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Abstract

In this thesis, we are interested in the study of
the relative hyperbolicity of the suspensions of free
products, as well as the conjugacy problem of certain
automorphisms of free products.

To be more precise, given a free product

G = G1 ∗ · · · ∗Gp ∗ Fk

an automorphism φ is said atoroidal if no power fixes
the conjugacy class of an hyperbolic element. It is
called fully irreducible if the given free factor system
[G1], . . . , [Gp] is the largest one that is fixed by every
power of the automorphism. It is said toral if for
all i, there exists gi ∈ G such that adgi ◦ φ|Gi is the
identity on the free factor Gi. It is said to have central
condition if for each i, there exists gi ∈ G conjugating
φ(Gi) to Gi, and if there exists a non-trivial element
of Gi oadgi◦φ|Gi

Z that is central in Gi oadgi◦φ|Gi
Z.

We prove, in Theorem 4.34, that if φ is atoroidal
and fully irreducible, and if the free product is non-
elementary (k ≥ 2 or p + k ≥ 3), the group G oφ Z
is relatively hyperbolic (relative to the mapping torus
of each Gi). Then in Theorem 6.10, we prove the
same result holds if φ is atoroidal with central con-
dition. We also prove in Theorem 7.22, that if all
Gi are abelian, the conjugacy problem is solvable for
toral atoroidal automorphisms. These are analogue
of the result of Brinkmann [7] (which gave the hy-
perbolicity result for free groups) and the result of
Dahmani [12] (which solved the conjugacy problem of
hyperbolic automorphisms).

Key words: Relative hyperbolicity, Conjugacy problem,
Free product, Atoroidality, Irreducibility.
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Résumé

Dans la thèse présente, nous nous intéressons à l’étude de
la relative hyperbolicité des produits semi-direct des produits
libres, ainsi que le problème de conjugaison pour certains au-
tomorphismes de ces produits libres.

Plus précisement, pour un produit libre

G = G1 ∗ · · · ∗Gp ∗ Fk

un automorphisme φ est intitulé atoroidal s’il ne fixe pas
(ni aucune de ses puissances) la classe de conjugaison d’un
élément hyperbolique de G. Cet automorphisme est appelé
completement irréductible si le système de facteurs libres est
le plus grand qui est fixé par toutes les puissances de cet au-
tomorphisme. Il est appelé toral si pour tous les i, il existe
gi ∈ G tel que adgi ◦ φ|Gi

est identité sur le facteur libre Gi.
Nous disons qu’il a la condition centrale si pour chaque i, il
existe gi ∈ G conjugue φ(Gi) à Gi, et s’il existe un ’elément
non trivial de Gioadgi◦φ|Gi

Z qui est central dans Gioadgi◦φ|Gi
Z.

Nous prouvons, dans le Théorème 4.34, que si φ est atoroidal
et completement irréductible, et si le produit libre est non-
elementaire (k ≥ 2 ou p + k ≥ 3), le groupe G oφ Z est
relativement hyperbolique (relativement a des suspensions de
chaque Gi). Après, dans le Théorème 6.10, nous prouvons
le même résultat si φ est atoroidal avec la condition centrale.
Nous prouvons aussi dans le Théorème 7.22, que si tous les Gi

sont abelien, le problème de conjugaison est solvable pour les
automorphismes atoroidaux, toraux. Ces sont des analogues
du résultat de Brinkmann [7] (celui qui a donné le résultat
d’hyperbolicité pour les groupes libres), et du résultat de Dah-
mani [12] (celui qui a résolu le problème de conjugaison des
automorphismes hyperboliques).
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les mots clés: Relative hyperbolicité, Problème de con-
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1 Introduction

1.1 Automorphisms

For any given groupG, let Aut(G) be its automorphism group.
The inner automorphism group Inn(G) is defined as Inn(G) =
{adh : G → G, g 7→ hgh−1;h ∈ G}, it is a normal subgroup
of Aut(G). The quotient, Aut(G)/Inn(G) is the outer auto-
morphism group of G, denoted by Out(G).
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These groups are easy to define, but automorphisms are
usually not so easy to deal with. A natural problem arises to
determine whether two given automorphisms have the same
image in the outer automorphism group (i.e. they differ only
by a conjugation in G). This problem involves the so-called
”simultaneous conjugacy problem in G”: given the generating
set of G, determine whether or not images of all the generators
by two given automorphisms are conjugate by a same element
in G. For some groups, say free groups, this problem is easy
to solve, as the centraliser of any element in the free group is
the maximal cyclic group containing such an element.

Other natural problems are to determine whether two given
automorphisms are conjugate by an element in Aut(G) (the
conjugacy problem in Aut(G)), and to determine whether
two given automorphisms are conjugate by an element in
Out(G) (the conjugacy problem in Out(G)). For example,
take G = Zn (where n is a positive integer), its automorphism
group is GLn(Z). Its inner automorphism group is trivial, so
Out(Zn) is also GLn(Z). The conjugacy problem of GLn(Z)
can be related to a theorem by Latimer and MacDuffee in
1933 (see [33]). The theorem says that for a given irreducible
(over Z) monic polynomial P (with P (0) = 1), the conjugacy
classes of matrices in GLn(Z) with characteristic polynomial
P are in bijection with the ideal classes of Z[X]/(P ). This
sheds light on the conjugacy problem of Aut(Zn), but still,
the arithmetic approach is complicated, even in the case when
the characteristic polynomials are irreducible.

In order to survive this complexity, one may look for hy-
perbolicity.
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1.2 Hyperbolicity

We first come back to the example of G = Zn, but this time,
we take a simple case where n = 2 and consider the subgroup
SL2(Z) (subgroup of GL2(Z)). It acts on the hyperbolic plane
H2 in the following way (expressed in the upper half plane
model): (

a b
c d

)
: z 7→ az + b

cz + d

This action has a kernel of {±Id}. Hence we can iden-
tify PSL2(R) = SL2(R)/{±Id} with the group of all linear
fractional transformations of H2.

There is a fundamental domain M = {z : |z| > 1,−1
2
<

Re(z) ≤ 1
2
} ∪ {eiθ : π

3
≤ θ ≤ π

2
} of PSL2(Z) on H2: each

point in the hyperbolic plane is equivalent (by the action of
the group PSL2(Z)) to some point in M, while no point in M
(except for itself) is equivalent to another point in M.

In addition, one can show that the union of all images of
the arc {eiθ : π

3
≤ θ ≤ π

2
} by elements of SL2(Z) form a tree,

whose edges are precisely the different images of the arc. The
group SL2(Z) thus acts on this tree, one can check that the ac-
tion is without inversion (stabilizer of any edge is the stabilizer
of both end points), and without global fixed point. It follows,
by Bass-Serre theory that SL2(Z) has the familiar presenta-
tion as an amalgamated free product: SL2(Z) ' Z4 ∗Z2 Z6.
Hence every element has a normal form, and by comparing
the cyclic reduced normal form (up to cyclic permutation)
one can tell whether or not two given elements in this group
are conjugate.

Hyperbolic geometry gives us the tree which provides us
a solution to the conjugacy problem.

But, in the case of SL3(Z), things are more difficult, as
there is no hyperbolic space for this group, and very little
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hyperbolic behaviour for this group. Hence the method above
(for SL2(Z)) does not work in this case.

Take another example, a genus g closed surface (denoted
by Σg). Its universal cover is H2, the hyperbolic plane. More-
over, π1(Σg) is an analogue of Z2: Z2 corresponds to a tessella-
tion of an Euclidean plane by squares, and π1(Σg) corresponds
to a tessellation of the hyperbolic plane by (4g)gons. In other
words, Z2 is an euclidean lattice, while π1(Σg) is a hyperbolic
lattice.

By a theorem of Dehn and Nielsen, the mapping class
group (the group of isotopy classes of diffeomorphisms) of Σg

is isomorphic to a subgroup of index 2 of Out(π1(Σg)). And
Thurston (see [38]) gave a classification of all the elements in
the mapping class group by classifying into 3 kinds: periodic,
reducible (i.e, the element preserving some finite union of dis-
joint simple closed curves on the surface up to isotopy), and
pseudo-Anosov.

In 1986, Thurston gave an important theorem (see [39]),
revealing that, for a genus g (where g ≥ 2) surface Σg, an
element φ in the mapping class group of Σg is pseudo-Anosov
if and only if the fundamental group of its suspension (or, in
other words, π1(Σg) oφ Z, see Subsection ”Automorphisms,
suspensions, semidirect product” 2.4 for formal definition) is
Gromov-hyperbolic.

One can revisit the case of SL2(Z), using the viewpoint
that SL2(Z) is the mapping class group of the punctured
torus. Elements that are loxodromic in the modular tree are
pseudo Anosov. Although the punctured torus is not a closed
surface, Thurston’s theorem says that, for these elements, the
suspension is a geometrically finite hyperbolic manifold, and
its fundamental group is toral relatively hyperbolic. If ele-
ments are conjugate, they give isomorphic suspensions. Al-
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though it seems unnecessarily complicated for the case of
SL2(Z), one can argue that all the hyperbolicity needed to
solve the conjugacy problem is in the suspensions.

1.3 Free groups

Replacing π1(S) by another group G, and letting φ be an
automorphism of G, it is interesting to know whether Goφ Z
is hyperbolic or relatively hyperbolic. One kind of interesting
example is free groups, as it is an analogue of π1(Σg) (in the
sense that, π1(Σg) is a hyperbolic lattice, and free groups are
lattices in trees).

Bestvina, Feighn, Handel investigated an analogue of Thurston’s
result on the hyperbolicity of the semi-direct product (see [2]).
In his thesis, Brinkmann also approached the problem, giving
an account in a broader generality (see [7]) and providing a
characterisation. Brinkmann’s result is that for a free group
G, and for any φ ∈ Aut(G), Goφ Z is hyperbolic if and only
if φ is an atoroidal automorphism (here atoroidal means that
no non-trivial conjugacy class of element in the group can be
preserved by some non-zero power of φ). The general method
for this theorem is to:
- use train track maps that represent topologically on a specific
graph (or on its universal cover, a tree), the automorphisms
that we consider
- analyse how edges and paths are folded and stretched by
this train track map
- deduce the growth of conjugacy classes of the elements of
the group under the action of the automorphism
- use the Bestvina-Feighn combination theorem that indicates
when a HNN extension is a word-hyperbolic group.

Still, there are plenty examples of non-hyperbolic groups
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that need to be analysed:
The group Zn oZ is never hyperbolic or relatively hyper-

bolic, because Zn is normal in it, and normal parabolic groups
must be finite.

Take φ ∈ Aut(Fn), where Fn is a free group of rank n
(where n > 2), if φ is a toroidal automorphism (for example,
G = F2 ∗ Fn−2, φ ∈ Aut(G) such that φ|F2 = Id, and φ|Fn−2

is atoroidal), then Fn oφ Z is not hyperbolic as it contains
Z2. But, in some cases, it can be relatively hyperbolic (see
Definition 4.3 for formal description). In this example, it is
hyperbolic relative to F2 × Z.

In [12] Dahmani gave a solution to the conjugacy prob-
lem for atoroidal automorphisms of free groups, using this
hyperbolicity. In [11] he also gave a solution to the conjugacy
problem for more cases of automorphisms, which produce rel-
atively hyperbolic suspensions.

1.4 Free products

In this thesis, we assume that G is a free product, and show
the relative hyperbolicity of Goφ Z under some condition on
φ. Our main results are Theorem 4.34 and Theorem 6.10.

The first study of outer automorphism group of free prod-
ucts goes back to pioneering work of Fouxe-Rabinovitch (1941)
([19], [20]) where she found generators and relations. Golowin
and Szadowsky ([23]) worked out the case of 2 factors in 1938.

We will use a more modern approach. Any free product
G acts on Bass-Serre trees (vertex stabilizers are either con-
jugate to some of Gi’s or trivial), and Out(G) acts on the
space of these Bass-Serre trees, formalised by Guirardel and
Levitt in [30] as outer spaces of free products. Francaviglia
and Martino (in [21]) identified that for each so-called irre-
ducible automorphism φ, there is a family of preferred trees
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on which φ induces a train track map (a map with good can-
cellation properties).

We first restrict to the fully irreducible case, for non-
elementary free product(i.e. either k ≥ 2 or p + k ≥ 3).
To achieve relative hyperbolicity of the suspension G oφ Z,
we simply need to prove the relative hyperbolicity of the au-
tomorphism φ, thanks to a combination theorem proved by
Gautero and Weidmann (see Corollary 7.3 in [22], cited in this
thesis as Theorem 4.8). The relative hyperbolicity of the au-
tomorphism, in this case, is shown by the exponential growth
of length of fundamental segments by a map representing such
an automorphism. Such a map we use in this thesis, is the
train track map, which is similar to the case of free group.
The study of train track maps in the free group case was de-
veloped by Bestvina and Handel, and was introduced into the
free product case by Francaviglia and Martino in [21].

The technique we use in this thesis is analogous to that in
the free group case. In free product, things are going different
and more complicated, as we are dealing with locally infinite
trees instead of finite graphs. But still, some similar result can
be achieved in the fully irreducible and atoroidal case (where
we have train track maps that every edge stretch by a same
factor strictly larger than 1). Then by analyzing the growth
of each fundamental segment, and the exponential growth of
its subpaths, we achieve the relative hyperbolicity of Goφ Z
in the case when φ is atoroidal and fully irreducible, under
the assumption that the free product decomposition is non-
elementary.

For the reducible case, we first show that there is a larger
free factor system such that the automorphism is still fully
irreducible and atoroidal. And by a method of descent, as-
suming that the a certain property that we call the ”central
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property” holds (i.e., for each i, gi ∈ G conjugates φ(Gi) to
Gi, and there exists a non-trivial element of Gi oadgi◦φ|Gi

Z
that is central in Gi oadgi◦φ|Gi

Z), we can achieve relative hy-
perbolicity of G oφ Z if φ is atoroidal (see Theorem 6.10 for
detailed information).

1.5 Conjugacy Problem of toral atoroidal
automorphisms of free products

Conjugacy problem is another big problem in group theory.
In this thesis, we focus on the conjugacy problem of toral
atoroidal automorphisms of free products. An automorphism
is toral if for all i, there is gi ∈ G such that adgi ◦ φ|Gi

is the
identity on the free factor Gi; it is atoroidal if no non-trivial
conjugacy class of hyperbolic element is fixed by some power
of φ.

We will use a basic, well-known fact concerning the conju-
gacy problem: two automorphisms φ1, φ2 ∈ Aut(G) are con-
jugate in Aut(G) if and only if there is an isomorphism from
Goφ1 〈t1〉 to Goφ2 〈t2〉 such that it sends G to G and t1 to t2;
they are conjugate in Out(G) if and only if there is an isomor-
phism from Goφ1 〈t1〉 to Goφ2 〈t2〉 such that it sends G to G
and t1 to t2G. Also, similar results hold for the abelianisation
(see Lemma 7.7 for detail).

Dahmani and Groves proved the solvability of isomor-
phism problem of toral relatively hyperbolic groups (see The-
orem 7.1 of [13]). What remains to us to check is, whether or
not the element t1 is sent to the corresponding element (de-
pending on Out or Aut) and G is sent to G. This is referred
to as the ”Orbit problem of uprighting hyperplanes”.

Guirardel and Levitt proved an interesting result (see The-
orem 1.4 of [29]), saying that there is a finite index subgroup
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Out1(H) of Out(H) for any toral relatively hyperbolic one-
ended group H fitting in an exact sequence

1→ T→ Out1(H)→
P∏
i=1

MCG0(Σi)×
m∏
j=1

GLrj ,nj
(Z)→ 1

in which T is an abelian well-identified group (generated by
algebraic Dehn-twists).

Computing coset representatives of Out1(H) in Out(H) is
made possible (using Guirardel and Levitt) by computing a
primary JSJ-decomposition of the relatively hyperbolic group
H. This is done in the work of Dahmani and Groves ([13]).
Thus conjugacy problem can be turned into the orbit problem
in Out(H) of uprighting hyperplanes in G oφ2 〈t2〉, and the
image of the solution in each GLrj ,nj

satisfies the Condition 1.
This Condition 1 is actually directly induced by Lemma 7.7,
by the restriction to each GLrj ,nj

(see Section 7.4 for formal
definition).

The method we use in the rest of the work is an analogue
of the work of Dahmani (see [12]) in the case of hyperbolic
automorphisms. Because the action of Out1(G o 〈t〉) on the
abelianisation of Go〈t〉 is generated by transvections, we turn
the orbit problems to the corresponding Diophantine equation
problems, and prove the solvability of conjugacy problem of
toral atoroidal automorphisms of free products (see Subsec-
tion ”Conjugacy Problem for Toral Relatively Hyperbolic Au-
tomorphisms” for details). Our main result in this direction is
Theorem 7.22 that we state here: For any given free product
G, and two toral atoroidal automorphisms, there is an algo-
rithm to decide whether φ1 and φ2 are conjugate in Aut(H)
(and in Out(H)).
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1.6 Further perspectives

1. It is still not clear what would happen if the condition
on central elements is removed. There are counterexamples:
Consider two copies Z2

a,Z2
b of Z2, and make their free product

G = Z2
a ∗ Z2

b . Consider the automorphism φ =

(
2 1
1 1

)
∗(

2 1
1 1

)
(with obvious meaning). φ preserves both factors

Z2
a,Z2

b and in the suspension, the stable letter t normalises
both groups Z2

a,Z2
b and produces semi-direct products Z2

ao〈t〉
and Z2

b o 〈t〉. If G is relatively hyperbolic both subgroups
Z2
ao 〈t〉 and Z2

bo 〈t〉 must be parabolic (because they contain
a normal Z2). But their intersection 〈t〉 is infinite. Therefore,
they must be in the same maximal parabolic subgroup, but
since they generate the whole semi-direct product (Z2

a ∗Z2
b)o

〈t〉, it means that the whole group must be parabolic. Thus
there is no proper relative hyperbolic structure on it. What
can be a necessary and sufficient condition, then?

One potential approach is to see the filtration of the tree
(stratify the tree into zero-strata, polynomial growing strata,
and exponentially growing strata, similar to the free group
case), and to analyse the possible ”improved relative train
track map”. But the existence of which, in the free product
case, is unclear to me yet.

2. Also, in free group case, atoroidal irreducible automor-
phisms are fully irreducible, it is unknown in the free prod-
uct case. I would like to have some investigation on this in
the near future. Recent work of Guirardel and Horbez ([26])
might be relevant.

3. Given the work of Dahmani-Touikan[16], it seems legiti-
mate to try to extend our main result on the conjugacy prob-
lem (Theorem 7.22)to the case where A1, . . . , Ak are nilpo-
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tent and φi induce the identity on them. One can also possi-
bly hope to extend the result to the case where φi induces a 
nilpotent automorphism, i.e. an automorphism of an abelian 
or a nilpotent group, such that the semi-direct product is still 
nilpotent.
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2 Graphs, trees, groups acting on

them

2.1 Conventions on graphs

Let us recall some conventions regarding graphs, trees, met-
rics, and group actions.

A graph X is a pair (V,E) where V is a non-empty set, and
E is a set, that is endowed with three applications i : E → V ,
t : E → V and b : E → E such that b is a fix-point free
involution and such that t = i ◦ b. The elements of V are
called the vertices of the graph, the elements of E are called
the oriented edges of the graph. The map b is the reversing of
the orientation of an edge. In the above notation, we denote
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by V (X) the set of vertices of X, and by E(X) the set of
edges in X. We will from now denote by ē the edge b(e).

Consider X a graph. The degree of a vertex v is the car-
dinality of the set {e : i(e) = v}.

A finite path in X is a finite sequence of edges ei, i =
1, . . . , n, such that for all i, t(ei) = i(ei+1). We say that such
a path starts at i(e1) and ends at t(en) (or is from i(e1) to
t(en) ).

A graph is connected if for every pair of vertices, there is
a path starting at one and ending at the other.

We say that a path is reduced if for all i, ei 6= ēi+1. Clearly
if there is a path from x to y, there is a reduced path from x
to y. An infinite path is a sequence (ei)i∈N such that t(ei) =
i(ei+1) for all i. Again it can be reduced, or not. A bi-infinite
path is a sequence (ei)i∈Z such that t(ei) = i(ei+1) for all i. A
path is said to be closed if its starting point and its ending
point are identical. The shift of parameter k ∈ Z on a bi-
infinite path (ei)i∈Z is the bi-infinite path (ei+k)i∈Z. Slightly
more formally, the shift of parameter k ∈ Z is a map from
the set of all bi-infinite paths to itself defined by the above
association.

A tree is a connected graph for which, given any pair of
vertices, there is a unique reduced path between them. A
forest is a disjoint union of trees.

An automorphism of a graph X = (V,E) is a pair of bijec-
tions φV : V → V, φE : E → E such that i(φ(e)) = φ(i(e))
and φ(ē) = φ(e).

The automorphisms of a tree are of two kinds. An auto-
morphism is said to be elliptic if it fixes a vertex or a pair of
vertices; otherwise it is said to be hyperbolic. An elementary
result in the geometry of trees justifies this terminology: any
hyperbolic automorphism preserves a unique bi-infinite path
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(up to shifting), and in restriction to it, acts as a shift on
the indices of the edges, or a translation. See Theorem 2.1,
Chapter 2 of [5].

Consider a group G and its action on a tree T , by auto-
morphisms. We say that the action is trivial if there exists a
vertex of T that is fixed by all elements of G. We say that it
is without inversion if every element of G that fixes a pair of
vertices actually fixes both vertices of the pair. Recall Serre’s
lemma: if G is finitely generated, and if its action on T is
non-trivial, then G contains hyperbolic elements (see [37]).

Given a tree T , we call a vertex v ∈ V T redundant, if it
has degree two, and if any g ∈ G fixing v fixes edges adjacent
to v. It is called terminal if T − {v} is connected (although
T − {v} is no longer a graph).

2.2 Digression on metrics

Let us put a metric on a graph. A length function on a graph
X = (V,E) is a function lX : E → R+ \ {0}. It is symmetric
if lX(e) = lX(ē) for all e ∈ E. Given a length function, one
defines the length distance on X (more precisely on V ) as
follows.

First, the length of a path p = (e1, . . . , ek) is `X(p) =∑
i lX(ei). Second, the length distance between v1, v2 ∈ V ,

denoted by dX(v1, v2), is the infimum of the lenghts of paths
that starts at v1 and end at v2. It is symmetric as soon as lX
is symmetric. It obviously satisfy the triangular inequality.
In general one does not have (dX(v1, v2) = 0) =⇒ (v1 = v2).
However this is satisfied in many cases, for example: when
X is locally finite, when there is ε > 0 such that all edges
have lX(e) > ε (in particular when there are only finitely
many possible values), when the graph is a tree, etc. In all
our examples, our graphs will satisfy one or several of these
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conditions.
An elementary example is when lX(e) = 1 for all e. How-

ever we will use more examples.

2.3 Free groups

The universal cover of a rose is a regular tree, which is the
Cayley graph for the free group.

Let X be a subset of a group F . Assume that X−1(=
{x−1, x ∈ X}) is disjoint from X. Recall that F is a free
group of basis X if every non-trivial element of F can be
represented uniquely as a product f = x1 . . . xn, for some
n ≥ 1, and xi ∈ X ∪ X−1, with the only constraint that
xixi+1 6= 1 for all i. See [5] for instance.

Free groups are very important in geometric and combi-
natorial group theory.

Here are a few elementary important properties. A group
is free if and only if it acts freely on a simplicial tree. A group
is free if and only if it is the fundamental group of a graph.
Any group is a quotient of a free group. Any map from X to
a group extends uniquely in a group homomorphism from the
free group of basis X to that group.

Let us describe free groups as fundamental groups of graphs
more precisely. In this thesis, a rose, following a well estab-
lished convention, is a graph with a single vertex. Given a rose
R, let e1, . . . en, ē1, . . . , ēn its oriented edges, so that e1, . . . en
is a certain choice of orientation of the set of edges. Then,
denoting by v the vertex of R, the group π1(R, v) is naturally
isomorphic to the free group of basis {e1, . . . en}.

The universal cover of R is a 2n-regular tree, and can be
naturally identified with the Cayley graph of π1(R, v), over
the generating set {e1, . . . en}, by choosing a base point.
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2.4 Automorphisms, suspensions, semidirect
product

Consider a topological space S, which is assumed to be path-
connected. Let f : S → S be a continuous map.

One can construct the suspension of S along f to be the
quotient topological space Σ(S, f) = S × [0, 1]/ ∼ where
(s, 0) ∼ (f(s), 1) for all s. In general, one needs to take the
transitive closure of the relation, but if f is injective, this
is not necessary and the equivalence classes have one or two
point.

For example, if S = S1, and f = Id, one gets the torus; if
f = −Id, the Klein bottle. Given s0 ∈ S, the homotopy group
π1(Σ(S, f), s0) has its isomorphic type depending only on the
homotopy class of f . Therefore, since S is assumed path con-
nected, to realise the isomorphism class of π1(Σ(S, f), s0) we
may freely assume that f(s0) = s0. In that case, f realises
an endomorphism of π1(S, s0). Note that if one uses another
representative f ′ of the homotopy class of f , then f ′ defines
an endomorphism that differs from f by the composition with
an inner automorphism of π1(S, s0) (that is, a conjugation by
an element of π1(S, s0)).

Assume also that f is a homotopy equivalence of S. Then
f defines an automorphism of π1(S, s0). Let us denote it by
φf . Recall again that only the outer class of φf (its class in the
outer automorphism group of π1(S, s0)) is well defined. Seifert
van Kampen theorem indicates that π1(Σ(S, f), s0) is isomor-
phic to the semidirect product π1(S, s0) oφf Z. Actually one
should note that the theorem gives a presentation of π1(S, s0)
as an HNN-extension, but in the case of an automorphism, it
is a semidirect product with Z.

A famous example (that we recalled in the introduction) is
given for S a closed orientable surface of genus g ≥ 2. This, in
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particular, illustrates our interest in finding hyperbolic prop-
erties of maps f through hyperbolic properties of the group
π1(S, s0) oφf Z.

2.5 Basics of Bass-Serre theory

We recall the definition of graph-of-groups, and the duality
with trees. We refer to [5].

Let S be a set. Denote here by FS the free group with
basis S.

A graph of groups

(Y, {Gv, v ∈ V (Y )}, {Ge, e ∈ E(Y )}, {αe, e ∈ E(Y )})

consists of a graph Y (called the underlying graph), a group
(referred to as vertex group) Gv for each vertex v of V (Y ),
a group Ge (called edge group) Ge for each edge e of E(Y ),
such that Ge = Gē for all e ∈ E(Y ), and a monomorphism
(an injective homomorphism) αe : Ge → Gi(e) for each edge e
in E(Y ).

For a given graph of groups

Y = (Y, {Gv, v ∈ V (Y )}, {Ge, e ∈ E(Y )}, {αe, e ∈ E(Y )})

let (∗v∈V (Y )Gv)∗FE(Y ) be the free product of all vertex groups,
and of the free group over the set of edges of Y .

We define the Bass group B(Y) to be the quotient group
of (∗v∈V (Y )Gv) ∗ FE(Y ) by the normal closure of

{t−1
e αe(g)te(αē(g))−1, tetē : e ∈ E(Y ), g ∈ Ge}.

An element in the form g1te2g2...tengn (where e2...en is a
closed path in Y , and where for all j, gj ∈ Gt(ej)) is called a
path element in the Bass group. We say that it starts at i(e2)
and ends at t(en).
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Given a vertex V0 in the graph Y , we define the funda-
mental group π1(Y, V0) of the graph of groups Y with the base
point V0, to be the subgroup of B(Y) of all path elements
starting and ending at V0.

If now τ is a maximal subtree of the graph Y , the funda-
mental group π1(Y, τ) of the graph of groups Y with maximal
subtree τ is the quotient group of B(Y) by the normal closure
of {te : e ∈ E(τ)}.

An important result of Bass-Serre theory, reported as Corol-
lary 16.7 of [5], states that π1(Y, V0) and π1(Y, τ) are isomor-
phic (therefore, both π1(Y, V0) and π1(Y, τ) are regardless of
the choice of vertex and maximal subtree). More precisely,
the quotient map restricted to π1(Y, V0) is an isomorphism
onto π1(Y, τ).

Another central point of Bass-Serre theory is the duality
between graphs of groups and trees. First, there exists a tree
T on which π1(Y, τ) acts by automorphisms, without inver-
sion, and in which the vertex stabilizers are exactly the con-
jugates of the images of the groups Gv, v ∈ V (Y ) in π1(Y, τ),
and in which the edge stabilizers are exactly the conjugates of
the images of the groups Ge, e ∈ E(Y ) in π1(Y, τ). Second, or
conversely, anytime a group G acts on a tree T non-trivially,
and without inversion, then G is the fundamental group of
a graph of groups constructed on the graph G\T where the
vertex groups and the edge groups are copies of the vertex
stabilizers in G and of the edge stabilizers in G. We refer to
[37] and to [5] for a comprehensive treatment.

Example. The group obtained as the free product G =
Z2 ∗ Z3 ∗ Z4 ∗ F{a,b,c} is isomorphic to the fundamental group
of the graphs of groups (and many more) shown in Figure 1.
Each of them is associated to a dual Bass-Serre tree on which
G acts. To deal with the multiplicity of trees, on which G can
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Figure 1: Four graphs of groups whose fundamental groups
are isomorphic to G = Z2 ∗ Z3 ∗ Z4 ∗ F{a,b,c} (edge groups are
all trivial).
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act, let us gather some vocabulary.
We first define equivariant maps in the most common way.

Given a group G with group actions G×X → X,G×Y → Y
(acting on the left), a map f : X → Y is referred to as G-
equivariant, if f(gx) = gf(x) for each g ∈ G and x ∈ X.

Given a group G, we say T is a G-tree if T is a tree en-
dowed with a simplicial G-action α : G × T → T by tree
automorphisms. A G-tree is a metric G-tree if it carries a
metric (as above, in the sense of graphs) such that the action
of G is by isometries. Denote by T (G) the set of metric G-
trees. For a G-tree T , we have a quotient graph G\T . Denote
by πT the projection map from T to G\T .

Two G-trees T, T ′ are said to be equivalent, denoted by
T ∼ T ′, if there is a G-equivariant isometry f from T to T ′.

2.6 Grushko decompositions, free product
decompositions

Grushko Decomposition Theorem states that for any nontriv-
ial finitely generated group there exists a decomposition into
a free product of the form

G ' G1 ∗ ... ∗Gp ∗ Fk (GD)

where Gi is freely indecomposable and not infinite cyclic
for each i = 1, ..., p, and Fk is a free group of rank k. We say
that this decomposition is non-trivial if either (k > 0, p ≥ 1)
or p > 1.

Moreover, Grushko’s unicity theorem states that if more-
over

G ' G′1 ∗ ... ∗G′p′ ∗ Fk′

where Gi is freely indecomposable and Fk free, then p′ =
p, k′ = k and for any i ∈ {1, ..., p}, there is some j ∈ {1, ..., p},
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such that G′i is conjugate to Gj.
This unicity needs to be understood to be rather weak in

the context of this thesis. We will call Grushko decomposition
of G any graph-of-group decomposition for which the vertex
groups are the conjugates of the Gi, i = 1, ..., p, and the trivial
group, and the edge groups are trivial. This leaves many
possibilities as we illustrated in the Figure 1.

Hence in the following parts of this thesis, we fix a group
G and a non-trivial free product decomposition G ' G1 ∗ ... ∗
Gp ∗ Fk. However, we will not always assume that each Gi is
freely indecomposable. Given a free product decomposition
with the above notation, by Bass-Serre theory, G acts on a
tree T with the following properties:

• 1. G acts on tree T without edge-inversions, and with-
out fixed point;

• 2. all edge stabilizers are trivial;

• 3. any vertex stabilizer is either {1} or conjugate to Gi

for some i = 1, ..., p, and each Gi fixes a vertex;

• 4. this action is minimal: no proper subtree of T is
invariant under G.

2.7 Outer space of free products

Following Guirardel and Levitt, we recall the definition of
outer space. We refer to [30].

Recall that T (G) is the set of metric G trees.

Definition 2.1 Let G = G(G, (Gi)
p
i=1, Fk) be the subset of

T (G)/ ∼ of simplicial, metric G-trees T , up to equivarient
isometry, such that
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• (C0) T has no redundant vertices;

• (C1) the G-action of T is minimal (i.e. there is no
proper invariant subtree), with trivial edge stabilizers;

• (C2) for each i = 1, ..., p, there is one orbit of vertices
with stabilizer conjugate to Gi, and each Gi fixes a ver-
tex;

• (C3) the stabilizers of all other vertices are trivial. These
vertices are referred to as free vertices.

Definition 2.2 ([21], Definition 3.2) Let G be a free prod-
uct in the form of G1 ∗ ... ∗Gp ∗Fk, we define Aut(G,G) (also
denoted by Aut(G, ([G1], . . . , [Gp])), or Aut(G; (Gi)

p
i=1)) to be

the subset of Aut(G) satisfies the following:
for any automorphism Φ ∈ Aut(G), Φ is in the subset

Aut(G,G) if and only if for all i ∈ {1, . . . , p}, there is a ele-
ment gi ∈ G and j ∈ {1, . . . , p} such that, Φ(Gi) = g−1

i Gjgi.
Since Inn(G) is a normal subgroup of Aut(G,G), we de-

fine Out(G,G) (also denoted by Out(G, ([G1], . . . , [Gp])), or
Out(G; (Gi)

p
i=1)) to be Aut(G,G))/Inn(G).

The multiplication of all lengths of the edges by the same
positive number is a transformation from G to G. And there-
fore one can define a space PG = PG(G, (Gi)

p
i=1, Fk) from the

space G, to be the projective space for this rescaling process.
It is called the outer space of G relative to G1, ..., Gp.

If G is free (the collection of Gi is empty ), this is isomor-
phic to Culler-Vogtmann’s outer space for free groups, about
which there is abundant literature (for instance, [4]). Note
that Culler and Vogtmann’s outer space is a space of marked
metric graphs, where the space Guirardel and Levitt defined
is a space of metric G-trees, but the correspondence is clear,
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through passing to universal covers, with deck transformation
actions.

If G is finitely generated, and each of the Gi is freely in-
decomposable, we obtain the space of all Grushko decompo-
sitions.

Consider the case when G = Fn, and Gi are free factors,
but not necessarily freely indecomposable. For instance, take
G = Fn and select some free factors that, for some reason, we
want to see preserved. Let G1, . . . , Gk be these free factors.
Then, these Gi are free groups (whose sum of ranks is less
than n) and the space G is the relative outer space associated
to the free factor system as studied for instance by Radhika
Gupta in her thesis ([32], [31]).

Let us notice that Out(G; {(Gi)
p
i=1}) acts on G in the fol-

lowing way:
If G acts on a tree T in G, as α : G × T → T , and if

Φ ∈ Out(G), choose φ ∈ Aut(G; (Gi)
p
i=1) a representative of

Φ, then G acts on T in the following way: (g, x) 7→ (φ(g)x) ∈
T . First, the new G-tree T (endowed with the new action) is
in G since the new stabilizers of vertices are the images of the
conjugates of the Gi by φ−1, and therefore are the conjugates
of the Gi, and the stabilizers of edges are still trivial since
they are intersection of different conjugates of the Gi. Second,
the new G-tree T does not depend on the choice of φ in the
class of Φ, because precomposing the action by a conjugation
in G amounts to precomposing the action by an equivarient
isometry of T , and therefore remains in the same ∼-class.

One of the main results of [30] is the description of a
geodesic between any two points in PG, in terms of a fold-
ing path. This allows to describe a geodesic between a tree
and its image by an outer automorphism. In particular, since
every folding move is rather simple, this decomposes any au-
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tomorphism into simple moves.

2.8 From automorphisms to maps between
trees

Definition 2.3 (representative map of an automorphism) [[21],
Section 8.1] For T ∈ G and Φ ∈ Aut(G,G), we say that a map
f : T → T represents Φ on T if for any g ∈ G and t ∈ T , the
equation f(gt) = Φ(g)(f(t)) holds.

If moreover the action is minimal on the tree T , and f
continuous, it implies that f is surjective.

All the maps we consider in this thesis will be continuous
and even Lipschitz.

The existence of such a map is shown in the following
lemma, which is proven by Francaviglia and Martino.

Lemma 2.4 ([21], Lemma 4.2) Given any T ∈ G and Φ ∈
Aut(G,G), there exist a map f : T → T representing Φ on
T . Moreover, if f1 : T → T, f2 : T → T are 2 different maps
representing Φ on T , they coincide on non-free vertices.

2.9 Deformation spaces

We recall the definition of deformation spaces. We refer to
[27].

By Theorem 5.12 of [21], for any A,B ∈ G, and for any
Φ ∈ Aut(G), there exists a G-equivariant map f : A → B
that is piecewise linear with minimal Lipschitz constant that
represents Φ.

It also follows that (by reparametrising the map), for any
A,B ∈ G, and for any Φ ∈ Aut(G), there exists a map f :
A→ B representing Φ that is piecewise linear.
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Consider two trees T1 and T2, we say that T1 dominates
T2 if there exist an equivariant map T1 → T2 (see [27]). It is
equivalent to say that, if a group is elliptic in T1, then it is
elliptic in T2.

The deformation space DF (T ) of a tree T is the set of
metric trees T ′ such that T and T ′ dominates each other, up
to equivariant isometry. Equivalently, it is a set of trees T ′

such that T ′ have the same elliptic subgroups as with T . For
example, if we fix G with a free product decomposition like
(GD), and if we see G = G(G, (Gi)

p
i=1, Fk) as a space of G-

trees, then G is the deformation space for T0 the tree of the
free product.

Note that for g ∈ G, g is not hyperbolic for some T ∈ G
if and only if g lies in a G-conjugate of some Gi, i ∈ {1, ..., p}
(see also section 4.1, [21]). Therefore g ∈ G is hyperbolic for
T ∈ G if and only if it is hyperbolic for every element in G.
So we denote the set of hyperbolic elements of G for some
(and for all) T ∈ G by Hyp(G).

3 Train tracks on marked graphs,

and on trees

In this section, we define, and recall results about train tracks
on marked graphs, or on G-trees. We refer to [21], where
Francaviglia and Martino described the train track maps on
the G-trees and proved some result of irreducible automor-
phisms of free product. We will also define irreducibility, and
atoroidality in the context of automorphisms of free products.
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3.1 Irreducibility

Recall that an automorphism of a free group F is irreducible
if it does not preserve the conjugacy class of any proper free
factor. It is fully irreducible if all its positive powers are irre-
ducible.

In the case of automorphisms of free product, Francaviglia
and Martino have adapted the definition of irreducibility.

We recall two definitions of irreducibility of free product
automorphisms from [21], and prove that these definitions are
equivalent (as was stated in [21]).

For g ∈ G, we denote by [g] its conjugacy class in G;
likewise, for a subgroup H of the group G, denote by [H] the
conjugacy class of H in G.

Given a group G = G1∗...∗Gp∗G′, the set {[G1], ..., [Gp]} is
called a free factor system for G. If there is another free factor
system {[G′1], ..., [G′p′ ]} for G such that, for each i ∈ {1, . . . , p′}
there is some j ∈ {1, . . . , p} satisfying G′i ≤ gGjg

−1 for some
g ∈ G, then we declare {[G′1], ..., [G′p′ ]} ≺ {[G1], ..., [Gp]}.

Proposition 3.1 The relation ≺ defined as above is a partial
order.

Proof: If {[G1], ..., [Gp]} ≺ {[G′1], ..., [G′p′ ]}, and if {[G′1], ..., [G′p′ ]} ≺
{[G1], ..., [Gp]}, then for any i, there is some j, g, g′ such that
g′Gjg

′−1 ≤ G′i ≤ gGjg
−1, thus g−1g ∈ G, g′Gjg

′−1 = G′i =
gGjg

−1. Hence we have [G′i] = [Gj], then {[G1], ..., [Gp]} =
{[G′1], ..., [G′p′ ]}. And since the reflexivity and transitivity is
obvious from the definition of the relation ≺, it follows that
the relation ≺ is a partial order relation.

Definition 3.2 (Irreducible and fully irreducible maps) Let
Φ be an automorphism of a group G, T ∈ G and f : T → T
represent Φ ∈ Aut(G). We call f irreducible, if for every
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proper subgraph W of the tree T that is G-invariant and f -
invariant, the quotient graph G\W is a collection of isolated
subtrees with at most one non-free vertex. We say f is fully
irreducible if for any integer i > 0, f i is irreducible.

Definition 3.3 (G-irreducible and G-fully-irreducible auto-
morphisms) We say Φ ∈ Aut(G,G) is G-irreducible if for
any T ∈ G and for any f : T → T representing Φ, f is
irreducible. Likewise, we refer Φ to as fully irreducible if f
is G-fully-irreducible (or fully irreducible for short) for any
T ∈ G and for any f : T → T representing Φ.

Definition 3.4 (Irreducible automorphisms relative to a free
factor system) Given a group G with a free product decompo-
sition G = G1 ∗ ... ∗ Gp ∗ Fk, an automorphism Φ ∈ Aut(G)
is said to be irreducible relative to the free factor system
{[G1], ..., [Gp]} if {[G1], ..., [Gp]} is a maximal (under the order
≺) proper free factor system that is invariant under Φ.

Lemma 3.5 Given a group G with a free product decompo-
sition G = G1 ∗ ... ∗ Gp ∗ Fk and given Φ ∈ Aut(G,G). The
following two statements are equivalent:

• (1). Φ is G-irreducible;

• (2). Φ is irreducible relative to the free factor system
{[G1], ..., [Gp]}.

We first give the following lemma, the proof of which is
standard (because edge stabilizers are trivial), thus we do not
show the proof in this thesis.

Lemma 3.6 Let G be a group with a given free product de-
composition G = G1 ∗ ... ∗ Gp ∗ Fk. For any tree T ∈ G, if
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g1 ∈ G fixes vertex v1, g2 ∈ G fixes vertex v2, and if v1 6= v2,
then g1g2 is hyperbolic in G relative to this free product de-
composition.

Proof: [of Lemma 3.5]
Assume that Φ is not irreducible relative to the free fac-

tor system {[G1], ..., [Gp]}, then there is another Φ-invariant
free factor system {[H1], ...[Hp′ ]} such that {[G1], ..., [Gp]} ⊆
{[H1], ...[Hp′ ]}. Without loss of generality, we may assume
that G1 < hH1h

−1 for some h ∈ G. Denote here H ′1 =
hH1h

−1.
Define W to be a minimal H ′1 invariant subgraph in T ,

and let f : T → T representing Φ such that f |W : W → W
represents Φ|H′1 .

From the previous lemma, we know that there is a hyper-
bolic element g /∈ H ′1 relative to {[G1], ..., [Gp]}(if we find an
elliptic element g2 /∈ H ′1, let g1 ∈ G1, since they fix different
vertices, g = g1g2 is a hyperbolic element not in H ′1). Notice
that the quotient H ′1\W is finite (because H ′1 is finitely gen-
erated). Let Ag be the axis of g, Ag is not contained in W
(otherwise, H ′1Ag ⊂ W , Ag maps to the quotient by a finite
path. By decomposition we have that g ∈ H ′1, a contradic-
tion). Therefore, W is a proper subgraph of T .

By Kurosh Subgroup theorem, H1 either contains a sub-
group that is conjugate to a subgroup of Gi (i > 1) or contains
a free group as a subgroup. So the quotient G\W is not a dis-
joint union of trees each of which consists at most 1 non-free
vertex.

Thus we have proved that Φ is not G-irreducible if it is not
irreducible relative to the free factor system {[G1], ..., [Gp]}.

To prove that (2) implies (1): suppose now that Φ is irre-
ducible relative to the free factor system {[G1], ..., [Gp]}. Let
T ∈ G be a tree, and let f : T → T be a map representing
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Φ ∈ Aut(G). If there is a proper G-subset W in T that is
invariant under f , by collapsing each connected component
of W to a point G equivariantly, we have another tree T ′ ∈ G
in the different deformation space from T . In the quotient
graph, this point corresponds to a free factor of G. As Φ is
irreducible relative to {[G1], ..., [Gp]}, we conclude that the
quotient is a disjoint union of trees each of which contains at
most 1 non-free vertex.

3.2 Atoroidality and Nielsen paths

Recall that [g] is the conjugacy class of g in G for g ∈ G.
Recall that an automorphism φ of a free group F is said

to be atoroidal if for any non trivial conjugacy class [x] of F ,
[φn(x)] 6= [x] for all positive integer n. The explanation of the
terminology is more clear when one considers the negation.
An automorphism φ is toroidal (i.e. not atoroidal) if there is
n > 0 and g 6= 1 in F , and h ∈ F such that φn(g) = hgh−1.
In the semidirect product F oφ Z, the two elements g and
tnh (where t is the element of Z inducing φ on F ) gener-
ate an abelian group, which is easily seen to be free of rank
2. That is the fundamental group of a torus, embedded in
F oφ Z, as discussed in the section ”Automorphisms, suspen-
sions, semidirect product”. Topologically, the suspension of
a rose (whose fundamental group is F ) by a map realising φ
also contains the π1-injective image of a 2-torus, namely the
suspension of a loop representing g in the rose.

In the free product case, we cannot define atoroidality like
that. We need to consider only elements that are not conju-
gate in one of the free factors G1, . . . , Gp.

Definition 3.7 (Atoroidal automorphisms) Let Φ ∈ Aut(G,G).
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We say that Φ is atoroidal, if for any g ∈ Hyp(G), and for
any positive integer n, [Φn(g)] 6= [g].

It is necessary to allow n to be different from 1, for instance
in a free group F{a,b}, the automorphism defined by a 7→ b
and b 7→ ab sends the commutator [a, b] to its inverse, and
therefore is toroidal (its square preserve the commutator), but
does not preserve any conjugacy class.

Related, we need the following,

Definition 3.8 (Nielsen and pre-Nielsen paths) Let G be a
group, T be a G-tree, and Φ be an automorphism of G, f :
T → T be a map representing Φ. A path ρ is called a Nielsen
path if there exist an exponent n > 0 and an element g ∈ G
such that fn(ρ) = gρ after reduction. A path ρ is called pre-
Nielsen if there exist an exponent M > 0 such that fM(ρ) is
Nielsen.

Observe that even if Φ is atoroidal , there can be Nielsen
paths: they do not map on closed loops in G\T .

3.3 Train Tracks Maps

Definition 3.9 (Train track structure, legal turn, and legal
paths)

Given a graph X, an ordered pair (e1, e2) of oriented edges
such that i(e1) = i(e2) is called a turn (at the vertex i(e1)).
A trivial turn is a turn of the form (e, e).

A train track structure (or a gate structure) on a G-tree
T is a G-invariant equivalence relation on the set of oriented
edges at each vertex of T , with at least two equivalence classes
at each vertex.

Each equivalence class of oriented edges is referred to as a
gate.
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In a gate structure, a turn is said to be legal if the two
oriented edges are in different equivalent classes. A reduced
path is said to be legal if every turn of it are legal.

To describe a gate structure, it is enough to specify which
turns are legal (or illegal).

An important example of gate structure is the one given
as follows (and this is the one we will use). Consider T and T ′

two G-trees, as well as a map f : T → T ′ which is equivariant,
and piecewise linear (linear, non constant, on edges). Define
the gate structure on T induced by f as follows. Declare that
a turn (e1, e2) is illegal if f(e1) and f(e2) share their first edge
in T ′. It is easy to check that this defines an equivalence
relation on the oriented edges issued from a same vertex, and
that it is invariant for G, by equivariance of f .

In this construction, it is obvious that any legal turn is
send by f on a pair of paths whose first edges define non-
trivial turn (by abuse of language we say that any legal turn
is send by f on a non-trivial turn). However, if T ′ = T , in
principle, a legal turn could be sent on an illegal turn, and in
that case f 2 would send a legal turn to a trivial turn. This is
not a pleasant situation, and motivates the following.

Definition 3.10 (Train track maps) Given T ∈ G,Φ ∈ Aut(G,G),
and given f : T → T a piecewise linear G-equivariant map
(linear, non constant, on edges) representing Φ, we say that
f is a train track map if, for the gate structure it defines,

• f maps edges to legal paths;

• if f(v) is a vertex, then f maps legal turns at v to legal
turns at f(v).

One of the main results of [21], due to Francaviglia and
Martino is the following, and will be important for us.
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Theorem 3.11 (see Theorem 8.18 of [21]) If Φ ∈ Aut(G,G)
is irreducible, then there exist T ∈ G and f : T → T repre-
senting Φ ∈ Aut(G), such that f is a train track map.

4 Relative Hyperbolicity of an Au-

tomorphism in Fully Irreducible

Case

We review vocabulary and materials from Gautero and Weid-
manns’ contribution ([22]). However we begin with definition
of relatively hyperbolic groups that goes back to Bowditch
([6]) and Farb ([18]).

Let G be a finitely generated group with a generating set S
and a Cayley graph ΓS(G). Let Λ be a set and let H = {Hi}i∈Λ

be a family of subgroups Hi of G.

Definition 4.1 (H-coned graph) The H-coned graph ΓH
S (G)

is a graph obtained from ΓS(G) by adding a vertex v(gHi) for
each left coset gHi and adding an edge of length 1

2
between

v(gHi) and each v for v ∈ ΓS(G) ∩ gHi.

Definition 4.2 Given a group G and φ ∈ Aut(G), we say
that φ is a hyperbolic automorphism of G, if G oφ Z is
Gromov-hyperbolic.

Definition 4.3 (H-word metric, relatively hyperbolic group)
The H-word metric | · |H is the word-metric for G equipped
with generating set SH = S ∪ (∪Hi) where ∪Hi is the union
of all Hi in H;

The group G is hyperbolic relative to H if the following
holds:
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• ΓH
S (G) is Gromov hyperbolic;

• for any positive integer n, any edge in ΓH
S (G) is con-

tained in finitely many embedded loops of length n (called
”fineness” property).

We say that a group G is relatively hyperbolic if there is a
family H of subgroups of G such that G is hyperbolic relative
to H.

Definition 4.4 (Mapping torus of a subgroup) Let H be a
subgroup of a group G, and φ ∈ Aut(G). Suppose that nH
is the smallest positive integer such that there exist gH ∈ G
satisfying φnH (H) = g−1

H HgH .
Then the semidirect product HoadgH

◦φnH |H Z is referred to
as the mapping torus of H.

Likewise, for H a set of subgroup of G, the mapping torus
of H is defined as {H oadgH

◦φnH |H Z : H ∈ H}.

Note that for the free product G = G1∗· · ·∗Gp∗Fk, and for
φ ∈ Aut(G,G), the mapping torus of each Gi is well-defined
since φ does preserve the free factor system {[G1], ..., [Gp]}
(set wise).

We may now define what it means to be a relatively hy-
perbolic automorphism.

Definition 4.5 (Relatively hyperbolic automorphisms) Let G
be a group. Let Λ be a set and let H = {Hi}i∈Λ be a family
of subgroups Hi of G such that each Hi is its own normalizer.
An automorphism Φ ∈ Aut(G,H) is hyperbolic relative to H
(or in short, relatively hyperbolic) if it satisfies the following:

there exist λ > 1, M,N ≥ 1, such that for any g ∈ G with
|g|H ≥M , the inequality holds:

λ|g|H ≤ max{|ΦN(g)|H, |Φ−N(g)|H}
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Recall that for a path ρ in a metric tree T , lT (ρ) is its
length. Assume now that G is a free product.

Definition 4.6 Let T, T ′ be a pair of metric trees in G. Let
α : T → T ′ and α′ : T ′ → T be G-equivariant Lipschitz
homotopy equivalences between these trees.

Let Φ ∈ Aut(G,G), and consider f : T → T , f ′ : T ′ →
T ′ homotopy equivalences representing Φ ∈ Aut(G,G) and
Φ−1 ∈ Aut(G,G) respectively.

If there exist a natural number M > 0 and a real number
λ > 1 for trees T, T ′ and maps α, α′, f, f ′, such that for all G-
hyperbolic element g ∈ G, for all fundamental segment σ for
g in T , and σ′ the reduced path of α(σ) (hence a fundamental
segment for g in T ′) one has:

λlT (σ) ≤ max{lT [fM(σ)], lT ([f ′M(σ′)])}

then Φ is refered to as a hyperbolic automorphism of
(G, {G1, . . . , Gp}, T, T ′f, f ′), and any path (does not required
to be a fundamental segment of a hyperbolic element) satisfy-
ing the above inequality is said to have the desired growth.

Remark 4.7 Notice that, given G and G ' G1 ∗ ... ∗Gp ∗ Fk
a free product decomposition, let H0 = {G1, ..., Gp},let T be in
G, then by Bass-Serre Theory, the H0-word metric is quasi-
isometric to the length in the Bass-Serre tree. Therefore, if Φ
is a hyperbolic automorphism of (G, {G1, . . . , Gp}, T, T ′f, f ′),
then it is relatively hyperbolic.

The relevance of hyperbolic automorphisms is through the
following combination theorem , which is proven by Gautero
and Weidmann:
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Theorem 4.8 (Corollary 7.3, [22]) Let G be a finitely gener-
ated group, and α be an automorphism of G. Let H0 be a finite
family of infinite subgroups of G and α be hyperbolic relative
to H0. If G is hyperbolic relative to H0, then the semi-direct
product GoαZ is relatively hyperbolic (more precisely, GoαZ
is hyperbolic relative to the mapping-torus of H0) .

Our main result in this section is the following. It is an
analogue of Brinkman’s first result in [7], and of a result of
Bestvina-Feighn-Handel for free groups in [2]

Theorem 4.9 Let G be a finitely generated group with a given
free product decomposition G ' G1 ∗ ... ∗Gp ∗Fk (where k ≥ 2
or p + k ≥ 3), and let H0 = {G1, ..., Gp}. Assume that
Φ ∈ Aut(G,H0) is fully irreducible and atoroidal. Then the
semi-direct product GoΦ Z is relatively hyperbolic.

Actually we can say that GoΦ Z is hyperbolic relative to
the mapping-torus of H0.

4.1 Growth of Edges

We will use several technical results of Francaviglia and Mar-
tino in [21] in this subsection, and we will give each precise
result from their work.

Lemma 4.10 ([21], Lemma 8.16) If f : T → T is a train
track map representing an irreducible automorphism Φ, then
there is a constant λ such that lT (f(e)) = λlT (e) for all edge
e in T after a re-scaling of edges.

The authors gave a proof of this lemma in their paper, but
we still would like to show another proof of this lemma.
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Proof: Let li be the length of the edge ei (and so the
length of gei for any g ∈ G) in the tree T , and consider the
non-negative matrix M with the element Mi,j denoting the
total time of f(ei) passing through the G-orbit of ej. This
matrix, and its transpose,tM , are irreducible because of the
irreducibility of Φ. By Perron-Frobenius Theorem, there is a
unique maximal eigenvalue of tM , denoted by λ that is strictly
larger than 1. Moreover, an eigenvector of this eigenvalue has
positive entries (and this eigenvector is unique up to multi-
plication of a real number). We scale it such that its smallest
entry is 1, denote by v0 such an eigenvector. Set li to be
the corresponding entry of the eigenvector. Hence, for every
vector v, we have that

tv0 · (Mv) = (tv0 ·M)v =t (tM · v0)v = λtv0 · v

Take v = (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) re-
spectively, and for this re-scaling of edges, every edge is stretched
by the same factor λ.

By the proof of the previous lemma, the constant λ is
unique (which is the eigenvalue corresponding to the unique
eigenvector). Hence the following definition becomes natural:

Definition 4.11 (Growth rate of a train track map) Let Φ ∈
Aut(G,G) be irreducible, f : T → T be a train track map
representing Φ. Rescale the edge such that every edge in the
tree stretch with the same factor λ. Such a factor is called the
growth rate of f .

Lemma 4.12 (Lemma8.20, section 8.3, [21]) If f : T →
T is a piecewise linear map representing Φ, and if f is a train
track map, then so is fk which represents Φk.
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For the following lemma, in order to explain the assump-
tion, notice that in a graph-of-group decomposition of G =
G1 ∗ ... ∗ Gp ∗ Fk, giving a free product decomposition in
the same deformation space, the number of edges is at least
max{p−1, 0}+k. Indeed, the Euler Characteristic of the un-
derlying graph is −(k−1) (because the rank of the free group
factor is k) and the number of vertices is at least max{p, 1}. It
follows that the number of edges is at least max{p, 1}+k−1.
This clarifies that if either k ≥ 2 or p+ k ≥ 3, then T has at
least two orbits of edges.

Lemma 4.13 Let G be a group with free product decomposi-
tion G = G1∗ ...∗Gp∗Fk, Φ be an automorphism of G relative
to the free factor system {[G1], . . . , [Gp]}. Assume that either
k ≥ 2 or p+ k ≥ 3 and that Φ is fully irreducible. Let T ∈ G,
and f : T → T be a train track representative for φ on T .
Then the growth rate of f is strictly larger than 1.

Proof: By the assumption there are at least two orbits
of edges.

Fix a shortest fundamental segment σ in T of a hyperbolic
element in G. Due to the finiteness of the orbits of edges,
there are only finitely many paths (up to translation) in T
that are not longer than this length, and hence there are only
finitely many (up to translation) fundamental segments σ =
σ1, . . . , σs (denote by t1, . . . , ts the corresponding hyperbolic
elements in G) in T that has the same length as σ.

If the growth rate is 1, then each fundamental segment σi
of ti is sent to a segment of the same length (which is a fun-
damental segment of Φ(ti)). Thus some power of f sends σi
to the translate of σw(i). As Φ is an automorphism, we can as-
sume w to be a permutation of {1, . . . , s} so that fn(σi) = hiσi
for some i, n and hi ∈ G. Denote by v0 the ending vertex of
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σi, notice that hiAi = fn(Ai) = fn(tiAi) = Φn(ti)f
n(Ai) =

Φn(ti)hiAi, where Ai is the axis of ti. Thus h−1
i Φn(ti)hi fixes

the axis of ti. It follows that h−1
i Φn(ti)hi = tigv0 , where gv0

fixes v0. Denote by Gv the stabilizer of v0, we also have that
h−1
i Φn(Gv)hi = Gv. Therefore, the free factor 〈ti, Gv〉 is in-

variant under some power of Φ, by the assumption of p and k,
this is a proper free factor. This contradicts the irreducibility,
and thus the growth rate of f is strictly larger than 1.

4.2 Angle Analysis on each vertex

When a graph is not locally finite, it is often helpful to have
a notion of angle between adjacent edges, that brings back
some local finiteness. In the context of fine graphs, angles are
defined metrically (see Bowditch [6], Dahmani-Yaman [17],
and Dahmani [8]). Although trees are fine, this is not useful
for us here (as all angles would be infinite). We thus proceed
differently.

Definition 4.14 For each i, fix a word metric | · |i on Gi, let
vGi

be a vertex of a tree T that is fixed by Gi. Choose once
and for all a transversal set of adjacent edges (a minimal set
of a choice of adjacent edges, where every other adjacent edge
is the translation of one of the edge in the set) of vGi

for the
action of its stabiliser ε0, ...εr. For each pair of edges e, e′ ad-
jacent to vGi

, we define the angle AngvGi
(e, e′) to be the word

length of g−1g′, where g, g′ satisfies ge1 ∈ {ε0, ...εr}, g′e2 ∈
{ε0, ...εr}.

Remark 4.15 We notice that the angle AngvGi
(e, e′) as above

is well-defined: the choice of g and g′ is unique, because sta-
bilizer of each edge (and thus of ε0, ...εr) is trivial.

We now define angles on other non-free vertices:
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Definition 4.16 (Angles at a vertex) For each i, for each
v ∈ GvGi

, and for each pair of edges e1, e2 adjacent to v,
define the angle Angv(e1, e2) to be AngvGi

(ge1, ge2) where g is
the element in G such that gv = vGi

.

Remark 4.17 In general, the choice of g in the definition
is not unique, but only differs from an element in Gi, and
by the definition of angles at the vertex whose stabilizer is
Gi, element in Gi preserves the angle (to be more exact, for
any g′ ∈ Gi, AngvGi

(ge1, ge2) = AngvGi
(g′ge1, g

′ge2) ), so the
angle Angv(e1, e2) here is still well-defined.

We also notice that the angle is locally finite: for a given
edge e1 with starting vertex v and a given number C > 0, there
are only finitely many possible e2 satisfying Angv(e1, e2) < C.
This is easy to see as there are only finitely many edges (up
to G-orbit) adjacent to v and that there are only finitely many
elements in Gi whose word length is bounded by C.

Finally, we notice that the angle is invariant under any
translation by any element h ∈ G. More precisely, if e, e′ are
adjacent to vertex v, then Angv(e, e

′) = Anghv(he, he
′). This

is obvious as the angle equals the corresponding angle at vGi

(which is well-defined).

Definition 4.18 (Angles between paths) For any free vertex
v, and for each pair of edges e1, e2 adjacent to v, define the
angle Angv(e1, e2) to be 1.

Let v be a vertex in a tree T , ρ1, ρ2 be two paths starting
from v, and let e1, e2 be the starting edge of ρ1, ρ2 respec-
tively (hence these two edges also start from v). We define
Angv(ρ1, ρ2) to be Angv(e1, e2).

Definition 4.19 (”Boundedness after iteration” of angle of
a vertex on a path) Let Φ ∈ Aut(G,G) be an automorphism of
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G, f : T → T be a map representing Φ, let ρ be a path, v be a
vertex on ρ that is neither the starting nor the ending vertex.
Denote by e1, e2 be the adjacent edges on ρ containing v (hence
the ending vertex of e1 is the starting vertex of e2, which is
v). We say that angle at v is bounded after iteration, if there
is a constant C such that Angfn(v)(fn(e1), fn(e2)) < C for all
integer n > 0.

Definition 4.20 (Θ-straight paths, Θ-patterns) Let ρ be a
(reduced) path in the tree T .

A subdivision of the path is a choice of reduced subpaths
ρ1, . . . , ρk such that ρ is the concatenation of ρ1 − · · · − ρk,
where each subpath ρi (i ∈ {1, . . . , k}) is called a component
of the path ρ.

We say that ρ is Θ-straight if all angles between consecu-
tive edges are bounded by Θ.

Two paths ρ, ρ′ with subdivisions ρ1, . . . , ρk and ρ′1, . . . , ρ
′
k

respectively are G-equivalent if for all i, ρ′i is in the G-orbit
of ρi.

A Θ-pattern is an equivalence class for this relation where
all components are Θ-straight.

Lemma 4.21 Given a tree T ∈ G, with any given choice of
measure of angle, for all C > 0 and for all Θ > 0, there are
only finitely many Θ-patterns not longer than C.

Proof: For any given C, there are only finitely many
possible subdivisions of a path ρ not longer than C such that
each component is Θ-straight, and denote by ρ1, . . . , ρk any
choice of subdivision of this kind. Since there are only finitely
many possible Θ-straight paths of the length equal to ρi up
to G-action for all i ∈ {i, ..., k}, there are finitely many choice
of ρ′ (up to G-action) with some subdivision ρ′1, . . . , ρ

′
k that is
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not G-equivalent to ρ with subdivision ρ1, . . . , ρk. Therefore,
there are only finitely many Θ-patterns not longer than C.

Lemma 4.22 Let Φ ∈ Aut(G,G) be an automorphism of G,
f : T → T be a map representing Φ. Then for any Θ1 > 0,
there exists Θ2 > 0, such that for any vertex v and for any pair
of edges e1, e2 starting from vertex v with Angv(e1, e2) > Θ2,
we have that Angf(v)(f(e1), f(e2)) > Θ1.

Proof: Assume that the stabilizer of v in G is H (and
H = h1Gih

−1
1 for some Gi and h1 ∈ G). Since f represents

Φ, f(v) is fixed by Φ(H), assume that Φ(H) is conjugate to
Gj. Then there is an induced quasi-isometric map from the
Cayley Graph of Gi to the Cayley Graph of Gj. Thus we
can find Θ2 > 0, such that the pre-image of the subset of
the Cayley Graph of Gi whose vertices are all the elements
with word-length not larger than Θ1 is contained in the sub-
set of the Cayley Graph of Gj whose vertices are all the ele-
ments with word-length not larger than Θ2. Equivalently, the
subset of the Cayley Graph of Gj with word metric strictly
larger than Θ2 is sent to subset of the Cayley Graph of Gi

with word metric strictly larger than Θ1. For such a Θ2,
Angf (v)(f(e1, f(e2))) > Θ1.

4.3 Growth of paths

Directly from the above lemma, we have:

Lemma 4.23 Let G be a group with free product decomposi-
tion G = G1∗ ...∗Gp∗Fk, Φ be an automorphism of G relative
to the free factor system {[G1], . . . , [Gp]}. Assume that either
k ≥ 2 or p+k ≥ 3 and that Φ is fully irreducible and atoroidal.
Let T ∈ G, f : T → T be a train track representative for φ
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on T . Then for any given element h hyperbolic in G, any
fundamental segment τ of h in T , and for any C > 0, there
is an integer N > 0 such that lT (fN(τ)) > C.

Proof: Suppose otherwise, that the length of a funda-
mental segment τ of a hyperbolic element h is bounded after
iteration. As there are only finitely many Θ-patterns of length
with such a upper bound for any given Θ > 0, we divide by
angle at each vertex after iteration of f into two cases:

Case 1. Angle at each vertex is bounded after iteration:
In this case, there are finitely possible fn(τ) up to the

action of G. This means that there exist n2 > n1 > 0 and
g ∈ G such that fn2(τ) = gfn1(τ), which contradicts the fact
that Φ is atoroidal.

Case 2. There are vertices at which angles are unbounded
after iteration:

By the assumption, there are subsequence of fn(τ) that
has the same length, in short, we write τi such a sequence.
Consider τ0 a segment of this length in R, and the embedding
map pi : τ0 → τi. Extract a subsequence such that there are
(finitely many) points a1, . . . , aq in τ0 (q − 1 ≤ lT (τ0)) such
that for all i, angles at pi(aj) go to infinity, while angles at
pi(a) for any other points a are bounded, and denote this
upper bound by Θ0.

If q > 1:
Again, apply Lemma 4.21 to each component, segment

pi([a1, a2]) has only finitely many possible images up to G-
action. Assume that pit([a1, a2]) are in the same G-orbit, and
that the angles at other vertices in these subsequence of seg-
ments are bounded by Θ0. For t sufficiently large, angles at
pit(a1) and pit(a2) become sufficiently large.

By our assumption, pit+1([a1, a2]) is obtained from pit([a1, a2])
by action of some power of f after cancellation of possible il-
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legal turns. And by Lemma 4.22, we have that each pit(aj) is
the image of pi1(aj) by the corresponding power of f (t ≥ 1),
for j = 1, 2. Thus there are some n1 > 0 such that

fn1([pi2(a1), pi2(a2)]) = g′([pi1(a1), pi1(a2)])

for some g′ ∈ G. Thus [pi2(a1), pi2(a2)]−· · ·−[pi2(aq−1), pi2(aq)]
is a Θ0-pattern, and Φn1 fixes the conjugacy class of g1g2 where
g1 fixes pi1(a1), and g2 fixes pi1(a2). By the lemma 3.6, g1g2

is hyperbolic, which contradicts the atoroidality.
If q = 1:
Denote by a and b the starting and ending point of τ0

respectively. As pi(a1) is fixed by some power of f , we can as-
sume that the segments [pi(a), pi(a1)] (respectively [pi(a1), pi(b)])
are in the same G-orbit. If one of them contains a non-free
vertex, the angle at this vertex becomes unbounded, and by
the previous argument (in q > 1) this assumption violates
the atoroidality. If none of them contains a non-free vertex,
h can be written in the form of tg1 after conjugation, where
t is conjugate in Fk, and g1 is in some Gm (assume without
loss of generality that g1 ∈ G1). Since by a power of Φ, t is
sent on tg′1. Thus the element h′ = g′1tg

′
1t
−1 is invariant under

Φ (after some iteration). And h′, as composition of g′1 and
tg′1t

−1, is hyperbolic. Again, this violates atoroidality.

Recall that for a path α ⊂ T , [α] is defined to be the
reduced path of α.

Lemma 4.24 (Bounded cancellation lemma) Let Φ be an
automorphism of G in Aut(G,G), T ∈ G, f : T → T be
piecewise linear representing Φ. Then there exist a constant
Cf > 0, depending only on f , such that for any path ρ ⊂ T
obtained by concatenating two legal paths α, β without cancel-
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lation, we have

lT ([f(ρ)]) ≥ lT (f(α)) + lT (f(β))− Cf

Proof: Let f ′ be a homotopic inverse of f representing
Φ−1, and let g = f ′ ◦ f : T → T . Clearly, g represents
Id ∈ Aut(G). Assume that two vertices A,B ∈ V T have the
same image under f , then g(A) = g(B). Then we have a
homotopy H : [0, 1] × T → T such that H|0 ≡ g,H|1 ≡ Id.
As H can be chosen to be piecewise linear (because H is
a homotopy, we can re-scale it on each edge such that it is
piecewise linear), we may assume that H is Lipschitz. Thus
there is D > 0 such that d(H(0, x), H(1, x)) ≤ D for all x,
therefore d(A,B) ≤ 2D. Let v1 ∈ α, v2 ∈ β such that the
subpath of ρ between v1 and v2 is exactly the reduced subpath
by the image of f (i.e., f(v1) = f(v2) is the ending point of
f(α) ∩ [f(ρ)], and the starting point of f(β) ∩ [f(ρ)]), then
d(v1, v2) is bounded by 2D, hence there exist a uniform upper
bound for d(f(v1), f(v2)), which is the Cf in this lemma.

Assume that f : T → T is a train track map represent-
ing Φ ∈ Aut(G,G). Denote by λ the growth rate of f . By
bounded cancellation lemma, we can easily come to the follow-
ing conclusion (in fact, this is a computation by induction):

Lemma 4.25 (Lemma 5.2 of [7]) If β is a legal path in T

with λlT (β) − 2Cf > lT (β) (i.e. lT (β) >
2Cf

λ−1
), and α, γ are

paths such that the concatenation α−β−γ is locally injective,
then there is a constant ν > 0 (independent of β) such that
the length of legal leaf segment (the length of the maximal
legal segment) of f i(α− β − γ) corresponding to β is at least
νλilT (β) for all integer i > 0.
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Definition 4.26 (Critical constant of a train track map) Let
G be a free product, Φ ∈ Aut(G,G) be irreducible, f : T → T
be a train track map representing Φ, λ be the growth rate of f .
The constant

2Cf

λ−1
is called the critical constant of f , where Cf

is the constant defined in the Bounded Cancellation Lemma.

4.4 Legal Control in Iteration

Similar to Bestvina, Feighn and Handel in [2], we have

Lemma 4.27 [analogue of [2], Lemma 2.9] Let G be a group
with free product decomposition G = G1 ∗ ... ∗ Gp ∗ Fk, Φ ∈
Aut(G,G) be fully irreducible and atoroidal, f : T → T be
a train track map representing Φ. Assume that either k ≥ 2
or p + k ≥ 3. Then for every C > 0, there exists an expo-
nent M > 0, such that for any path ρ in T , one of the three
following holds:

• (A) the length of the longest legal segment of [fM(ρ)] is
greater than C;

• (B) [fM(ρ)] has strictly less illegal turns than ρ;

• (C) ρ is a concatenation of γ1−α1−· · ·−αs−γ2, where
γ1, γ2 has at most 1 illegal turn with length at most 2C,
and that each αi is a pre-Nielsen path with at most 1
illegal turn.

Proof: Assume (B) fails for all integer M > 0, then
no illegal turn becomes legal after iteration. In addition, let
us assume that (A) fails as well. As f is a train track map,
none of the legal turns become illegal, the total number of
illegal turns (and henceforth the number of legal segments)
remains the same after iteration. While each legal segment
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has a uniformly bounded length after iteration, then there is
an exponent N such that

πT (ρ) = πT (fN(ρ)) = ... = πT (f iN(ρ)) = ...

for all i ∈ Z (remind that πT is the quotient map from the
tree T to its quotient graph of groups).

We classify ρ in the following cases:
Case 1. Angles at every vertex in ρ are bounded after

iteration:
Since statements (A) and (B) fail, the length of ρ is bounded

after iteration. By Lemma 4.21, there are only finitely many
possible fn(ρ) (up to G-action), i.e., there exist N0 > 0, n >
0, g ∈ G such that [fn(fN0(ρ))] = g[fN0(ρ)] (in other word, ρ
is pre-Nielsen).

Denote by vi,1, vi,2 the starting and ending vertices of the
maximal legal segment ρi. By the action of fn, each maximal
legal segment ρi in fN0(ρ) grows and cancels at the possible
illegal turns with ρi−1 or ρi+1 (or possibly more), and obtain
gρi. In addition, the legal segment between gvi,1 and f(vi,1) (if
they are different vertices) and the legal segment between gvi,2
and f(vi,2) (if they are different vertices) are canceled. Hence
there is a subsegment (which is legal) ζi of ρi such that f(ζi) ⊂
gρi. For this reason, there is a vertex vi in each ζi (thus it
is in ρi) such that [fn(fN0(vi))] = g[fN0(vi)]. Call these vi
”pre-periodic points”, we have that ρ is a concatenation of
γ1−α1− · · · −αs− γ2, where γ1, γ2 has at most 1 illegal turn
with length at most 2C, and that each αi is a pre-Nielsen path
with at most 1 illegal turn. In addition, as ρ pre-Nielsen, γ1, γ2

are also pre-Nielsen.
Case 2. There exists a vertex in ρ where angles become

unbounded after iteration:
Assume that a subsequence fN(ρ) has the same length

with ρ, denote by aN the isometries between ρ and each fN(ρ).
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Let v1, v2 be two such vertices that angles at aN(v1), aN(v2)
are unbounded and that angles at aN(v) are bounded for all
vertices v between v1 and v2, and let q be the total number of
vertices in ρ where angles are bounded (this is restricted by the
length of ρ). If q > 1, we assume that v1 6= v2. Choose g1 ∈ G
preserves v1, g2 ∈ G preserves v2, then g1g2 is a hyperbolic
element in G, but this is impossible as the conjugacy class of
g1g2 is fixed by Φ, thus contradicts atoroidality.

If there is only one such vertex v1 in ρ, i.e. q = 1, de-
note the starting and ending vertex of ρ by va, vb respec-
tively, subdivide the path ρ into 3 segments ρ1, ρ2, ρ3 such
that ρ1 ⊂ [va, v1], ρ3 ⊂ [v1, vb], and that v1 ∈ ρ2 such that
ρ2 contains only one edge in [va, v1] and one edge in [v1, vb].
By the same argument of the subcase where q > 1, fN(v1) =
g2v1, f

N(ρ2) = g2ρ2 (where g2 ∈ G), and since angles at ev-
ery vertex in ρ1, ρ2 are bounded, we have that ρ1, ρ2 are pre-
Nielsen, thus ρ = ρ1 − ρ2 − ρ3 is a Θ-pattern for some Θ > 0.
As in Case 1, we further subdivide ρ1 and ρ3 such that state-
ment (C) of the lemma holds.

Lemma 4.28 Let G be a group with a free product decompo-
sition G = G1 ∗ ...∗Gp ∗Fk, T ∈ G, Φ be an automorphism of
G relative to the free factor system {[G1], . . . , [Gp]}. Assume
that either k ≥ 2 or p+ k ≥ 3 and that Φ is fully irreducible.
If f : T → T is a train track representative for φ on T , then
there exists a constant M0 such that it is impossible to con-
catenate more than M0 Nielsen paths.

Proof: We first observe that the concatenation of two
Nielsen paths is still Nielsen: Let ρ1 − ρ2 be the resulting
path, by the assumption, there exist some N, g1, g2 such that
[fN(ρ1)] = g1ρ1, [f

N(ρ2)] = g2ρ2. Due to the fact that the
terminal vertex of ρ1 is exactly the initial vertex of ρ2, we
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deduce that g1 = g2, which implies that ρ1−ρ2 is still Nielsen.
A basic induction shows that any finitely many concatenation
of Nielsen path would be still Nielsen.

In order to prove the lemma, it suffices to prove that any
path concatenating n0 (where n0 ≤ M0 + 1) Nielsen paths
contains such a subpath, which leads to a contradiction: on
one hand, this subpath is still a concatenation of Nielsen paths
(thus its length remains the same after iteration); on the other
hand, this subpath will eventually grow after iteration of f .

Since the quotient G\T is finite, we have that there is m
such that the image in the quotient of the concatenation of
at most m paths contains a loop (which consists of a concate-
nation of these paths). This means that the concatenation of
at most m paths contains a fundamental segment of a hyper-
bolic element (this statement also holds for a concatenation
of these Nielsen paths). Choose M0 = m− 1, then after con-
catenate n0 (n0 ≤ M0 + 1) Nielsen paths α1 − · · · − αM , the
whole path contain a subpath αI − · · · −αI+J (where I, J are
positive integers such that 1 ≤ I < I + J ≤ M) which is a
fundamental segment of a hyperbolic element, which eventu-
ally grows after iteration. But this is impossible as it is still
Nielsen. Thus it is impossible to concatenate more than M0

Nielsen paths.

As an application of Lemma 4.27, we have

Lemma 4.29 (analogue of [2], Lemma 2.10) Let Φ be an
irreducible and atoroidal automorphism in Aut(G,G), f : T →
T and f ′ : T ′ → T ′ be train track maps representing Φ and
Φ−1 respectively. And let α : T → T ′ and α′ : T ′ → T be
G-equivariant, Lipschitz homotopy equivalences. Assume that
either k ≥ 2 or p + k ≥ 3. Then for any C > 0 there exist
an exponent N > 0 and L0 > 0, such that if ρ is a path of
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length ≥ L0, and if ρ′ = [α(ρ)], then either [fN(ρ)] or [f ′N(ρ′)]
contains a legal segment of length greater than C.

Proof: By the above lemma, there exist a constant M0

such that it is impossible to concatenate more than M0 pre-
Nielsen paths.

Fix C > 0 such that it is larger than the critical constant
for both f and f ′. Suppose that [fN(ρ)] does not contain a
legal segment of length greater than C for all N > 0. Then
(A) of Lemma 4.27 fails. In addition, fix L0 > (2M0 + 4)C,
where M0 is the bound of Lemma 4.28, thus (C) of Lemma
4.27 also fails (otherwise, by Lemma 4.28, (A) of Lemma 4.27
holds, a contradiction). Then (B) of Lemma 4.27 must hold.
Let M be the greater one of the integers according to Lemma
4.27 when we apply it to f, C and f ′, C.

We then represent ρ as a concatenation of segments β ⊂ ρ
such that fM(∂β) ⊂ [fM(ρ)] with uniformly bounded length
(this bound is independent on ρ). Thus the upper bound to
the number of illegal turns in each segment exists, we denote
it by P . Fix Q such that P−1

P
< Q < 1. For a path τ we

denote by NIT (τ) the number of illegal turns in τ . Then for
long enough subsegment γ of ρ we have

NIT ([fM(γ)])

NIT (γ)
≤ Q

We do the same construction to fM(ρ), f 2M(ρ), .... Then
for a given large integer s > 0 and long enough segment γ,

NIT ([f sM(γ)])

NIT (γ)
≤ Qs

Since we require that any legal segment in each [fN(ρ)] is
bounded by C, and it is obviously not less than the length of
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shortest edge, there is some constant K = K(f, C) > 0, such
that

lT ([f sM(γ)])

lT (γ)
≤ KQs (1)

Apply the same discussion to [αf sM(ρ)] as we did to ρ,
and consider f ′ instead of f . If we assume that [f ′N(ρ′)] does
not contain a legal segment of length greater than C either
for N = sM , then we have

lT ′([f
′sMαf sM(γ)])

lT ′([αf sM(γ)])
≤ K ′Qs (2)

where K ′ = K ′(f ′, C) is a constant.
Notice that f ′sMαf sM is conjugate to α, hence there is

some constant µ > 1 such that for long L,

1

µ
≤ lT ′([f

′sMαf sM(γ)])

lT ′([α(γ)])
≤ µ (3)

Multiply (1), (2) and the inverse of (3) we have

lT ([f sM(γ)])

lT ′([αf sM(γ)])

lT ′([α(γ)])

lT (γ)
≤ µKK ′Q2s

Notice that lT ([fsM (γ)])
lT ′ ([αf

sM (γ)])

lT ′ ([α(γ)])

lT (γ)
≥ 1

µ
Lip(α)Lip(α′), where

Lip(α), Lip(α′) is the Lipschitz constant of α, α′ respectively,
we have

1

µ
Lip(α)Lip(α′) ≤ lT ([f sM(γ)])

lT ′([αf sM(γ)])

lT ′([α(γ)])

lT (γ)
≤ µKK ′Q2s

Since s is large enough, and Q is a constant that 0 < Q <
1, the right part goes to 0 as s goes to infinity, while the left
part is a positive constant. Thus this inequality fails, and
proved the lemma.
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Definition 4.30 (C-legality of a path) Given a T ∈ G and a
constant C, for any immersed path ρ ⊂ T , the C-legality of
ρ ,denoted by LEGT,C(ρ), is the ratio of the sum of lengths
of all the maximal legal segments in ρ that are longer than C
over the total length of ρ.

Lemma 4.31 (see [2], Lemma 5.6) Let Φ ∈ Aut(G,G) be
fully irreducible and atoroidal, f : T → T , f ′ : T ′ → T ′ be
train track maps representing Φ and Φ−1 respectively. And
let α : T → T ′ and α′ : T ′ → T be G-equivariant, Lipschitz
homotopy equivalences. Assume that C is the larger one of the
critical constant of f and f ′ and that either k ≥ 2 or p+k ≥ 3.
Then there is ε > 0 and an integer N1 > 0 such that for every
hyperbolic element x ∈ G, if σ is a fundamental segment of x
in T , σ′ is an isometric immersion of [α(σ)], then for every
N > N1, either LEGT,C(fN(σ)) ≥ ε or LEGT ′,C(f ′N(σ′)) ≥
ε.

Proof: By Lemma 4.23, there is an integer N ′, such that
lT (fN

′
(σ)) > L0 and lT ′(f

′N ′(σ′)) > L0, where L0 is defined
according to Lemma 4.29. And by Lemma 4.29, there is N1

such that either [fN1(σ)] or [f ′N1(σ′)] contains a legal segment
of length greater than C.

Suppose the result does not hold, then there are sequences
{σi} and {σ′i} in T and T ′ respectively such that their C-
legality converges to 0. Then there exists arbitrarily long
segments in {σi} and {σ′i} that do not contain a legal segment
of length ≥ C. Thus contradicts the Lemma 4.29.

We wish to show the growth of every fundamental seg-
ment of every hyperbolic element in the free product (to be
more precise, we want to show the hyperbolicity of the auto-
morphism in the sense of Definition 4.6). To achieve this, it
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suffices to show that after some iteration of f , the image of
any fundamental segment of any hyperbolic element contains
such a subset of segments, that

• 1. the total length of the segments in this subset amounts
certain (say ε, which is independent of the choice of fun-
damental segment and hyperbolic element) ratio of the
length of the total length of whole path (after iteration);

• 2. it has the desired growth (in the sense of Definition
4.6).

Remind in Definition 4.6 we defined an automorphism is
a hyperbolic automorphism of (G, {G1, . . . , Gp}, T, T ′f, f ′) if
it satisfies the desired growth in Definition 4.6.

By Lemma 4.29, after a certain times of iteration (for-
ward or backward) of f , there is a set of leagal segment that
is longer than C (where C is the larger one of the critical con-
stant of f and f ′), and each of these segments has the desired
growth (in the sense of Definition 4.6) since it is leagal. And
by the analysis of the C-legality of each fundamental segment
(i.e. Lemma 4.31), the following theorem becomes natural:

Theorem 4.32 Let G = G1 ∗ · · · ∗ Gp ∗ Fk (where k ≥ 2 or
p + k ≥ 3), Φ ∈ Aut(G,G) be fully irreducible and atoroidal,
f : T → T , f ′ : T ′ → T ′ be train track maps representing Φ
and Φ−1 respectively. Then Φ is a hyperbolic automorphism
of (G, {G1, . . . , Gp}, T, T ′f, f ′).

Proof: Let α : T → T ′ and α′ : T ′ → T be G-equivariant
Lipschitz homotopy equivalences. For each hyperbolic ele-
ment x ∈ G, let σ be a fundamental segment of x in T , σ′ be
an isometric immersion of [α(σ)].

Choose C be the larger one of the critical constant of f
and f ′. By Lemma 4.31, there is ε > 0 and integer N1 > 0
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such that for every N > N1, either LEGT,C(fN(σ)) ≥ ε or
LEGT ′,C(f ′N(σ′)) ≥ ε.

Denote here by SC(σ) the set of legal leaf segments (max-
imal legal segments) in σ whose length is longer than C.

We assume that LEGT (fN(σ)) ≥ ε (the other case is simi-
lar), by our introduction of critical length, let λ be the growth
rate of f , there is ν > 0 such that

lT ([f i(σ)]) ≥ νλilT (SC(σ)) ≥ νελilT (σ)

holds for all i > N1.

4.5 Relative Hyperbolicity in Fully Irreducible
Case

Recall that in the previous sections, we defined the relatively
hyperbolic automorphism in Definition 4.5 in terms of the
growth of conjugacy classes of hyperbolic elements. And we
have explained that relatively hyperbolicity of an automor-
phism can be shown by the growth of fundamental segments
of hyperbolic elements in a tree.

From Theorem 4.32, it follows that

Corollary 4.33 Let G be a finitely generated group with a
given free product decomposition G ' G1 ∗ ... ∗Gp ∗Fk (where
k ≥ 2 or p + k ≥ 3), H0 = {G1, ..., Gp}. If Φ ∈ Aut(G,G) is
fully irreducible and atoroidal, then Φ is hyperbolic relative to
H0.

Gautero and Weidmann proved a relevant combination
theorem (see Corollary 7.3 of [22]), recalled as Theorem 4.8
of this thesis). By the combination theorem, the relative hy-
perbolicity of GoΦ Z is true by the fact that Φ is hyperbolic
relative to H0. Thus our result of Theorem 4.9 holds. We give
a more precise version of the theorem below:
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Theorem 4.34 Let G be a finitely generated group with a
given free product decomposition G ' G1 ∗ ... ∗Gp ∗Fk (where
k ≥ 2 or p + k ≥ 3), let H0 = {G1, ..., Gp}, assume Φ ∈
Aut(G,G) is fully irreducible and atoroidal. Then G oφ Z is
hyperbolic relative to the mapping-torus of H0.

From the above theorem, we come to a relative hyperbol-
icity result of a kind of toroidal automorphism of free group:

Corollary 4.35 Let G be a free group and φ be an automor-
phism of G such that there exist a free group decomposition
G = Fn ' G1 ∗ ... ∗Gp ∗ Fk with the following properties:

• 1. each [Gi] (i ∈ {1, . . . , p}) is preserved by some power
of φ (i.e. there exist some positive integer ni such that
φni(Gi) = g−1

i Gigi for some gi ∈ G);

• 2. φ is fully irreducible and atoroidal in Aut(G,H0),
where H0 = {G1, ..., Gp};

• 3. k ≥ 2 or p+ k ≥ 3.

Then there is some positive integer n such that G oφn Z is
hyperbolic relative to the mapping-torus of H0.

Indeed, choose n to be the least common multiple of (ni)s,
by definition, φn is fully irreducible and atoroidal inAut(G,H0).
We can obtain this corollary from Theorem 4.34.

5 Detecting fully irreducible auto-

morphisms

Theorem 4.34 gives the relative hyperbolicity result of GoφZ
for the free product G ' G1 ∗ ... ∗Gp ∗ Fk under the assump-
tion that Φ is fully irreducible and atoroidal. We give in this
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section a condition for full irreducibility. We first give a defi-
nition of Whitehead graph for a given train track map.

Definition 5.1 (Whitehead graphs) Let G be a group with
free product Decomposition G = G1∗...∗Gp∗Fk, Φ ∈ Aut(G,G),
f : T → T be a train track map representing Φ. For any ver-
tex v ∈ V (T ) in the tree, we define the Whitehead graph
WhT (v, f) as follows:

The set of vertices in WhT (v, f) is the set of oriented edges
in T originating from v; two vertices v1, v2 (corresponding to
e1, e2 respectively in T ) in WhT (v, f) are adjacent if there
exist some g1, g2 ∈ G, n ≥ 1 and e ∈ E(T ) such that the
segment g1ē1 − g2e2 is a subsegment of fn(e) or a reducible
segment in the form of e′ − ē′ (for some edge e′).

Definition 5.2 (Transition matrix of a map) Let G be a group
with free product Decomposition G = G1 ∗ ... ∗ Gp ∗ Fk, Φ ∈
Aut(G,G), f : T → T be a map representing Φ. Fix a choice
of edges {e1, . . . , es} as the basis of T such that every edge in
the tree is in the G-orbit of some ei and that ei and ej are not
in the same G-orbit for i 6= j (where i, j ∈ {1, . . . , s}). The
transition matrix M(f) of f is a non-negative matrix with the
element Mi,j denoting the total time of f(ei) intersecting the
G-orbit of ej.

Lemma 5.3 Let G = G1 ∗ ... ∗ Gp ∗ Fk with either k ≥ 2 or
p + k ≥ 3, Φ ∈ Out(G,G), and let f : T → T be a train
track map representing Φ such that lT (fn(e)) goes to infinity
as n goes to infinity for some e ∈ E(T ). Assume that Φ is
irreducible. Then for every vertex v ∈ V (T ) the Whitehead
graph WhT (v, f) is connected.

Proof: Suppose otherwise, that there exist some u ∈
V (T ) such that WhT (u, f) is disconnected.
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We first define a new graph Γ based on T to be as follows:
For every vertex v ∈ T , we define v̂ in Γ correspondingly (call
it the central vertex corresponding to v), and introduce in Γ
some ”attached vertices” v1, . . . , vk, where k is the number of
connected components of WhT (v, f). For each central ver-
tex v̂, we add an (oriented) edge between v̂ and each of its
attached vertex for every v ∈ V (T ) (such edges are called at-
tached edges attached to v). For edge e in T from v to w, we
add an edge e′ in the graph Γ from vi to wj, where vi and wj
are attached vertices to v and w respectively, such that vi and
wj correspond to the connected components of WhT (v, f) and
of WhT (w, f) containing e.

We then define a map f ′ : Γ → Γ based on f as follows:
First we set f ′(v̂) = ˆf(v) and f ′(e′) = e′1 − · · · − e′n (where
f(e) = e1 − · · · − en) for all v ∈ V (T ) and for all e ∈ E(T )
(the latter makes sense by the definition of the Whitehead
graph). For an attached vertex vi that is attached to v, denote
by ei an edge in T starting from v that represents vi, and
set f ′(vi) to be the attached vertex wi (attached to f(v))
that corresponds to the starting edge of f(e). It follows that
the starting edge of f(e) and the starting edge of f(e′) are
adjacent in WhT (v, f) if e, e′ are two edges starting from the
same vertex v that are adjacent in WhT (v, f). Hence the
definition of f ′ on the attached vertex is well-defined. And
for an attached edge ĕ (attached to v, from v̂ to vi), we set
f ′(ĕ) to be the attached edge starting from f ′(v̂) to f ′(vi).
We can see from this construction that f ′ is a continuous
map, and that contracting all attached edges to points in Γ
is a homotopy equivalence between Γ and T . Hence the map
f ′ : T ′ → T ′ still represents Φ.

Consider a subgraph W of Γ by removing all central ver-
tices and interiors all attached edges (for all vertices). This
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subgraph W is f ′-invariant and G-invariant. By the discon-
nectedness of WhT (u, f), the inclusion map from W to Γ is
not a homotopy equivalence. In addition, by the expanding
property of f , there is some edge e and some large integer
n such that fn(e) contains a subpath σ (where σ is a fun-
damental segment of a hyperbolic element). It follows from
the construction that, as the image of f ′n(e′), σ′ is such a
path whose image in the quotient graph is a loop. Thus we
found W to be a f ′-invariant and G-invariant subgraph that
its image in quotient graph of groups is non-trivial (topolog-
ically) and such that the inclusion map from W to Γ is not
a homotopy equivalence. This contradicts the fact that Φ is
irreducible.

By the above lemma, we come to the following proposition,
which serves as a condition for full irreducibility:

Proposition 5.4 Let G = G1 ∗ ... ∗Gp ∗Fk with either k ≥ 2
or p + k ≥ 3, Φ ∈ Out(G,G). If Φ is fully irreducible and
atoroidal, then there exists a train track map f : T → T
representing Φ such that the following holds:

• 1. the transition matrix M(f) is irreducible;

• 2. for every vertex v ∈ V (T ) the Whitehead graph
WhT (v, f) is connected.

6 On the reducible case

Let G be a group with free product decomposition G ' G1 ∗
... ∗Gp ∗ Fk (as GD).

In this section, we consider an automorphism Φ such that
{[G1], . . . , [Gp]} is preserved by Φ, and such that it is re-
ducible with respect to the free factor system {[G1], . . . , [Gp]}
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(in this case, there is a larger free factor system that is also
Φ-invariant). We deduce that, if Φ is an atoroidal automor-
phism of G such that the free factor system {[G1], . . . , [Gp]} is
invariant under Φn for all integer n > 0, then there is a larger
free factor system to which Φ is fully irreducible and atoroidal,
and we can even use the result of the previous subsection to
obtain the relative hyperbolicity of the HNN extension of G
relative to Φ.

Lemma 6.1 Let {[G′1], . . . , [G′p′ ]} be a Φ-invariant free factor

system larger than {[G1], . . . , [Gp]}, G′ = G′(G, (G′i)
p′

i=1, Fk′)
be the set of Bass-Serre Trees defined in Definition 2.1. If Φ ∈
Aut(G,G) is an atoroidal automorphism, then Φ ∈ Aut(G,G′)
is also atoroidal.

Proof: It suffices to prove that, for any trees T ∈ G, T ′ ∈
G′, any hyperbolic element in (G,G′) (on T ′) is a hyperbolic
element in (G,G) (on T ). Equivalently, we only have to prove
that any elliptic element in (G,G) is also elliptic in (G,G′),
which is obvious by (C2), (C3) of Definition 2.1 and by the
assumption that {[G′1], . . . , [G′p′ ]} is a larger free factor system
than {[G1], . . . , [Gp]}.

Lemma 6.2 Let G ' G1 ∗ · · · ∗Gp ∗Fk ' G′1 ∗ · · · ∗G′p′ ∗Fk′,
{[G′1], . . . , [G′p′ ]} be a strictly larger free factor system than
{[G1], . . . , [Gp]}. Then (k′, p′) < (k, p) in the lexicographical
order, i.e. if k′ ≥ k then k′ = k and p′ < p.

Proof: First, we prove that k′ ≤ k. Suppose otherwise,
then Fk is a proper subgroup of Fk′ , this violates the fact that
G1 ∗ · · · ∗Gp ∗ Fk ' G′1 ∗ · · · ∗G′p′ ∗ Fk′ as {[G′1], . . . , [G′p′ ]} is
a larger free factor system than {[G1], . . . , [Gp]}.

The relation between two free factor system can be divided
into the following two cases:
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Case 1: there exist some x ∈ Fk, g ∈ G and q ∈ {1, . . . , p′}
such that x ∈ gG′qg−1.

In this case, x /∈ Fk′ (because x fixes some vertex in the

Bass-Sree Tree in G′(G, (G′i)
p′

i=1, Fk′), while every element in
Fk′ act on the Bass-Serre Tree by translation). Denote by
< x, Fk′ > the subgroup of G that is generated by x and Fk′ ,
which is actually Fk′+1. By Gurosh Subgroup Theorem (apply
to the decomposition G ' G1 ∗ · · · ∗Gp ∗ Fk), < x, Fk′ > is a
subgroup of Fk. Hence k′ + 1 ≤ k, equivalently, k′ < k. Thus
(k′, p′) < (k, p).

Case 2: for all x ∈ Fk and for all q ∈ {1, . . . , p′}, x /∈
gG′qg

−1 for all g ∈ G.
We define a map χ : {G1, . . . , Gp} → {G′1, . . . , G′p′} in the

following natural way: for all i ∈ {1, . . . , p}, if there exist
j ∈ {1, . . . , p′} such that Gi is a subgroup of gG′jg

−1 for some
g ∈ G, then define χ(Gi) = G′j. It is easy to check that this
map is well-defined. By the assumption of this case, every G′j
has a pre-image of χ in {G1, . . . , Gp} (i.e. χ is surjective), we
have that p′ ≤ p.

Let T be a Bass-Serre Tree in G(G, (Gi)
p
i=1, Fk). By the

assumption that the free factor system {[G′1], . . . , [G′p′ ]} is
strictly larger than {[G1], . . . , [Gp]}, there exist r ∈ {1, . . . , p}, r′ ∈
{1, . . . , p′} and y ∈ G′r′ such that gGrg

−1 is a subgroup of
G′r′ , y /∈ gGrg

−1. Moreover, we can assume that y is elliptic
in (G,G) (because for any such hyperbolic element h ∈ G′r′ ,
hgGrg

−1h−1 < G′r′ , and hgGrg
−1h−1 6= gGrg

−1 as g−1hg /∈
Gr, we have element in hgGrg

−1h−1 that is elliptic in (G,G)).
Consider the subgroup < y > generated by y, it fixes some
vertex vy in the Tree T . Denote by Hy the stabilizer of vy in
G. Hy is conjugate to one of Gis (which is a subgroup of one
of G′js), As y ∈ Hy and y ∈ G′r′ , Hy is a subgroup of G′r′ . By
the choice of y and vy, Hy is not conjugate to Gr (otherwise,
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there exist some h ∈ G different from g such that hGrh
−1

is a subgroup of G′r′ , so Gr is a subgroup of the intersection
of g−1G′r′g and h−1G′r′h, which is empty). Thus there exist
s 6= r and g′ ∈ G such that g′Gsg

′−1(= Hy) is a subgroup of
G′r′ . This implies that χ(Gr) = χ(Gs) = G′r′ . And since χ is
surjective, p′ < p. Therefore, (k′, p′) < (k, p).

Remark 6.3 1. The condition that {[G′1], . . . , [G′p′ ]} is a strictly
larger free factor system than {[G1], . . . , [Gp]} does not imply
that k′+p′ < k+p. One counterexample is to let G = G1∗G2∗
F4 where F4 =< a, b, c, d >, consider these two decomposition
G = G1∗G2∗F4 = G′1∗G2∗G′3∗F3 (where G′1 = G1, G

′
2 = G2,

G′3 =< a >), in this case, p+ k = p′ + k′ = 6.
2. The condition that {[G′1], . . . , [G′p′ ]} is a strictly larger

free factor system than {[G1], . . . , [Gp]} also does not imply
that (p′, k′) < (p, k) in the lexicographical order. Consider
G = G1 ∗G2 ∗F5 where F5 =< a, b, c, d, e > with the following
two decomposition G = G1∗G2∗G3∗F3 = G′1∗G′2∗G′3∗G′4∗F2

(where G′1 = G1, G
′
2 = G2, G3 =< a, b >,G′3 =< c >,G′4 =<

a, b >), in this case, p′ > p.

Directly from Lemma 6.2, we have

Lemma 6.4 Let G ' G1 ∗ · · · ∗ Gp ∗ Fk, Φ ∈ Aut(G) such
that the free factor system {[G1], . . . , [Gp]} is invariant under
Φn for all integer n > 0. Then there exist another free factor
system {[Ĝ1], . . . , [Ĝq]} of G, such that Φ is fully irreducible

relative to {[Ĝ1], . . . , [Ĝq]}.

Proof: By the Lemma 6.2, for any given free factor sys-
tem, a strictly larger free factor system has a less (k, p). And
there are only finitely many (k′, p′)s that are smaller than
(k, p). This implies that, by finitely many step (each step

64



we find a strictly larger free factor system that is invari-
ant under Φn), one can find a maximal free factor system
{[Ĝ1], . . . , [Ĝq]} preserved by Φ, such a free factor system is
what we are looking for.

Directly from Lemma 6.1, Lemma 6.4, and Theorem 4.34,
we have

Theorem 6.5 Let G be a finitely generated group with a given
free product decomposition G ' G1 ∗ ... ∗Gp ∗ Fk, and let Φ ∈
Aut(G,G) be an atoroidal, reducible automorphism. Then
there exist another free product decomposition G ' Ĝ1 ∗ ... ∗
Ĝq ∗ Fr such that Φ is atoroidal and fully irreducible. More-

over, if r ≥ 2 or q+r ≥ 3, let Ĥ0 = {Ĝ1, ..., Ĝq}, then GoφZ
is hyperbolic relative to the mapping-torus of H0.

Proposition 6.6 Let G ' G1 ∗ · · · ∗ Gp ∗ Fk, and let φ ∈
Aut(G, ([G1], . . . , [Gp])) be atoroidal. Then there exist a free

product decomposition of G, G ' Ĝ1 ∗ · · · ∗ Ĝq ∗ Fr, such

that each [Ĝi] is φ-invariant, on which φ is irreducible and
atoroidal.

6.1 Descent and the Theorem 6.10

Now that we have proved Theorem 4.34 about fully irreducible
atoroidal automorphisms, and that we have Proposition 6.6,
we want a descent argument to show that, in some cases at
least, beyond irreducibility, G oφ Z is relatively hyperbolic,
relative to the mapping tori of the Gi.

A first part of the argument is the following well known
fact. For instance see the work of Osin [34].

Proposition 6.7 (see Theorem 2.40 of [34]) If G is hyper-
bolic relative to a family of subgroups H1, . . . , Hs, and if each
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subgroup Hi is hyperbolic relative to subgroups Hi,1, . . . , Hi,ri,
then, G is hyperbolic relative to {Hi,j, i ≤ s, j ≤ ri}.

This allows, in many cases, to reduce the study of the
relative hyperbolicity of GoφZ to that of Gioφi Z, for φi the
composition of the restriction of φ to Gi with a conjugation
by an element of G sending φ(Gi) on Gi.

Indeed, if one applies Proposition 6.6, and if the pair (q, r)
thus obtained is such that r ≥ 2 or q+r ≥ 3, then one can use
Theorem 4.34 in conjunction with Proposition 6.7 in order to
reduce our problem to that of Ĝi oφi Z.

However there are two particular cases in this descent (the
case r = 1, q = 0 and the case r = 0, q = 2), where we cannot
apply Theorem 4.34. We thus focus on them in the following
two statements.

Proposition 6.8 If G = G1∗G2 and if φ ∈ Aut(G, ([G1], [G2]))
is atoroidal, and assume that each Gioφi Z is hyperbolic rela-
tive to the mapping tori of certain free factors of Gi. Assume
also that each maximal parabolic subgroup of Gi oφi Z has a
non-trivial central element.

Then G oφ Z is hyperbolic relative to the peripheral sub-
groups of G1 oφ1 Z and G2 oφ2 Z.

Proposition 6.9 If G = G1 ∗ Z and if φ ∈ Aut(G, ([G1]))
is atoroidal, and assume that G1 oφ1 Z is hyperbolic relative
to the mapping tori of certain free factors of G1. Assume
also that each maximal parabolic subgroup of G1 oφ1 Z has a
non-trivial central element.

Then G oφ Z is hyperbolic relative to the peripheral sub-
groups of G1 oφ1 Z.

We will prove these two Proposition shortly, but let us
present the main application here.
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We consider a descent of free product systems by applying
telescopically Proposition 6.6 to each Gi with φi. Precisely,
we equip them with the free product decomposition obtained
by their action on the original Bass-Serre tree of G. And
we extract by Proposition 6.6 another free factor system of
each Gi on which φi is fully irreducible. We do again on the
factors of this later one. Note that the descent terminates by
Grushko’s uniqueness theorem for G.

Thus, using telescopically Proposition 6.6, and using either
Theorem 4.34 with Proposition 6.7, or directly one of the two
previous Propositions 6.8, 6.9, we obtain theorem 6.10, which
contains Brinkmann’s original result.

Theorem 6.10 Let G ' G1 ∗ · · · ∗ Gp ∗ Fk, and let φ ∈
Aut(G, ([G1], . . . , [Gp])) be atoroidal.

Assume that, for each i, there exists gi ∈ G conjugating
φ(Gi) to Gi. Assume that for each i there exists a non-trivial
element of Gi oadgi◦φ|Gi

Z that is central in Gi oadgi◦φ|Gi
Z.

Then Goφ Z is relatively hyperbolic, relative to the collec-
tion {Gi oadgi◦φ|Gi

Z, i ≤ p}.

It is not so clear to us what can happen if one drops the
condition on central elements. Here is an embarrassing exam-
ple. G = F3 = Fa,b ∗ 〈c〉 and φ sends a on b, b on ab, and c on
caba−1b−1. We see Fa,b as G1, so φ is atoroidal (for the given
free factor decomposition). The restriction of φ on G1 is well
known (fully irreducible, pseudo-Anosov), the element t repre-
senting φ will have its square commute with [a, b] = aba−1b−1,
thus necessarily parabolic in any relative hyperbolic structure,
but as well t−2ct2 = c which means that c is also in the same
parabolic group. The legitimate parabolic group seems to be
〈t, [a, b], c〉 which is not a mapping torus of a free factor.

We now need to prove the two proposition 6.8 and 6.9.
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6.2 The two elementary cases

We begin by Proposition 6.8. We may freely change our au-
tomorphism φ whithin its outer automorphism class, since it
does not change neither the assumptions, nor the isomorphism
class of the group obtained.

Thus, we may assume that φ(G1) = G1, and that φ(G2) =
G2 at the same time.

A look at presentations of the groups reveals that

Goφ Z ' (G1 oφ1 〈t1〉) ∗〈t1〉=〈t2〉 (G2 oφ2 〈t2〉) .

Lemma 6.11 Either t1 or t2 (or both) is not in a parabolic
subgroup of respectively G1 oφ1 〈t1〉 and G2 oφ2 〈t2〉.

Proof: Assume that both t1 and t2 are in parabolic sub-
groups of (G1 oφ1 〈t1〉) and (G2 oφ2 〈t2〉). Then, there are
non-trivial elements a ∈ G1 and b ∈ G2 that respectively
commute with t1 and t2 (either because they are in the cen-
ter of a maximal parabolic subgroups, or because ti is in the
center of a maximal parabolic subgroups).

Thus, ab is preserved by conjugation by t, therefore is pre-
served by φ. But ab is easily seen to be a hyperbolic element of
the free product G1∗G2, thus contradicting that φ is atoroidal.
This proves the lemma.

Moreover, each ti is a generator of the maximal cyclic sub-
group that it contains. Therefore one can use the Combina-
tion Theorem [9, Main theorem 0.1, case 3], (possibly with a
classical [9, Lemma 4.4] in order to turn a hyperbolic ti into
a parabolic element) to get the desired result.

Therefore Proposition 6.8 is proved.
We proceed and prove Proposition 6.9. Let G = G1 ∗ 〈f〉.
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The argument is rather similar. One may first assume that
φ(G1) = G1, and that there is g ∈ G1 such that φ(f) = f±1g.
Notice that we may assume that g 6= 1, otherwise, the previ-
ous case applies. Up to taking the square of φ (thus passing
to a finite index subgroup, we may assume that φ(f) = fg.

Then a presentation of the groups reveals that, for g such
that φ(f) = f±1g,

Goφ 〈t〉 ' (G1 oφ1 〈t〉) ∗〈t〉,〈tg−1〉

Indeed, one can write G oφ 〈t〉 ' (G1 ∗ 〈f〉) oφ 〈t〉 which
has presentation

Goφ 〈t〉 ' 〈G1, f, t | t−1g1t = φ(g1), t−1ft = fg〉
' 〈G1, f, t | t−1g1t = φ(g1), f−1t−1f = gt−1〉

We now check:

Lemma 6.12 Either t or tg−1 is not parabolic in G1 oφ1 〈t〉.

Proof: If both are, then by the the proof of the previous
lemma, there are two free factors of G1, say A,B, such that
there exist non trivial element a ∈ A and b ∈ B with a normal-
ized by t and b by tg−1. Hence φ(a) = a. Since f−1tf = tg−1,
it means that f conjugates 〈t, A〉 into 〈tg−1, B〉.

Consider the element x = afbf−1, this is a hyperbolic
element in G (because a and fbf−1 fixes two different vertices
in the Bass Serre tree), but φ(x) = a(fg)(t−1bt)(g−1f−1) =
af(tg−1)−1b(tg−1)f−1 = x. This violates the assumption that
φ is atoroidal. Thus the lemma is proved.

Finally, one can use again the Combination Theorem [9,
Main theorem 0.1, case 4], (again possibly with a classical [9,
Lemma 4.4]) to conclude. Proposition 6.9 is proved.
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7 Conjugacy problem

In this section we recall what is the conjugacy problem in a
group, and in particular in a group of automorphisms.

7.1 Two cases from the literature

7.1.1 The linear case

In all this thesis we have considered automorphism groups
of some particular groups (free groups, free products). We
could discuss a little the case of automorphisms of free abelian
groups. Let G be Zm. Then Aut(G) is actually GL(m,Z).

The conjugacy problem in this case (i.e in GL(m,Z)) is a
natural problem. It can be understood in two different ways.
The first way, is to classify when matrices in GL(m,Z) are
conjugate by a matrix in GL(m,Z). The second way is to
find an algorithm that answer the question whether two given
matrices are thus conjugate.

One recognise a classical situation where one tries to find
out whether two matrices are conjugate. However, we are not
working over a field (like R,C or Q) but over a ring Z, and
the tools of linear algebra (often relying on the principality of
K[X]) are not helping us.

The classification of conjugacy classes in GL(m,Z) (for ar-
bitrary m) is settled by a theorem of Latimer and MacDuffee
of 1936. It states the following. Given an irreducible (over Z)
monic polynomial P ∈ Z[X] (with P (0) = 1), the conjugacy
classes of matrices in GL(m,Z) with characteristic polyno-
mial P are in bijection with the ideal classes of Z[X]/(P ). A
bijection is given by the following. First, one chooses a root
ξ of P in Q and for every matrix M with characteristic poly-
nomial P , one selects an eigenvector vM of M for ξ, whose
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entries are in Z[ξ], and one selects the ideal class of the ideal
generated by the entries of vM . The theorem of Latimer Mac-
Duffee says that this is well defined as an ideal class (i.e. up to
multiplication by an element of the ring), two matrices give
the same class if and only if they are conjugate, and every
ideal of Z[ξ] is thus obtained.

For non-irreducible characteristic polynomial, the discus-
sion is slightly more involved. However, it is not clear at all
how to use this for algorithmic purpose, even in the case of
irreducible polynomials.

The second way, is the algorithmic way. Let us men-
tion that an algorithmic solution to the conjugacy problem
in GL(m,Z) was given by Grunewald in 1977 (see [24]).

For the sake of illustration, let us repeat here our abstract
way to tackle with the conjugacy problem in automorphisms
groups, even if , in this case, it is not conclusive.

If G is a group, two automorphisms φ1 and φ2 are con-
jugate in Aut(G) if and only if the two semi-direct products
Goφ1 Z and Goφ2 Z are isomorphic by an isomorphism send-
ing G on G and the generator t1 of Z acting as φ1, to the
generator t2 of Z acting as φ2. (See Lemma 7.7)

Let us try to apply it to the case of a group G that is Zm.
We should consider the semidirect products GM = ZmoM

Z (for M ∈ GL(m,Z), and m ≥ 2) for the two matrices. We
certainly cannot expect any relatively hyperbolic structure,
since these groups contain normal abelian subgroups (by def-
inition). However, we can see that, if the matrix M has at
least one eigenvalue of modulus different of 1, then the group
GM posseses only one normal subgroup isomorphic to Zm by
which the quotient is infinite cyclic. This applies in particular
if the matrix is irreducible, and of infinite order in GL(m,Z).

Indeed here is an argument: consider H1, H2 two different
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normal subgroups of GM abelian of rank m ≥ 2, such that
GM/Hi ' Z. Then H1 ∩ H2 must be isomorphic to Zm−1

(otherwise H2 injects in the quotient by H1). Since H1 6= H2,
we have an element outside H1 that centralises a hyperplane
(of rank m−1) H ′ in H1. This element has the form vtr where
v ∈ Zm and r ≥ 1. But for all w ∈ H ′, v and w commute
(because they are in H1 which is abelian), so it means that
M r(w) = w, which means that M r is the identity on H ′.
So M r has eigenvalue 1 with multiplicity m − 1. Thus all
eigenvalues (in Q) of M , except at most one, have modulus 1.
Since M has determinant 1, it must have all its eigenvalues of
modulus 1.

However, even in such a situation, it does not seem easier
to check whether M1 and M2 are conjugate, because the iso-
morphism problem for the groups GMi

falls in the metabelian
case, and nothing seems gained. Notice that the isomorphism
problem for polycyclic groups was solved by Segal after heavy
development of the theory of orbit problems for arithmetic
groups by Grunewald and Segal (see [25]), after the solution
of Segal of the conjugacy problem in GL(m,Z).

7.1.2 The case of Out(Fn)

In this section, we introduce the solvability of the conjugacy
problem of some automorphisms of free group, which is solved
by Dahmani in [12]. To be more exact, let F = Fn be a free
group of rank n, φ1, φ2 be two atoroidal automorphisms of F
(namely, φki ([g]) 6= [g] for all i ∈ {1, 2}, k ∈ Z+ and for all
g ∈ F \ {1}), we show that the problem is decidable whether
or not φ1 and φ2 is conjugate in Out(F ) (The full proof is
shown in [12] by Dahmani).

To work out this conjugacy problem, we recall that these
two automorphisms are conjugate in Out(F ) if and only if
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there is an isomorphism Ψ : F oφ1 〈t1〉 → F oφ2 〈t2〉 that
sends F on F and t1 on t2F (see Lemma 3.1 of [12]).

In [7], Brinkmann proved that for any automorphism φ
of a free group F , F oφ Z is Gromov hyperbolic if and only
if φ is atoroidal. In order to check atoroidality, one needs
the following two parallel steps. The first step is to check
the preserved conjugacy class by enumerating elements in F
and their images by φk, which stops when φ is found to be
atoroidal by definition. The second step is to check the hy-
perbolicity of F oφ Z by the procedure given by Papasoglu
in [35], which stops when F oφ Z is found to be hyperbolic.
By Brinkmann, exactly one of these two step will stop, and
thus one can decide whether or not the given automorphism
is indeed atoroidal.

In [36], [13] and [15], the isomorphism problem of hyper-
bolic groups is proved to be solvable. If there is no isomor-
phism Ψ : F oφ1 〈t1〉 → F oφ2 〈t2〉, φ1 and φ2 are certainly not
conjugate. Otherwise, we still needs to check the orbit problem
of automorphism group of the semi-direct product: to verify
whether or not an automorphism Ψ : F oφ1 〈t1〉 → F oφ2 〈t2〉,
φ1 and φ2 satisfies Ψ(F ) ⊂ F and Ψ(t1) ∈ t2F .

In [12], Dahmani proved that if G is a finitely generated
group, and if G oφ1 Z, G oφ2 Z are hyperbolic groups, then
this orbit problem in Out(G) can be turned into Diophantine
equation problems (see Section 2.1 of [12]), which is decid-
able. Then in the proof of Theorem 3.2 of [12], Dahmani gave
a method to determine whether or not two given automor-
phisms of G are conjugate in Out(G), if G is a free group and
the given automorphisms are atoroidal.
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7.2 The atoroidal-toral case

In this section, we fix the setting of a free product H = A1 ∗
· · ·∗Ak∗Fp, where Fp is a free group of rank p, and where each
Ai is a finitely generated group. Let Aut(H, (A1, . . . , Ak)) be
the subgroup of Aut(H) of all automorphisms φ such that
φ(Ai) is conjugate to Ai for all i.

Lemma 7.1 If each Ai is freely abelian, whose rank is at least
2, and rank(Ai) 6= rank(Aj) for all i 6= j, then

Aut(H, (A1, . . . , Ak)) = Aut(H)

Proof: We only have to check thatAut(H, (A1, . . . , Ak)) ⊃
Aut(H). For any φ ∈ Aut(H), From Kurosh subgroup the-
orem, φ(Ai) can be written in the form of free product of
the conjugate of subgroups of Aj and a free group. Since the
rank of each Ai is at least 2, it does not split into free prod-
ucts, which implies that φ(Ai) is conjugate to some Aj. As
φ is an automorphism, φ(Ai) are conjugate to Ai in Out(G),
equivalently, φ ∈ Aut(H, (A1, . . . , Ak)).

Lemma 7.2 One can define a map ρi : Aut(H, (A1, . . . , Ak))→
Out(Ai) as follows: if φ ∈ Aut(H) is an automorphism such
that φ(Ai) = h−1

i Aihi, then ρi(φ) = [adhi◦φ|Ai
], where adhi(x) =

hixh
−1
i .

Proof: One can check by computation of the definition
that adhi ◦φ|Ai

maps Ai to Ai. What remains is to check that
definition is irrelevant to the choice of hi. Suppose there is
another h′i 6= hi such that φ(Ai) = h′−1

i Aih
′
i, then adhi ◦ φ|Ai

and adh′i ◦φ|Ai
only differ by conjugation of h′ih

−1
i , which is in

the normalizer of Ai (because φ ∈ Aut(H, (A1, ..., Ak))).
We now claim that h′ih

−1
i ∈ Ai, for this , we only have

to prove that Ai = NH(Ai), where NH(A) is the normaliser
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of Ai in H: consider the Bass-Serre Tree T of H, let xi be
the vertex that is fixed by Ai. For any element h ∈ NH(Ai),
Aihxi = hAixi = hxi, meaning Ai also fixes hxi. But in
Bass-Serre Tree, xi is the only vertex that is fixed by Ai, thus
hxi = xi. Since the stabilizer of xi is Ai, we have h ∈ Ai,
Ai ⊃ NH(Ai). By the definition of normalizer, one can verify
that Ai ⊂ NH(Ai). Hence Ai = NH(Ai).

By previous analysis, h′ih
−1
i ∈ Ai, then adhi ◦ ad−1

h′i
∈

Inn(Ai), therefore [adhi ◦ φ|Ai
] = [adh′i ◦ φ|Ai

] in Out(Ai).
The map is well-defined.

Remark 7.3 By the proof of the previous lemma, the conju-
gation element hi is unique (up to a left-multiplication by an
element of Ai), hence we have the following definition.

Definition 7.4 (Toral automorphisms) Let Ai be abelian, φ ∈
Aut(H, (A1, . . . , Ak)) is said to be toral if for all i, [adgi ◦φ|Gi

]
is the identity on the free factor Gi, where gi is the element
in H such that φ(Ai) = g−1

i Aigi.

Definition 7.5 (Toral relatively hyperbolic group) A group
H is said to be toral relatively hyperbolic if the group is tor-
sion free, relatively hyperbolic, and with abelian parabolic sub-
groups.

Recall that we have already define relatively hyperbolic
automorphisms (see Definition 4.5), thus we have the follow-
ing:

Proposition 7.6 If each Ai is abelian, H is torsion free, and
the automorphism φ ∈ Aut(H, (A1, . . . , Ak)) is a toral rela-
tively hyperbolic automorphism, then H oφ Z is toral rela-
tively hyperbolic.
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Proof: Since H is torsion free, so is HoφZ. And HoφZ
is relatively hyperbolic as the automorphism is relatively hy-
perbolic. We only have to find the abelian parabolic sub-
groups.

Because φ is toral, [adgi ◦ φ|Gi
] is trivial for all i (where gi

is the element such that φ(Ai) = g−1
i Aigi). Thus there exist

some bi ∈ H oφ Z, such that bi commutes with every element
in Ai in the semidirect product for every i ∈ {1, . . . , k}. Since
each Ai is abelian, we have that the subgroup generated by
Ai and bi is a abelian parabolic subgroup of H oφ Z.

By the definition, the set of toral automorphisms forms a
subgroups of Aut(H, (A1, . . . , Ak)).

But, the set of toral relatively hyperbolic automorphisms
does not form a subgroup in Aut(H, (A1, . . . , Ak)): this set
does not contain the identity automorphism (let Z = 〈t〉, then
H oId Z is not relatively hyperbolic, because t ∈ Z(H oId Z),
which violates the fineness property of relative hyperbolicity).

In the previous sections (more precisely, see Theorem 4.34,
Theorem 6.5, and Theorem 6.10), we have shown that if φ
is atoroidal with some other good property (for example, full
irreduciblility, or more generally, with central condition), then
it is relatively hyperbolic.

Given an automorphism φ inAut(H, (A1, . . . , Ak)), by com-
putation of adhi ◦ φ|Ai

one can decide whether it is toral. By
the important result worked by Dahmani and Guirardel (see
Corollary 0.2 of [10] and Theorem 2 of [14] ), one can decide
whether or not it is relatively hyperbolic.

In the following part of the thesis, we mainly focus on the
toral relatively hyperbolic automorphisms, and deal with the
conjugacy problem between two such given automorphisms.
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7.2.1 Basic Properties on Conjugacy Problem

We first denote here by H1(G) the abelianisation of G for any
given group G, and for an element (or a subgroup) g in G,
denote by ḡ the corresponding element (or subgroup) of g in
H1(G). We introduce a lemma for the beginning, in which
the 1.1 and 2.1 are well-known facts.

Lemma 7.7 (see Lemma 3.1 of [12]) Given H a finitely pre-
sented group, we have:

1.Each of these two statements is equivalent to say that
φ1, φ2 ∈ Aut(H) are conjugate in Aut(H):

• 1.1.there exist an isomorphism Ψ : H oφ1 〈t1〉 → H oφ2

〈t2〉 such that Ψ(H) ⊂ H,Ψ(t1) = t2;

• 1.2.there is an isomorphism Ψ : Hoφ1 〈t1〉 → Hoφ2 〈t2〉
and an automorphism η ∈ Aut(Hoφ2 〈t2〉), such that the

image η̄ in Aut(H1(H oφ2 〈t2〉)) sends Ψ(H) in H̄ and

sends Ψ(t1) to t̄2.

2.Each of these two statements is equivalent to say that φ1, φ2 ∈
Aut(H) are conjugate in Out(H):

• 2.1.there exist an isomorphism Ψ : H oφ1 〈t1〉 → H oφ2

〈t2〉 such that Ψ(H) ⊂ H,Ψ(t1) ∈ t2H;

• 2.2.there is an isomorphism Ψ : Hoφ1 〈t1〉 → Hoφ2 〈t2〉
and an automorphism η ∈ Aut(Hoφ2 〈t2〉), such that the

image η̄ in Aut(H1(H oφ2 〈t2〉)) sends Ψ(H) in H̄ and

sends Ψ(t1) to t̄2H̄.

Proof: Statement 2 of this lemma is concluded and
proven in the Lemma 3.1 of [12]. And by the proof in Lemma
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3.1 of [12] also shows that statement 1.1 and 1.2 are equiva-
lent.

Here we show that statement 1.1 is equivalent to say that
φ1, φ2 ∈ Aut(H) are conjugate in Aut(H): if φ1 = α−1 ◦φ2 ◦α
for some α ∈ Aut(H), we extend α to α̃ : H ∗ 〈t1〉 → G2

by sending t1 to t2. This induces a map ᾱ : H oφ1 〈t1〉 →
H oφ2 〈t2〉 which map h ∈ H to α(h) and map t1 to t2, as
α(h) = ᾱ(h) = ᾱ(t1φ1(h)t−1

1 ) = t2φ2α(h)t−1
2 , the map is well-

defined (and the similar analysis show that it is injective).
This ᾱ is the isomorphism we are looking for.

Conversely, if there is Ψ : G1 → G2 sending H to H and
t1 to t2. Denote by α = Ψ|H . For all h ∈ H, in G1, we have
t−1ht = φ1(h), thus in G2, t−1

2 α(h)t2 = α(φ1(h)), meaning,
φ2 ◦ α = α ◦ φ1, hence φ1 and φ2 are conjugate in Aut(H).

In the paper of Dahmani and Groves (see Theorem 7.1 of
[13]), the isomorphism problem of toral relatively hyperbolic
groups is proven to be solvable.

7.3 Complements on Bass-Serre theory: the
automorphisms

We will describe more precisely how automorphisms of a group
can be read on a graph-of-group decomposition. We refer to
[5].

Given two graphs of groups (Y, {Gv, v ∈ V (Y )}, {Ge, e ∈
E(Y )}) and (Y ′, {Gv′ , v

′ ∈ V (Y ′)}, {Ge′ , e
′ ∈ E(Y ′)}), an iso-

morphism of graph of groups

Ψ :(Y, {Gv, v ∈ V (Y )}, {Ge, e ∈ E(Y )})
→ (Y ′, {Gv′ , v

′ ∈ V (Y ′)}, {Ge′ , e
′ ∈ E(Y ′)})
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is a tuple (ΨY , ψv, ψe, γe) satisfying the following condi-
tions:

• 1. ΨY : Y → Y ′ is an isomorphism between two under-
lying graphs;

• 2. for every vertex v, and for every edge e, ψv : Gv →
GΨY (v), ψe = ψē : Ge → GΨY (e) are isomorphisms;

• 3. for each e, γe ∈ GΨY (t(e)),

ψv ◦ i|e = adγ−1
e
◦ i|ΨY (e) ◦ ψe

where adγe : x→ γexγ
−1
e is an inner automprohism.

If we denote by βe : Ge → Gt(e), then the third point
implies that:

ψv ◦ βe(Ge) = ψv(Gv) = GΨY (v)

= adγ−1
e

(GΨY (v)) = adγ−1
e
◦ βΨY (e)(GΨY (e))

= adγ−1
e
◦ βΨY (e) ◦ ψe(Ge)

Assume that (Y, {Gv, v ∈ V (Y )}, {Ge, e ∈ E(Y )}) equals
(Y ′, {Gv′ , v

′ ∈ V (Y ′)}, {Ge′ , e
′ ∈ E(Y ′)}). Then isomorphism

between them can be composed naturally (see [1], 2.11), which
gives the automorphism group of (Y, {Gv, v ∈ V (Y )}, {Ge, e ∈
E(Y )}), denoted by Aut(Y, {Gv, v ∈ V (Y )}, {Ge, e ∈ E(Y )}).

7.3.1 The JSJ decompositions and JSJ Theorem

We recall the situation of a JSJ decomposition in a hyperbolic
group, or a relatively hyperbolic group. We refer to [28].
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Definition 7.8 Given a group G, a family of subgroups A of
G, an A-tree is a tree together with a G action on it with edge
stabilizers in A.

Definition 7.9 An A-tree is referred to as universally elliptic
if it is such a tree whose edge stabilizers are elliptic in every
A-tree.

Recall that in the previous Section 2.9, we have already
defined the tree domination to be a relation such that a sub-
group elliptic in dominating tree is also elliptic in the domi-
nated trees.

Definition 7.10 (see the introduction of [28])(JSJ Decom-
position) A JSJ decomposition (also called a JSJ tree) of a
group H over a family of subgroup A is an A-tree T satisfying
the following:

• 1. T is universally elliptic;

• 2. For any other universally elliptic tree T ′, T domi-
nates T ′.

Using the above notations, the quotient, H\T is called a
JSJ-splitting (also see [28]).

Given a JSJ tree T of the group G = H o Z, there are 3
kinds of vertices:

• 1. rigid vertices: that cannot be further splitted, for
such a vertex v, the vertex groupGv satisfies |Out(Gv)| <
∞;

• 2. (QH) vertices: vertex groups are surface groups with
boundaries;
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• 3. elementary vertices: each vertex group Gv is either
parabolic or (virtually) cyclic, in toral relatively hyper-
bolic case, each Gv is abelian.

Recall that the A-JSJ decomposition of a group is a JSJ
decomposition of this group over a family of subgroup A.

For a vertex v in a graph of groups X, denote by v̂ the
corresponding vertex group. Let Ev be the choice of an or-
der on (oriented) edges adjacent to v, S(Ev) be the choice
of a generating set of the edge groups. A marked peripheral
structure of v̂, denoted by MPS(v) is the tuple of conjugacy
classes of the images of these generating sets by the attach-
ing maps. Denote by Out(v̂,MPS(v)) the subgoup of Out(v̂)
that leaves MPS(v) invariant.

Definition 7.11 (Hanging bounded Fuchsian groups) A group
H is called a hanging bounded Fuchsian group if there is a
finite normal subgroup K of H such that H/K is isomorphic
to the fundamental group of a non-elementary hyperbolic com-
pact 2-orbifold with boundary, by an isomorphism sending the
images of the adjacent edge stabilizers on the boundary sub-
groups of the orbifold group.

In the following part of this thesis, we assume that the
choice of order and generating sets are done.

If A is the family of infinite cyclic subgroups of G, we
can consider A-trees, that we call Z-trees (where every edge
stabilizers are Z).

For hyperbolic group, the JSJ theorem (Bowditch, Sella)
states that any one-ended hyperbolic group admits a canonical
Z-JSJ tree (or a Z-JSJ decomposition).

We then have the following theorem, which is proven by
Dahmani and Guirardel.
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Proposition 7.12 (see Prop.3.1 of [15] and Lemma 2.13 of
[12]) Let G be a hyperbolic group with one end. Let (v̂,MPS(v))
be a vertex group of the Z-JSJ decomposition X of G, with the
marked peripheral structure induced by X. If Out(v̂,MPS(v))
is infinite, then G admits a splitting with a hanging bounded
Fuchsian vertex group.

For torsion-free relatively hyperbolic groups, we take A
as the infinite elementary subgroups (infinite cyclic, or infi-
nite parabolic). The JSJ theorem of Guirardel and Levitt
(Corollary 9.20 of [28]) says that any one-ended toral rel-
atively hyperbolic group admits a canonical A-JSJ tree (or
A-JSJ decomposition).

A similar result as Proposition 7.12 holds for a relatively
hyperbolic group G if one replace ”Z-JSJ decomposition” by
”A-JSJ decomposition” and replace ”G admits a splitting
with a hanging bounded Fuchsian vertex group” with ”G ad-
mits a splitting vertex group that is either hanging bounded
fuchsian or parabolic”. The proof is the same.

By Dahmani and Groves (see [13]), the canonical JSJ de-
composition for toral relatively hyperbolic groups is proven to
be computable.

The following Theorem, proven by Guirardel and Levitt
(see Theorem 1.4 of [29]), turns out to be instrumental in the
later analysis of conjugacy problem in this thesis.

Theorem 7.13 Let H be toral relatively hyperbolic and one-
ended. Then some finite index subgroup Out1(H) of Out(H)
fits in the exact sequence:

1→ T→ Out1(H)→
P∏
i=1

MCG0(Σi)×
m∏
j=1

GLrj ,nj
(Z)→ 1

(ES)
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where T is finitely generated free abelian, MCG0(Σi) is
the group of isotopy classes of homeomorphisms of compact
surface Σi mapping each boundary component to itself in an
orientation-preserving way; GLr,n(Z) is the group of automor-
phisms of Zr+n fixing the first n generators.

Remark: In the above theorem, each MCG0(Σi) is the
automorphism group of the corresponding (QH) vertex; each
GLr,n(Z) is the automorphism of the corresponding elemen-
tary vertex, whare r is the rank of Gv, and n is the rank of
group generated by edges.

If one take element (M1, ...Mm) ∈
m∏
j=1

GLrk,nk
(Z), and take

each MCG0(Σi) = 1, then there is φ ∈ Out1(G) with a sur-
jective map φ → (M1, ...,Mm), such that φ acts on each ele-
mentary vertex Gvi by Mi and that φ acts on each edge by
identity.

From Theorem 7.13, in order to study an element φ ∈
Out1(G), we only need to know the twist in T, and how it
acts on the vertex groups.

Lemma 7.14 If Y is a graph of groups with a finitely gen-
erated fundamental group G, such that every edge group is
finitely generated, then every vertex group of it is also finitely
generated.

Proof: Take x1, ..., xm generators of the fundamental
group G, and take their normal forms in the Bass group.

For any vertex group Gv, denote by Sv the set of all el-
ements in Gv that occurs in the normal forms, define Hv =
〈Sv〉. By this definition, Hv ≤ Gv and Hv is finitely generated.

Replace now each Gv in Y with Hv, we obtain a new graph
of groups Y′, which is a sub graph of groups. Then the funda-
mental group of Y′ is the subgroup of G, but since it contains
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all generators x1, ..., xm of G, we can deduce that the funda-
mental group of Y′ is exactly G (which is the fundamental
group of Y). This implies that the vertex group of Y′ (which
is Hv) equals the vertex group of Y (which is Gv). As Hv is
finitely generated, so is Gv.

Lemma 7.15 Let H = A1 ∗ ... ∗Ak ∗Fp be finitely generated,
each Ai be abelian, and B be a non-cyclic abelian subgroup of
H. Then B is a subgroup of some Ai for i = 1, ..., k.

Proof: Let T ′ be the Bass-Serre Tree of H. Consider
two different non-trivial elements b, b′ ∈ B and their actions
on the tree T ′. There are several cases of these two actions:

• 1. b fixes a vertex and b′ fixes a line;

• 2. Both b and b′ fix a vertex;

• 3. b′ fixes a vertex and b fixes a line;

• 4. Both b and b′ fix a line.

For Case 1. b fixes a vertex and b′ fixes a line: In this
case, we may assume without loss of generality that b ∈
g−1A1g for some g ∈ H (because the stabilizer of the ver-
tex fixed by b is conjugate to one of the Ais). Since B is
abelian, b′−1bb′ = b, and hence it is also in g−1A1g. Thus
b ∈ g−1A1g∩b′g−1A1gb

′−1. Due to the assumption that b fixes
a vertex, and the fact that both g−1A1g and b′g−1A1gb

′−1 are
the stabilizers of a unique vertex in the Bass-Serre Tree, it
follows that g−1A1g = b′g−1A1gb

′−1. If g = 1, then we can
deduce that b′ ∈ A1, which violates the assumption that b′

fixes a line, hence g 6= 1. Let v be the vertex fixed by A1,
then g−1A1g fixes g−1v, while b′g−1A1gb

′−1 fixes b′g−1v. As
b′ 6= 1 acts on the tree by translation, g−1v 6= b′g−1v, again
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contradicts the fact that g−1A1g = b′g−1A1gb
′−1. This anal-

ysis shows that Case 1 (and the same for Case 3) cannot be
true, and similarly, if both b and b′ fix a line (or a vertex),
these lines (or vertices) that are fixed by them cannot be dif-
ferent (by the similar argument). Thus we can deduce that
there are only two possibilities:

• (i). b and b′ fix the same vertex;

• (ii). b and b′ fix the same axis.

If possibility (ii) holds, then by Euclid algorithm, one can
find a segment L on the axis and integer n1, n2 such that n1L
and n2L are fundamental segment of b and b′ respectively. In
terms of the group B, we find an element b̃ (that is generated
by b and b′) such that b and b′ are multiples of b̃, which implies
that B is cyclic.

Now the only possibility for b and b′ is that they fix the
same vertex. Notice that H is the free product and that each
Ai is abelian, we conclude that B is a subgroup of some Ai
for i = 1, ..., k.

Lemma 7.16 (see Lemma 2.6 and Lemma 2.7 of of [12])
Let G = H o Z, let T be the Bass-Serre G-tree of a reduced
splitting of G. Then the stabilizer in G of any given vertex in
T is a suspension of its stabilizer in H, and the stabilizer in
G of any given edge in T is a suspension of its stabilizer in
H.

Lemma 7.17 (see Lemma 2.10 of of [12]) For any finitely
generated group H that has infinitely many ends, any finitely
generated normal subgroup has finite index.
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Lemma 7.18 Assume that each Ai is abelian and G = HoZ
toral relatively hyperbolic. Then there is no (QH)-vertex in the
JSJ-splitting (equivalently, no vertex group is free).

Proof: Let T be a Z-JSJ tree, let X,Y be the quotient
X = G\T , Y = H\T respectively which are graphs of groups,
and let H = A1 ∗ · · · ∗ Ak ∗ Fp. Since edge groups in X are
abelian, edge groups in Y (which are normal subgroups of the
edge groups in X) are also abelian. From Lemma 7.15, any
non-cyclic abelian subgroup in H is a subgroup of a free factor
of H, the edge group in Y are subgroups of some Ai. Note
that Ai is isomorphic to ZN for some N , and a subgroup of ZN
has finite basis. This implies that edge group in Y are finitely
generated, so is vertex group in Y by Lemma 7.14. While the
vertex group in Y is a infinite index normal subgroup of the
corresponding vertex group of X, by Lemma 7.17, no vertex
group in X is free.

7.4 Conjugacy Problem for Toral Relatively
Hyperbolic Automorphisms

In this section we analyse and give a complete answer to the
conjugacy problem of two given toral relatively hyperbolic
automorphisms of H = A1 ∗ ... ∗ Ak ∗ Fp.

The isomorphism problem of toral relatively hyperbolic
groups is proven to be solvable (see Theorem 7.1 of [13]).
Assume that there is such an isomorphism Ψ sending G1 =
H oφ1 〈t1〉 to G2 = H oφ2 〈t2〉 (otherwise, if there is no such
isomorphism, then φ1 and φ2 are not conjugate). Thus by
Lemma 7.7, if Ψ satisfies statement 1.1 (or, respectively, state-
ment 2.1) in Lemma 7.7, then φ1 and φ2 are conjugate in
Aut(H) (or respectively in Out(H)).
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Suppose from now that Ψ does not satisfy statement 1.1
(or, respectively, statement 2.1) in Lemma 7.7, in order to
solve the conjugacy problem, we can convert the problem into
the following problem, which we call the Orbit Problem of
uprighting hyperplanes :

• (for conjugacy problem inOut(H), called Problem OOut)
whether there is such an automorphism η ∈ Aut(G2)
such that η(Ψ(H)) ⊂ H and η(Ψ(t1)) ∈ t2H

• (for conjugacy problem in Aut(H), called Problem OAut)
whether there is such an automorphism η ∈ Aut(G2)
such that η(Ψ(H)) ⊂ H and η(Ψ(t1)) = t2

In addition, from Theorem 7.13, coset representatives of
the subgroup Out1(H oφ2 〈t2〉) in Out(H oφ2 〈t2〉) are com-
putable, the conjugacy problem can be turned into the Orbit
Problem of uprighting hyperplanes in Out1(H oφ2 〈t2〉). If τ
is a solution in Out1(G2) to the Orbit Problem of uprighting
hyperplanes of Out1(H oφ2 〈t2〉), then its image Mj of φ in
each GLrj ,nj

satisfies the condition (named Condition 1 ):

• (for conjugacy problem in Out(H)):

Mj(Ψ(H) ∩Gvj) = H ∩Gvj ,Mj(Ψ(t1hvj)) ⊂ t2hvjH

• (for conjugacy problem in Aut(H)):

Mj(Ψ(H) ∩Gvj) = H ∩Gvj ,Mj(Ψ(t1hvj)) = t2hvj

Thus we give the following lemma:

Lemma 7.19 Let H = A1 ∗ ... ∗ Ak ∗ Fp, φ1, φ2 be two toral
relatively hyperbolic automorphisms. Assume that there is an
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isomorphism Ψ : H1oφ1 〈t1〉 → H2oφ2 〈t2〉 . Then in the exact
sequence (ES) of Theorem 7.13, one can decide whether there
are matrices Mj ∈ GLrj ,nj

(Z) such that Mj(Ψ(H) ∩ Gvj) ⊂
(H∩Gvj) for all j = 1, ...,m. And if there exist such matrices,
these matrices are computable.

Proof: As each vertex group Gvj in the JSJ-splitting
X is finitely generated and abelian, we can find a basis for
each Gvj . Since Ψ(H) is the kernel of a cyclic quotient of G,
Ψ(H) ∩ Gvj is the kernel of a cyclic quotient of Gvj . This
gives a linear equation of integer coefficient, whose result is
the generating set Sj of Ψ(H)∩Gvj (which does not generates
other elements). Now the question can be turned into the ex-
istence of Mj such that MjSj ⊂ (H ∩ Gvj). Quotient both
sides of the equation by H ∩ Gvj , the question turns to the

equation MjSj = 1, which is another linear equation problem
of integer coefficient. Since there exist an algorithm to de-
termine whether any given Diophantine equation is solvable,
this Diophantine equation has a solution if and only if such a
matrix Mj exist, and by the solution to the last equation (if
it does has a solution), each Mj is computed.

By the above Lemma and the same analysis, we come
easily to the statement:

Proposition 7.20 Let H = A1 ∗ ... ∗ Ak ∗ Fp, φ1, φ2 be two
toral relatively hyperbolic automorphisms. Assume that there
is an isomorphism Ψ : H1oφ1 〈t1〉 → H2oφ2 〈t2〉 . Then in the
exact sequence (ES) of Theorem 7.13, one can decide whether
there are matrices Mj ∈ GLrj ,nj

(Z) such that Condition 1
holds. And if there exist such matrices, these matrices are
computable.

From the previous analysis, if there are no matrices ma-
trices Mj ∈ GLrj ,nj

(Z) satisfying Condition 1, then there
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is no solution in Out1(H oφ2 〈t2〉) to the orbit problem of
Out1(H oφ2 〈t2〉), and consequentely φ1 and φ2 are not con-
jugate. When such matrices exist and are computable, in
order to find out whether there is some η′ ∈ Out1(H oφ2 〈t2〉)
satisfying the orbit problem in Out1(H oφ2 〈t2〉), we need
to know whether there is a twist ξ ∈ T such that some
η′ ∈ Out1(H oφ2 〈t2〉) (η′ ir relevant to ξ) satisfying the orbit
problem in Out1(H oφ2 〈t2〉), here we give a lemma.

Lemma 7.21 Let H = A1 ∗ ... ∗ Ak ∗ Fp, φ1, φ2 be two toral
relatively hyperbolic automorphisms. Assume that there is an
isomorphism Ψ : (H1 oφ1 〈t1〉) → (H2 oφ2 〈t2〉) . Assume
also in the exact sequence (ES) of Theorem 7.13, matrices
Mj ∈ GLrj ,nj

(Z) satisfy Condition 1.
Then one can decide whether or not there exists some η′ ∈

Out1(H oφ2 〈t2〉) satisfying the orbit problem in Out1(H oφ2

〈t2〉). To be more specific, one can decide whether or not there
exists some η′ ∈ Out1(H oφ2 〈t2〉) satisfying statement 1.2 in
Lemma 7.7 (when consider conjugacy problem in Aut(H)), or
satisfying statement 2.2 in Lemma 7.7 (when consider conju-
gacy problem in Out(H)).

Proof: From Lemma 7.18, there is no (QH)-vertex in the
JSJ-splitting, so each MCG0(Σi) in the exact sequence (ES)
of Theorem 7.13 is trivial. Let {h1, ...hq} be a generating set
of H. Since T is generated by Dehn twist, and since T is
abelian, {DTe|e ∈ NSE} (in which NSE denotes the set of
non-separating edges) forms a generating set of T.

Denote by (M1, ...,Mm) the tuple of matrices satisfying

Condition 1, which is in
m∏
j=1

GLrj ,nj
(Z) in the exact sequence

(ES) of Theorem 7.13, denote by M a pre-image (lift) of
(M1, ...,Mm) in Out1(Hoφ2 〈t2〉), and denote by M ′ the image
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of M in the abelianisation. If the abelianisation of η′ fits the
orbit problem, denote by ξ the corresponding the solution in
T. We can write ξ̄ in the form DT n1

e1
...DT ns

es . Then the corre-
sponding element η̄′ ∈ Out1(H1(H oφ2 〈t2〉)) can be written
as M ′DT n1

e1
...DT ns

es . The question is turned into the existence
problem of n1, ...ns such that

• (for conjugacy problem in Out(H)): η̄(h̄i) ∈ H̄ for all
i = 1, ..., q, η̄(t̄1) ∈ t̄2H̄

• (for conjugacy problem in Aut(H)): η̄(h̄i) ∈ H̄ for all
i = 1, ..., q, η̄(t̄1) = t̄2

Once again, quotient each side of above equations by H̄, one
can get Diophantine equations. And Diophantine equation
problem is decidable. These Diophantine equations have a
solution if and only if there is ξ ∈ T such that some η′ ∈
Out1(H oφ2 〈t2〉) satisfies the orbit problem in Out1(H oφ2

〈t2〉).

The previous lemma provides the solvability for conjuga-
tion problem if η′ ∈ Out1(H oφ2 〈t2〉): if there is such a so-
lution, then we are done; if not, we still need to proceed as
follows.

As Out1(H oφ2 〈t2〉) is a subgroup of Out(H oφ2 〈t2〉) of
finite index, and that coset representatives of Out1(Hoφ2 〈t2〉)
in Out(Hoφ2 〈t2〉) are computable, denote by {h1, . . . , hu} the
set of these cosets (hi 6= hj for i 6= j). Then we can reproduce
the process in the proof of last lemma to decide whether or not
there is ξ ∈ T such that some η ∈ hiOut1(Hoφ2 〈t2〉) satisfies
statement 1.2 in Lemma 7.7 (when consider conjugacy prob-
lem in Aut(H)) or satisfies statement 2.2 in Lemma 7.7 (when
consider conjugacy problem in Out(H)). Once again, we ob-
tain Diophantine equations. If for some hi, the Diophantine
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equations have a solution, then the two given automorphisms
are conjugate in Out(H) (or in Aut(H) respectively); if the
Diophantine equations do not have a solution for any hi, then
the two given automorphisms are not conjugate in Out(H)
(or in Aut(H) respectively).

If we assume that H = A1 ∗ ... ∗Ak ∗Fp, with each Ai free
abelian, and that φ1 and φ2 are two toral atoroidal automor-
phisms of H, then φ1, φ2 satisfies the central condition, and
by Theorem 6.10, H oφ1 Z, H oφ2 Z are relatively hyperbolic.
Furthermore, φ1 and φ2 are toral relatively hyperbolic.

From above Lemmas and analyses, one can conclude the
following:

Theorem 7.22 Given H = A1∗ ...∗Ak ∗Fp, with each Ai free
abelian, there is an algorithm to decide, given φ1 and φ2 two
toral atoroidal automorphisms, whether they are conjugate in
Aut(H) (and in Out(H)).
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