24901, 2008.

W. Zha, S. R. Klein, R. Ma, L. Ruan, T. Todoroki et al., Coherent J/? photoproduction in hadronic heavy-ion collisions, Phys. Rev, vol.97, issue.4, p.44910, 2018.

X. Zhao and R. Rapp, Charmonium Production at High p(t) at RHIC, 24th Winter Workshop on Nuclear Dynamics (WWND 2008) South, 2008.

X. Zhao and R. Rapp, Transverse Momentum Spectra of J/? in HeavyIon Collisions, Phys. Lett, vol.664, pp.253-257, 2008.

X. Zhao and R. Rapp, Charmonium in Medium: From Correlators to Experiment, Phys. Rev, vol.82, p.64905, 2010.

X. Zhao and R. Rapp, Medium Modifications and Production of Charmonia at LHC, Nucl. Phys, vol.859, p.7, 2011.

K. Zhou, N. Xu, Z. Xu, and P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev, vol.89, issue.5, p.9, 2014.