Modelization of stable metal clusters containing Group 11 elements
Franck Gam

To cite this version:

HAL Id: tel-02009999
https://tel.archives-ouvertes.fr/tel-02009999
Submitted on 6 Feb 2019
Thèse de doctorat de

L'Université de Rennes 1
ComUE Université Bretagne Loire

École Doctorale n° 596
Matière, Molécules, Matériaux
Spécialité : Chimie Physique, Chimie Théorique

Par
Franck GAM

Thèse présentée et soutenue à Santiago du Chili, le 30 Octobre 2018
Unité de recherche : UMR 6226
Thèse N° :

Rapporteurs avant soutenance :
Gloria CÁRDENAS-JIRÓN
Professeur, (Universidad Santiago de Chile)
Romuald POTEAU
Professeur (INSA-Toulouse)

Composition du Jury :
Ramiro ARRATIA-PÉREZ
Professeur, Universidad Andrés Bello, co-directeur
Gloria CÁRDENAS-JIRÓN
Professeur, Universidad Santiago de Chile, rapporteure
Jean-René HAMON
Directeur de recherche CNRS, Université de Rennes 1, examinateur
Dayán PÁEZ-HERNÁNDEZ
Professeur assistant, Universidad Andrés Bello, examinateur
Romuald POTEAU
Professeur, INSA-Toulouse, rapporteur
Jean-Yves SAILLARD
Professeur émérite, Université de Rennes 1, co-directeur
Andrés VEGA-CARVALLO
Professeur, Universidad Andrés Bello, examinateur
Franck GAM

Realised at the:
Research unit UMR n°6226, Institut des Sciences Chimiques de Rennes
UFR Sciences et Propriété de la Matière
and
Facultad de Ciencias Exactas, programa de doctorado en Fisicoquimica Molecular

Modelization of stable metal clusters containing Group 11 elements

PhD defended in Santiago of Chile on October 30th 2018

committee:

Ramiro ARRATIA-PÉREZ
Professor, Universidad Andrés Bello / co-supervisor

Gloria CÁRDENAS-JIRÓN
Professor, Universidad Santiago de Chile / referee

Jean-René HAMON
CNRS Research Director, Université de Rennes 1 / examiner

Dayán PÁEZ-HERNÁNDEZ
Assistant professor, Universidad Andrés Bello / examiner

Romuald POTEAU
Professor, INSA-Toulouse / referee

Jean-Yves SAILLARD
Emeritus Professor, Université de Rennes 1 / co-supervisor

Andrés VEGA-CARVALLO
Professor, Universidad Andrés Bello / examiner
ACKNOWLEDGMENTS

This PhD, which lasted 3 years allowed me to discover new cultures, to learn more about the human nature, but also and especially it accentuated my interest for chemistry. For all these reasons:

I would like to thank my PhD supervisor from Chile, Prof. Ramiro Arratia-Pérez for welcoming me to his laboratory and allowing me to discover research practice.

I extend my sincere thanks to my French supervisor, Prof. Jean-Yves Saillard for his patience with me, for the answers to my questions, as well as for his advices.

I would also like to express my gratitude to Dr. Samia Kahlal for her availability, her generosity as well as her wise scientific and personal points of view.

I would like to thank Prof. Alvaro Muñoz-Castro for his important help in the supervision of my PhD work.

I thank the Franco-Chilean International Associated Laboratory (LIA 3M-1027) which supported my thesis and more particularly its French Scientific Director, Prof. Jean-René Hamon. He can find here the expression of my sincere gratitude.

I acknowledge the Région Bretagne (ARED NANOCLUS n° 9334) and the Universidad Andrés Bello for providing me a PhD grant.

I would like to warmly thank Prof. Romuald Poteau and Prof. Gloria Cárdenas-Jirón for having accepted to referee my work.

I also thank Prof. Jean-René Hamon, Dr. Dayán Páez-Hernández and Prof. Andrés Vega-Carvallo for having accepted to be members of the committee of my PhD.

I would like to extend special thanks to Prof. Abdou Boucekkine for reviewing this manuscript.

This adventure was rendered possible thanks to Prof. Karine Costuas and Dr. Claudine Katan. I would never thank them enough for putting me in touch with my co-supervisor Prof. Jean-Yves Saillard.

The CTI team is a group where there is a good atmosphere, I would like to thank Sandrine Nogues for her good humor and especially for her precious help in the administrative procedures I was faced to. I also thank Dr. Rémi Marchal for his help with the calculations on the computing machines. I have a deep thought for all the permanent staff of the team but also for all my PhD and post-doc colleagues.
This thesis manuscript reports a work of applied theoretical chemistry carried out at the Universidad Andrés Bello (Santiago, Chile) and the University of Rennes 1 (Rennes, France) within the framework of a co-tutelle agreement between both institutions. This thesis was rendered possible thanks to a PhD grant co-financed by the Région Bretagne (ARED NANOCLUS n° 9334) and the Universidad Andrés Bello. The work performed in collaboration with Prof. Alvaro Muñoz-Castro was supported by FONDECYT 1180683.

Basically, the reported work is based on the use of density functional theory (DFT) calculations in order to understand, sometimes predict, the stability, structure and some properties of large (nanometric or subnanometric) cluster molecules.

The manuscript is organized in chapters, each of them (except for the introductive Chapter 1) corresponding to a specific investigation devoted to be published. Therefore, any of these chapters is written in the style of an article, already published, accepted or in preparations. Although we have tried to circumvent most of the repetitions inherent to this mode of presentation, some could not be avoided and we must apologize for this fact.

The following publications are already published or accepted:

List of figures

General introduction: Relationships between structure and number of valence electrons in clusters

Figure 1.1. Examples of molecular clusters ... 1

Figure 1.2. General schematic MO diagram for a closed-shell chemically stable (viable) molecule .. 2

Figure 1.3. Schematic MO diagram of a 18-je MLn complex (M = transition-metal ; L = 2-electron ligand, n ≤ 9) .. 4

Figure 1.4. Illustration of the isolobal analogy between E, EH, and ML3 fragments (E = main-group; M = transition-metal). The three fragments possess a set of similar frontier orbitals (one σ (radial) and two π (tangential)) occupied by the same number of electrons (two). The electron occupation corresponds to C, BH and Fe(CO)3, respectively 6

Figure 1.5. General MO diagram of a stable cluster made of E, ER or ML3 fragments as defined in Figure 1.4. This schematic situation can be extended to any type of fragments, providing that the cluster satisfy the regular PSEP theory rules 7

Figure 1.6. Closo, nido and arachno skeletons of boranes and carboranes 8

Figure 1.7. Major features of the spherical jellium model ... 10

Figure 1.8. Simplified MO interaction diagram illustrating the difference between a superatom (left) and a Wade-Mingos type cluster, when interacting with an incoming additional 2-electron ligand ... 12

Figure 1.9. Examples of ligated closed-shell Group 11 superatoms 13

Figure 1.10. Examples of copper(I) polyhydrides ... 14

Figure 1.11. Molecular structures of [Au20] (a), [Ag16Ni24(CO)40]4+ (b), [WAu12] (c) and [Zn4Cu3Cp*5] (d) ... 15

Chapter 2: Insights into the intrinsic stability and optical properties of coinage metal superatomic cores

Figure 2.1. Structural representation of the studied cluster cores 24

Figure 2.2. Relevant Kohn-Sham molecular orbital diagrams for [M4]2+ (left), [M8] (right) and [M20] (below) with (a) for copper, (b) for silver and (c) for gold. Jellium level denoted in blue .. 26
Figure 2.3. Relevant Kohn-Sham molecular orbital diagrams for $[M_{13}]^{5+}$ (above), $[M_{32}]^{14+}$ (middle) and $[M_{43}]^{9+}$ (below). Jellium level denoted in blue .. 27

Figure 2.4. Jellium orbitals of $[M_4]^{2+}$ (left), $[M_8]$ (right) and $[M_{20}]$ (below). Color legend: Occupied blue and red, vacant turquoise and orange ... 28

Figure 2.5. Jellium orbitals of $[M_{13}]^{5+}$ (left), $[M_{32}]^{14+}$ (right) and $[M_{43}]^{9+}$ (below). Color legend: Occupied blue and red, vacant turquoise and orange .. 29

Figure 2.6. Calculated absorption spectra for the different cluster cores. Note that M_4 ($M = Cu, Ag, Au$) exhibiting peaks outside of the 0-3 eV window, a different scale was employed in this case. Color code: Orange, copper; grey, silver; blue, gold. (Lorentzian broadening of 0.05 eV was applied to account for experimental broadening) ... 33

Figure 2.7. Calculated absorption spectrum for $[M_{13}]^{5+}$ and $[M_{32}]^{14+}$ cores (top), and $[M_{25}(SR)_{18}]$ and $[M_{44}(SR)_{30}]^{4+}$ clusters (bottom) ($M = Cu, Ag, Au$), with $R = methyl$ (-CH$_3$). Color code: orange copper; grey silver; blue gold. (Lorentzian broadening of 0.10 eV was applied to account for experimental broadening) .. 34

Chapter 3: Comparison of the stability of group 11 metal (I) hydrides

Figure 3.1. Structural representation of the studied systems ... 44

Figure 3.2. Representation of the phonon spectra (left) and DOS (right) of the wurtzite structure for the MH systems ($M = Cu, Ag, Au$) ... 48

Chapter 4: Electronic and bonding properties of the tetrahedral clusters $[M_{16}Ni_{24}(CO)_{40}]^{4+}$ ($M = Cu, Ag, Au$) related to the pyramidal $[Au_{20}]$ cluster

Figure 4.1. Molecular structure of $[Au_6Ni_{12}(CO)_{24}]^{2-}$ (left) and $[Ag_{16}Ni_{24}(CO)_{40}]^{4+}$ (right) . 59

Figure 4.2. Illustration of the fcc packing (A, B and C planes) in Ag_{20} (left) and the Ag_{16} core of $[Ag_{16}Ni_{24}(CO)_{40}]^{4+}$ (middle) and with one Ni_6 plane (right). The red, yellow and black colors correspond to the symmetry-equivalent Ag', Ag'' and Ag''' atoms, respectively, in Ag_{20} (Ag’4@Ag’12@Ag’14) and the Ag_{16} core (Ag’4@Ag”12). The green color corresponds to Ni ... 61

Figure 4.3. The Kohn-Sham jellium orbitals of $[Au_{16}]^{4+}$ and $[Au_{20}]$ 61

Figure 4.4. Kohn-Sham orbital diagram of free $Ni_{6}(CO)_3(\mu-CO)_6(\mu_3-CO)$ (C_{3v} symmetry) 64

Figure 4.5. Kohn-Sham orbital diagram of $[Ag_{16}Ni_{24}(CO)_{40}]^{4+}$. The MO localization (in %) is given as follows: $Ag_{16}/Ni_{24}(CO)_{40}$... 68
Figure 4.6. TD-DFT-simulated UV-vis absorption spectra of [M_{16}Ni_{24}(CO)_{40}]^{4+} (M=Cu, Ag and Au) .. 69

Figure 4.7. Simplified MO interaction diagram illustrating the difference between an outer sphere atom belonging to the superatom entity (right side) and a (neutral or anionic) 2-electron ligand (left side) .. 71

Chapitre 5: On the possibility to stabilize bare tetrahedral 16-atom metallic architectures

Figure 5.1. The fcc-derived structure of the T_d [Au_{20}] cluster with ABCA packing. The green, yellow and grey colors correspond to the symmetry-equivalent Au’, Au” and Au’’’ atoms, respectively (Au’a@Au”@Au’’’). Removing the four grey atoms generates the M_{16} framework (M’@M”@M’’’@M’’’’). Discussing the in this chapter ... 76

Figure 5.2. Kohn-Sham frontier orbital diagrams of [Ag_{16}]^{4+} and [Ag_{16}]^{2-}. Their 31e levels have been aligned for the sake of comparison. The jellium labels are given on the right side 81

Annex

Figure 5.A1. Different structures corresponding to characterized true energy 92

Chapitre 6: Symmetry lowering by cage doping of [W@Au_{12}]. Evaluation of electronic and optical properties in the 18-je clusters [W@Au_{12}Pt_{n}] (n = 0-4)

Figure 6.1. The low-energy optimized structures of the [W@Au_{12}Pt_{n}] (n = 1, 4) clusters 98

Figure 6.2. Representation of the frontier orbitals for Pt_{0}(I_h), Pt_{1}(C_s), Pt_{2-a}(C_{2v}), Pt_{3}(C_{1}), and Pt_{4}(T_d), depicting representative isosurfaces of the frontier orbitals .. 101

Figure 6.3. Calculated optical absorption spectrum for Pt_{0}(I_h), Pt_{1}(C_s), Pt_{2-a}(C_{2v}), Pt_{3}(C_{1}) and Pt_{4}(T_d). The increase in the range of the A transition is denoted by a black line behind the respective region ... 102

Figure 6.4. Surface representation of the molecular electrostatic potential (V_s(r)) for Pt_{0}(I_h), Pt_{1}(C_s), Pt_{2-a}(C_{2v}), Pt_{2-b}(C_{2v}), Pt_{3}(C_{1}) and Pt_{4}(T_d) ... 104
Chapitre 7: Bonding analysis of pseudo 2-electron trigonal bipyramidal organometalliv Cu/Zn clusters

Figure 7.1. Tetracapped tetrahedral geometry displayed by the [Cu₄Zn₄] core of (ZnCp*)₄(Cu(tBuNC))₄ (left). Its total structure (right) ... 112

Figure 7.2. Representation of the [Zn₂CuCp*₃] structure .. 112

Figure 7.3. Molecular structure of [Cu₃Zn₄Cp*₅] (1) (left) and [Cu₂Zn₅Cp*₅]⁺ (2) (right). The trigonal bipyramids are highlighted. Orthogonal view on the Cu₁, Cu₂, Cu₃ plane showing the Cu₁, Cu₂, Cu₃, Zn₃/2 tetrahedrons of 1 (bottom, left). Orthogonal view on the Cu₁, Cu₂, Zn₃ plane showing the Cu₁, Cu₂, Zn₃, Zn₂/4 tetrahedrons of 2 (bottom, right). Displacement ellipsoids are shown at the 50 % probability level ... 113

Figure 7.4. Kohn-Sham orbital diagram of 1’. The levels are labelled according to Cₛ symmetry (in black) and D₃h pseudo-symmetry (in blue). The Cₛ symmetry plane contains the Cu₃ triangle .. 117

Figure 7.5. Simplified orbital diagram associated with the interaction of the [Cu₃Cp₃]²⁻ and [(CpZn₂…Zn₂Cp)]²⁺ fragments in 1’ (D₃h pseudo-symmetry assumed). The occupied 3d(Zn) and (most of) the 3d(Cu) combinations, not involved in the interaction, are not represented 118
List of schemes

Chapter 3: Comparison of the stability of group 11 metal (I) hydrides

Scheme 3.1. General mechanisms proposed for the reduction of Cu(I) and Ag(I) complexes by NaBH$_4$ in the presence of dichalcogenolate ligands (L), en route to copper and silver nanoparticles ……………………………………………………………………………………………………… 43

Chapter 4: Electronic and bonding properties of the tetrahedral clusters [M$_{16}$Ni$_{24}$(CO)$_{40}$]$^{4+}$ (M = Cu, Ag, Au) related to the pyramidal [Au$_{20}$] cluster

Scheme 4.1. Connectivity within a Ni$_6$(CO)$_3$(μ-CO)$_6$ fragment in [Ag$_{16}$Ni$_{24}$(CO)$_{40}$]$^{4+}$ ……. 64
Chapter 2: Insights into the intrinsic stability and optical properties of coinage metal superatomic cores

Table 2.1. Relevant computed data for the \([M_4]^{2+}, [M_8], [M_{13}]^{5+}, [M_{20}], [M_{32}]^{14+}\) and \([M_{43}]^{9+}\) metal cores. \(E_C\) and \(\Delta E_{H-L}\) are the per-atom cohesion energy and HOMO-LUMO gap, respectively. \(E_C\) are in kcal/mol, \(\Delta E_{H-L}\) are in eV, distances are in Å and lowest frequencies are in cm\(^{-1}\). All calculations with TZ2P basis sets in vacuum, except for \([M_{32}]^{14+}\), in which a QZ4P basis set associated with solvent (DMF) corrections was employed ………………... 30

Table 2.2. Relevant computed data for the \([M_{13}]^{11+}, [M_{12}]^{2-}\), and \([M_{43}]^{3+}\) metal cores. \(E_C\) and \(\Delta E_{H-L}\) are the per-atom cohesion energy and HOMO–LUMO gap, respectively. \(E_C\) are in kcal/mol, \(\Delta E_{H-L}\) are in eV, distances are in Å and lowest frequencies are in cm\(^{-1}\). All calculations done with the TZ2P basis sets in vacuum, except for \([M_{13}]^{11+}\), the computations included solvent (DMF) corrections …………………………………………... 32

Table 2.3. Spin-orbit splitting in representative cores [cm\(^{-1}\)]……………………………….. 35

Chapter 3: Comparison of the stability of group 11 metal (I) hydrides

Table 3.1. Calculated lattice parameters and M-H distances (in Å) for the three MH systems (M = Cu, Ag, Au) …………………………………………………………………………. 46

Table 3.2. Relative energies (in meV/MH) unit for the studied structures …………………………… 46

Table 3.3. Band gap (in eV) for the optimized MH systems (M = Cu, Ag, Au) …………………. 49

Table 3.4. Energy of formation (\(E_F\)) and cohesion energy (\(E_C\)) computed for the MH systems (M = Cu, Ag, Au) in the Wurzite structure-type. The values are given in eV and correspond to one MH formula unit ……………………………………………………………….. 50

Table 3.5. Relevant characteristic of the optimized MH (M = Cu, Ag, Au) models …………… 50

Table 3.6. Bonding energy decomposition analysis in MH (M = Cu, Ag, Au). Top: Homolytic clivage. Bottom: Heterolytic clivage. All the energies are in eV ……………………………… 51

Table 3.7. Relevant computed datas for the \([M_8(H)(S_2PH_2)_6]\)\(^{+}\) systems ………………………… 52

Table 3.8. Morokuma-Ziegler energy decomposition analysis (EDA) of the \([M_8(H)(S_2PH_2)_6]\)\(^{+}\) clusters. All values are in eV. \(E_{Pauli} = \) Pauli repulsion, \(E_{elstat} = \) electrostatic interaction, \(E_{orb} = \) orbital interaction. TBE = total bonding energy = \(E_{Pauli} + E_{elstat} + E_{orb} \) …………………………… 52
Chapter 4: Electronic and bonding properties of the tetrahedral clusters

Table 4.1. Decomposition of the bonding energy between the [M_{16}]^{4+} core and its outer capping [M_{4}]^{3+} fragment in the [M_{20}] (M = Cu, Ag, Au) clusters of T_d symmetry and electron configuration of the four capping atoms. All energies are in eV 62

Table 4.2. Relevant computed data for [M_{16}]^{4+} and [M_{20}] clusters (M = Cu, Ag, Au) 63

Table 4.3. Decomposition of the bonding energy between the [M_{16}]^{4+} and Ni_{6}Ni_{4} fragment in the C_{3v} model [M_{16}(Ni_{6}(CO)_{10})]^{4+} (M = Cu, Ag, Au) and population analysis of the fragment. All energies are in eV .. 66

Table 4.4. Relevant computed data for [M_{16}Ni_{24}(CO)_{40}]^{4+} (M = Cu, Ag, Au) clusters. $\Delta E_{\text{H-L}}$ is HOMO-LUMO gap in eV. The two types of symmetry-equivalent group 11 atoms refer to the concentric spheres M'_{4}@M''_{12} (see Section 2.1). The two types of symmetry equivalent Ni atoms are labeled Ni_{A} and Ni_{B}, the inner and outer metals in Ni_{6}(CO)_{10}, respectively (see Section 2.2). Distances are given in Å. Experimental values of Dahl’s silver cluster taken from Ref. 39 are given in parenthesis ... 67

Table 4.5. Decomposition of the bonding energy between the [M_{16}]^{4+} core its [Ni_{24}(CO)_{40}] envelope in the T_d [M_{16}(Ni_{24}(CO)_{40})]^{4+} (M = Cu, Ag, Au) and population analysis of the fragment. All energies are in eV .. 67

Table 4.6 Major computed electronic absorption for [Ag_{16}Ni_{24}(CO)_{40}]^{4+}. The MO localizations (in %) are given in parentheses as follows: Ag_{16}/Ni_{24}/(CO)_{40} 70

Chapitre 5: On the possibility to stabilize bare tetrahedral 16-atom metallic architectures

Table 5.1. Relevant results computed for the hypothetical 20- and 18-je [M_{16}]^{4+} and [M_{16}]^{2+} (M = Cu, Ag, Cu) clusters (T_d symmetry) in vacuum and in DMF .. 79

Table 5.2. Relevant results computed for the hypothetical 20-je [M'_{4}M''_{12}] (M' = Zn, Cd, Hg; M'' = Cu, Ag, Au) clusters of T_d symmetry ... 82

Table 5.3. Relevant results computed for the hypothetical 18-je [M'_{4}M''_{12}]^{2+} (M' = Zn, Cd, Hg; M'' = Cu, Ag, Au) clusters of T_d symmetry ... 83
Table 5.4. Relevant results computed for the hypothetical 20-je [X@M_{16}] (X= C, Si, Ge, Sn, Pb; M = Cu, Ag, Au) clusters of T_d symmetry ... 85
Table 5.5. Relevant results computed for the hypothetical 18-je [X@M_{16}] (X= Be, Mg, Ca, Sr, Ba; M = Cu, Ag, Au) clusters of T_d symmetry ... 86
Table 5.6. Relevant results computed for the hypothetical 20-je [A@M_{16}] (A = Ti, Zr, Hf; M = Cu, Ag, Au) clusters of T_d symmetry. No convergence for [TiAu_{16}] in T_d symmetry 88
Table 5.7. Relevant results computed for the hypothetical 18-je [A@M_{16}] (A = Zn, Cd, Hg M = Cu, Ag, Au) clusters of T_d symmetry. No convergence for [HgAg_{16}] in T_d symmetry 89
Annex
Table 5.A1. Energy minima obtained for some of the hypothetical 20- and 18-je centered M_{16} clusters which do not adopt the T_d symmetry. In parenthesis the difference in kcal/mol between E_{Td} and $E_{new symmetry}$.. 93
Table 5.A2. Relevant results computed for the hypothetical 20-je centered M_{16} clusters in their low symmetry energy minima .. 94
Table 5.A3. Relevant results computed for the hypothetical 18-je centered M_{16} clusters in their low symmetry energy minima .. 94

Chapitre 6: Symmetry lowering by cage doping of [W@Au_{12}]. Evaluation of electronic and optical properties in the 18-je clusters [W@Au_{12}Pt_{n}] (n = 0-4)
Table 6.1. Major computed data for the isomers of lower energy (ΔE: isomer relative energy; n: number of bonding contacts) .. 99
Table 6.2. Energy decomposition analysis, HOMO-LUMO gaps (ΔE_{H-L}), per atom cohesion energy (E_c), adiabatic electron affinities (AEA) and adiabatic ionization potentials (AIP) of the Pt_{n} (n = 0-4) global minima .. 100

Chapitre 7: Bonding analysis of pseudo 2-electron trigonal bipyramidal organometalliv Cu/Zn clusters
Table 7.1. Selected averaged experimental (X-ray) and optimized (DFT) distances for 1, 1’, 2 and 2’ (in Å). The corresponding averaged computed Wiberg indices are given in parenthesis for 1’ and 2’. The Zn’ and Zn” labels designate the zinc atom bonded to Cp*/Cp and that belonging to the Cu_{2}Zn triangle in 2/2’, respectively ... 114
Table 7.2. Morokuma-Ziegler energy decomposition analysis (EDA) of 1’ and 2’. All values in eV. E_{Pauli} = Pauli repulsion; E_{elstat} = electrostatic interaction; E_{Orb} = orbital interaction. TBE = total bonding energy = $E_{Pauli} + E_{elstat} + E_{Orb} + E_{disp}$.. 116

Table 7.3. 3-fragment Morokuma-Ziegler energy decomposition analysis (EDA) of 1’ and 2’, 1 and 2. All values in eV. $E_{Pauli} =$ Pauli repulsion; $E_{elstat} =$ electrostatic interaction; $E_{Orb} =$ orbital interaction. TBE = total bonding energy = $E_{Pauli} + E_{elstat} + E_{Orb} + E_{disp}$ 120
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Amsterdam density functional</td>
</tr>
<tr>
<td>AEA</td>
<td>Adiabatic electron affinity</td>
</tr>
<tr>
<td>AIP</td>
<td>Adiabatic ionization potential</td>
</tr>
<tr>
<td>AO</td>
<td>Atomic orbital</td>
</tr>
<tr>
<td>BP86</td>
<td>Becke-perdew 86</td>
</tr>
<tr>
<td>COSMO</td>
<td>Conductor like screening model</td>
</tr>
<tr>
<td>Cp</td>
<td>Cyclopentadienyl</td>
</tr>
<tr>
<td>Cp*</td>
<td>Pentamethylcyclopentadienyl</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DOS</td>
<td>Density of states</td>
</tr>
<tr>
<td>EAN</td>
<td>Effective atomic number</td>
</tr>
<tr>
<td>Ec</td>
<td>Cohesion energy</td>
</tr>
<tr>
<td>EDA</td>
<td>Energy decomposition analysis</td>
</tr>
<tr>
<td>E(_{\text{disp}})</td>
<td>Dispersion energy</td>
</tr>
<tr>
<td>E(_{\text{elstat}})</td>
<td>Electrostatic interaction</td>
</tr>
<tr>
<td>E(_{f})</td>
<td>Energy of formation</td>
</tr>
<tr>
<td>E(_{\text{orb}})</td>
<td>Orbital interaction energy</td>
</tr>
<tr>
<td>E(_{\text{Pauli}})</td>
<td>Pauli repulsion energy</td>
</tr>
<tr>
<td>eV</td>
<td>Electron Volt</td>
</tr>
<tr>
<td>fcc</td>
<td>Face-centered cubic</td>
</tr>
<tr>
<td>FO</td>
<td>Frontier orbital</td>
</tr>
<tr>
<td>GGA</td>
<td>Generalized-gradient approximation</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied molecular orbital</td>
</tr>
<tr>
<td>(j_e)</td>
<td>Jellium electron</td>
</tr>
<tr>
<td>LCAO</td>
<td>Linear combination of atomic orbitals</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>MLCT</td>
<td>Metal-to-ligand charge-transfer</td>
</tr>
<tr>
<td>MO</td>
<td>Molecular orbital</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NBO</td>
<td>Natural bond orbital</td>
</tr>
<tr>
<td>OAc</td>
<td>Acetoxo group</td>
</tr>
<tr>
<td>PAW</td>
<td>Projected augmented wave</td>
</tr>
<tr>
<td>PBE</td>
<td>Perdew-burke-ernzerhof</td>
</tr>
<tr>
<td>PSEP</td>
<td>Polyhedral skeletal electron pair</td>
</tr>
<tr>
<td>SEP</td>
<td>Skeletal electron pair</td>
</tr>
<tr>
<td>SR</td>
<td>Scalar relativistic</td>
</tr>
<tr>
<td>STO-TZ2P</td>
<td>Slater type orbitals-Triple ζ + two polarization functions</td>
</tr>
<tr>
<td>STO-QZ4P</td>
<td>Slater type orbitals-Triple ζ + four polarization functions</td>
</tr>
<tr>
<td>TBE</td>
<td>Total bonding energy</td>
</tr>
<tr>
<td>TD-DFT</td>
<td>Time-dependent density functional theory</td>
</tr>
<tr>
<td>TSH</td>
<td>Tensor surface harmonics</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-visible</td>
</tr>
<tr>
<td>VASP</td>
<td>Vienna ab initio simulation package</td>
</tr>
<tr>
<td>ZORA</td>
<td>Zeroth order regular approximation</td>
</tr>
</tbody>
</table>
Résumé

Modélisation de clusters stables contenant des métaux de transition du groupe 11

Les travaux de thèse présentés dans ce mémoire portent sur l’étude théorique de clusters inorganiques de métaux du groupe 11 (Cu, Ag, Au) ou de clusters hétéronucléaires contenant des métaux du groupe 11. Les calculs de chimie quantique effectués en théorie de la fonctionnelle de la densité (DFT) ont été effectués dans le but d’interpréter la stabilité et la structure géométrique des composés étudiés, ainsi que, pour certaines espèces, leurs propriétés optiques ou chimiques.

Le mémoire commence par un chapitre introductif rappelant les conditions que doit respecter la structure électronique d’un composé pour qu’il ait une chance d’être suffisamment stable pour être isolé ou simplement observé. Les règles de décompte électronique qui découlent de ces conditions sont ensuite brièvement rappelées et expliquées.

Nous nous sommes ensuite intéressés à comprendre pourquoi, lorsqu’un complexe du cuivre(I) est traité par NaBH₄ en présence d’un ligand dichalcogénolate (typiquement un dithiocarbonate ou un dithiophosphate), selon les quantités de réactifs, on n’a pu à ce jour isoler uniquement que des polyhydrures de cuivre(I), alors qu’avec un grand excès de borohydrure on forme des nanoparticules métalliques (Cu(0)). Logiquement, des espèces intermédiaires à valences mixtes de degré d’oxydation compris entre +I et 0 devraient être obtenues. C’est en fait ce qu’on observe lorsqu’on utilise des complexes de l’argent(I) dans les mêmes conditions (voir Schéma R.1). Des hydrures sont tout d’abord isolés, puis avec un plus grand excès de borohydrure, des clusters à valences mixtes sont obtenus.

Nous avons cherché à comprendre l’origine de cette différence en évaluant la stabilité intrinsèque de superatomes de cuivre et d’argent débarrassés de leurs ligands (clusters nus), afin de ne pas introduire de variable supplémentaire. Nous y avons ajouté les analogues d’or, non seulement pour compléter la série du groupe 11, mais aussi parce que de nombreux superatomes d’or sont connus et donc cet élément constitue une référence pour Cu et Ag. Les superatomes étudiés sont de taille croissante (de M₄ à M₄₃). Leurs structures, représentées sur la Figure R.1, sont inspirées de celles de clusters réels et leurs charges ont été ajustées de façon à ce qu’ils présentent un nombre « magique » d’électrons tel que prévu par la théorie du jellium sphérique. Nous avons de surcroît calculé leurs propriétés optiques en méthode TD-DFT.
Schéma R.1. Mécanisme général proposé pour la réduction de complexes de Cu(I) et Ag(I) par NaBH₄ en présence de ligands dichalcogénolates, en route vers la formation de nanoparticules métalliques.

From Copper(I) to Copper(0)

\[\text{[Cu(CH₃CN)₄]PF₆} \rightarrow \text{[Cu₇HL₆]} \rightarrow \text{[Cu₆HL₆]}^+ \rightarrow \text{[Cu₁₅H₂L₁₂]}^+ \rightarrow \text{[Cu₂₀H₁₁L₉]} \rightarrow \text{Cu _ Nanoparticles} \]

\[\text{[Cu₂₆H₁₄L₁₂]} \rightarrow \text{[Cu₂₈H₁₅L₁₂]}^+ \rightarrow \text{[Cu₃₂H₂₀L₁₂]} \rightarrow \text{[Cu₃₈H₂₃L₁₂]}^+ \rightarrow \text{Cu _ Nanoparticles} \]

From Silver(I) to Silver(0)

\[\text{[Ag(CH₃CN)₄]PF₆} \rightarrow \text{[Ag₇HL₆]} \rightarrow \text{[Ag₆HL₆]}^+ \rightarrow \text{[Ag₁₁HL₉]}^+ \rightarrow \text{[Ag₂₀L₁₂]} \rightarrow \text{Ag _ Nanoparticles} \]

\[\text{[Ag₂₁L₁₂]}^+ \rightarrow \text{Ag _ Nanoparticles} \]

Figure R.1. Structures des clusters étudiés.

Comme on peut le voir sur les exemples reportés dans le tableau R.1, le calcul des énergies de cohésion montre que les superatomes de cuivre présentent une stabilité proche de celle de leurs homologues d’or et sont significativement plus stables que les superatomes d’argent. Il devrait donc être possible de stabiliser des clusters superatomiques du cuivre.

<table>
<thead>
<tr>
<th></th>
<th>[M₄]²⁺ / 1S² (2-j)</th>
<th>[M₈] M₄@M₄ / 1S² 1P⁶ (8-j)</th>
<th>[M₁₃]⁵⁺ M@M₁₂ / 1S² 1P⁶ (8-j)</th>
<th>[M₂₀] M₄@M₁₂@M₄ / 1S² 1P⁶ 1D¹⁰ 2S² (20-j)</th>
<th>[M₃₂]¹⁴⁺ M₁₂@M₂₀ / 1S² 1P⁶ 1D¹⁰ (18-j)</th>
<th>[M₄₃]⁹⁺ M@M₁₂@M₃₀ / 1S² 1P⁶ 1D¹⁰ 2S² 1F¹⁴ (34-j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eₜ</td>
<td>ΔE_H-L</td>
<td>M₄tet-M₄tet</td>
<td>Mcent-MICO</td>
<td>Mtrunc-Mtrunc</td>
<td>MCO-MICO</td>
<td>MCO-Mcap</td>
</tr>
<tr>
<td>[Cu₄]²⁺</td>
<td>-27.8</td>
<td>2.56</td>
<td>2.430</td>
<td>2.390</td>
<td>2.963</td>
<td>2.390</td>
</tr>
<tr>
<td>[Ag₄]²⁺</td>
<td>-18.2</td>
<td>3.85</td>
<td>2.800</td>
<td>2.767</td>
<td>2.963</td>
<td>2.767</td>
</tr>
<tr>
<td>[Au₄]²⁺</td>
<td>-30.0</td>
<td>2.50</td>
<td>2.727</td>
<td>2.740</td>
<td>2.963</td>
<td>2.740</td>
</tr>
<tr>
<td>[Cu₈]</td>
<td>-53.8</td>
<td>2.15</td>
<td>2.460</td>
<td>2.390</td>
<td>2.963</td>
<td>2.390</td>
</tr>
<tr>
<td>[Ag₈]</td>
<td>-39.4</td>
<td>2.32</td>
<td>2.853</td>
<td>2.767</td>
<td>2.963</td>
<td>2.767</td>
</tr>
<tr>
<td>[Au₈]</td>
<td>-47.2</td>
<td>2.02</td>
<td>2.871</td>
<td>2.740</td>
<td>2.963</td>
<td>2.740</td>
</tr>
<tr>
<td>[Cu₁₃]⁵⁺</td>
<td>-7.5</td>
<td>1.91</td>
<td>2.514</td>
<td>2.643</td>
<td>2.963</td>
<td>2.643</td>
</tr>
<tr>
<td>[Ag₁₃]⁵⁺</td>
<td>4.5</td>
<td>2.63</td>
<td>2.888</td>
<td>3.037</td>
<td>2.963</td>
<td>3.037</td>
</tr>
<tr>
<td>[Au₁₃]⁵⁺</td>
<td>-8.9</td>
<td>2.01</td>
<td>2.818</td>
<td>2.963</td>
<td>2.963</td>
<td>2.963</td>
</tr>
<tr>
<td>[Cu₂₀]</td>
<td>-62.07</td>
<td>1.34</td>
<td>2.600</td>
<td>2.453</td>
<td>2.963</td>
<td>2.643</td>
</tr>
<tr>
<td>[Ag₂₀]</td>
<td>-45.46</td>
<td>1.64</td>
<td>3.034</td>
<td>2.831</td>
<td>2.963</td>
<td>2.755-2.902</td>
</tr>
<tr>
<td>[Au₂₀]</td>
<td>-56.34</td>
<td>1.81</td>
<td>3.131</td>
<td>2.817</td>
<td>2.963</td>
<td>2.674-2.946</td>
</tr>
<tr>
<td>[Cu₃₂]¹⁴⁺</td>
<td>-43.7</td>
<td>0.92</td>
<td>2.541</td>
<td>2.461</td>
<td>2.781</td>
<td>2.781</td>
</tr>
<tr>
<td>[Ag₃₂]¹⁴⁺</td>
<td>-27.9</td>
<td>1.59</td>
<td>2.922</td>
<td>2.821</td>
<td>3.188</td>
<td>3.188</td>
</tr>
<tr>
<td>[Au₃₂]¹⁴⁺</td>
<td>-44.3</td>
<td>1.11</td>
<td>2.953</td>
<td>2.762</td>
<td>3.143</td>
<td>3.143</td>
</tr>
<tr>
<td>[Cu₄₃]⁹⁺</td>
<td>-28.4</td>
<td>0.35</td>
<td>2.501</td>
<td>2.630</td>
<td>2.781</td>
<td>2.611</td>
</tr>
<tr>
<td>[Ag₄₃]⁹⁺</td>
<td>-14.6</td>
<td>0.63</td>
<td>2.931</td>
<td>3.082</td>
<td>3.018</td>
<td>3.018</td>
</tr>
<tr>
<td>[Au₄₃]⁹⁺</td>
<td>-26.4</td>
<td>0.70</td>
<td>2.894</td>
<td>3.043</td>
<td>2.971</td>
<td>2.971</td>
</tr>
</tbody>
</table>

XVII
Ce résultat étant en contradiction apparente avec les observations expérimentales décrites dans le Schéma R.1, nous nous sommes posés la question de la stabilité relative des hydrures et polyhydrures de cuivre(I) et d’argent(I). Pour répondre à cette question, nous avons calculé un certain nombre de composés modèles, tant de l’état solide (phases de stœchiométrie MH) que moléculaires. Les énergies de cohésion et/ou d’énergies d’interaction entre les hydrures et leurs hôtes métalliques convergent vers la même conclusion, à savoir que les hydrures de cuivre(I) sont plus stables que ceux d’argent(I). Les données calculées pour la phase Wurtzite, qui constitue le modèle limite pour un polyhydrure géant sont données à titre d’exemple dans le Tableau R.2 ci-dessous.

Tableau R.2. Énergie de formation (E_F) et énergie de cohésion (E_C) calculées pour les systèmes MH ($M = Cu, Ag, Au$) dans la structure-type Wurzite. Les valeurs sont en eV et ramenées à une unité MH.

<table>
<thead>
<tr>
<th>MH</th>
<th>E_F</th>
<th>E_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuH</td>
<td>0.273</td>
<td>-0.944</td>
</tr>
<tr>
<td>AgH</td>
<td>0.414</td>
<td>-0.372</td>
</tr>
<tr>
<td>AuH</td>
<td>0.700</td>
<td>-0.409</td>
</tr>
</tbody>
</table>

La conclusion générale que l’on peut tirer de l’ensemble de nos résultats est donc que, même si les superatomes de cuivre sont intrinsèquement plus stables que ceux d’argent, ils sont particulièrement réticents à se former dans les conditions opératoires du Schéma R.1 car la formation de polyhydrures est préférée en raison de leur grande stabilité. Ce n’est pas le cas de l’argent, qui, en présence d’un excès suffisant de borohydrure, pourra former des superatomes à valence mixte. Pour conduire plus facilement à la formation de superatomes de cuivre, nous suggérons de modifier les conditions expérimentales du Schéma 1 en ajoutant des ligands supplémentaires susceptibles d’entrer en compétition avec les hydrures.

Nous nous sommes intéressés ensuite à des clusters dont la structure est apparentée à celle de [Au$_{20}$]. Ce cluster nu, suffisamment stable pour être observé, est de symétrie T_d et peut être vu comme un fragment tiré du métal cfc. Il peut aussi se décrire en sphères concentriques Au$_4$@Au$_{12}$@Au$_4$ (Figure R.2). Il possède un nombre « magique » d’électrons (20) et est un rare exemple de superatome du groupe 11 dont le degré d’oxydation « moyen » du métal n’est pas positif (il est égal à 0).
La première famille de clusters que nous avons étudiée dans ce cadre a pour formule $[\text{M}_{16}\text{Ni}_{24}(\text{CO})_{40}]^{4-}$ ($\text{M} = \text{Cu}, \text{Ag}, \text{Au}$). L’espèce correspondant à $\text{M} = \text{Ag}$ a été synthétisée et caractérisée structuralement par Dahl et al. Elle contient le noyau interne $\text{M}_{16} (\text{M}_4@\text{M}_{12})$ présent dans $[\text{Au}_{20}]$ (Figure R.3). Nous avons analysé la structure électronique de cette famille de composés en comparant sa structure électronique à celle des clusters tétraédriques $[\text{M}_{20}]$ ($\text{M} = \text{Cu}, \text{Ag}, \text{Au}$). Par ailleurs, des calculs TD-DFT nous ont permis de comparer leurs propriétés d’émission UV-visible.
Nos calculs ont montré que, tant dans [M\textsubscript{20}] que dans [M\textsubscript{16}Ni\textsubscript{24}(CO)\textsubscript{40}]4- les 20 électrons qui assurent la cohésion du cluster sont délocalisés non seulement sur le noyau interne M\textsubscript{16} mais aussi sur la sphère externe constituée soit de quatre atomes M coiffant les (petites) faces triangulaires (cas de [M\textsubscript{20}]), soit de quatre entités quasi-planes Ni\textsubscript{6}(CO)\textsubscript{10} coiffant les (grandes) faces hexagonales (cas de [M\textsubscript{16}Ni\textsubscript{24}(CO)\textsubscript{40}]4-). Il en résulte que les fragments organométalliques Ni\textsubscript{6}(CO)\textsubscript{10} ne doivent pas être considérés comme des ligands ou entités périphériques « passivantes », mais comme faisant partie intégrante du superatome à 20 électrons.

La question de la stabilité potentielle d’une entité M\textsubscript{16} à 20 électrons reste donc posée et nous avons cherché à y répondre pour des espèces [M\textsubscript{16}]4- (M = Cu, Ag, Au). La charge anionique importante de ces modèles et le caractère antiliant de leur HOMO conduisent à des énergies largement positives de celles-ci. Si ces énergies peuvent devenir négatives dans un environnement cationique simulé par des corrections d’effet de solvant (modèle COSMO) (Tableau R.3), les écarts HOMO-LUMO restent dans l’ensemble modestes.
Tableau R.3. Résultats obtenus pour les espèces hypothétiques \([M_{16}]^4\) et \([M_{16}]^{2-}\) (M = Cu, Ag, Cu) à 20 et 18 électrons (symétrie \(T_d\)) dans le vide et dans le DMF.

<table>
<thead>
<tr>
<th>Environment</th>
<th>([Cu_{16}]^4)</th>
<th>([Ag_{16}]^4)</th>
<th>([Au_{16}]^4)</th>
<th>([Cu_{16}]^{2-})</th>
<th>([Ag_{16}]^{2-})</th>
<th>([Au_{16}]^{2-})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vacuum</td>
<td>DMF</td>
<td>Vacuum</td>
<td>DMF</td>
<td>Vacuum</td>
<td>DMF</td>
</tr>
<tr>
<td>24 x (M^{+})-(M^{++}) (Å)</td>
<td>2.467</td>
<td>2.444</td>
<td>2.854</td>
<td>2.820</td>
<td>2.836</td>
<td>2.831</td>
</tr>
<tr>
<td>12 x (M^{-})-(M^{++}) (Å)</td>
<td>2.484</td>
<td>2.424</td>
<td>2.868</td>
<td>2.806</td>
<td>2.833</td>
<td>2.737</td>
</tr>
<tr>
<td>6 x (M^{-})-(M^{++}) (Å)</td>
<td>2.447</td>
<td>2.454</td>
<td>2.837</td>
<td>2.828</td>
<td>2.831</td>
<td>2.738</td>
</tr>
<tr>
<td>(\rho = (C-M^{++})/(C-M^{+}))</td>
<td>1.80</td>
<td>1.75</td>
<td>1.81</td>
<td>1.80</td>
<td>1.76</td>
<td>1.33</td>
</tr>
<tr>
<td>(\Delta E_{\text{HOMO-LUMO}}) (eV)</td>
<td>1.32</td>
<td>1.53</td>
<td>1.30</td>
<td>1.41</td>
<td>1.22</td>
<td>0.65</td>
</tr>
<tr>
<td>(E_{\text{HOMO}}) (eV)</td>
<td>7.66</td>
<td>-2.98</td>
<td>6.78</td>
<td>-3.03</td>
<td>6.98</td>
<td>-3.14</td>
</tr>
<tr>
<td>(E_c) (kcal/mol)</td>
<td>-39.1</td>
<td>-58.1</td>
<td>-24.6</td>
<td>-41.7</td>
<td>-31.6</td>
<td>-48.0</td>
</tr>
<tr>
<td>Lowest vibrational frequencies (cm(^{-1}))</td>
<td>76 ((t_1))</td>
<td>69 ((t_2))</td>
<td>45 ((t_1))</td>
<td>44 ((t_2))</td>
<td>20 ((t_2))</td>
<td>35 ((t_2))</td>
</tr>
</tbody>
</table>

\(^a\) Effet de solvant pris en compte par le modèle COSMO.

\(^b\) C = centre du cluster.
Une possibilité pour stabiliser cette architecture tétraédrique M_{16} à 20 électrons serait de ne pas occuper la HOMO en réduisant son compte électronique à 18 électrons, un autre nombre « magique ». Les résultats obtenus pour les espèces homométalliques du groupe 11 $[M_{16}]^{2-}$ apparaissent plus favorables (Tableau R.3), mais les modèles hétérométalliques de la série $[M'_{4}M''_{12}]^{2+}$ ($M' = \text{groupe 12}$; $M'' = \text{groupe 11}$) sont sans doute les plus viables. De plus leur charge cationique autorise une passivation par des ligands anioniques.

Une autre façon de stabiliser le compte de 20 électrons d’une entité M_{16}, c’est de stabiliser sa HOMO de symétrie a_{1} par adjonction en son centre d’un élément supplémentaire dont l’OA de valence ne pourra interagir avec cette HOMO en lui conférant un certain caractère liant. Nos calculs indiquent qu’un certain nombre d’espèces de type $[X@M_{16}]$ ($X = \text{groupe 14}$ et $M = \text{groupe 11}$) pourraient satisfaire cette condition, même si leur structure T_d n’est pas toujours le minimum principal. Par ailleurs, des espèces neutres à 18 électrons de type $[X@M_{16}]$ ($X = \text{groupe 2}$ et $M = \text{groupe 11}$) sont aussi susceptibles d’être observées.

Nous nous sommes par ailleurs intéressés à la modulation des propriétés du cluster emblématique $[\text{W}Au_{12}]$ icosahédrique à 18 électrons par « dopage » avec des atomes de platine supplémentaires. Comme le platine n’apporte aucun electron jellium ($6s^0$) les espèces calculées $[\text{W}Au_{12}\text{Pt}_x]$ ($x = 1$-4) sont aussi à 18 électrons. Nous avons fait une recherche systématique des isomères les plus stables. Ceux-ci sont représentés sur la Figure R.5.

Figure R.5. Structures de plus basse énergie des clusters $[\text{W}@\text{Au}_{12}\text{Pt}_n]$ ($n = 1, 4$).
Table R.4. Analyse EDA, écarts HOMO-LUMO, (ΔE_{H-L}), énergie de cohésion (E_c), affinités électroniques adiabatiques (AEA) and potentiels d’ionisation adiabatiques (AIP) des isomères de plus basse énergie dans la série Pt$_n$ ($n = 0$-4).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Pt$_0$ (I_h)</th>
<th>Pt$_1$ (C_s)</th>
<th>Pt2-a ($C{2v}$)</th>
<th>Pt$_3$ (C_l)</th>
<th>Pt$_4$ (T_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation</td>
<td>W + Au$_{12}$</td>
<td>W + Au$_{12}$Pt</td>
<td>W + Au$_{12}$Pt$_2$</td>
<td>W + Au$_{12}$Pt$_3$</td>
<td>W + Au$_{12}$Pt$_4$</td>
</tr>
<tr>
<td>Pauli repulsion</td>
<td>68.06</td>
<td>68.37</td>
<td>69.32</td>
<td>67.66</td>
<td>71.82</td>
</tr>
<tr>
<td>Electrostatic interaction (eV)</td>
<td>-41.17</td>
<td>-42.04</td>
<td>-42.80</td>
<td>-42.17</td>
<td>-45.43</td>
</tr>
<tr>
<td>Orbital interaction (eV)</td>
<td>-40.41</td>
<td>-39.72</td>
<td>-39.71</td>
<td>-39.88</td>
<td>-41.76</td>
</tr>
<tr>
<td>E_c (kcal/mol)</td>
<td>-66.1</td>
<td>-69.3</td>
<td>-72.7</td>
<td>-74.9</td>
<td>-79.1</td>
</tr>
<tr>
<td>ΔE_{H-L} (eV)</td>
<td>1.79</td>
<td>1.08</td>
<td>0.99</td>
<td>0.65</td>
<td>1.09</td>
</tr>
<tr>
<td>AEA (eV)</td>
<td>1.87</td>
<td>2.55</td>
<td>2.73</td>
<td>3.05</td>
<td>2.93</td>
</tr>
<tr>
<td>AIP (eV)</td>
<td>7.28</td>
<td>7.05</td>
<td>6.61</td>
<td>6.88</td>
<td>7.12</td>
</tr>
</tbody>
</table>

La stabilité de ces clusters a été évaluée à partir du calcul de plusieurs grandeurs (énergie de cohésion, écart HOMO-LUMO, potentiels d’ionisation, affinité électronique). L’analyse de ces données (Tableau R.4) indique que Pt$_1$ et Pt$_2$ sont les plus viables, notamment vis-à-vis d’une oxydation. L’abaissement de symétrie subi par [WAu$_{12}$] lors du dopage au platine entraîne un élargissement du spectre d’absorption UV-vis simulé par TD-DFT. Cette propriété pourrait être intéressante pour la conception de matériaux à large spectre d’absorption utilisables en photocatalyse ou en photovoltaïque. Par ailleurs l’étude du potentiel électrostatique de ces clusters nous a permis d’identifier leurs sites d’activité catalytique potentielle.

La dernière partie de ce mémoire porte sur l’étude théorique d’un nouveau type de clusters organométalliques récemment caractérisés par R. Fischer et collaborateurs. Il s’agit de [Cu$_3$Zn$_4$Cp*$_5$] et [Cu$_2$Zn$_5$Cp*$_5$]$^+$ (Cp* = η^5-C$_5$Me$_5$) dont les structures moléculaires expérimentales sont représentées sur la figure R.6. Ces composés présentent un squelette de structure trigonale bipyramidale dont les sommets sont constitués de fragments Zn-ZnCp*. Ils sont uniques en ce sens qu’ils apparaissent très déficitaires en électrons, avec seulement une paire d’électrons de squelette alors que six sont attendues selon les règles de Wade-Mingos.
Figure R.6. Structures moléculaires expérimentales de $[\text{Cu}_3\text{Zn}_4\text{Cp}^*]_5$ et $[\text{Cu}_2\text{Zn}_5\text{Cp}^*]_5^+$.

Nos calculs sur différents modèles ont montré qu’en fait ce déficit en électrons n’est qu’apparent car certains électron 3d du cuivre participent à la cohésion de squelette, apportant les cinq paires d’électron manquantes. Les règles de Wade-Mingos classiques négligent le rôle des électrons du bloc d, du fait de leur caractère essentiellement non-liant. Il apparaît que ce n’est pas le cas avec les métaux de transition de la droite du tableau périodique, comme l’illustre le diagramme d’interaction de la Figure R.7 pour le modèle $[\text{Cu}_3\text{Zn}_4\text{Cp}_3]$. Il s’avère néanmoins que ces cinq paires d’électrons de squelette impliquant des électrons 3d(Cu) ne sont que modérément liantes. Une stabilisation supplémentaire est fournie par les forces de dispersion impliquant les groupements méthyles des ligands Cp*. Nous pensons que la présence d’une enveloppe constituée de Cp* autour de la cage cluster est nécessaire à la viabilité de telles structures non pontées par des ligands car elle apporte un surcroit de stabilité thermodynamique (énergie de dispersion) ainsi qu’une bonne stabilité cinétique grâce à sa protection stérique.
Figure 7. Diagramme d’interaction orbitalaire simplifié de [Cu$_3$Zn$_4$Cps]. Les fragments considérés sont [Cu$_3$Cps]$^{2-}$ et [(CpZn$_2$...Zn$_2$Cp)$^{2+}$. La pseudo-symétrie D_{3h} est assumée.
Resumen

El trabajo descrito en este manuscrito se basa en los cálculos de estructura electrónica de grupos homo y heteronucleares formados por metales del grupo 11, con el fin de comprender su estabilidad, su estructura, y en algunos casos, sus propiedades. Primero, hemos analizado el hecho de que los superátomos de cobre son muy escasos, al contrario de sus contrapartes de oro y plata. Nuestros cálculos indican que los superátomos de cobre son más estables que los superátomos de plata. Sin embargo, el proceso sintético basado en la reducción de complejos de Cu(I) por borohidruro, conduce preferentemente a la formación de polihidruros de Cu(I), los cuales son muy estables. Por otro lado, hemos analizado la estabilidad de clústeres que contienen un nucleo tetraédrico M16, similar al que se encuentra en el clásico cluster [Au20]. Nuestra investigación sobre los clústeres organometálicos de 20 electrones, [M16Ni24(CO)40]4+ (M = metales del grupo 11), mostró que las cuatro unidades periféricas de Ni6(CO)10 son parte de la entidad superatómica, lo que sugiere que la unidad [M16]4+ no es viable. Los cálculos de diferentes series homo y heteronucleares de especies libres de ligandos, indican que esta inestabilidad se puede evitar reduciendo a 18 el número de electrones, o incorporando un nuevo elemento en el centro del cluster. En otra investigación, también exploramos la posibilidad de dopar el grupo icosaédrico [WAu12] de 18 electrones con átomos de platino donantes de cero electrones, para formar sistemas de tipo [WAu12Pt,x] (x = 1-4). Los cálculos indican que algunos isómeros son estables, y tienen un amplio rango de absorción en el espectro UV-visible, lo que les proporciona potenciales aplicaciones. Finalmente, hemos investigado la estructura electrónica de los grupos organometálicos, [Cu3Zn4Cp*5] y [Cu2Zn5Cp*5]+, los cuales aparentemente son deficientes de electrones, pero los cálculos demostraron que esta deficiencia no es tan grande como parece.
Chapter 1: General Introduction

Chapter 1: General introduction: Relationships between structure and number of valence electrons in clusters

1.1. The meaning of the word “cluster” in molecular and solid-state chemistry

The first definition of the word cluster in coordination chemistry was made in the 1960s by F. A. Cotton and expressed as molecules in which “a finite group of metal atoms are held together entirely, or at least to a significant extent, by bonds directly between the metal atoms, even though some nonmetal atoms may also be intimately associated with the cluster.”\(^1\) The so-called nonmetal atoms associated with the clusters are ligands and constitute the cluster periphery. This original definition has been later extended to main-group and other non-metal clusters as well as metal clusters where no (or weak) metal-metal bonding exists.\(^2,3\) In the latter case the metal atoms are held together by bridging ligands. It is important to note that there is a cluster core, in which the connectivity is generally (not always) large, and a cluster periphery made of ligands or various substituents, generally bonded to the core atoms in a localized 2-electron/2-center mode. Some examples are given in Figure 1.1.

\[\text{[B}_6\text{H}_6\text{]}^{2-}\] \hspace{1cm} \text{Rh}_6\text{(CO)}_{16} \hspace{1cm} \text{[Au}_{39}\text{(PH}_3\text{)}_{14}\text{Cl}_6\text{]}^{-}\]

Figure 1.1. Examples of molecular clusters.

It is also worth mentioning that clusters can exist in solid state compounds. In that case they can be bonded together, covalently linked by bridging ligands or isolated as cations/anions in ionic compounds.\(^3\)
1.2. The meaning of the word stability in inorganic chemistry

Generally, a compound is considered as *chemically stable* if it can be isolated and stored in more or less regular laboratory conditions. This means that it is sufficiently both thermodynamically and kinetically stable. Within the framework of quantum chemistry modelization, Hoffmann, von Ragué Schleyer and Schaeffer III have defined this concept in term of *viability* from the various conditions that the computed models should satisfy.4

In general, a molecule which is *chemically stable* (or *viable*) satisfies the so-called closed-shell principle which states that the doubly occupied MOs are low-lying and separated by a significant HOMO-LUMO gap from the unoccupied high-lying MOs. Most often, the occupied orbitals are the bonding and non-bonding (if any) ones and the unoccupied MOs are the antibonding ones. This situation is illustrated in Figure 1.2. There are many exceptions to this rule, but the closed-shell principle is by far largely dominating covalent chemistry.

![Figure 1.2](image)

Figure 1.2. General schematic MO diagram for a closed-shell chemically stable (viable) molecule.

It is possible to provide simple explanations for this situation. From the thermodynamics point of view, it is obvious that occupying bonding orbitals is stabilizing, whereas occupying antibonding orbitals is destabilizing. Roughly, occupying non-bonding orbitals is at first sight thermodynamically more or less neutral. However, first- or second-
order Jahn-Teller stability requires a substantial HOMO-LUMO gap, and Jahn-Teller stability is a form of thermodynamical stability. Generally, a large HOMO-LUMO gap can be achieved when separating the non-bonding from the antibonding orbitals. When a significant value of this gap is not reached, it can indicate that the considered structure is not an energy minimum on the potential energy surface or that it is a shallow minimum existing on a rather flat potential energy surface, i.e., a “fleeting” molecule according to the definition of Hoffmann and coworkers.4

From the kinetics point of view, the lowest the HOMO energy, the less electrodonor (or reductive) will be the molecule. Similarly, the highest the LUMO energy, the less nucleophilic (or oxidant) will be the molecule. Thus, a low reactivity will be achieved for a sufficiently large HOMO-LUMO gap.

1.3. Stability and electron counting rules

Starting with a stable molecule which satisfies the closed-shell principle, and formally adding/removing 2 electrons to this molecule (keeping the structure frozen) results in a situation where the closed-shell principle is no more satisfied. Thus, instability arises and the molecular structure (mainly the connectivity) has to change to modify its number of bonding, non-bonding and antibonding orbitals in such a way the closed-shell principle of Figure 1.2 is again satisfied. It follows that, in general, a given valence electron count is associated with a given structure and conversely. The relationships between structure and electron counts are called electron-counting rules.

There are many electron-counting rules which have their own field of application in chemistry. Nevertheless, whatever are these electron-counting rules, it is easy to understand that adding formally 2 electrons to a stable molecule results generally in the occupation of an antibonding orbital. Thus, the new stable structure will be the result of some bond breaking to transform the antibonding character of this occupied MO into a non-bonding one. It results that the more electron-rich the molecule, the more open is its structure.
The most popular electron-counting rules are those based on localized 2-electron/2-center bonding modes. In other words, they assume that the number of bonds in which an atom is involved should not be larger than its number of AOs and that the number of bonding MOs is equal to the number of antibonding MOs. They are the octet rule for main-group (4 valence AOs) molecules and the 18-electron rule for transition-metal (9 valence AOs) complexes.

These rules connect the number of valence electrons to the atom connectivity. Both are variations of what is often called the effective atomic number (EAN) rule and as a whole they cover a huge field of chemistry. Figure 1.3 exemplifies the case of the 18-electron rule for a transition-metal complex of general formula MLₙ (M = transition metal; L = 2-electron ligand, n ≤ 9).

The octet rule can be demonstrated similarly from the general MO diagram of a AHₙ (A = main-group element; n ≤ 4), for example.
Chapter 1: General Introduction

1.4. The Polyhedral Skeletal Electron Pair (PSEP) theory and its field of validity

When the connectivity between the atoms in a molecule becomes large, such as in clusters, delocalization occurs, so that the validity of the EAN rule fails. This is the case in borane clusters \([\text{B}_n\text{H}_n]^{x-}\) for example in which the boron connectivity if most often larger than 4. The PSEP electron counting rules have been firstly set up empirically for borane and carborane clusters\(^{2,3,7}\) and later extended to transition-metal clusters\(^{2,8}\) with the help of the isolobal analogy.\(^{9}\) Within the organometallic community, they are often called the Wade-Mingos rules. The frontier orbitals (FOs) of various fragments isolobal to BH are sketched in Figure 1. All these fragments can use in a similar way their 3 FOs (one of \(\sigma\) type and two of \(\pi\) type) to build the bonding within the cluster core. Assuming the closed-shell principle satisfied, their bonding and non-bonding combinations will be occupied in the cluster and the corresponding electrons are named skeletal electrons and usually counted by pairs, the skeletal electron pairs (SEPs). The general MO diagram of a stable cluster made of such fragments is illustrated in Figure 1.5.

One should note that, because the bonding is not localized, the number of bonding skeletal orbitals is generally different from the number of antibonding skeletal orbitals. For example, the octahedral \([\text{B}_6\text{H}_6]^{2-}\) cluster (see below) has a total of \(3 \times 6 = 18\) skeletal orbitals, of which 7 are bonding (and occupied) and 11 are antibonding (and vacant). The 7 bonding SEPs are responsible for the 12 B-B “bonds”, leading to a formal B-B bond order of \(7/12 = 0.58\). In spite of this value significantly lower than 1, \([\text{B}_6\text{H}_6]^{2-}\) is chemically very stable and exhibits a large HOMO-LUMO gap.

Changing the SEP number will result in a change of the structure. The larger the PES number, the more open (less compact) the structure, but in the case of boranes or organometallic analogs, the clusters can always be described as inscribed in a formal fundamental deltahedron of which the BH (or isolobal) fragments constituting the cluster occupy vertices of the fundamental deltahedron. There is no need for all the deltahedron vertices to be occupied. The basic electron counting rule connects the number of SEP to the number of polyhedron vertices (occupied or not). The SEP number should be equal to the number of vertices plus 1. For example a cluster inscribed in an octahedron is expected to have \(6 + 1 = 7\) SEPs. This is for example the case of \([\text{B}_6\text{H}_6]^{2-}\) (Figure 1.1) for which all the octahedron vertices are occupied, each BH fragment providing two electrons and the -2 charge providing two additional ones : \((6 \times 2 + 2) / 2 = 7\) SEPs.
Chapter 1: General Introduction

Figure 1.4. Illustration of the isolobal analogy between E, EH, and ML₃ fragments (E = main-group; M = transition-metal). The three fragments possess a set of similar frontier orbitals (one σ (radial) and two π (tangential)) occupied by the same number of electrons (two). The electron occupation corresponds to C, BH and Fe(CO)₃, respectively.

Adding formally two electrons to [B₆H₆]²⁻ (7 SEPs) leads to [B₆H₁₂]⁴⁺ (8 SEPs) which can be isolated in its “protonated” form B₆H₁₀. It adopts a more open pentagonal bipyramidal structure which can be viewed as inscribed in a 7-vertex pentagonal bipyramidal deltahedron with one unoccupied vertex. Thus it follows the PSEP rules, having 7 + 1 = 8 SEPs. Such clusters inscribed in a polyhedron with a vacant vertex are called nido species, in contrast with systems in which, as for [B₆H₆]²⁻, all the vertices are occupied and which are named closo. Those with 2 unoccupied vertices are called arachno. The closo, nido, and arachno borane clusters are shown in Figure 1.6. In this figure, the oblique strokes are connecting the clusters inscribed in the same fundamental deltahedron. Looking at the closo column, from top to bottom they correspond to the following deltahedra: trigonal bipyramid, octahedron, pentagonal bipyramid, dodecahedron, tricapped trigonal prism, bicapped square antiprism, octadecahehedron and icosahedron.
Figure 1.5. General MO diagram of a stable cluster made of E, ER or ML₃ fragments as defined in Figure 1.4. This schematic situation can be extended to any type of fragments, providing that the cluster satisfy the regular PSEP theory rules.

Many extension of these simple rules have been established, mostly by Mingos in the 1980s,² and applied to capped clusters, fused clusters, centered clusters, clusters made of fragments having a number of frontier orbitals different from 3.
A theoretical demonstration of the Wade-Mingos rules has been provided by A. J. Stone, also in the 1980s.10,11 It is based on the consideration that the fundamental deltahedra are of pseudo-spherical shape and on the assumption that the skeletal electrons are delocalized on the spherical envelope in which the deltahedron is inscribed. Such considerations lead to

Figure 1.6. Closo, nido and arachno skeletons of boranes and carboranes. (From ref. 7d).
Chapter 1: General Introduction

the classical problem of an electron gas constrained to move on the surface of a sphere, of which the scalar solutions are the spherical harmonics. These surface harmonics can be identified to the classical skeletal MOs of Figure 1.5. Such a model works for clusters made of fragments having only one FO of σ type. However, these scalar solutions are not sufficient to describe systems made of fragments having in addition π-type FOs, because they are not able to take into account the intrinsic nodes of these FOs. Thus, Stone has developed a theory based on vector surface harmonics which are also solutions of the considered Schrödinger equation. This approach, named tensor surface harmonics (TSH) theory allows to derives theoretically all the qualitative PSEP rules.10,11 It is noteworthy that the TSH theory can also take into account δ-type frontier orbitals when the cluster fragments bear such FOs in addition to its σ- and π-type FOs. Considering the qualitative rules arising from the TSH theory, it is possible to predict the electron-count of clusters in which the σ-, π- and δ-type are involved in different amounts, by simply tuning their different interaction strength.2

Because they are based on a model that assumes the electrons to be confined on the surface of the cluster spherical envelope, the PSEP rules work very well with empty (hollow) clusters. They work also relatively well for some clusters containing encapsulated atoms, but fail in the case of compact stuffed clusters of large nuclearity, simply because the interactions between the envelope atoms become less important with respect to the interactions involving the inner atoms. In such a case, another approach based on the spherical jellium model should be used.

1.5. The superatom concept and its field of validity

The spherical jellium model applies to compact (stuffed) clusters. It, is related to the problem of an electron gas constrained inside a sphere. It was first proposed by Knight and coworkers to rationalize mass spectrometry experiments on sodium clusters which showed particularly large peaks for Na\textsubscript{n} clusters with \(n = 8, 20, 40, 58 \) and 92.12 In this model, the compact spherical cloud of the individual positive nuclei charges is described in the Schrödinger equation by a kind of averaged potential having a more or less smoothened square-potential shape \(\nu(r_i) \), the “square” width representing the diameter of the spherical cluster.13 With such a radial (spherical) potential, the resulting Schrödinger equation looks like that of a polyelectronic atom (see Figure 1.7), except that the radial potential \(\nu(r_i) \) is not in \(1/r_i \) like in an atom, but has a more complex and generally parametrized expression. Since
Chapter 1: General Introduction

the Hamiltonian derived from the spherical jellium approximation is of the same spherical symmetry as that of an atom, it results that its polyelectronic eigenfunctions can be written, as for the atom case, on the basis of one-electron orbitals of the form \(\Psi_{n,l,m}(i) = f_{n,l}(r_i) \times Y_{l,m}(\Theta_i, \Phi_i) \). The relationship with atomic orbitals is straightforward so that clusters obeying the spherical jellium model are called superatoms. Their radial part \(f_{n,l}(r_i) \) depends on the analytical form of the spherical potential. A difference with the atom case is than \(n \) can be associated with any positive \(l \) numbers. In the following, the jellium one-electron orbitals corresponding to \(l = 0, 1, 2, 3\ldots \) will be written with capital letters as S, P, D, F\ldots in order to avoid confusion with atomic orbitals. In a similar way as there is a level ordering for atomic orbitals (\(1s < 2s < 2p < 3s < 3p\ldots \)) which is quasi-independent of the atom nature, the energy levels of the one-electron spherical jellium order in the model of Knight as: \(1S < 1P < 1D < 2S < 1F < 2P < 1G < 2D < 1H\ldots \) This level ordering is also largely independent from the parametrization of the considered potential \(v(r) \).

Figure 1.7. Major features of the spherical jellium model.

Going back to the atom/superatom comparison, it is well known that an isolated atom reaches chemical stability when it satisfies the closed-shell principle, \(i.e. \), when it is a rare gas or an atomic ion reaching the configuration of a rare gas (\(\text{Na}^+, \text{Ca}^{2+}, \text{Cl}^-, \text{O}^{2-}, \) for instance). Such a situation occurs for specific total numbers of electrons (\(2, 10, 18, 36, 54\ldots \)). Similarly, in the case of superatoms, the closed-shell requirement principle is satisfied when the \(1S, 1P, 1D, 2S, 1F\ldots \) shells are successively filled up, giving rise to the so-called “magic” numbers of
Chapter 1: General Introduction

electrons: 2, 8, 18, 20, 34, 40, 58, 68, 90… Stable clusters satisfying these electron counts are called closed-shell superatoms. This simple model has been extended to non-spherical oblate and prolate cluster shapes (see below). The spherical jellium model is particularly suited for clusters made of atoms which participate to the bonding with only one σ-type orbital. This is the case for alkali clusters for example. This is also the case of Group 11 clusters which participate to the bonding mainly with their \((n + 1)s\) valence orbitals. In this latter case, the \((n + 1)p\) valence AOs also somewhat participate, whereas the nd AOs can be considered as non-interacting at the qualitative level. The participation of np AOs is even more important in the case of aluminum and gallium superatoms.

At this stage of the discussion, it is important to realize that the jellium model is not a LCAO model. The superatomic orbitals are not at all expressed on the basis of atomic orbitals since the atom nuclei are not specifically considered in the jellium Hamiltonian of Figure 1.7. Moreover, this model does not take into account the electrons associated with the ligands and other peripheral groups or atoms. As said above, it does not either consider the non-bonding valence nd electrons of the Group 11 metals, for example. Therefore, this model should be considered as a qualitative approach, which provides electron counting rules allowing rationalizing the stability of compact clusters. Nowadays, quantum chemical calculations are most often performed within the LCAO approach and consider all the electrons and nuclei of the computed molecule. Calculations reported in this manuscript were carried out within the standard density functional theory (DFT) formalism. One of the major goals in analyzing the DFT results will be to identify, among all the calculated Kohn-Sham orbitals, those which could be considered as being the jellium orbitals associated with the superatomic core.

The superatom model can be also applied to non-spherical, prolate- or oblate-distorted clusters. They follow specific electron counts associated with Jahn-Teller distortions away from spherical symmetry, associated with degeneracy splitting of their HOMOs. This approach has been first exploited by Mingos et al., and resulted in the prediction of structures which were later experimentally confirmed. Mingos has also developed simple electron counting rules for more complex cluster frameworks which can be described as resulting from the condensation of several spherical skeletons.

Finally, it is worth mentioning that there is a difference between clusters following the superatom and Wade-Mingos concepts which comes from their total number of electrons, i.e., the electron counts including the peripheral electrons. Focusing on organometallic transition-metal clusters obeying the Wade-Mingos rules, one can say that (Figures 1.4 and 1.5), the total number of electrons and SEP number are linked together, since adding/removing a
ligand (2 electrons) will lead to the creation of an occupied antibonding MO, a stability-forbidden situation. Thus, the total number of cluster electrons (skeletal + peripheral) should not change if the structure and SEP numbers are kept frozen (Figure 1.8). In the superatom family, the non-bonding accepting orbitals located on the peripheral atoms are usually high-lying (combinations of sp-type hybrids pointing outwards) and there is no need to occupy them if not involved in M-L bonding (Figure 1.8, left). Thus, the total number of electrons is, as the total number of ligands, variable whereas the number of jellium electrons remains unchanged. It means that a ligated closed-shell superatom has the same number of jellium electrons as its closed-shell bare metallic core, irrespectively of the number of ligands. In that case, the total number of cluster electrons will substantially depend on the steric hindrance of the “passivating” ligand shell.

Figure 1.8. Simplified MO interaction diagram illustrating the difference between a superatom (left) and a Wade-Mingos type cluster, when interacting with an incoming additional 2-electron ligand.
Chapter 1: General Introduction

1.6. General remarks and introduction to the following chapters

The Group 11 superatomic clusters are generally prepared from the reduction of a metal salt (or weakly covalent complex) by borohydride in the presence of ligands. Typical examples are shown in Figure 1.9. The most popular ligands are thiolates. Among the Group 11 clusters, those made of gold are known for several decades, but the gold superatom chemistry has been really booming since the beginning of this century. The first characterized species, such as for example $\text{Au}_{11}(\text{PPh}_3)_7(\text{SCN})_3$, $[\text{Au}_{13}(\text{PR}_3)_10\text{Cl}_2]^{3+}$, $\text{Au}_{55}(\text{PR}_3)_{12}\text{Cl}_6$ and $[\text{Au}_{39}(\text{PR}_3)_{14}\text{Cl}_3]^{2+}$, have been recently followed by many, such as $\text{Au}_{102}(\text{SR})_{44}$, $\text{Au}_{38}(\text{SR})_{24}$, $\text{Au}_{36}(\text{SR})_{24}$, $\text{Au}_{30}(\text{S})(\text{SR})_{18}$, $\text{Au}_{28}(\text{SR})_{20}$, $\text{Au}_{25}(\text{SR})_{18}$, $\text{Au}_{24}(\text{SR})_{16}$, $\text{Au}_{23}(\text{SR})_{16}$, $\text{Au}_{20}(\text{SR})_{16}$ or $\text{Au}_{18}(\text{SR})_{14}$, all structurally characterized by X-ray diffraction. Most of these compounds are closed-shell superatoms, having a “magic” number of jellium electrons. They can be described as made of a bare mixed-valent $[\text{Au}_n]^{x+}$ ($n > x$) core holding the $n - x$ jellium electrons, “passivated” by a ligand shell made of formally anionic thiolates to which some formally Au^+ cations are covalently linked, thus forming $[\text{Au}_n(\text{SR})_m]^{m-n}$ staples which are mainly bonded to the jellium core by donation of sulfur lone pairs. Whereas the “Au^{x+}” cations are not part of the mixed-valent core, they contribute to the overall molecular charge (which always tends to reach or approach charge neutrality) and they are susceptible to be involved in the excited states, thus in the optical properties. The understanding of their number and positions is therefore important.

\[[\text{Au}_{25}(\text{SCH}_2\text{CH}_2\text{Ph})_{18}]^- \quad [\text{Ag}_{21}\{\text{S}_2\text{P(OiPr)}_2\}_{12}]^+ \quad [\text{Cu}_{25}\text{H}_{22}(\text{PPh}_3)_{12}]^+ \]

Figure 1.9. Examples of ligated closed-shell Group 11 superatoms.

The chemistry of silver superatoms is quite similar, but it is by far younger and the number of characterized species is substantially smaller. Typical examples are $[\text{Ag}_{44}(\text{SR})_{30}]^{4+}$.
Chapter 1: General Introduction

\[[\text{Ag}_{62}\text{S}_{12}(\text{SR})_{32}]^{2+}\] or \[[\text{Ag}_{21}\{\text{S}_2\text{P}(\text{OR})_2\}_{12}]^+\],\(^{20}\) which can be described similarly as their golden homologs. On the other hand, the superatom chemistry of homometallic copper clusters is almost inexistent at the time of writing this manuscript, with only four fully characterized examples, all having 2-\(j_e\) (1S\(^2\) closed-shell configuration).\(^{21}\) A few heteronuclear superatoms made of copper and another metal are also known.\(^{22}\) In fact, the treatment of copper(I) by borohydride in the presence of ligands does not usually lead to the formation of superatoms (as in the case of silver(I), for example), but to giant copper(I) polyhydrides.\(^{23}\) The question which arises then is: Why are copper superatoms so scarce as compared to their silver, and more specifically gold analogs? Is it because they are less stable or because the copper(I) polyhydride clusters (Figure 1.10) are particularly stable as compared to their silver and gold counterpart? In this work, we evaluate the relative stabilities of various Cu, Ag and Au superatoms. In particular, their size are varied to understand their stability with respect to their number of jellium electrons. We also evaluate the relative stability of molecular and solid state M(I) hydrides within the group 11 series in order to understand why Cu(I) hydrides are so easy to isolate as compared to gold or silver analogues.

\[\text{Figure 1.10. Examples of copper(I) polyhydrides from ref}^{23}\.\]

Another center of interest of this work is focused on structures related to the tetrahedral fcc M\(_{20}\) architecture, exemplified by the bare [Au\(_{20}\)] cluster (20-\(j_e\)), which is a unique example of a stable non-ligated homometallic group 11 superatom with metal oxidation state equal to zero (Figure 1.11a).\(^{34}\) Such a \(T_d\) architecture can be described as made
Chapter 1: General Introduction

of M₄@M₁₂@M₄ concentric shells and we will investigate the possibility for a 20-je [M₁₆]⁴⁺, i.e., [M₄@M₁₂]⁴⁺, to exist. Indeed, such a cluster core exists in [Ag₁₆Ni₂₄(CO)₄₀]⁴⁺ (Figure 1.11b). Thus, we will present first the rationalization of the electronic structure of the [M₁₆Ni₂₄(CO)₄₀]⁴⁺ (M = Cu, Ag, Au) series, showing that the four peripheral Ni₆(CO)₁₀ units should not be considered as ligands, but as full parts of the superatomic entity. In a subsequent step, we will investigate the hypothetical bare group 11 homometallic clusters [M₁₆]⁴⁺ (20-je) and [M₁₆]²⁻ (18-je). Their neutral heterometallic relatives [M’₄M”₁₂] (M’ = Zn, Cd, Hg; M” = Cu, Ag, Au) (20-je) and the corresponding 18-je dications are also investigated. Finally, the doping of group 11 M₁₆ units by an heteroelement at the center of the tetrahedron in order to stabilize neutral 20- or 18-je species has been investigated in the following [X@M₁₆] models where M = Cu, Ag, Au: (X= C, Si, Ge, Sn, Pb and Ti, Zr, Hf; 20-je) and X = Zn, Cd, Hg; 18-je).

The next part of this thesis is devoted to the investigation of hypothetical species isoelectronic to Pyykkö’s emblematic icosahedral 18-je [W@Au₁₂] cluster (Figure 1.11c). This series is generated by adding supplementary 0-electron (d¹⁰) Pt atoms to the Au₁₂ cage, namely [WAu₁₂Ptₓ] (x = 1-4). Calculations indicate that such species should be stable enough for being observed. TD-DFT allows simulating their UV-vis optical spectra which could be valuable signature for their experimental characterization.

The last chapter of this thesis is devoted to the rationalization of the stability and structure of two very newly synthesized organometallic clusters, namely [Zn₄Cu₃Cp*₅] (Figure 1.11d) and the isoelectronic and isostructural [Zn₅Cu₂Cp*₅]⁺. Indeed,
these architectures, being of trigonal bipyramidal geometry (5 vertices) are expected from the classical Wade-Mingos rules to possess $5 + 1 = 6$ SEPs. A standard PSEP electron counting ends up with a count of only 1 SEP. Our calculations provide an explanation for this huge discrepancy and allow understanding why such hypoelectronic species have enough bonding electrons for keeping such clusters stable enough to be isolated.
Chapter 1: General Introduction

References

Chapter 1: General Introduction

Chapter 1: General Introduction

Chapter 1: General Introduction

Chapter 1: General Introduction

Chapter 2: Insights into the intrinsic stability and optical properties of coinage metal superatomic cores

Introduction

Coinage metal nanostructures have received considerable interest owing to their unique physical and chemical behavior,1-10 delivering promising building blocks for functional nanomaterials. Particularly, the knowledge of stable gold clusters has been well developed leading to the understanding of both structural and electronic properties,11-18 with promising applications in biomedicine, catalysis and sensing, among others.9,10,19-24

The last decade has witnessed tremendous advances in synthetic strategies for atomically precise aggregates, where ligand-protected architectures rise as an effective method towards obtaining size-controlled structures.12,17 In such systems, an inner metallic core composed of a finite number of atoms is embedded into an outer protecting layer made of various stabilizing groups. Usually, chalcogenolate, halogenide and/or phosphine ligands are employed: the former often leads to a protecting layer involving both ligands and MI atoms,6,25-27 which prevents further degradation.5,28-31 Owing to the presence of formally anionic ligands on the outer shell, the inner metallic core is generally in a positive oxidation state ([M\textsubscript{n}]x+).

The stability of the overall core is controlled by the interplay between electronic and structural requirements,32 favoring certain numbers of valence electrons, or magic numbers, as depicted by the superatom concept,6,11,33-37 as developed above in Chapter 1). Let’s recall that these magic electron counts (2, 8, 18, 20, 34…), which provide closed-shell configurations to the [M\textsubscript{n}]x+ cores, have been rationalized within the spherical jellium-type model leading to one-electron cluster orbitals somehow resembling the atomic orbitals58 and ordering as 1S < 1P < 1D < 2S < 1F…11 In the case of coinage metals, the M valence nd electrons are supposed not to be involved significantly in the bonding and cluster jellium electrons (je) can be considered as provided by the metal’s (n + 1)s valence atomic orbitals (AOs).

Owing to the efforts seeking the formation of novel nanoscale devices displaying exceptional electronic, optical and structural properties, special attention should be paid to the
Chapter 2

inherent characteristics of the cluster cores existing in ligand-protected architectures. One of the most prominent and widely studied example is $[\text{Au}_{25}(\text{SR})_{18}]^{-}$ which displays a high stability owing to its geometric and electronic peculiarities. Its X-ray structure exposes an aesthetic icosahedral Au$_{13}$ core surrounded by a layer composed of six dimeric Au$_2$(SR)$_3$ staple units. The formally Au$_{13}^{5+}$ core exhibits an 8-je count denoting an 1S$_2$1P$_6$ electronic configuration, accounting for its high stability owing to the shell-closing electron count.$^{11,14,38-40}$

Whereas the chemistry of gold superatoms is nowadays very well documented, with characterized atom-precise species ranging up to more than one hundred of atoms,17,39 that of silver is so far developed to a lesser extent.$^{42-49}$ In the case of copper, as far as we know, only four closed-shell superatomic species have been structurally characterized at the present time, as mentioned in the introduction. A few mixed-metal superatoms containing copper are also known, such as for example the 8-je $[(\text{CuCNtBu})_4(\text{ZnCp}^*)_4]^{4-}$, the 18-je series $[\text{Au}_{12+n}\text{Cu}_{32}(\text{SR})_{30+n}]^{-}$, the 20-je $[\text{Ag}_{28}\text{Cu}_{12}(\text{SR})_{24}]^{-}$ and the very recently published 67-je (open-shell) neutral cluster $[\text{Cu}_{43}\text{Al}_{12}\text{Cp}^*_{12}]^{-}$ (Cp* = η^5-C$_5$Me$_5$)59

Thus, one of the major questions we will try to answer in this chapter is why is the superatom chemistry of copper so poor and that of gold so rich. Getting rid of the passivating outer shells and of their huge variability in terms of composition and structure, we will focus on the intrinsic electronic structure and energetics of the [M$_n$$^{x+}$ superatomic core and on the differences between the three Group 11 metals. The following pseudo-spherical structures of increasing sizes are investigated according to the symmetry: M$_4$ (tetrahedron), M$_4$@M$_4$ (tetracapped tetrahedron, M$_6$), M$_4$@M$_{12}$@M$_4$ (tetrahedron embedded into a truncated tetrahedron and the resulting structure capped by 4 atoms forming a big tetrahedron, M$_{20}$) which have T_d symmetry and M@M_{12} (centered icosahedron, M$_{13}$), M$_{12}$@M$_{20}$ (icosahedron embedded into a dodecahedron, M$_{32}$) and M@$M_{12}@M_{30}$ (centered icosahedron embedded into an icosidodecaedron, M$_{43}$) which have I_h symmetry. They are depicted in Figure 2.1.

The occurrences of the M@M_{12} and M$_{12}@M_{20}$ core architectures in superatom chemistry are very well documented.5,39,46,55,56 That of M$_4$@$M_{12}@M_4$, it adopted by the unique and emblematic ligand-free Au$_{20}$ cluster.57 This structure will be discussed in more details in Chapter 3 and 4 of this thesis. Tetrahedral and tetracapped tetrahedral cores exist also, as exemplified by $\{[\text{Au}(\text{P}^3\text{Bu})_3]\}_4^{2+}$ 58 and $[(\text{CuCNtBu})_4(\text{ZnCp}^*)_4]$. On the other hand, the Au@$Au_{12}@Au_{30}$ structure has been proposed and found to be stable by DFT calculations.58 It constitutes the largest innermost part of icosahedral M$_{55}$ particles, which have been extensively computed.60
Each of these structures has been investigated for one or two different magic electron counts (precisely for \(I_h \) symmetry). The differences along the group were studied by using relativistic DFT methods involving isoelectronic and isostructural cores, which will shed light on possible stability and properties prior to carrying out exploratory synthetic efforts. We have also investigated the optical properties of these species in the UV-vis range, as they may constitute fingerprints for such architecture and electron counts when present as superatomic cores in real ligated species.

2.1. Computational details

Relativistic density functional theory (DFT) calculations\(^6\) were carried out by using the ADF code,\(^6\) incorporating scalar (SR) corrections through the ZORA Hamiltonian.\(^6\) We employed the triple-\(\zeta\) Slater basis set, plus two polarization functions (STO-TZ2P) for valence electrons (except for \([\text{M}_{32}]^{14+}\), see below), within the generalized gradient approximation (GGA) according to the Becke–Perdew (BP86) exchange functionals.\(^6\) The
frozen core approximation was applied to the [1s2–4f14] inner electrons for Au, [1s2–4p6] for Ag, [1s2–3p6] for Cu, [1s2–3p6] for S, and [1s2] for C, leaving the remaining electrons to be treated explicitly. Geometry optimizations were performed without any symmetry restrain, by using the analytical energy gradient method implemented by Versluis and Ziegler. In the specific cases of the highly charged [M$_{32}$]$^{14+}$ and [M$_{13}$]$^{11+}$ models, geometry convergence could only be obtained with the incorporation of solvent effects through a polarizable continuum model, which consists of a conductor-like screening treatment through the COSMO module, to take into account the effects of counterions for these highly charged ions. The considered solvent was dimethyl formamide (DMF), which is usually employed in the coinage metal nano-cluster synthesis. Moreover, in the case of [M$_{32}$]$^{14+}$, the larger STO-QZ4P basis set (quadruple-ζ plus four polarization functions) was found to be necessary. Vibrational frequencies were computed to ascertain energy minima. Owing to the flat energy landscapes and possibly to vibrational anharmonicity, small imaginary frequencies were found in a few cases (< 30i cm$^{-1}$, Table 2.1 and Table 2.2), in particular for the highly charged [M$_{32}$]$^{14+}$. Owing to their persistency in our minimum search, they were considered negligible.

Time-dependent DFT (TD-DFT) calculations were employed at the same level, but by using the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional because of its improved performance on long-range interactions and relatively low computational cost. Being employed in similar clusters, it allows a direct comparison with other computational studies of superatomic nanoclusters. The use of GGA functionals leads generally to an underestimation of approximately 0.4 eV for excitation energies in comparison to the experiment. Spin-orbit calculations were done at the TZ2P/PBE level by using the two-component ZORA Hamiltonian.

2.2. Results and discussion

The structures for the studied cores are summarized in Figure 2.1. The Kohn–Sham MO diagrams of the 2-je [M$_4$]$^{2+}$, 8-je [M$_8$], 8-je [M@M$_{12}$]$^{5+}$, 20-je [M$_4$@M$_{12}$@M$_4$], 18-je [M$_{12}$@M$_{20}$]$^{14+}$, 34-je [M@M$_{12}$@M$_{30}$]$^{9+}$ are shown in Figure 2.2 and Figure 2.3. The corresponding major computed data are given in Table 2.1. The electron counts of the first five architectures have been shown to exist in real ligated clusters.
Figure 2.2. Relevant Kohn-Sham molecular orbital diagrams for \([\text{M}_4]^{2+}\) (left), \([\text{M}_8]\) (right) and \([\text{M}_{20}]\) (below) with (a) for copper, (b) for silver and (c) for gold. Jellium level denoted in blue.

These electron counts can be ascribed to the \(1S^2, 1S^21P^6, 1S^21P^61D^{10}, 1S^21P^61D^{10}2S^2\) and \(1S^21P^61D^{10}2S^21F^{14}\) superatomic configurations along the series. They also correspond to the occupation of all the bonding orbitals that one would get by carrying out a simple Hückel calculation, assuming each atom participates with only one \((n + 1)s\) valence orbital. Adding more electrons would result in the occupation of somewhat antibonding Hückel orbitals. In the DFT results, these orbitals can be picked out by their large \((n + 1)s\) character. They can be identified as the jellium-type orbitals of the superatom model (levels in blue in the MO diagrams), denoting different numbers of nodes mimicking atomic orbitals with different angular momentum numbers \((l = 0, 1, 2, 3, \text{etc}...)\).\(^{11,25,32,37}\) The valence \(nd\)-type combinations (in black) are roughly nonbonding in character. The superatomic orbitals of the computed models are plotted in Figure 2.4 and Figure 2.5. An interesting feature of the coinage metal cores is that the obtained superatomic shells for gold cores are more stabilized than that found for silver counterparts, as a result of the strong influence of the relativistic effects in gold.\(^{76-80}\)
Figure 2.3. Relevant Kohn-Sham molecular orbital diagrams for $[M_{13}]^{5+}$ (above), $[M_{32}]^{4+}$ (middle) and $[M_{43}]^{9+}$ (below). Jellium level denoted in blue.
Another feature related to this peculiarity of gold is that the calculated HOMO–LUMO gaps of the Ag species are always larger than those of their Cu and Au analogs, illustrating the non-monotonous Cu/Ag/Au variation. In any case, the HOMO–LUMO gaps are significant, in agreement with the assumed favored electron counts. Indeed, for all the cores, the frontier levels are dictated by the superatom shell structure demonstrating that the validity of the superatom approach for gold and silver can be extended to copper structures. A comparison between the relative location of the superatomic shells reveals a similarity between the different cores, where a destabilization of the relevant shells is found for silver, in comparison to gold and copper.

![Image](image_url)

Figure 2.4. Jellium orbitals of [Au₄]^{2+} (left), [Au₈] (right) and [Au₂₀] (below). Color legend: Occupied blue and red, vacant turquoise and orange.

This destabilization can induce a difference in the interaction with a core-protecting shell, in comparison to the other coinage metal relatives. The metal–metal distances (Table 2.1), ranging from approximately 2.4 to 3.1 Å, denote a strong aggregation between the constituting atoms. The calculated data exhibit a shorter M–M separation for copper, followed by the gold structures. Silver clusters denote larger M–M distances in the series. From the 2-je [M₄]^{2+} cluster, the 8-je [M₈] structure can be obtained by addition of four capping atoms to
the M4 core. In [M₈], the M–M distances in the inner M₄ are slightly elongated owing to the presence of the outer structural shell. Similarly, for the 8-je [M@M₁₂]⁵⁺ core, the distances are slightly shorter than that found for the ligand-protected structure, namely, [(M@M₁₂)M₁₂(SMe)₁₈]⁺, which has been structurally characterized for Ag and Au. In the 18-je [M₁₂@M₂₀]¹⁴⁺, the inner M₁₂ icosahedron exhibits shorter distances than that found in the [M@M₁₂]⁵⁺ core in the calculated ligand-protected [(M@M₁₂)M₁₂(SMe)₁₈]⁻ structures. To evaluate the intrinsic stability of our [Mₙ]ᵐ⁺ models, the per-atom cohesion energy was computed as follows:

\[
E_C = \frac{E_{\text{cluster}} - (n - m)E(M) - mE(M^+)}{n} \quad (n = \text{number of atoms}) \quad (1)
\]

The computed values (Table 2.1) cannot be compared from one cluster structure to another one because of the large variation of the coulombic nuclear repulsions in these highly
Chapter 2

(and differently) charged models, which, in the real life, approach neutrality through coordination of anionic ligands.

Table 2.1. Relevant computed data for the \([\text{M}]=^{2+}, [\text{M}]=^{3+}, [\text{M}]=^{3+}, [\text{M}]=^{5+}, [\text{M}]=^{10+}\) and \([\text{M}]=^{10+}\) metal cores. \(E_c\) and \(\Delta E_{H-L}\) are the per-atom cohesion energy and HOMO-LUMO gap, respectively. \(E_c\) are in kcal/mol, \(\Delta E_{H-L}\) are in eV, distances are in Å and lowest frequencies are in cm\(^{-1}\). All calculations with TZ2P basis sets in vacuum, except for \([\text{M}]=^{10+}\), in which a QZ4P basis set associated with solvent (DMF) corrections was employed.

<table>
<thead>
<tr>
<th>([\text{M}]=^{2+}) / 1S(^2) (2-je)</th>
<th>(E_c)</th>
<th>(\Delta E_{H-L})</th>
<th>(M_{\text{tet-M tet}})</th>
<th>Lowest freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cu}]=^{2+})</td>
<td>-27.8</td>
<td>2.56</td>
<td>2.430</td>
<td>116</td>
</tr>
<tr>
<td>([\text{Ag}]=^{2+})</td>
<td>-18.2</td>
<td>3.85</td>
<td>2.800</td>
<td>74</td>
</tr>
<tr>
<td>([\text{Au}]=^{2+})</td>
<td>-30.0</td>
<td>2.50</td>
<td>2.727</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>([\text{M}]=^{3+}) M@([\text{M}]=^{3+}) / 1S(^2) 1P(^6) (8-je)</th>
<th>(E_c)</th>
<th>(\Delta E_{H-L})</th>
<th>(M_{\text{tet-M tet}})</th>
<th>(M_{\text{tet-M cap}})</th>
<th>Lowest freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cu}]=^{3+})</td>
<td>-53.0</td>
<td>2.15</td>
<td>2.460</td>
<td>2.390</td>
<td>52</td>
</tr>
<tr>
<td>([\text{Ag}]=^{3+})</td>
<td>-39.4</td>
<td>2.32</td>
<td>2.853</td>
<td>2.767</td>
<td>34</td>
</tr>
<tr>
<td>([\text{Au}]=^{3+})</td>
<td>-47.2</td>
<td>2.02</td>
<td>2.871</td>
<td>2.740</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>([\text{M}]=^{5+}) M@([\text{M}]=^{5+}) / 1S(^2) 1P(^6) (8-je)</th>
<th>(E_c)</th>
<th>(\Delta E_{H-L})</th>
<th>(M_{\text{cent-M ico}})</th>
<th>(M_{\text{ico-M ico}})</th>
<th>Lowest freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cu}]=^{5+})</td>
<td>-7.5</td>
<td>1.91</td>
<td>2.514</td>
<td>2.643</td>
<td>70</td>
</tr>
<tr>
<td>([\text{Ag}]=^{5+})</td>
<td>4.5</td>
<td>2.63</td>
<td>2.888</td>
<td>3.037</td>
<td>39</td>
</tr>
<tr>
<td>([\text{Au}]=^{5+})</td>
<td>-8.9</td>
<td>2.01</td>
<td>2.818</td>
<td>2.963</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>([\text{M}]=^{10+}) M@([\text{M}]=^{10+}) / 1S(^2) 1P(^6) 1D(^{10}) 2S(^2) (20-je)</th>
<th>(E_c)</th>
<th>(\Delta E_{H-L})</th>
<th>(M_{\text{tet-M tet}})</th>
<th>(M_{\text{tet-M trunc}})</th>
<th>(M_{\text{trunc-M trunc}})</th>
<th>(M_{\text{trunc-M cap}})</th>
<th>Lowest freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cu}]=^{10+})</td>
<td>-62.07</td>
<td>1.34</td>
<td>2.600</td>
<td>2.453</td>
<td>2.414-2.489</td>
<td>2.390</td>
<td>67</td>
</tr>
<tr>
<td>([\text{Ag}]=^{10+})</td>
<td>-45.46</td>
<td>1.64</td>
<td>3.034</td>
<td>2.831</td>
<td>2.755-2.902</td>
<td>2.756</td>
<td>41</td>
</tr>
<tr>
<td>([\text{Au}]=^{10+})</td>
<td>-56.34</td>
<td>1.81</td>
<td>3.131</td>
<td>2.817</td>
<td>2.674-2.946</td>
<td>2.710</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>([\text{M}]=^{14+}) M@([\text{M}]=^{14+}) / 1S(^2) 1P(^6) 1D(^{10}) (18-je)</th>
<th>(E_c)</th>
<th>(\Delta E_{H-L})</th>
<th>(M_{\text{ico-M ico}})</th>
<th>(M_{\text{ico-M cap}})</th>
<th>(M_{\text{cap-M cap}})</th>
<th>Lowest freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cu}]=^{14+})</td>
<td>-43.7</td>
<td>0.92</td>
<td>2.541</td>
<td>2.461</td>
<td>2.781</td>
<td>24</td>
</tr>
<tr>
<td>([\text{Ag}]=^{14+})</td>
<td>-27.9</td>
<td>1.59</td>
<td>2.922</td>
<td>2.821</td>
<td>3.188</td>
<td>-12</td>
</tr>
<tr>
<td>([\text{Au}]=^{14+})</td>
<td>-44.3</td>
<td>1.11</td>
<td>2.953</td>
<td>2.762</td>
<td>3.143</td>
<td>-32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>([\text{M}]=^{9+}) M@([\text{M}]=^{9+}) / 1S(^2) 1P(^6) 1D(^{10}) 2S(^2) 1F(^{14}) (34-je)</th>
<th>(E_c)</th>
<th>(\Delta E_{H-L})</th>
<th>(M_{\text{cent-M ico}})</th>
<th>(M_{\text{ico-M ico}})</th>
<th>(M_{\text{ico-M cap}})</th>
<th>(M_{\text{cap-M cap}})</th>
<th>Lowest freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{Cu}]=^{9+})</td>
<td>-28.4</td>
<td>0.35</td>
<td>2.501</td>
<td>2.630</td>
<td>2.475</td>
<td>2.611</td>
<td>47</td>
</tr>
<tr>
<td>([\text{Ag}]=^{9+})</td>
<td>-14.6</td>
<td>0.63</td>
<td>2.931</td>
<td>3.082</td>
<td>2.843</td>
<td>3.018</td>
<td>23</td>
</tr>
<tr>
<td>([\text{Au}]=^{9+})</td>
<td>-26.4</td>
<td>0.70</td>
<td>2.894</td>
<td>3.043</td>
<td>2.797</td>
<td>2.971</td>
<td>20</td>
</tr>
</tbody>
</table>
Chapter 2

On the other hand, comparisons can be made within one particular \([M_n]^{m+}\) structure. The computed values are found to be negative, indicating a favorable situation, except in the case of \([\text{Ag}_{13}]^{5+}\) where a small positive \(E_C\) is found, owing to the particularly high cationic charge associated with a relatively small number of bonding electrons (8-je). Nevertheless, the existence of \([\text{Ag}_{13}]^{5+}\) superatomic cores is experimentally evidenced\(^{45,47-49}\) thus pointing out that for the silver counterpart, the role of the ligand shell is more crucial in the stabilization of the \([\text{Ag}_{13}]^{5+}\) core, in comparison to gold. In addition, owing to the similar \(E_C\) found for \([\text{Cu}_{13}]^{5+}\) and \([\text{Au}_{13}]^{5+}\), it is suggested that the copper counterpart is likely to be obtained, although its elusive characterization is due to its challenging synthetic strategy. In the case of the 20-je \([M_{20}]\) which is known for the gold cluster, \(E_C\) suggests that \([\text{Cu}_{20}]\) cluster would be even more stable than \([\text{Au}_{20}]\).

More generally, the \(E_C\) values follow the trend given by \(E_C^{\text{Au}} < E_C^{\text{Cu}} < E_C^{\text{Ag}}\) (Table 2.1), indicating that bare copper superatoms are less stable than their gold homologs but more stable than their silver counterparts. It is noteworthy that relativistic effects are not crucial in the above relative order, for nonrelativistic calculations lead to the same trend. Three other electron counts were also investigated, namely the 2-je \([M_{13}]^{11+}\), the 34-je \([M_{32}]^{2-}\), and the 40-je \([M_{43}]^{3+}\). Indeed, the first one has been shown to exist in \([\text{Cu}_{25}\text{H}_{22}(\text{PPh}_{3})_{12}]^{+}\)\(^{50}\) The second one appears accessible by adding 14 electrons into the virtually nonbonding 1F orbitals of \([M_{32}]^{14+}\). Similarly, the 2P level of \(M_{43}\) appears also potentially accessible, although somewhat antibonding. The major data are listed in Table 2.2. In the case of \([M_{13}]^{11+}\), they show the same trend in \(E_C\) as those in Table 2.1 (the positive values result from the domination of nuclei repulsions). In the case of \([M_{32}]^{2-}\) and \([M_{43}]^{3+}\), they even follow the \(E_C^{\text{Cu}} < E_C^{\text{Au}} < E_C^{\text{Ag}}\) order, indicating better stability for the copper species. However, the computed HOMO–LUMO gaps are smaller, suggesting that these electron counts are less favored. The optical properties of atomically precise ligand-protected clusters have been widely explored\(^{17,75}\) giving strong experimental evidence of their electronic structures, allowing us to characterize and distinguish clusters with different nuclearities. In this concern, we aim to evaluate the characteristic fingerprints given by the cluster cores, and the differences between the coinage metals. The low-energy optical absorption spectrum was evaluated theoretically (up to 3 eV). For one of the most prominent ligand-protected gold clusters, namely \([\text{Au}_{25}(\text{SR})_{18}]^{+}\) (\(R = \text{Me}\) containing the 8-je \([\text{Au}_{13}]^{5+}\) core, the employed level of TD-DFT theory (ZORA/PBE/TZ2P) exhibits similar results to recent calculations\(^{70,71,82}\) indicating a first peak calculated at 1.41 eV, with a mainly 1P \(\rightarrow\) 1D transition character. Also, when \(R =\)
H, similar results have been obtained\(^{24}\) thus supporting the used approach to model the optical spectra.

Table 2.2. Relevant computed data for the \([M_{13}]^{11+}\), \([M_{32}]^{2-}\), and \([M_{43}]^{3+}\) metal cores. \(E_c\) and \(\Delta E_{H-L}\) are the per-atom cohesion energy and HOMO–LUMO gap, respectively. \(E_c\) are in kcal/mol, \(\Delta E_{H-L}\) are in eV, distances are in Å and lowest frequencies are in cm\(^{-1}\). All calculations done with the TZ2P basis sets in vacuum, except for \([M_{13}]^{11+}\), the computations included solvent (DMF) corrections.

<table>
<thead>
<tr>
<th></th>
<th>([M_{13}]^{11+}) M@M(_{12}) / 1S(^2) (2-je)</th>
<th></th>
<th>([M_{32}]^{2-}) M({12}@M{20}) / 1S(^2) 1P(^6) 1D(^{10}) 1F(^{14}) (34-je)</th>
<th></th>
<th>([M_{43}]^{3+}) M@M({12}@M{30}) / 1S(^2) 1P(^6) 1D(^{10}) 2S(^2) 1F(^{14}) 2P(^6) (40-je)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(E_c)</td>
<td>(\Delta E_{H-L})</td>
<td>(M_{\text{cent}}-M_{\text{ico}})</td>
<td>(M_{\text{ico}}-M_{\text{cap}})</td>
<td>(M_{\text{cap}}-M_{\text{cap}})</td>
</tr>
<tr>
<td>([\text{Cu}_{13}]^{11+})</td>
<td>10.5</td>
<td>0.54</td>
<td>2.584</td>
<td>2.721</td>
<td>31</td>
</tr>
<tr>
<td>([\text{Ag}_{13}]^{11+})</td>
<td>23.6</td>
<td>1.72</td>
<td>2.937</td>
<td>3.090</td>
<td>4</td>
</tr>
<tr>
<td>([\text{Au}_{13}]^{11+})</td>
<td>-0.2</td>
<td>0.64</td>
<td>2.799</td>
<td>2.942</td>
<td>-9</td>
</tr>
</tbody>
</table>

The major TD-DFT computed results for the \([M_n]^{m+}\) models are given in Figure 2.6 and Figure 2.7. The calculated spectrum for the smaller 2-je \([M_4]^{2+}\) exhibits some differences between Cu, Ag, and Au, showing a first relevant peak at \(\approx 3.00\) eV (\(\approx 400\) nm) for \([\text{Cu}_4]^{2+}\), which is blueshifted for \([\text{Au}_4]^{2+}\) (\(\approx 3.50\) eV; \(\approx 350\) nm). The character of such transition is given by a “d-block” \(\rightarrow\) 1P transition, owing to the fact that the 1S orbital is located below the “d-block”. Interestingly, for \([\text{Ag}_4]^{2+}\), this transition is largely blueshifted, being observed below 3.54 eV (\(\approx 350\) nm). In the 8-je \([M_8]\) case, more bands are allowed in the low-energy range, showing a small peak at around 2.25 eV (\(\approx 550\) nm) for \([\text{Cu}_8]\) and \([\text{Au}_8]\), followed by two shoulders (2.48 eV; \(\approx 500\) nm) in the former counterpart, which appears as a single peak in the latter, which is slightly blueshifted (2.58 eV; \(\approx 480\) nm). The character of the latter peak is given by a “d-block” \(\rightarrow\) 1D transition. For \([\text{Ag}_8]\), the first relevant peak appears at
2.98 eV (≈ 415 nm), which is of 1P → 1D character. In the δ-je icosahedral [M_{13}]^{5+} structure, the lower energy peak is depicted for the copper counterpart followed by the gold analog, with a three-peak pattern in the low-energy range (Figure 2.2). For copper, such peaks are related to a d-block → 1D transition, which differ from the gold counterpart, namely 1P → 1D, d-block → 1D, and 1P → 2S, for each peak, respectively. In contrast, the silver system exhibits a first peak appearing at 3.44 eV (not shown in Figure 2.2) with 1P → 1D character. For the case of [Ag_{20}], all the peaks are mainly transitions between jellium orbitals whereas in the case of copper and gold, only the first two peaks correspond to these transitions. More precisely, these are of 1D → 1F character for the three metals.

Figure 2.6. Calculated absorption spectra for the different cluster cores. Note that M_4 (M = Cu, Ag, Au) exhibiting peaks outside of the 0-3 eV window, a different scale was employed in this case. Color code: Orange, copper; grey, silver; blue, gold. (Lorentzian broadening of 0.05 eV was applied to account for experimental broadening).

For the 18-je core, [M_{32}]^{14+}, the most redshifted peak is found for the gold and copper counterparts, followed by the silver analog. Interestingly, the silver cores are able to reproduce a common peak at about 490 nm (≈ 2.50 eV), for silver nanoclusters, as observed
Chapter 2

for $[\text{Ag}_{25}(\text{SR})_{18}]^-$, $[\text{Ag}_{35}(\text{SR})_{18}]^-$, and $[\text{Ag}_{44}(\text{SR})_{30}]^{4-}$. However, for $[\text{Ag}_{13}]^{5+}$ such peak appears at 370 nm (≈ 3.35 eV), suggesting that the ligand-protecting shell plays a relevant role in such properties. Such a result tends to suggest that the formation of a plasmonic band in the silver cluster will occur for a smaller size in comparison to copper and gold aggregates. Thus, the optical properties from these silver clusters can be ascribed as a pre-plasmonic character.

Figure 2.7. Calculated absorption spectrum for $[\text{M}_{13}]^{5+}$ and $[\text{M}_{32}]^{14+}$ cores (top), and $[\text{M}_{25}(\text{SR})_{18}]^-$ and $[\text{M}_{44}(\text{SR})_{30}]^{4-}$ clusters (bottom) ($\text{M} = \text{Cu}, \text{Ag}, \text{Au}$), with $R = \text{methyl} (-\text{CH}_3)$. Color code: orange copper; grey silver; blue gold. (Lorentzian broadening of 0.10 eV was applied to account for experimental broadening).

In comparison to the characterized architectures found in real ligated clusters, for the prominent $[\{\text{Au}_{13}\} \text{Au}_{12}(\text{SR})_{18}]^{39}$ and the $[\{\text{M}_{12}@\text{Ag}_{20}\} \text{Ag}_{12}(\text{SR})_{30}]^{4+}$ ($\text{M} = \text{Ag}, \text{Au})^{46}$ structures, namely $[\text{M}_{25}(\text{SR})_{18}]$ and $[\text{M}_{44}(\text{SR})_{30}]^{4-}$ for simplicity, the $\text{M} = \text{Cu}, \text{Ag}, \text{and Au}$ clusters reveal that the protecting layers induce a change in the absorption spectrum patterns, leading to a redshift of certain peaks.

However, the character of the transition remains similar, allowing a rationalization of the optical properties of the overall cluster in terms of the inner cluster core. Hence, the
analysis and rationalization of the electronic transitions can be evaluated and expected from the inner bare structural core.

A recent example of an hypothetical cluster with a designed character of optical transitions is given by the hollow 32-je \([\text{Au}_{32}@\text{Au}_{12}(\text{SR})_{18}]^{6-}\) cluster,\(^{83}\) indicating a unprecedented \(1\text{F} \rightarrow 1\text{G}\) transition, owing to the frontier orbitals of the Au\(_{32}\) core.\(^{84}\) Thus, different models for cluster cores can be employed to envisage novel optical transitions.

Lastly, we explore the role of the spin-orbit coupling in the electronic structure of the studied cluster cores. This has been explored earlier for the \(\text{O}_h/\text{I}_h\)-[Au\(_{13}\)]\(^{85,86}\) The spin-orbit coupling causes the splitting of the atomic levels with \(l > 0\), owing to coupling of \(l\) and \(s\) for each electron. In this sense, total angular momenta \(j (j = l \pm s)\), are employed to designate the atomic or superatomic spinors, instead of the pure orbital angular momentum \((l)\) atomic orbital representation. This effect has been accounted for the \(18\text{-je}\) cluster \([\text{W}@[\text{Au}_{12}])\].\(^{80,87-89}\) among other superatomic clusters,\(^{90,91}\) where the \(1\text{P}^6\) and \(1\text{D}^{10}\) superatomic shells split into \(1\text{P}_{1/2}^2\) \(1\text{P}_{3/2}^4\) and \(1\text{D}_{3/2}^4\) \(1\text{D}_{5/2}^6\), respectively. As the frontier orbitals of the cluster cores are generally dominated by superatomic orbitals (see above), the cases with P, D, and F orbitals are expected to split into \(1\text{P}_{1/2}^2\) \(1\text{P}_{3/2}^4\) \(1\text{D}_{3/2}^4\) \(1\text{D}_{5/2}^6\), and \(1\text{F}_5^2\) \(1\text{F}_7^2\).\(^{61}\)

Table 2.3. Spin-orbit splitting in representative cores [cm\(^{-1}\)].

<table>
<thead>
<tr>
<th>Cluster</th>
<th>1P</th>
<th>1D</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cu(_4)]^{2+}</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>[Ag(_4)]^{2+}</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>[Au(_4)]^{2+}</td>
<td>2635</td>
<td></td>
</tr>
<tr>
<td>[Cu(_8)]</td>
<td>678</td>
<td>114</td>
</tr>
<tr>
<td>[Ag(_8)]</td>
<td>412</td>
<td>155</td>
</tr>
<tr>
<td>[Au(_8)]</td>
<td>3322</td>
<td>1327</td>
</tr>
<tr>
<td>[Cu(_{13})]^{5+}</td>
<td>944</td>
<td>290</td>
</tr>
<tr>
<td>[Ag(_{13})]^{5+}</td>
<td>573</td>
<td>402</td>
</tr>
<tr>
<td>[Au(_{13})]^{5+}</td>
<td>3768</td>
<td>2395</td>
</tr>
</tbody>
</table>
In $[\text{Cu}_4]^{2+}$, $[\text{Cu}_8]$, and $[\text{Cu}_{13}]^{5+}$, the calculated splitting (Table 2.3) of the 1P shell, accounting for the respective spin-orbit constant (ξ_{SO}) obtained as the difference (gap) between $1\text{P}_{1/2}$ and $1\text{P}_{3/2}$ ($\xi_{1\text{P}SO}$), amounts to 253, 678, and 944 cm$^{-1}$, respectively, denoting an increase when the core becomes larger. Similarly, for the related 1D shell, in $[\text{Cu}_8]$ and $[\text{Cu}_{13}]^{5+}$, an increase of the splitting obtained as the gap between $1\text{D}_{3/2}$ and $1\text{D}_{5/2}$ ($\xi_{1\text{D}SO}$), is observed from 114 to 290 cm$^{-1}$. The related silver counterparts show a similar trend with $\xi_{1\text{P}SO} = 360, 412$ and 573 cm$^{-1}$, where the $\xi_{1\text{D}SO}$ varies from 155 to 402 cm$^{-1}$. As anticipated for the strong relativistic effects in gold chemistry, the spin-orbit coupling is remarkably larger. The values of $\xi_{1\text{P}SO}$ increases from 2635 to 3768 cm$^{-1}$, and $\xi_{1\text{D}SO}$ from 1327 to 2395 cm$^{-1}$, in $[\text{Au}_8]$ and $[\text{Au}_{13}]^{5+}$, which is a few times larger than the splitting found in the lighter counterparts.

A comparison to the widely discussed and characterized thiolated-protected $[\text{Au}_{25}(\text{SR})_{18}]^{-}$ cluster, allows us to point to the role of the protecting layer in the splitting of superatomic shells. The calculated 1P splitting in $[\text{Au}_{25}(\text{SMe})_{18}]^{-}$ ($\xi_{1\text{P}SO}$) amounts to 1452 cm$^{-1}$ (0.18 eV), similar to the value found by Jiang and co-workers70 (1613 cm$^{-1}$, 0.20 eV), which is related to the experimental value found by low-temperature optical spectra measurements, of 1855 cm$^{-1}$ (0.23 eV).92 Thus, when the protecting layer is incorporated into the structure, the overall spin-orbit splitting is decreased by more than 50%, suggesting a variation from 3768 to 1452 cm$^{-1}$ between the bare $[\text{Au}_{13}]^{5+}$ core and $[\text{Au}_{25}(\text{SMe})_{18}]^{-}$. This effect is inherent to gold nanoclusters, and is not found in the copper or silver counterparts.

Conclusion

From the current study involving several cluster core motifs, with several nuclearities and electron numbers, it is observed that silver does not follow a trend along the coinage metal group. Our results indicate that copper clusters are more or less as stable as gold clusters and more stable than silver clusters. Thus, for silver superatomic cores, the role of the stabilizing ligands is more crucial in the stabilization of the overall structure, in comparison to copper and gold. This indicates that the use of different ligands can be a useful synthetic approach to achieve the characterization of multiple silver superatomic clusters. The estimated stability of the bare copper superatomic cores is similar to that found for their gold
counterparts, which does not preclude further characterization of related copper analogs to the rich chemistry of gold nanoparticles. Therefore, the chemistry of copper nanoclusters should grow quickly, with at least characterizations of species related to that found in the related gold and silver series, which requires tackling synthetic challenges.

As the cluster core increases in nuclearity, the absorption bands are redshifted, revealing a fingerprint pattern that is able to differentiate between the studied clusters. Interestingly, the optical properties of silver cores are quite different to those expected for Cu and Au cores, which are prone to exhibit a single absorption band mainly in the range of 2–3 eV.
Chapter 2

References

Chapter 2

2012, 8, 2028.

46. H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Häkkinen, N. Zheng,
Chapter 2

Chapter 3: Comparison of the stability of group 11 metal (I) hydrides

Introduction

Hydrogen (Z = 1) is the smallest chemical element and one of the most important in chemical sciences as well as in Nature. Indeed, it is the most abundant element in the Universe and largely present on the surface of Earth, in particular in the form of water but also as a constituent of almost any living matter. Organic chemistry would not be what it is without hydrogen, but it is also a very important element in inorganic chemistry. It can adopt three different oxidation states (-I, 0, +I) and form stable compounds with most of the other elements of the periodic table. When combined with transition metals, it is generally in its –I oxidation state (hydride). As well as other hydrides, metal hydrides, whether as simple complexes or as molecular clusters, are, since several decades, the subject of a constant interest in inorganic chemistry. This is due to their numerous potential applications in many fields such as, for example, catalysis, electrochemistry and of course hydrogen storage.1-7 In this chapter, we focus on clusters of the group 11 elements.

Molecular complexes or clusters of copper hydrides or polyhydrides are numerous. This includes giant Cu(I) polyhydride clusters.6,8-14 On the other hand, the hydride chemistry of silver and gold is much less rich.15-18 As mentioned in Chapter II, we are interested in understanding why the similar treatment of M(I) complexes by borohydrides in the presence of dichalcogenolate ligands leads to the formation of M(I) polyhydrides in the case of copper, whereas in the case of silver non-hydridic superatoms are formed as far as a sufficient amount of borohydride is used. This work, largely developed by C.-W. Liu and collaborators19 is summarized in Scheme 3.1 below. For both metals, when a large excess of borohydride is used, metal(0) nanoparticles are obtained. Thus, the intermediate formation of silver superatoms with an average metal oxidation state comprised between +I and 0, makes senses, especially in the presence of dichalcogenolate anionic ligands (L) which can easily stabilize and protect such cationic $\text{[M}_n\text{]}^{x+}$ (n > x) kernels. So far, this is not the case for copper to which borohydride behaves exclusively as a hydride donor. On the other hand, in
the case of silver, if the smallest isolated species are Ag(I) hydrides (like in the copper case),
the largest isolated clusters are mixed-valent superatoms which do not contain any hydrogen
atom. Thus, with respect to silver, borohydride behaves mainly as an electron donor (a
reductant).

From Copper(I) to Copper(0)

\[
[Cu(CH_3CN)_4]PF_6 \rightarrow [Cu_7HL_6] \rightarrow [Cu_8HL_6]^+ \rightarrow [Cu_{15}H_2L_{12}]^+ \rightarrow [Cu_{20}H_{11}L_6] \rightarrow \text{Copper Nanoparticles}
\]

From Silver(I) to Silver(0)

\[
[Ag(CH_3CN)_4]PF_6 \rightarrow [Ag_7HL_6] \rightarrow [Ag_8HL_6]^+ \rightarrow [Ag_{11}HL_9]^+ \rightarrow [Ag_{20}L_{12}] \rightarrow [Ag_{21}L_{12}]^+ \rightarrow \text{Silver Nanoparticles}
\]

Scheme 3.1. General mechanisms proposed for the reduction of Cu(I) and Ag(I) complexes
by NaBH_4 in the presence of dichalcogenolate ligands (L), en route to copper and silver
nanoparticles.

In the preceding chapter, we have shown that copper superatoms are intrinsically more
stable than their silver counterparts and almost as stable as gold superatoms of which many
examples exist in the literature. Therefore, the question we are asking ourselves now concerns
the stability of hydrides: are copper hydrides so stable that their formation will be always
favored over that of superatoms when in the presence of borohydrides in the reaction
conditions described in Scheme 3.1?

In the followings, we investigate the relative stability of copper, silver and gold
hydrides, first looking at the simplest MH composition in the solid state, and subsequently on
different molecular models. The major computed systems are depicted in Figure 3.1.
Chapter 3

3.1. Computational details

All the calculations of the extended (periodical) systems were done in collaboration with Pr. X. Rocquefelte and Dr. W. Lafargue-dit-Hauret of the Rennes Institute of Chemical Sciences. They were performed by using the Vienna *ab initio* simulation package (VASP) based on the density functional theory (DFT). The projector augmented wave (PAW) potentials was applied. The [5d\(^{10}\)-6s\(^{1}\)] electron states were treated as valence for Au, [4d\(^{10}\)-5s\(^{1}\)] for Ag, [3d\(^{10}\)-4s\(^{1}\)] for Cu and 1s\(^{1}\) for H. The exchange-correlation effects were included by means of the Perdew, Burke and Ernzerhof (PBE) functional. The cut-off energy of 500 eV, the atomic relaxation of 10\(^{-5}\) eV/Å, the relaxation of the electronic degrees of freedom of 10\(^{-8}\) eV were used to reach geometry convergence. Moreover, the geometry and a supercell approach were taken into account and the \(k\)-mesh was centered at the \(\Gamma\)-point.

For the case of molecular systems, all density functional theory calculations were carried out by using the Amsterdam Density Functional (ADF) program and the zeroth-
Chapter 3

order regular approximation (ZORA)24 was applied to incorporate scalar relativistic effects in our calculations. The triple-ζ Slater basis set was employed, plus two polarization functions (STO-TZ2P) for valence electrons, within the generalized gradient approximation (GGA) according to the Becke-Perdew (BP86) exchange functionals.25,26 The frozen core approximation was applied to the [1s2-4f14] inner electrons for Au, [1s2-4p6] for Ag, [1s2-3p6] for Cu, leaving the remaining electrons to be treated explicitly. A gradient convergence criterion of 10-5 and an energy convergence criterion of 10-6 were utilized to perform our geometry optimizations. Analyses of the interaction energy between fragments constituting the investigated clusters have been carried out within the Morokuma-Ziegler energy decomposition method.27-29

3.2. Results and discussion

3.2.1 The periodic MH (M = Cu, Ag, Au) systems.

In this section we focus on the simplest group 11 hydrides that could exist, that is the binary MH hydrides. In fact, CuH is known since 1844 when it was reported by A. Würtz.30 Its X-ray crystal structure was first solved in 192631 and later confirmed by neutron diffraction.32 It adopts the hexagonal wurtzite-type structure in which each atom is tetrahedrally bonded to four atoms of the other element. In fact, according to some authors33-35 CuH is not perfectly stoichiometric and should be better formulated as CuH\textsubscript{1-x} (0 ≤ x ≤ 0.26). Such a characteristic could be related to a surface phenomenon of the powder microcrystals.36 Indeed, CuH is not very stable at room temperature and/or when exposed to air or moisture.

On the other hand, silver and gold do not form hydrides under ambient conditions.37 According to some experimental observations, a high-pressure AuH structure has been suggested to adopt a basic tetragonal body-centered cell that is very similar to the mercury structure Hg-\textit{\textfrac{t}{2}}. In this proposed structure, the metal coordination number is equal to 10.38 Several theoretical calculations on group 11 binary metal hydrides have also been published.39-41 From the detailed analysis of Ceder and coworkers,39 three low-energy structure-types are likely to compete for the stability of group 11 binary hydrides. In our investigation, we have selected these three structures, depicted in Figure 3.1 and described below.

The first structure-type is of course wurtzite, which is that adopted by CuH at ambient conditions (see above). It has a hexagonal crystal system and the corresponding space group is
Chapter 3

P6\textsubscript{3}mc in the Hermann-Mauguin notation. The second one is blende. It has a cubic crystal with \(F\overline{4}3m\) as space group. As for wurtzite, each atom in blende is tetrahedrally bonded to four atoms of the other element (Figure 3.1). The third structure is the cubic rocksalt structure (\(Fm\overline{3}m\) space group) in which each atom is octahedrally coordinated to six atoms of the other type (see Figure 3.1). The calculated lattice parameters optimized for the three structures are reported in Table 3.1, together with the corresponding M-H distances. They are in a satisfying agreement with the known experimental of calculated available data.36-38

Table 3.1. Calculated lattice parameters and M-H distances (in Å) for the three MH systems (M = Cu, Ag, Au).

<table>
<thead>
<tr>
<th>MH</th>
<th>Wurtzite</th>
<th>Blende</th>
<th>Rocksalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuH</td>
<td>(a = 2.85)
 (c = 4.55)</td>
<td>Cu-H
 3 x 1.735
 1 x 1.731</td>
<td>Cu-H
 4 x 1.738</td>
</tr>
<tr>
<td>AgH</td>
<td>(a = 3.21)
 (c = 5.16)</td>
<td>Ag-H
 3 x 1.967
 1 x 1.950</td>
<td>Ag-H
 4 x 1.962</td>
</tr>
<tr>
<td>AuH</td>
<td>(a = 3.10)
 (c = 6.16)</td>
<td>Ag-H
 3 x 2.724
 1 x 1.823</td>
<td>Au-H
 4 x 1.966</td>
</tr>
</tbody>
</table>

Among the three optimized structure-types, wurtzite is the most stable structure for the three metals (see Table 3.2). In the case of Cu and Ag, the blende structure is only slightly less stable. The rocksalt structure is by far energetically disfavored, especially in the case of gold.

Table 3.2. Relative energies (in meV/MH) unit for the studied structures.

<table>
<thead>
<tr>
<th>MH</th>
<th>Wurtzite</th>
<th>Blende</th>
<th>Rocksalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuH</td>
<td>0</td>
<td>17.5</td>
<td>483.4</td>
</tr>
<tr>
<td>AgH</td>
<td>0</td>
<td>16.1</td>
<td>740.9</td>
</tr>
<tr>
<td>AuH</td>
<td>0</td>
<td>88.1</td>
<td>1084.6</td>
</tr>
</tbody>
</table>

The calculated phonon spectra and density of states (DOS) of the wurtzite structure for the three MH systems are shown in Figure 3.2. Whereas the lack of imaginary frequencies for the case of CuH and AgH confirms the stability of these species when adopting the wurtzite
structure, imaginary frequencies (negative frequency values in Figure 3.2) are found for AuH, indicating that the wurtzite-type structure is not an energy minimum. This is consistent with the fact that the DOS of AuH in Figure 3.2 does not exhibit a band gap, contrarily to that of its Cu and Ag relatives. A look at the optimized M-H distances reported in Table 3.2 allows interpreting the peculiar behavior of gold, as compared to copper and silver. For the two latter metals the four M-H distances are almost equal indicating regular tetrahedral coordination. In the case of gold, the three symmetry-related distances (2.72 Å) are very long, indicating the absence of a bond. Thus, only one of the four M-H contacts (1.82 Å) is bonding. This result suggests that in these binary phases gold prefers coordination numbers lower than 4. This is consistent with the general behavior of gold(I) in coordination chemistry for which di-coordination is frequent.
Figure 3.2. Representation of the phonon spectra (left) and DOS (right) of the wurtzite structure for the MH systems (M = Cu, Ag, Au).
Chapter 3

The different band gaps corresponding to these optimized structure-types are provided in Table 3.3. It appears that no band gap can be found for gold, whereas for the three structures, both Cu and Ag exhibit a significant band gap.

Table 3.3. Band gap (in eV) for the optimized MH systems (M = Cu, Ag, Au).

<table>
<thead>
<tr>
<th>MH</th>
<th>Wurtzite</th>
<th>Blende</th>
<th>Rocksalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuH</td>
<td>0.53</td>
<td>0.78</td>
<td>0</td>
</tr>
<tr>
<td>AgH</td>
<td>0.81</td>
<td>1.01</td>
<td>0</td>
</tr>
<tr>
<td>AuH</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Since wurtzite is computed to be the more stable structure at low pressure and temperature, in agreement with the previous work of Ceder and coworkers, we focus now on this structure for the energetical analysis. Owing to the fact that AuH is not an energy minimum for this structure-type, we will concentrate our discussion on the comparison between copper and silver.

The formation energies (E_F) were computed assuming the reaction:

$$M_{(solid)} + \frac{1}{2} \text{H}_2(gas) \rightarrow MH_{(solid)}$$

The energies of the bulk metals were computed assuming the fcc structure and that of free H$_2$ in placing a single molecule in a large cubic unit cell (a = 20 Å). The E_F values corresponding to one MH formula unit are given in Table 3.4. They are positive, indicating an endothermic reaction. This is consistent with the unstability of CuH with respect to heating. Nevertheless, the lowest E_F value corresponds to $M = Cu$, indicating that the more stable (or less unstable) hydride with respect to decomposition is CuH.

The cohesion energies E_C were calculated assuming the equation:

$$E_C = E(MH) - [E(M) + E(H)]$$

$E(M)$ and $E(H)$ were calculated in placing a single atom in a large cubic unit cell (a = 20 Å). The values are negative, indicating substantial bonding. That of CuH has an absolute value which is larger than twice that of Ag and Au. Whereas it is difficult to conclude for AuH because the wurtzite structure-type is not an energy minimum, it is clear that the bonding in CuH is much stronger than in AgH.

As a whole, the results given in Table 3.4 are consistent with the fact that CuH is much stable than AgH.
Table 3.4. Energy of formation (E_F) and cohesion energy (E_C) computed for the MH systems (M = Cu, Ag, Au) in the Wurzite structure-type. The values are given in eV and correspond to one MH formula unit.

<table>
<thead>
<tr>
<th>MH</th>
<th>E_F</th>
<th>E_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuH</td>
<td>0.273</td>
<td>-0.944</td>
</tr>
<tr>
<td>AgH</td>
<td>0.414</td>
<td>-0.372</td>
</tr>
<tr>
<td>AuH</td>
<td>0.700</td>
<td>-0.409</td>
</tr>
</tbody>
</table>

3.2.2 The molecular models.

The first molecular models that one could look at in a first step are the very simple and hypothetical MH (M = Cu, Ag, Au) molecules. Of course, such species have been already investigated at various levels of theory. Our aim was not to provide better data, but, calculating at the same DFT level than the other considered molecular models, our results can be considered as a reference for them. Our major computed data are gathered in Tables 3.5 and 3.6. Our optimized distances are in agreement with experiment.

The longest MH distance and lowest vibrational frequency is found for M = Ag (Table 3.5). This is consistent with a weaker M-H bond in the case of silver. This is confirmed by the Morokuma-Ziegler EDA results given in Table 3.6. Although at the considered level of theory the calculated energies have to be taken with caution at their absolute scale, the comparison between the three metals is meaningful, at least a semi-quantitative level. Both homolytic and heterolytic fragmentations indicate weaker bonding in the case of silver.

Table 3.5. Relevant characteristic of the optimized MH (M = Cu, Ag, Au) models.

<table>
<thead>
<tr>
<th>MH</th>
<th>ΔE_{HOMO-LUMO} (eV)</th>
<th>d (Å)</th>
<th>Lowest freq. (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuH</td>
<td>2.67</td>
<td>1.454</td>
<td>2117</td>
</tr>
<tr>
<td>AgH</td>
<td>3.07</td>
<td>1.618</td>
<td>1720</td>
</tr>
<tr>
<td>AuH</td>
<td>3.26</td>
<td>1.538</td>
<td>2249</td>
</tr>
</tbody>
</table>
Table 3.6. Energy decomposition analysis of the bonding energy in MH (M = Cu, Ag, Au).
Top: Homolytic clivage. Bottom: Heterolytic clivage. All the energies are in eV.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CuH</th>
<th>AgH</th>
<th>AuH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation</td>
<td>Cu + H</td>
<td>Ag + H</td>
<td>Au + H</td>
</tr>
<tr>
<td>Pauli repulsion</td>
<td>6.52</td>
<td>6.66</td>
<td>10.24</td>
</tr>
<tr>
<td>Electrostatic interaction</td>
<td>-2.42</td>
<td>-2.70</td>
<td>-4.39</td>
</tr>
<tr>
<td>Orbital interaction</td>
<td>-8.35</td>
<td>-7.67</td>
<td>-10.33</td>
</tr>
<tr>
<td>Total bonding energy</td>
<td>-4.26</td>
<td>-3.71</td>
<td>-4.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>CuH</th>
<th>AgH</th>
<th>AuH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation</td>
<td>Cu⁺ + H⁻</td>
<td>Ag⁺ + H⁻</td>
<td>Au⁺ + H⁻</td>
</tr>
<tr>
<td>Pauli repulsion</td>
<td>6.00</td>
<td>7.69</td>
<td>11.72</td>
</tr>
<tr>
<td>Electrostatic interaction</td>
<td>-13.52</td>
<td>-14.53</td>
<td>-18.88</td>
</tr>
<tr>
<td>Orbital interaction</td>
<td>-3.40</td>
<td>-3.00</td>
<td>-5.09</td>
</tr>
<tr>
<td>Total bonding energy</td>
<td>-10.92</td>
<td>-9.83</td>
<td>-12.25</td>
</tr>
</tbody>
</table>

We now move to a more realistic model. Among the copper and silver hydrides appearing in Scheme 3.1, the more emblematic are the \([M_8(\mu_8-H)L_6]^+\) (M = Cu, Ag; L = dithiocarbamate, dithiophosphate or diselenophosphate) reported by Liu and coworkers.\(^{43}\) As for the hydride, \(L\) is a formally mono-anionic ligand. It follows that the metal is in its +I oxidation state. The hydride lies in the middle of a regular tetracapped tetrahedron described by the 8 metal cations which are held together by the bridging \(L\) ligands (no covalent metal-metal bonding). Each ligand possesses two chalcogen atoms, each of them bridging one edge of the \(M_8\) tetracapped tetrahedron, in such a way that the ideal symmetry of the \([M_8(\mu_8-H)L_6]^+\) cluster is \(T_h\) (see Figure 3.1). These species are generally not considered to be superatoms since there are no metallic jellium electrons (M(+I)). However, assuming that the hydride is a full part of the cluster, then the H-centered cube can be viewed as a heteronuclear superatom bearing two jellium electrons (1S\(^2\) configuration, provided by the two 1s(H) electrons).

We have in the followings analyzed the electronic structure and compared the stability of the \([M_8(\mu_8-H)L_6]^+\) species within the group 11 series (M = Cu, Ag, Au). The simplified ligand \(L\) considered in the calculations is the model \(S_2PH_2\) (Figure 3.1) which has been shown in many cases to be a good approximation for the real dithiocarbamates or dichalcogenophosphates.\(^{43}\)
Chapter 3

Relevant computed data for the optimized \([M_8(H)(S_2PH_2)_6]^+\) \((M = Cu, Ag, Au)\) structures of \(T_h\) symmetry are given in Table 3.7. Whereas energy minima are found for Cu and Ag, in agreement with experiment, an imaginary vibrational frequency is found in the case of gold, indicating that this structure is not favorable for Au. We therefore concentrate again our analysis on the comparison between copper and silver.

Table 3.7. Relevant computed datas for the \([M_8(H)(S_2PH_2)_6]^+\) systems.

<table>
<thead>
<tr>
<th>cluster</th>
<th>(\Delta E_{H-L} (eV))</th>
<th>H-M(_{tet}) (Å)</th>
<th>M({tet})-M({tet}) (Å)</th>
<th>M({tet})-M({cap}) (Å)</th>
<th>M(_{cap})-H (Å)</th>
<th>Freq (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>([Cu_8(H)(S_2PH_2)_6]^+)</td>
<td>2.75</td>
<td>1.748</td>
<td>2.854</td>
<td>2.681</td>
<td>2.698</td>
<td>50</td>
</tr>
<tr>
<td>([Ag_8(H)(S_2PH_2)_6]^+)</td>
<td>3.49</td>
<td>1.926</td>
<td>3.145</td>
<td>3.084</td>
<td>3.145</td>
<td>27</td>
</tr>
<tr>
<td>([Au_8(H)(S_2PH_2)_6]^+)</td>
<td>2.35</td>
<td>1.928</td>
<td>3.149</td>
<td>2.975</td>
<td>3.149</td>
<td>-19</td>
</tr>
</tbody>
</table>

In order to get a deeper understanding of the metal-hydride bonding, we have carried out a Morokuma-Ziegler EDA of the three \([M_8(H)(S_2PH_2)_6]^+\) clusters, considering the interaction between the \([M_8(S_2PH_2)_6]^{2+}\) and \(H^-\) fragments. The corresponding results are given in Table 3.8.

Again, the computed total bonding energy indicate stronger interaction in the case of copper hydride, as compared to silver. Interestingly, this ordering is driven by the \(E_{orb}\) component, indicating that in these clusters, the stronger Cu-H bonding is also the more covalent, the weaker Ag-H bonding being more ionic in character.

Table 3.8. Morokuma-Ziegler energy decomposition analysis (EDA) of the \([M_8(H)(S_2PH_2)_6]^+\) clusters. All values are in eV. \(E_{Pauli} = Pauli\) repulsion, \(E_{elstat} = electrostatic\) interaction, \(E_{orb} = orbital\) interaction. TBE = total bonding energy = \(E_{Pauli} + E_{elstat} + E_{orb}\)

<table>
<thead>
<tr>
<th>cluster</th>
<th>([Cu_8(H)(S_2PH_2)_6]^{2+} + H^-)</th>
<th>([Ag_8(H)(S_2PH_2)_6]^{2+} + H^-)</th>
<th>([Au_8(H)(S_2PH_2)_6]^{2+} + H^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation</td>
<td>(E_{Pauli})</td>
<td>(E_{elstat})</td>
<td>(E_{orb})</td>
</tr>
<tr>
<td>([Cu_8(S_2PH_2)_6]^{2+})</td>
<td>24.75</td>
<td>-26.78</td>
<td>-9.21</td>
</tr>
<tr>
<td>([Ag_8(S_2PH_2)_6]^{2+})</td>
<td>21.88</td>
<td>-27.13</td>
<td>-5.76</td>
</tr>
<tr>
<td>([Au_8(S_2PH_2)_6]^{2+})</td>
<td>31.89</td>
<td>-32.85</td>
<td>-9.57</td>
</tr>
<tr>
<td>TBE</td>
<td>-11.24</td>
<td>-11.01</td>
<td>-10.53</td>
</tr>
</tbody>
</table>
Chapter 3

Conclusion

All the calculations described above are consistent with a stronger M(I)-H bonding when M = Cu, as compared to M = Ag. The M = Au case is more difficult to interpret since it seems not to be inclined to form the same compounds as Cu and Ag. This is in line with the fact that Au(I) hydrides are scarce. Let us suggest that the computed solid-state models are likely to be the best models for giant polyhydrides. They suggest that Cu(I) hydrides are much more stable than their Ag(I) counterparts. We can therefore conclude that, despite the fact that copper superatoms are more stable than their silver analogues (see Chapter 2), the particular stability of copper hydrides renders difficult to isolate superatoms (contrarily to silver) in the process described in Scheme 3.1. Copper hydrides appear to be a thermodynamic well in this process. This is why in order to get copper superatoms, the reaction conditions of Scheme 3.1 should be modified. A possibility should be to use ligands different from dichalcogenolates having the ability to compete with hydrides as coordinating species. In such a way, borohydride could be able to react as an electron donor, rather than a hydride donor.
Chapter 3

References

Chapter 3

Chapter 3

Chapter 4: Electronic and bonding properties of the tetrahedral clusters $[M_{16}\text{Ni}_{24}(\text{CO})_{40}]^{4-}$ (M = Cu, Ag, Au) related to the pyramidal [Au$_{20}$] cluster

Introduction

Since the beginning of this century, the chemistry of ligand-protected Group 11 superatoms$^{1–3}$ has been tremendously developing, boosted in particular by the various potential applications of these atom- and electron-precise species.4,5 These clusters consist of a compact (generally pseudo-spherical) M$_{n}$ core embedded in an outer protecting (“passivating”) shell made of various stabilizing ligands, such as for instance thiolates, halogenides and/or phosphines.$^{2,5–8}$ In the specific case of thiolates, additional peripheral M(I) atoms are also present in the protecting shell, in which they occupy bridging positions between sulfur atoms. As a result, metal-thiolato “stapples” are formed, which are anchored to the M$_{n}$ core through the coordination of sulfur.$^{9–11}$ Owing to the presence of formally anionic ligands on the outer shell, the inner metallic core is generally in a positive oxidation state ($[M_{n}]^{x+}$), giving rise to a non-integer averaged oxidation state $[(n - x)/n]$ lying between 0 and +1.

As developed in Chapter 2, the stability of superatoms is associated with “magic” electron numbers, which can be rationalized within the framework of a spherical jellium-type model and associated with closed-shell superatomic orbitals,5,12,13 ordering as $1S < 1P < 1D < 2S < 1F < 2P < 1G…$.$^{1,6,12–17}$

Interestingly, the naked neutral [Au$_{20}$] tetrahedral cluster, obtained in the gas phase and further characterized by photoelectron spectroscopy,18 exhibits a closed-shell superatom configuration. It is characterized by a 20-electron “magic” number (the 5d(Au) electrons are not included in this counting). Its electronic structure, investigated by density functional calculations,$^{18–23}$ exhibits a large HOMO–LUMO energy gap, in agreement with its remarkable stability and unique optical and catalytic properties.$^{18,24–30}$ Its structure is that of a bulk face-centered cubic (fcc) gold fragment, in a finite nanosized cluster motif.18,26
Efforts to bring [Au$_{20}$] species into solution has been carried out since the last ten years,$^{26,31–35}$ which resulted in structures and electronic structures completely different from that of the bare [Au$_{20}$] cluster. Interestingly, in the beginning of the 90’s, Dahl’s group reported the stabilization of an octahedral Au$_6$ core from the reaction between the Longoni–Chini [Ni$_3$(CO)$_6$]$^{2-}$ cluster36 as reducing agent of a Au(I) solution. The resulting [Au$_6$Ni$_{12}$(CO)$_{24}$]$^{2-}$ cluster37,38 was a first example of the capability of Group 11 cores to be embedded in an outer shell made of organometallic units, which can increase the versatility of the protecting layer. Later, the same approach was extended to achieve high-nuclearity counterparts employing Ag(OAc) and gold trichloride in modified conditions,39 resulting in the formation of [Ag$_{16}$Ni$_{24}$(CO)$_{40}$]$^{4-}$ and [Au$_{16}$Ni$_{24}$(CO)$_{40}$]$^{4-}$, respectively, with the former characterized via single-crystal X-ray diffraction.39

Both solid-state structures of [Au$_6$Ni$_{12}$(CO)$_{24}$]$^{2-}$ and [Ag$_{16}$Ni$_{24}$(CO)$_{40}$]$^{4-}$ exhibit an ideal T_d symmetry. At first sight, they can be viewed as made of a superatomic core, ([Au$_6$]$^{2-}$ and [Ag$_{16}$]$^{4-}$, respectively) covered by four approximatively planar Ni$_3$(CO)$_6$ and Ni$_6$(CO)$_{10}$ units, respectively. However, a rationalization of the bonding between the superatom core and the nickel carbonyl units is not as straightforward as for thiolate- or phosphine-covered superatoms. Indeed, [:SR]$^-$ or :PR$_3$ are two-electron ligands, making localized 2-electron/2-center bonds with the metal core. In [Ag$_{16}$Ni$_{24}$(CO)$_{40}$]$^{4-}$ for example, each Ni$_6$(CO)$_{10}$ units has several bonding contacts with the cluster core (Figure 4.1), suggesting the possibility for delocalized bonding. Moreover, it is likely that the electron-donation is going in the opposite way as in the case of classical ligands, $i.e.,$ from the core to the outer shell.40 Therefore, the question of the outer nickel carbonyl shell being not to be considered as a protecting ligand but as a full part of the superatom entity arises. In any case, the role of the nickel carbonyl units in the overall stabilization of these species is particularly puzzling. Although DFT investigations of [Ag$_{16}$Ni$_{24}$(CO)$_{40}$]$^{4-}$ by Walter have recently appeared,13 they were not focused on the nature of the bonding between the nickel carbonyl groups and the Group 11 core, but to provide an analysis of the overall electronic structure.

Herein, we are interested in the role of the nickel carbonyl entity in the stabilization of the whole cluster, extending the exploration along the Group 11 triad in the series [M$_{16}$Ni$_{24}$(CO)$_{40}$]$^{4-}$ (M = Cu, Ag, Au). Both electronic and structural features are rationalized in terms of the superatom concept6,10,13 showing a strong resemblance to the bare [Au$_{20}$], thus, proving that the synthesis in solution of a related passivated core is possible, which can be useful for further explorations of its physico-chemical properties towards building blocks for nanostructured materials.41 On the other hand, this allows the possibility to access towards
finite fcc fragments made of group 11 elements, for further understanding the size-dependent behavior and properties of a few atoms section of group 11 M(111) surfaces, which are widely employed as active supporting surfaces.42–46

![Figure 4.1. Molecular structure of [Au_{6}Ni_{12}(CO)_{24}]^{2-} (left) and [Ag_{16}Ni_{24}(CO)_{40}]^{4+} (right).](image)

4.1. Computational details

All density functional theory calculations were carried out by using the Amsterdam Density Functional (ADF) program47 and the zeroth-order regular approximation (ZORA) was applied to incorporate scalar relativistic effects in our calculations. The triple-ζ Slater basis set was employed, plus two polarization functions (STO-TZ2P) for valence electrons, within the generalized gradient approximation (GGA) according to the Becke-Perdew (BP86) exchange functional.48,49 The frozen core approximation was applied to the [1s^2-4f^{14}] inner electrons for Au, [1s^2-4p^6] for Ag, [1s^2-3p^6] for Cu, [1s^2-3p^6] for Ni, [1s^2] for C and [1s^2] for O, leaving the remaining electrons to be treated explicitly. A gradient convergence criterion of 10^{-5} and an energy convergence criterion of 10^{-8} were utilized to perform our geometry optimizations. Analyses of the interaction energy between fragments constituting the investigated clusters have been carried out within the Morokuma-Ziegler energy decomposition method.50–52 Time-dependent DFT (TD-DFT) calculations were employed at the same level, but using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional53 because it offers a valuable comparison to the available computational calculation
Chapter 4

of UV-Vis spectrum for related clusters.4,54–57 It is worth mentioning that in the particular case of the investigated compounds, TD-DFT results at the BP86 level provided very similar results.

4.2. Results and discussion

4.2.1 The M_{16} core

In $\left[\text{Ag}_{16}\text{Ni}_{24}(\text{CO})_{40}\right]^{4-}$,39 the T_d Ag_{16} core can be described in terms of two concentric shells, $\text{Ag}'_{4}\text{Ag''}_{12}$, with two types of symmetry-equivalent metals. As said above, it can also be viewed as a compact piece taken out of a fcc metallic solid. Indeed, along anyone of its four 3-fold axes, the packing goes in three successive compact planes, as sketched in Figure 4.2: A (7 atoms), B (6 atoms) and C (3 atoms). Thus, the Ag_{16} core has four 7-atom and four 3-atom faces. In $\left[\text{Ag}_{16}\text{Ni}_{24}(\text{CO})_{40}\right]^{4-}$, each of the four 7-atom faces is capped by a $\text{Ni}_{6}(\text{CO})_{10}$ unit. Previous calculations by Walter13 lead to describe this cluster core as a 20-\textit{je} $[\text{Ag}_{16}]^{4+}$ superatomic subsystem with the spherical jellium configuration $1S^2\ 1P^6\ 1D^{10}\ 2S^2$. At this point of the discussion, one should remind that in this type of clusters, only the 5s(Ag) electrons are considered participating to the bonding within the superatom core, and consequently to the jellium electron count. The fully occupied 4d(Ag) levels remain basically non-bonding and low-lying. Then the similarity between the $[\text{Ag}_{16}]^{4+}$ subsystem and $[\text{Ag}_{20}]$ (or $[\text{Au}_{20}]$) are striking. Indeed, the neutral unligated 20-\textit{je} $[\text{Ag}_{20}]$ (or $[\text{Au}_{20}]$)18,21,23 adopts a tetrahedral structure that can be generated from the $[\text{Ag}_{16}]^{4+}$ subsystem by capping its four triangular faces with four Ag^+. In these $[\text{M}_{20}]$ superatoms, the compact plane stacking goes as A (10 atoms), B (6 atoms), C (3 atoms) and A (1 atom). The alternative description of $[\text{M}_{20}]$ in terms of concentric shells, $M'_{4}@M''_{12}@M''''_{4}$, reveals three types of symmetry-equivalent metals.22 We have optimized the $T_d[\text{M}_{16}]^{4+}$ and $T_d[\text{M}_{20}]$ (M = Cu, Ag, Au) species assuming T_d symmetry and found them to be closed-shell minima in these spatial configurations. Their major computed results are provided in Table 4.2. The relationship between their 20-\textit{je} superatom electron configurations is evidenced by the plots of the $[\text{Ag}_{16}]^{4+}$ and $[\text{Ag}_{20}]$ Kohn-Sham jellium orbitals (Figure 4.3).
Figure 4.2. Illustration of the fcc packing (A, B and C planes) in Ag_{20} (left) and the Ag_{16} core of [Ag_{16}Ni_{24}(CO)_{40}]^{4+} (middle) and with one Ni_{6} plane (right). The red, yellow and black colors correspond to the symmetry-equivalent Ag’, Ag” and Ag”’ atoms, respectively, in Ag_{20} (Ag’_{4}@Ag”_{12}@Ag”’_{4}) and the Ag_{16} core (Ag’_{4}@Ag”_{12}). The green color corresponds to Ni.

Figure 4.3. The Kohn-Sham jellium orbitals of [Au_{16}]^{4+} and [Au_{20}].

A Morokuma-Ziegler decomposition of the bonding energy^{50–52} between the [M_{16}]^{4+} core and its [M_{4}]^{4+} envelope in the [M_{20}] equilibrium geometry has been performed (see Computational Details) and its components are given in Table 4.1. For the three metals, the total bonding energy between the two fragments is negative (stabilizing), with similar values for M = Cu and Au, whereas that corresponding to Ag is weaker. This is in phase with the computed cohesion energy of [M_{20}] (Table 4.2) and with previous calculations on bare Group 11 metal clusters.^{58} In fact, in such bare metal clusters Ag behaves always a bit differently than Cu and Ag, because the periodical trend is likely to be counterbalanced by the relativistic effects.^{58} Among the three components of the bonding energy, the Pauli repulsion is, by
nature, positive. On the other hand, the two other components (electrostatic and orbital interactions) are stabilizing and more or less follow the same trend as the total bonding energy. The \(a_1 \) and \(t_2 \) components are dominating the orbital interaction energy. They result from the participation to the bonding of the valence \((n + 1)s\) orbitals of \(M^+ \), with some \((n + 1)p_\sigma\) contribution. Indeed, within the cluster \(T_d \) symmetry, the four valence s-type AOs combine into \(a_1 + t_2 \) and interact strongly with their 2S \((a_f)\) and 1D \((t_2\) component) counterparts on the \([M_{16}]^+\) fragment. As a consequence, the occupation after interaction of the \(M^+ (n + 1)s\) orbital is substantial (~1.0 e, see Table 4.1), whereas that of its \((n + 1)p_\sigma\) AO remains lower than 0.1 e in the three clusters. The less important \(e \) and \(t_1 \) contributions of the orbital interaction energy (Table 4.1), as well as the \((n + 1)p\) and \(nd \) populations of the capping atoms, are the trace of some bonding interaction of the \(M^+ \) vacant \((n + 1)p_\pi\) combinations \((e + t_1 + t_2)\) with occupied \([M_{16}]^{+}\) counterparts, as well as of the \(M^+ \) \(nd \) occupied combinations \((a_1 + 2e + 2t_1 + 3t_2)\) with some vacant \([M_{16}]^{+}\) MOs. In any case, the participation of the \(M^+ (n + 1)p\) and \(nd \) AOs in the bonding with the \([M_{16}]^{+}\) core remains minor.

Table 4.1. Decomposition of the bonding energy between the \([M_{16}]^{+}\) core and its outer capping \([M_4]^{+}\) fragment in the \([M_{20}]\) \((M = \text{Cu, Ag, Au})\) clusters of \(T_d \) symmetry and electron configuration of the four capping atoms. All energies are in eV.

<table>
<thead>
<tr>
<th>Compound ((T_d))</th>
<th>([\text{Cu}_{20}])</th>
<th>([\text{Ag}_{20}])</th>
<th>([\text{Au}_{20}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation</td>
<td>([\text{Cu}_{16}]^+ + [\text{Cu}_4]^{2+})</td>
<td>([\text{Ag}_{16}]^+ + [\text{Ag}_4]^{4+})</td>
<td>([\text{Au}_{16}]^+ + [\text{Au}_4]^{4+})</td>
</tr>
<tr>
<td>Pauli repulsion</td>
<td>23.30</td>
<td>21.13</td>
<td>30.66</td>
</tr>
<tr>
<td>Electrostatic interaction</td>
<td>-72.60</td>
<td>-64.79</td>
<td>-75.02</td>
</tr>
<tr>
<td>Orbital interaction decomposition</td>
<td>(a_1) -4.24</td>
<td>(a_1) -3.87</td>
<td>(a_1) -5.63</td>
</tr>
<tr>
<td></td>
<td>(a_2) -0.01</td>
<td>(a_2) -0.01</td>
<td>(a_2) -0.02</td>
</tr>
<tr>
<td></td>
<td>(e) -1.41</td>
<td>(e) -1.00</td>
<td>(e) -1.23</td>
</tr>
<tr>
<td></td>
<td>(t_1) -1.38</td>
<td>(t_1) -0.89</td>
<td>(t_1) -2.05</td>
</tr>
<tr>
<td></td>
<td>(t_2) -9.33</td>
<td>(t_2) -8.40</td>
<td>(t_2) -12.45</td>
</tr>
<tr>
<td>Total orbital interaction</td>
<td>-16.38</td>
<td>-14.17</td>
<td>-21.38</td>
</tr>
<tr>
<td>Total bonding energy</td>
<td>-65.68</td>
<td>-57.83</td>
<td>-65.75</td>
</tr>
<tr>
<td>Jellium electron configuration of the ([M_{16}]^{+}) fragment</td>
<td>(1S_{1.95} \quad 1P_{5.79} \quad 1D_{7.83} \quad 2S_{0.79} \quad 2P_{0.24})</td>
<td>(1S_{1.98} \quad 1P_{5.94} \quad 1D_{7.36} \quad 2S_{0.71} \quad 2P_{0.09})</td>
<td>(1S_{1.95} \quad 1P_{5.91} \quad 1D_{7.74} \quad 2S_{0.56} \quad 2P_{0.12})</td>
</tr>
<tr>
<td>Electron configuration of the outer capping atoms</td>
<td>(3d^{0.81} \quad 4s^{0.97} \quad 4p^{0.22})</td>
<td>(4d^{0.89} \quad 5s^{0.96} \quad 5p^{0.14})</td>
<td>(5d^{0.71} \quad 6s^{1.14} \quad 6p^{0.19})</td>
</tr>
</tbody>
</table>
Table 4.2. Relevant computed data for \([M_{16}]^4\) and \([M_{20}]\) clusters (M = Cu, Ag, Au).

<table>
<thead>
<tr>
<th></th>
<th>Ec (kcal/mol)</th>
<th>(\Delta E_{H-L}) (eV)</th>
<th>M-M (Å)</th>
<th>M-M’ (Å)</th>
<th>M’-M’ (Å)</th>
<th>Lowest frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>([Cu_{16}]^4)</td>
<td>-56.05</td>
<td>1.52</td>
<td>2.671</td>
<td>2.444</td>
<td>2.424-2.454</td>
<td>69 ((t_2))</td>
</tr>
<tr>
<td>([Ag_{16}]^4)</td>
<td>-53.18</td>
<td>1.40</td>
<td>3.023</td>
<td>2.820</td>
<td>2.806-2.828</td>
<td>44 ((t_2))</td>
</tr>
<tr>
<td>([Au_{16}]^4)</td>
<td>-46.99</td>
<td>0.65</td>
<td>3.911</td>
<td>2.831</td>
<td>2.737-2.738</td>
<td>35 ((t_2))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ec (kcal/mol)</th>
<th>(\Delta E_{H-L}) (eV)</th>
<th>M-M (Å)</th>
<th>M-M’ (Å)</th>
<th>M’-M’ (Å)</th>
<th>Lowest frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>([Cu_{20}])</td>
<td>-62.07</td>
<td>1.34</td>
<td>2.600</td>
<td>2.453</td>
<td>2.414-2.489</td>
<td>67 ((t_1))</td>
</tr>
<tr>
<td>([Ag_{20}])</td>
<td>-45.46</td>
<td>1.64</td>
<td>3.034</td>
<td>2.831</td>
<td>2.755-2.902</td>
<td>41 ((t_1))</td>
</tr>
<tr>
<td>([Au_{20}])</td>
<td>-56.34</td>
<td>1.81</td>
<td>3.131</td>
<td>2.817</td>
<td>2.674-2.946</td>
<td>30 ((t_1))</td>
</tr>
</tbody>
</table>

4.2.2 The protecting \(Ni_6(CO)_{10}\) units

Being centered on a \(C_3\) axis of the tetrahedral \([M_{16}Ni_{24}(CO)_{40}]^4\) cluster (Figure 4.1), each of the four \(Ni_6(CO)_3(\mu-CO)_6(\mu_3-CO)\) units has local \(C_{3v}\) symmetry. In fact, one can view the nickel atoms as part of the whole metal compact packing of the cluster (Figure 4.2, right side), which, along each of the \(C_3\) axis goes as C (\(M_3\)), B (\(M_6\)), A (\(M_7\)) and B (\(Ni_6\)). If, in a first step, we do not consider the central \(\mu_3\)-carbonyl ligand, the remaining \(Ni_6(CO)_9\) fragment is almost planar, of idealized \(D_{3h}\) symmetry (Scheme 4.1). This approximately planar \(Ni_6(CO)_9\) neutral fragment has \((6 \times 10) + (9 \times 2) = 78\) electrons in the metal coordination environment. This is the electron count that one would predict at first sight, assuming a localized 2-electron/2-center bonding scheme (nine 2-electron Ni-Ni bonds), with the six in-plane coordinated metals satisfying the 16-electron rule \([6 \times 16) - (2 \times 9) = 78\]. However, it appears from the nearly planar 6-fold connectivity of the three inner Ni atoms (Scheme 4.1) that a localized bonding scheme with 9 Ni-Ni bonds does not apply properly. Indeed, the inner Ni atoms have only 5 in-plane valence orbitals \((s, p_x, p_y, d_{x^2-y^2}, d_{xy})\) available for making 6 “bonds”. Considering that the metal \(d_{x^2-y^2}\) and \(d_{xy}\) AOs are participating in 6 among the 12 Ni-(\(\mu\)-CO) bonds (those involving the \(\pi^*(CO)\) orbitals) and in all the Ni-Ni bonds, one is left with \((6 \times 2) - 6 = 6\) localized 2-electron/2-center Ni-Ni bonds. A reasonable Lewis description of the \(Ni_6(CO)_9\) fragment would be to discard the three central Ni-Ni bonds in Scheme 4.1. This would leave the three inner metals with a 14-electron configuration, whereas the three outer ones would remain 16-electron centers. This electron-deficient and delocalized situation makes this \(Ni_6(CO)_9\) fragment somewhat different from structurally related species, such as \([Pt_3Fe_3(CO)_{15}]^{0/-2/}\), for example.59-62
Chapter 4

Adding now an out-of-plane μ_3-CO on the central metal triangle of $\text{Ni}_6(\text{CO})_9$ to complete the full $\text{Ni}_6(\text{CO})_{10}$ organometallic unit reduces the electron deficiency of this triangle by 2 electrons and orientates the associated electron-accepting ability to the other side of the Ni_6 plane.

Scheme 4.1. Connectivity within a $\text{Ni}_6(\text{CO})_3(\mu\text{-CO})_6$ fragment in $[\text{Ag}_{16}\text{Ni}_{24}(\text{CO})_{40}]^{4-}$.

Figure 4.4. Kohn-Sham orbital diagram of free $\text{Ni}_6(\text{CO})_3(\mu\text{-CO})_6(\mu_3\text{-CO})$ (C$_{3v}$ symmetry).

The optimized geometry of the free $\text{Ni}_6(\text{CO})_{10}$ unit (assuming C$_{3v}$ symmetry) and its Kohn-Sham MO diagram are shown in Figure 4.4. Its moderate out-of-planarity allows strengthening slightly the bonding around the metal centers by somewhat reducing their
electron deficiency. The Ni-Ni bond lengths, 2.594 Å (inner) and 2.431 Å (peripheral) are consistent with the above qualitative description of the bonding. The electron deficiency is evidenced by the existence of low-lying vacant orbitals. In particular the 39a\textsubscript{1} LUMO has significant in-phase metal 4p\textsubscript{z} AO’s. The 16a\textsubscript{2} HOMO has in-plane 3d-type character, whereas the 38a\textsubscript{1} HOMO-1 is a 3d\textsubscript{z2} combination, as well as the low-lying 36a\textsubscript{1}. Contrarily to the HOMO, these two last occupied MOs have favorable directional properties to interact with the [M\textsubscript{16}]4+ core.

4.2.3 Interaction of a single Ni\textsubscript{6}(CO)\textsubscript{10} with the [M\textsubscript{16}]4+ core

The best way to analyze the role played by the outer organometallic shell in the bonding and stability of [M\textsubscript{16}(Ni\textsubscript{24}(CO)\textsubscript{40})]4+ is to first consider the interaction between one Ni\textsubscript{6}(CO)\textsubscript{10} fragment and the [M\textsubscript{16}]4+ core. In this respect, we have undertaken a Morokuma-Ziegler decomposition of the bonding energy50-52 between the [M\textsubscript{16}]4+ and Ni\textsubscript{6}(CO)\textsubscript{10} fragments in an [M\textsubscript{16}(Ni\textsubscript{6}(CO)\textsubscript{10})]4+ model of C\textsubscript{3v} symmetry, the structure of which (single-point calculation) being taken out of the optimized geometry of the [M\textsubscript{16}(Ni\textsubscript{24}(CO)\textsubscript{40})]4+ tetrahedral parent. Its components are given in Table 4.3. For the three models, the orbital interaction energy is dominated by its \textit{a} and \textit{e} components, in agreement with the fact that the directional properties of the Ni\textsubscript{6}(CO)\textsubscript{10} orbitals of \textit{a}\textsubscript{2} symmetry are unfavorable. Moreover, an analysis of the fragment orbital populations after interaction indicates that the [M\textsubscript{16}]4+ orbitals which are by far the most involved in the interaction are those which can be identified as the jellium-type MOs (Figure 4.3). Among them, the 1D and 2S orbitals, which are occupied in the isolated [M\textsubscript{16}]4+, are dominating the interaction (see their population in the [M\textsubscript{16}(Ni\textsubscript{6}(CO)\textsubscript{10})]4+ model in Table 4.3), whereas the 2P and 1F orbitals (lowest vacant levels in [M\textsubscript{16}]4+) interact in a lesser extent. Consistently, an examination of the occupation of the Ni\textsubscript{6}(CO)\textsubscript{10} fragment after interaction (Table 4.3) indicates a major role played by the five lowest unoccupied organometallic MOs, in particular the 39a\textsubscript{1} LUMO and the 51e LUMO+1 which are acting as strong accepting orbitals. The organometallic donor orbitals are principally of \textit{a}\textsubscript{1} symmetry (d\textsubscript{z2} combinations) and much less efficient. Thus, the Ni\textsubscript{6}(CO)\textsubscript{10} acts mainly as a strong electron acceptor, as exemplified by its largely negative charge in the computed model (Table 4.3). Moreover, its frontier orbitals interact mostly with the jellium-type orbitals of [M\textsubscript{16}]4+ core. Clearly, this is not the behavior of a 2-electron ligand which would be expected to act as an electron donor and interact with core surface orbitals, different from the delocalized jellium-type ones. Rather, the interaction of the Ni\textsubscript{6}(CO)\textsubscript{10} fragment with
the $[M_{16}]^{4+}$ core resembles that of the four outer capping M^{+} atoms in the $[M_{20}]$ clusters (see above), despite of the fact they cap different faces of the $[M_{16}]^{4+}$ core.

Table 4.3. Decomposition of the bonding energy between the $[M_{16}]^{4+}$ and $Ni_{6}(CO)_{10}$ fragment in the C_{3v} model $[M_{16}(Ni_{6}(CO)_{10})]^{4+}$ ($M = Cu, Ag, Au$) and population analysis of the fragment. All energies are in eV.

<table>
<thead>
<tr>
<th>Compound (C_{3v})</th>
<th>$[Cu_{16}Ni_{6}(CO)_{10}]^{4+}$</th>
<th>$[Ag_{16}Ni_{6}(CO)_{10}]^{4+}$</th>
<th>$[Au_{16}Ni_{6}(CO)_{10}]^{4+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation</td>
<td>$[Cu_{16}]^{4+} + Ni_{6}(CO)_{10}$</td>
<td>$[Ag_{16}]^{4+} + Ni_{6}(CO)_{10}$</td>
<td>$[Au_{16}]^{4+} + Ni_{6}(CO)_{10}$</td>
</tr>
<tr>
<td>Pauli repulsion</td>
<td>31.57</td>
<td>24.90</td>
<td>26.17</td>
</tr>
<tr>
<td>Electrostatic</td>
<td>-29.87</td>
<td>-23.24</td>
<td>-24.21</td>
</tr>
<tr>
<td>interaction</td>
<td>a_{1} -5.34</td>
<td>a_{1} -4.71</td>
<td>a_{1} -4.43</td>
</tr>
<tr>
<td>a_{2} -0.52</td>
<td>a_{2} -0.42</td>
<td>a_{2} -0.72</td>
<td></td>
</tr>
<tr>
<td>e -7.90</td>
<td>e -6.33</td>
<td>e -6.69</td>
<td></td>
</tr>
<tr>
<td>Total orbital</td>
<td>-13.77</td>
<td>-11.46</td>
<td>-11.85</td>
</tr>
<tr>
<td>interaction</td>
<td>-12.09</td>
<td>-9.79</td>
<td>-9.89</td>
</tr>
<tr>
<td>Jellium</td>
<td>1S$^{1.88}$1P$^{0.83}$1D$^{0.78}$2S$^{1.49}$2P$^{0.28}$</td>
<td>1S$^{1.90}$1P$^{5.58}$1D$^{0.48}$2S$^{1.53}$2P$^{0.27}$</td>
<td>1S$^{1.90}$1P$^{5.55}$1D$^{0.48}$2S$^{1.64}$2P$^{0.48}$</td>
</tr>
<tr>
<td>electron configuration of the $[M_{16}]^{4+}$ fragment</td>
<td>(36a${1}$)$^{1.90}$ (38a${1}$)$^{1.85}$ (16a${2}$)$^{1.92}$ (39a${1}$)$^{1.87}$ (38a${1}$)$^{1.88}$ (16a${2}$)$^{1.92}$ (39a$_{1}$)$^{1.22}$ (51e)$^{1.12}$ (52e)$^{0.36}$</td>
<td>(36a${1}$)$^{1.88}$ (38a${1}$)$^{1.79}$ (16a${2}$)$^{1.86}$ (39a${1}$)$^{1.02}$ (51e)$^{0.82}$ (52e)$^{0.40}$</td>
<td></td>
</tr>
<tr>
<td>Occupation of selected Ni${6}(CO){10}$ frontier MOs</td>
<td>-1.64</td>
<td>-1.84</td>
<td>-1.43</td>
</tr>
</tbody>
</table>

4.2.4 The $[M_{16}(Ni_{24}(CO)_{40})]^{4+}$ clusters

The geometries of the $[M_{16}(Ni_{24}(CO)_{40})]^{4+}$ ($M = Cu, Ag, Au$) clusters have been fully optimized (see computational details). Major structural data are provided in Table 4.4, together with the computed HOMO-LUMO gaps which are consistent with their closed-shell superatom nature. The optimized distances of the silver species are in good agreement with the reported corresponding experimental values.\(^{39}\)
Chapter 4

Table 4.4. Relevant computed data for [M\(_{16}\)Ni\(_{24}\)(CO)\(_{40}\)]\(^{4-}\) (M = Cu, Ag, Au) clusters. \(\Delta E_{\text{H-L}}\) is HOMO-LUMO gap in eV. The two types of symmetry-equivalent group 11 atoms refer to the concentric spheres M'@M''\(_{12}\) (see Section 4.2.1). The two types of symmetry equivalent Ni atoms are labeled Ni\(_{A}\) and Ni\(_{B}\), the inner and outer metals in Ni\(_{6}\)(CO)\(_{10}\), respectively (see Section 4.2.2). Distances are given in Å. Experimental values of Dahl’s silver cluster taken from Ref. 39 are given in parenthesis.

<table>
<thead>
<tr>
<th></th>
<th>(\Delta E_{\text{H-L}})</th>
<th>M'\text{-M}'</th>
<th>M'\text{-M}''</th>
<th>M''\text{-M}''</th>
<th>M'\text{-Ni}_A</th>
<th>M''\text{-Ni}_A</th>
<th>M''\text{-Ni}_B</th>
<th>Ni(_A)\text{-Ni}_A</th>
<th>Ni(_A)\text{-Ni}_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cu({16})Ni({24})(CO)(_{40})](^{4-})</td>
<td>1.06</td>
<td>2.625</td>
<td>2.493</td>
<td>2.481\text{-}2.503</td>
<td>2.681</td>
<td>2.652</td>
<td>2.558</td>
<td>2.703</td>
<td>2.446</td>
</tr>
<tr>
<td>[Ag({16})Ni({24})(CO)(_{40})](^{4-})</td>
<td>0.83</td>
<td>2.995</td>
<td>2.865</td>
<td>2.832\text{-}2.897</td>
<td>2.838</td>
<td>2.973</td>
<td>2.731</td>
<td>2.703</td>
<td>2.449</td>
</tr>
<tr>
<td>[Au({16})Ni({24})(CO)(_{40})](^{4-})</td>
<td>0.88</td>
<td>3.067</td>
<td>2.872</td>
<td>2.847\text{-}2.893</td>
<td>2.780</td>
<td>2.935</td>
<td>2.699</td>
<td>2.743</td>
<td>2.485</td>
</tr>
</tbody>
</table>

Table 4.5. Decomposition of the bonding energy between the [M\(_{16}\)]\(^{4+}\) core and its [Ni\(_{24}\)(CO)\(_{40}\)] envelope in the \(T_d\) [M\(_{16}\)(Ni\(_{24}\)(CO)\(_{40}\))\(^{4-}\)] (M = Cu, Ag, Au) and population analysis of the fragment. All energies are in eV.

<table>
<thead>
<tr>
<th>Compound ((T_d))</th>
<th>[Cu({16})Ni({24})(CO)(_{40})](^{4+})</th>
<th>[Ag({16})Ni({24})(CO)(_{40})](^{4+})</th>
<th>[Au({16})Ni({24})(CO)(_{40})](^{4+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation</td>
<td>[Cu({16})](^{4+}) + [Ni({6})(CO)(_{10})](^{4-})</td>
<td>[Ag({16})](^{4+}) + [Ni({6})(CO)(_{10})](^{4-})</td>
<td>[Au({16})](^{4+}) + [Ni({6})(CO)(_{10})](^{4-})</td>
</tr>
<tr>
<td>Pauli repulsion</td>
<td>132.40</td>
<td>99.99</td>
<td>109.23</td>
</tr>
<tr>
<td>Electrostatic</td>
<td>-125.13</td>
<td>-94.39</td>
<td>-102.49</td>
</tr>
<tr>
<td>Orbital interaction</td>
<td>(a_1) -6.52</td>
<td>(a_1) -5.22</td>
<td>(a_1) -4.65</td>
</tr>
<tr>
<td></td>
<td>(a_2) -0.26</td>
<td>(a_2) -0.21</td>
<td>(a_2) -0.27</td>
</tr>
<tr>
<td></td>
<td>(e) -8.51</td>
<td>(e) -6.84</td>
<td>(e) -6.35</td>
</tr>
<tr>
<td></td>
<td>(t_1) -7.53</td>
<td>(t_1) -5.16</td>
<td>(t_1) -8.05</td>
</tr>
<tr>
<td></td>
<td>(t_2) -25.62</td>
<td>(t_2) -22.36</td>
<td>(t_2) -21.94</td>
</tr>
<tr>
<td>Total orbital</td>
<td>-48.44</td>
<td>-39.78</td>
<td>-41.26</td>
</tr>
<tr>
<td>Total bonding</td>
<td>-48.45</td>
<td>-34.18</td>
<td>-34.51</td>
</tr>
<tr>
<td>Ni(6)(CO)({10}) Mulliken charge</td>
<td>-1.68</td>
<td>-1.57</td>
<td>-1.12</td>
</tr>
</tbody>
</table>

The Morokuma-Ziegler bonding energy decomposition\(^50\)\(^\text{-}52\) between the [M\(_{16}\)]\(^{4+}\) core and its complete [Ni\(_{24}\)(CO)\(_{40}\)] envelope is provided in Table 4.5. Both total bonding energy and its orbital component indicate stronger interaction with copper, whereas silver and gold behave similarly. The \(a_1\), \(e\), \(t_1\) and (overall) \(t_2\) components of the orbital interaction energy are dominating. From the results obtained on the [M\(_{16}\)(Ni\(_{6}\)(CO)\(_{10}\))\(^{4-}\)] model (see above), one can
deduce that they result mainly from the participation of the \(p_z \) and \(d_{2z} \) combinations of the individual \([\text{Ni}_6(\text{CO})_{10}]\) units (\(a_1\) and \(e\) in local \(C_{3v}\) symmetry). From the jellium electron configuration of the \([\text{M}_{16}]^{4+}\) and from the occupation of the frontier orbitals of a single \(\text{Ni}_6(\text{CO})_{10}\) fragment in the \([\text{M}_{16}(\text{Ni}_{24}(\text{CO})_{40})]\)\(^{4+}\) cluster, it appears clearly that the major interactions between the \([\text{M}_{16}]^{4+}\) core and its \([\text{Ni}_{24}(\text{CO})_{40}]\) envelope involves the occupied core jellium orbitals on one side and the accepting \(\pi\)-type orbitals (of substantial \(p_z \) character) of the \([\text{Ni}_6(\text{CO})_{10}]\) unit on the other side. This result confirms that the behavior of the \([\text{Ni}_{24}(\text{CO})_{40}]\) envelope is not that of a “passivating” ligand shell, but rather of a full part of the superatomic entity.

![Figure 4.5. Kohn-Sham orbital diagram of \([\text{Ag}_{16}\text{Ni}_{24}(\text{CO})_{40}]^{4+}\). The MO localization (in \%) is given as follows: \(\text{Ag}_{16}/\text{Ni}_{24}/(\text{CO})_{40}\).](image)

The Kohn-Sham MO diagram of \([\text{Ag}_{16}\text{Ni}_{24}(\text{CO})_{40}]^{4+}\) is shown in Figure 4.5. Those of the Cu and Au relatives (not shown) are similar. The highest occupied levels can be
assimilated to the 2S (65a₁) and 1D (81e and 145t₂) jellium levels. The lowest unoccupied levels correspond to a mixture of the 1F and 2P jellium orbitals with π*(CO) combinations.

4.2.5 Optical properties

From the heterometallic nature of the title clusters, interesting optical properties may be anticipated. This is why a TD-DFT analysis has been undertaken in order to simulate their UV-vis spectra which are shown in Figure 4.6 allowing estimating characteristic patterns for further possible experimental realization. They exhibit similar features with four major absorption bands. The relevant associated electronic transitions are listed in Table 4.6 in the case of M = Ag. One can see these transitions exhibit a MLCT character for all [M₁₆(Ni₂₄(CO)₄₀)]⁺ (M = Cu, Ag, Au) clusters. The low-energy transitions are also associated with some core-ligand charge transfer character. The results show a sizable blue-shift of the main peaks for [Au₁₆Ni₂₄(CO)₄₀]⁺ in relation to its copper and silver counterparts, revealing strong differences between the expected optical patterns along the series.

Figure 4.6. TD-DFT-simulated UV-vis absorption spectra of [M₁₆Ni₂₄(CO)₄₀]⁺ (M=Cu, Ag and Au).
Table 4.6. Major computed electronic absorption for \([\text{Ag}_{16}\text{Ni}_{24}(\text{CO})_{40}]^{4+}\). The MO localizations (in \%) are given in parentheses as follows: \(\text{Ag}_{16}/\text{Ni}_{24}/(\text{CO})_{40}\).

<table>
<thead>
<tr>
<th>Photon Energy (eV)(^a)</th>
<th>%</th>
<th>Major components of the transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.70 (0.13)</td>
<td>26</td>
<td>145(t_2) (23/60/17) -> 66a_1 (24/37/39)</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>65a_1 (59/21/20) -> 148(t_2) (17/29/54)</td>
</tr>
<tr>
<td>2.02 (0.11)</td>
<td>23</td>
<td>102(t_1) (5/77/18) -> 104(t_1) (23/35/42)</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>81e (32/48/20) -> 148(t_2) (17/29/54)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>144(t_2) (3/50/47) -> 105(t_1) (0/33/67)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>103(t_1) (6/70/24) -> 82e (0/36/64)</td>
</tr>
<tr>
<td>2.72 (0.09)</td>
<td>27</td>
<td>142(t_2) (8/83/9) -> 147(t_2) (15/29/55)</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>76e (4/86/10) -> 104(t_1) (23/35/42)</td>
</tr>
<tr>
<td>3.23 (0.06)</td>
<td>21</td>
<td>134(t_2) (7/85/6) -> 146(t_2) (16/31/53)</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>142(t_2) (8/83/9) -> 83e (8/25/67)</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>97(t_1) (4/91/5) -> 82e (0/36/64)</td>
</tr>
</tbody>
</table>

\(^a\) Values in parenthesis correspond to oscillator strengths.

4.2.6 Bonding considerations

So far, the closed-shell 20-\(j\)e \([\text{M}_{16}]^{4}\) superatom has not been reported, even as a ligand-passivated species, and one may wonder whether it is sufficiently stable for being isolated. Indeed, apart from its somewhat large negative charge, its 2S HOMO contains an antibonding interaction between the \(\text{M}_4\) inner core and its outer \(\text{M}_{12}\) cage, depicting a radial node. Despite its bonding nature within each individual \(\text{M}_4\) and \(\text{M}_{12}\) sphere, this orbital is likely lacking bonding character. A way to reinforce the 2S bonding is to add a third concentric sphere, made of 0-electron capping units having empty \(\sigma\)-type frontier orbitals, the in-phase combination of which being able to stabilize the 2S HOMO, whereas in addition the other combinations would also contribute to somewhat stabilize the 1D and 1P orbitals. This is what happens in \([\text{M}_{20}]\) (\(\text{M}'4@\text{M}'12@\text{M}_4^{++}\)), but also in \([\text{M}_{16}\text{Ni}_{24}(\text{CO})_{40}]^{4+}\) (\([\text{M}'4@\text{M}'12@\{\text{Ni}_{24}(\text{CO})_{40}\}]^{4+}\)). In the latter cluster, the four \(\text{Ni}_{6}(\text{CO})_{10}\) fragment, which pack to the \(\text{M}_{16}\) core in a compact fashion, are mainly interacting with the occupied jellium orbitals by using their vacant \(\sigma\)-type frontier orbitals.
This behavior is different from that of a 2-electron ligand (thiolate, halogenide, phosphine, etc…) which is expected to have its occupied frontier orbital to interact with a core-accepting orbital localized on the superatom surface. Both situations are sketched in a schematic manner in Figure 1.7. Although very simplified, this description illustrates most of the differences between ligands and outer fragments belonging to the superatom core. The real situation is of course somehow more complex. In particular, significant mixing often occurs between the surface accepting orbitals of the superatomic core and the vacant antibonding jellium-type orbitals, which makes the distinction between them difficult. This is what happens for 1F and 2P MOs of the \([M_{16}]^{4-}\) cores considered in this paper, which exhibit more accepting character than expected at first sight. Also, secondary bonding interactions occur between occupied MOs (mainly jellium-type) of the jellium core and vacant p-type of the supplementary superatom fragment.

Figure 4.7. Simplified MO interaction diagram illustrating the difference between an outer sphere atom belonging to the superatom entity (right side) and a (neutral or anionic) 2-electron ligand (left side).
Chapter 4

Conclusion

In summary, our calculations indicate that \([\text{Ag}_{16}\text{Ni}_{24}\text{(CO)}_{40}]^{4-}\) and \([\text{Au}_{16}\text{Ni}_{24}\text{(CO)}_{40}]^{4-}\) are strongly related to bare tetrahedral \([\text{Ag}_{20}]\) and \([\text{Au}_{20}]\) clusters, showing a 1S^21P^61D^{10}2S^2 closed-shell configuration. In addition, the \([\text{Cu}_{16}\text{Ni}_{24}\text{(CO)}_{40}]^{4-}\) counterparts is shown to be thermodynamically more stable than its Ag and Au relatives, thus, it should be possible to characterize it experimentally, similarly to its silver and gold counterparts. Hence, the in-solution stabilization of the inner FCC-like M_{16} kernel motif as basic structure observed in the Au_{20} golden pyramid, allows to further explore the physico-chemical characteristics towards tetrahedral building blocks for nanostructured materials with novel properties. In addition, such structures represent a minimal model of four faces representing a (111) surface of a face-centered cubic unit cell in order to study catalytic activity, among other properties. We expect versatile chemistry on the basis of the potential modifications in the surface of the M_{16} core.
Chapter 4

References

Chapter 4

2013, 117, 6817.
Chapter 4

Chapter 5

Chapter 5: On the possibility to stabilize bare tetrahedral 16-atom metallic architectures

Introduction

Since the beginning of this century, the chemistry of atom-precise nanoclusters of group 11 metals has been developing tremendously.1-5 As largely discussed in the preceding chapters, the stability and structure of such species is generally well understood within the framework of the superatom model6,7 based on the spherical jellium formalism.8 In these superatoms, the average metal oxidation state is generally lower than +1 and larger or equal to 0. In most of them, it is larger than 0 and therefore the cluster superatomic core is polycationic. The neutrality of the whole molecule is then generally met (or approached) by the presence of a “passivating” outer shell of coordinated anionic ligands, such as thiolates, halides or hydrides.

\textbf{Figure 5.1.} The fcc-derived structure of the T_d [Au$_{20}$] cluster with ABCA packing. The green, yellow and grey colors correspond to the symmetry-equivalent Au’, Au” and Au’’’ atoms, respectively (Au’$_4$@Au’’$_{12}$@Au’’’$_4$). Removing the four grey atoms generates the M$_{16}$ framework (M’$_4$@M’’$_{12}$) discussed in this chapter.
Chapter 5

An emblematic neutral superatom is the [Au$_{20}$] tetrahedral cluster, obtained in the gas phase and further characterized by photoelectron spectroscopy. This naked cluster is an unique example of a stable group-11 superatom in which the metal oxidation state is 0. Density functional theory (DFT) calculations, have confirmed its $1S^2 1P^6 1D^{10} 2S^2$ closed-shell jellium configuration. Its structure (Figure 5.1) is that of a bulk face-centered cubic (fcc) gold fragment, in a finite nanosized cluster motif. Indeed, along anyone of its four 3-fold axes, the packing goes in four successive compact planes, as sketched in Figure 5.1: A (10 atoms), B (6 atoms), C (3 atoms) and A (1 atom). Thus, the [Au$_{20}$] tetrahedron has four 7-atom faces. Within T_d symmetry, there are three types of symmetry-independent atoms, Au’, Au” and Au”’ arranged in concentric shells going as per Au’$_4$@Au”$_{12}$@Au”’$_4$ (Figure 5.2). Removing the four external Au”’ atoms, one is left with an M$_{16}$ structure which has been shown to exist in [Ag$_{16}$Ni$_{24}$]$_4$ (see Chapter 4). In this cluster, the four 7-atom faces of the truncated tetrahedral Ag$_{16}$ kernel are covered by Ni$_6$(CO)$_{10}$ raft-type units. Although one is tempted at first sight to view this compound as made of a 20-je [Ag$_{16}$]$^{4+}$ superatom passivated by four Ni$_6$(CO)$_{10}$ organometallic ligands, we have show in Chapter 4 that the Ni$_6$(CO)$_{10}$ raft units are full part of the superatomic entity and should not be considered as external ligands. Similarly, [Au$_{20}$] can be described as made of an [Au$_{16}$]$^{4+}$ superatom capped on its four 3-atom faces by four Au$^+$ ions, in spite of the fact that the capping Au$^+$ ions are not ligands but full parts of the superatomic structure. Thus, the question which arises is: can an [M$_{16}$]$^{4+}$ (M = Cu, Ag, Au) be enough stable for being isolated (as a salt for example) or does such a 20-je (je = jellium electron) species need an additional atom sphere, such as the Ni$_{24}$ sphere in [Ag$_{16}$Ni$_{24}$]$_4$ or the [Au$_4$]$^{4+}$ outer sphere in [Au$_{20}$]? It is noteworthy that the average M oxidation state in a hypothetical [M$_{16}$]$^{4+}$ species would be negative, an unprecedented situation in Group 11 superatoms. In the case [M$_{16}$]$^{4+}$ species would not be viable, an additional question is: could it be possible to stabilize it in some ways without adding a supplementary outer sphere of metal atoms? In the followings, we investigate some possibilities through a change in the electron count or some atom substitution and/or inclusion. Thus, our major concern in this work is to find potentially viable species based on a tetrahedral M$_{16}$ fragment and adopting a closed-shell superatom configuration.
Chapter 5

5.1. Computational details

All density functional theory calculations were carried out by using the Amsterdam Density Functional (ADF) program18 and the zeroth-order regular approximation (ZORA) was applied to incorporate scalar relativistic effects in our calculations. The triple-\(\zeta\) Slater basis set was employed, plus two polarization functions (STO-TZ2P) for valence electrons, within the generalized gradient approximation (GGA) according to the Becke-Perdew (BP86) exchange functionals.19,20 The frozen core approximation was applied to the \([1s^2-4f^{14}]\) inner electrons for Au, \([1s^2-4p^6]\) for Ag, \([1s^2-3p^6]\) for Cu, leaving the remaining electrons to be treated variationally. A gradient convergence criterion of \(10^{-5}\) and an energy convergence criterion between \(10^{-5}\) and \(10^{-8}\) were utilized to perform our geometry optimizations. The solvent effect was used through a polarizable continuum model, which consists of a conductor-like screening treatment through the COSMO module,21 it was used in order to get positive HOMO values and we choose dimethyl formamide (DMF), which is usually employed in the coinage metal nano-cluster synthesis.

5.2. Results and discussion

5.2.1 Homonuclear \(M_{16}\) anions

Unsurprisingly, the optimized \(T_d\) geometries (fully characterized as energy minima) of \([M_{16}]^{4-}\) (M = Cu, Ag, Au) in vacuum yielded HOMO’s with positive energies. Such a result is not uncommon when computing highly charged anions without considering any cationic environment. Mimicking somehow this environment by introducing the effect of a polar solvent (DMF) through the COSMO21 dielectric model (see Computational Details) led to \(T_d\) energy minima with negative HOMO energies. Some relevant computed data are given in Table 5.1, where \(E_c\) is the cohesion energy per atom defined as \(E_c = \{E([M_{16}]^4) - 12 \times E(M) - 4 \times E(M^{-})\}/16\). The data computed with solvent effect are not that much different from those considering the isolated tetra-anions, except for the cohesion energy, the absolute value of which increasing substantially in DMF environment. As a whole, these results strongly suggest that the \([M_{16}]^{4+}\) species is unlikely to exist, except perhaps in the environment of a strong field of cationic charges.
Chapter 5

Table 5.1. Relevant results computed for the hypothetical 20- and 18-je [M_{16}]^{4+} and [M_{16}]^{2-} (M = Cu, Ag, Cu) clusters (T_d symmetry) in vacuum and in DMF.

<table>
<thead>
<tr>
<th>Environment</th>
<th>[Cu_{16}]^{4+}</th>
<th>[Ag_{16}]^{4+}</th>
<th>[Au_{16}]^{4+}</th>
<th>[Cu_{16}]^{2-}</th>
<th>[Ag_{16}]^{2-}</th>
<th>[Au_{16}]^{2-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 x M’-M’’ (Å)</td>
<td>2.467</td>
<td>2.444</td>
<td>2.854</td>
<td>2.820</td>
<td>2.836</td>
<td>2.831</td>
</tr>
<tr>
<td>12 x M’’-M’’ (Å)</td>
<td>2.484</td>
<td>2.424</td>
<td>2.868</td>
<td>2.806</td>
<td>2.833</td>
<td>2.737</td>
</tr>
<tr>
<td>6 x M’’-M’’ (Å)</td>
<td>2.447</td>
<td>2.454</td>
<td>2.837</td>
<td>2.828</td>
<td>2.831</td>
<td>2.738</td>
</tr>
<tr>
<td>(\rho = (C-M’’)/(C-M’))</td>
<td>1.80</td>
<td>1.75</td>
<td>1.81</td>
<td>1.80</td>
<td>1.76</td>
<td>1.33</td>
</tr>
<tr>
<td>(\Delta E_{\text{HOMO-LUMO}}) (eV)</td>
<td>1.32</td>
<td>1.53</td>
<td>1.30</td>
<td>1.41</td>
<td>1.22</td>
<td>0.65</td>
</tr>
<tr>
<td>(E_{\text{HOMO}}) (eV)</td>
<td>7.66</td>
<td>-2.98</td>
<td>6.78</td>
<td>-3.03</td>
<td>6.98</td>
<td>-3.14</td>
</tr>
<tr>
<td>(E_{\text{C}}) (kcal/mol)</td>
<td>-39.1</td>
<td>-58.1</td>
<td>-24.6</td>
<td>-41.7</td>
<td>-31.6</td>
<td>-48.0</td>
</tr>
<tr>
<td>Lowest vibrational frequencies (cm(^{-1}))</td>
<td>76 (t_1)</td>
<td>69 (t_2)</td>
<td>45 (t_1)</td>
<td>44 (t_2)</td>
<td>20 (t_1)</td>
<td>35 (t_2)</td>
</tr>
</tbody>
</table>

\(a \) Solvent effect considered through the COSMO model (see Computational details).

\(b \) C = center of the cluster.
Chapter 5

This hypothesis is in line with what one can get through a qualitative Hückel approach and considering a system made of 16 \((n + 1)\)s interacting AOs. Within this very simple model, the four highest occupied orbitals are antibonding, with positive energies. 2S lies at \(\alpha + 0.46|\beta|\) and the \(t_2\) component of 1D at \(\alpha + 0.29|\beta|\). This led us to investigate the 18-je \([\text{M}_{16}]^{2-}\) clusters, with the 1S\(^2\) 1P\(^6\) 1D\(^{10}\) closed-shell jellium configuration. The major DFT-computed data are provided in Table 5.1. Whereas the HOMOs of the isolated anions have positive energies, the corresponding values are much smaller than for their tetraanion relatives. Consistently, calculations with and without solvent effect provide similar cohesion energies. A critical difference with the \([\text{M}_{16}]^{4+}\) 20-je series lies in the M’-M’ distances. In the dianions these distances are very long, whereas, in the tetra-anions they are within bonding contacts, consistently with their ABC fcc packing mode (Figure 5.1). In other words, in an ideal piece of a fcc crystal, M’ lies exactly in the same plane as its six M” neighbours, constituting the 7-atom A plane of Figure 5.1. In the \([\text{M}_{16}]^{2-}\) series, M’ lies significantly outside this plane, making the 16-atom framework describing a hollow polyhedron. The deviation from compacity in these \(\text{M}_{16}\) \(T_d\) frameworks can be evaluated by looking at the ratio of the distances between M’ and M” and the center of the tetrahedron C. Assuming an ideal fcc packing, this ratio \(\rho = (\text{C-M”})/(\text{C-M’})\) is equal to \((11/3)^{1/2} = 1.91\). For comparison, in the 20-je \([\text{M}_{20}]\) series, it is computed to be 1.81, 1.80 and 1.73 for \(\text{M} = \text{Cu, Ag, Au}\), respectively, indicating fairly compact nature. The isoelectronic tetraanions exhibit similar \(\rho\) values (Table 5.1), except for \([\text{Au}_{16}]^{4+}\) in DMF. The \(\rho\) values of the 18-je dianions (~ 1.25) indicate severe distortion away from compacity. Taking into account this distortion within the above-mentioned Hückel model (no M’-M’ bonding contact) opens a large HOMO-LUMO gap for the 18-je count. Due to its nodal properties, the 2S LUMO \((a_1\text{ symmetry})\) is strongly destabilized. This effect was previously noted by Häkkinen \textit{et al.}\(^{22}\). More importantly, two occupied \(t_2\) levels are also stabilized, due to their nodal properties: the 1P level and the \(t_2\) component of the 1D subshell. It is noteworthy that within this simple Hückel approach and for this electron count, none of the occupied orbitals of the “distorted” non-compact structure have a positive Hückel energy (the now degenerate 1D \((t_2 + e)\) HOMOs lie at \(\alpha + 0|\beta|\)) and this structure is found to be more stable than the fcc-derived one by \(0.69|\beta|\). This qualitative picture is confirmed by DFT calculations, as exemplified by the Kohn-Sham orbital diagrams of \([\text{Ag}_{16}]^{4+}\) and \([\text{Ag}_{16}]^{2-}\) shown side by side in Figure 5.2.
5.2.2 Heterometallic M_{16} species

A way to get rid of the large negative charge in the 20-je $[M_{16}]^{4-}$ (M = group 11 element) is to “dope” them by four group 12 elements. The major results obtained for the 20-je neutral T_d models $[M'_{4}M''_{12}]$ (M' = Zn, Cd, Hg; M'' = Cu, Ag, Au) are given in Table 5.2. Among the nine computed models, only $[HgAu_{12}]$ is not found to be a minimum for the considered T_d symmetry. Although all the HOMOs of the computed models have now negative energies, the computed HOMO-LUMO gaps have moderate values. Moreover, most of them exhibit also an HOMO-HOMO-1 gap of similar order (Table 5.2), suggesting the possibility for a stable 18-je situation. The low values of most of the ρ parameters (Table 5.3) is also in line with a preference for a lower electron-count.

Figure 5.2. Kohn-Sham frontier orbital diagrams of $[Ag_{16}]^{4-}$ and $[Ag_{16}]^{2-}$. Their 31e levels have been aligned for the sake of comparison. The jellium labels are given on the right side.
Table 5.2. Relevant results computed for the hypothetical 20-je [M’4M’’12] (M’ = Zn, Cd, Hg; M’’ = Cu, Ag, Au) clusters of T_d symmetry.

<table>
<thead>
<tr>
<th></th>
<th>[Zn₄Cu₁₂]</th>
<th>[Cd₄Cu₁₂]</th>
<th>[Hg₄Cu₁₂]</th>
<th>[Zn₄Ag₁₂]</th>
<th>[Cd₄Ag₁₂]</th>
<th>[Hg₄Ag₁₂]</th>
<th>[Zn₄Au₁₂]</th>
<th>[Cd₄Au₁₂]</th>
<th>[Hg₄Au₁₂]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 x M’-M’’ (Å)</td>
<td>2.471</td>
<td>2.621</td>
<td>2.773</td>
<td>2.750</td>
<td>2.854</td>
<td>2.906</td>
<td>2.720</td>
<td>2.820</td>
<td>2.973</td>
</tr>
<tr>
<td>12 x M’’-M’’ (Å)</td>
<td>2.462</td>
<td>2.581</td>
<td>2.399</td>
<td>2.759</td>
<td>2.855</td>
<td>2.865</td>
<td>2.755</td>
<td>2.795</td>
<td>2.733</td>
</tr>
<tr>
<td>6 x M’’-M’’ (Å)</td>
<td>2.417</td>
<td>2.425</td>
<td>2.367</td>
<td>2.736</td>
<td>2.800</td>
<td>2.778</td>
<td>2.683</td>
<td>2.793</td>
<td>2.715</td>
</tr>
<tr>
<td>4 x C-M’ (Å)</td>
<td>1.882</td>
<td>2.292</td>
<td>2.873</td>
<td>1.798</td>
<td>2.114</td>
<td>2.415</td>
<td>1.759</td>
<td>3.092</td>
<td>2.858</td>
</tr>
<tr>
<td>12 x C-M’’ (Å)</td>
<td>2.858</td>
<td>2.927</td>
<td>2.793</td>
<td>3.223</td>
<td>3.313</td>
<td>3.304</td>
<td>3.192</td>
<td>3.276</td>
<td>3.193</td>
</tr>
<tr>
<td>$\rho = (C-M’’)/(C-M’)$</td>
<td>1.52</td>
<td>1.28</td>
<td>0.97</td>
<td>1.79</td>
<td>1.57</td>
<td>1.37</td>
<td>1.81</td>
<td>1.06</td>
<td>1.12</td>
</tr>
<tr>
<td>$\Delta E_{\text{HOMO-LUMO}}$ (eV)</td>
<td>1.22</td>
<td>0.63</td>
<td>0.82</td>
<td>1.75</td>
<td>1.19</td>
<td>0.82</td>
<td>1.69</td>
<td>0.98</td>
<td>0.44</td>
</tr>
<tr>
<td>$\Delta E_{\text{HOMO-HOMO-1}}$ (eV)</td>
<td>0.93</td>
<td>1.51</td>
<td>1.06</td>
<td>0.28</td>
<td>0.93</td>
<td>1.28</td>
<td>0.30</td>
<td>1.06</td>
<td>1.37</td>
</tr>
<tr>
<td>E_C (kcal/mol)</td>
<td>-48.9</td>
<td>-45.6</td>
<td>-42.8</td>
<td>-36.6</td>
<td>-35.0</td>
<td>-31.6</td>
<td>-46.9</td>
<td>-44.7</td>
<td>-39.3</td>
</tr>
<tr>
<td>Lowest vibrational frequency (cm⁻¹)</td>
<td>49 (t_2)</td>
<td>39 (t_2)</td>
<td>19 (t_2)</td>
<td>28 (t_1)</td>
<td>28 (t_2)</td>
<td>27 (a_1)</td>
<td>17 (t_1)</td>
<td>27 (t_2)</td>
<td>-32 (t_2)</td>
</tr>
</tbody>
</table>

a cohesion energy = $E_C = \{E([M’4M’’12]) - 4 \times E(M’) - 12 \times E(M’’)/16$.

82
Table 5.3. Relevant results computed for the hypothetical 18-je $[\text{M}'\text{M}''_{12}]^{2+}$ ($\text{M}' = \text{Zn, Cd, Hg}; \text{M}'' = \text{Cu, Ag, Au}$) clusters of T_d symmetry.

<table>
<thead>
<tr>
<th></th>
<th>$[\text{ZnCu}_{12}]^{2+}$</th>
<th>$[\text{CdCu}_{12}]^{2+}$</th>
<th>$[\text{HgCu}_{12}]^{2+}$</th>
<th>$[\text{ZnAg}_{12}]^{2+}$</th>
<th>$[\text{CdAg}_{12}]^{2+}$</th>
<th>$[\text{HgAg}_{12}]^{2+}$</th>
<th>$[\text{ZnAu}_{12}]^{2+}$</th>
<th>$[\text{CdAu}_{12}]^{2+}$</th>
<th>$[\text{HgAu}_{12}]^{2+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$24 \times \text{M}'-\text{M}''$ (Å)</td>
<td>2.524</td>
<td>2.684</td>
<td>2.671</td>
<td>2.798</td>
<td>2.908</td>
<td>2.917</td>
<td>2.755</td>
<td>2.872</td>
<td>2.901</td>
</tr>
<tr>
<td>$12 \times \text{M}''-\text{M}''$ (Å)</td>
<td>2.416</td>
<td>2.439</td>
<td>2.472</td>
<td>2.750</td>
<td>2.787</td>
<td>2.807</td>
<td>2.726</td>
<td>2.758</td>
<td>2.761</td>
</tr>
<tr>
<td>$6 \times \text{M}''-\text{M}''$ (Å)</td>
<td>2.390</td>
<td>2.433</td>
<td>2.458</td>
<td>2.678</td>
<td>2.745</td>
<td>2.767</td>
<td>2.641</td>
<td>2.701</td>
<td>2.716</td>
</tr>
<tr>
<td>$4 \times \text{C}-\text{M}'$ (Å)</td>
<td>2.246</td>
<td>2.619</td>
<td>2.539</td>
<td>2.350</td>
<td>2.595</td>
<td>2.572</td>
<td>2.276</td>
<td>2.570</td>
<td>2.638</td>
</tr>
<tr>
<td>$12 \times \text{C}-\text{M}''$ (Å)</td>
<td>2.819</td>
<td>2.856</td>
<td>2.888</td>
<td>3.186</td>
<td>3.246</td>
<td>3.270</td>
<td>3.151</td>
<td>3.204</td>
<td>3.214</td>
</tr>
<tr>
<td>$\rho = (\text{C}-\text{M}'')/(\text{C}-\text{M}')$</td>
<td>1.26</td>
<td>1.09</td>
<td>1.14</td>
<td>1.36</td>
<td>1.25</td>
<td>1.27</td>
<td>1.38</td>
<td>1.25</td>
<td>1.22</td>
</tr>
<tr>
<td>$\Delta E_{\text{H-L}}$ (eV)</td>
<td>1.94</td>
<td>1.75</td>
<td>1.54</td>
<td>1.67</td>
<td>1.90</td>
<td>1.49</td>
<td>1.55</td>
<td>1.91</td>
<td>1.62</td>
</tr>
<tr>
<td>E_{C} (kcal/mol)a</td>
<td>-68.4</td>
<td>-63.4</td>
<td>-64.3</td>
<td>-56.7</td>
<td>-53.2</td>
<td>-54.2</td>
<td>-64.7</td>
<td>-61.1</td>
<td>-59.6</td>
</tr>
<tr>
<td>Lowest vibrational frequency (cm$^{-1}$)</td>
<td>69 (e)</td>
<td>60 (t_2)</td>
<td>48 (t_2)</td>
<td>9 (a_2)</td>
<td>41 (e)</td>
<td>40 (e)</td>
<td>-28 (a_2)</td>
<td>28 (t_1)</td>
<td>21 (t_1)</td>
</tr>
</tbody>
</table>

$^a E_{\text{C}} = \text{cohesion energy} = \{E([\text{M}'\text{M}''_{12}]^{2+}) - E(\text{M}'^{2+}) - 3 \times E(\text{M}') - 12 \times E(\text{M}''^{+})\}/16$.

Chapter 5
Chapter 5

As a matter of fact, the \([M\,^{\prime}\,M\,^{\prime\prime}]_{12}^{2+}\) cations (see Table 5.3) have larger HOMO-LUMO gaps than their neutral homologs (except for \([\text{Zn}_4\text{Ag}_{12}]^{2+}\) and \([\text{Zn}_4\text{Au}_{12}]^{2+}\), which incidentally are associated with small positive or imaginary frequencies, respectively) associated with much larger cohesion energies. Clearly, as for the homometallic series discussed above, the best electron count for a 16-atom tetrahedral arrangement is 18.

5.2.3 Centered \(X@M_{16}\) species

A possible way of stabilizing the 2S HOMO of the 20-\(je\) \(M_{16}\) framework is to provide the cluster with a supplementary AO of \(a_1\) symmetry in the molecular \(T_d\) architecture. This can be done by encapsulating a supplementary element in the middle of the \(M_{16}\) tetrahedron. In the case where \(M\) is a group 11 metal, neutrality of a 20-\(je\) \([X@M_{16}]\) species is reached for \(X\) belonging to group 14. The major results obtained for \(M = \text{Cu}, \text{Ag}, \text{Au}\) and \(X = \text{C}, \text{Si}, \text{Ge}, \text{Sn}, \text{Pb}\) are gathered in Table 5.4. At this point of the discussion, one should recall that we are restricting our analysis to the potential stability of tetrahedral \((T_d)\) frameworks and that other authors have found that \([\text{XAu}_{16}]^-\) \((X = \text{Si}, \text{Ge}, \text{Sn})\) 21-\(je\) anions have a global minimum structure adopting a low-symmetry exohedral structure, showing a preference of the main-group element for lower connectivity.\(^{23}\) A similar result was found by others on the 20-\(je\) \([\text{SiAu}_{16}]\).\(^{22}\) This is in line with the fact that several of our models have imaginary frequencies in \(T_d\) symmetry (Table 5.4) and therefore are not true minima. Some of these minima of lower symmetry are described in the annex of this chapter. Nevertheless, 7 among the 15 tested models are found to be true minima. In spite of the fact they may not be global minima on the potential energy surface, it is very likely that they present higher kinetic stability than the above-mentioned predicted global minima. Indeed, in the latter the group 14 element occupies an unsaturated exohedral position exposed to incoming reagents. It is noteworthy that these computed minima have substantial HOMO-LUMO gaps and no significant HOMO-HOMO-1 gap, as the result of the stabilization of the 2S cluster orbital through the participation of the ns AO of the encapsulated X atom. Additionally, the occupied \(t_2\) levels are also somewhat stabilized by the np AOs of X. The Sn- and Pb-centered clusters appear to be the most likely to be observed.
Table 5.4. Relevant results computed for the hypothetical 20-je [X@M$_{16}$] (X = C, Si, Ge, Sn, Pb; M = Cu, Ag, Au) clusters of T_d symmetry.

<table>
<thead>
<tr>
<th></th>
<th>[CCu$_{16}$]</th>
<th>[SiCu$_{16}$]</th>
<th>[GeCu$_{16}$]</th>
<th>[SnCu$_{16}$]</th>
<th>[PbCu$_{16}$]</th>
<th>[CAg$_{16}$]</th>
<th>[GeAg$_{16}$]</th>
<th>[SnAg$_{16}$]</th>
<th>[PbAg$_{16}$]</th>
<th>[CAu$_{16}$]</th>
<th>[SiAu$_{16}$]</th>
<th>[GeAu$_{16}$]</th>
<th>[SnAu$_{16}$]</th>
<th>[PbAu$_{16}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 x M’-M’’ (Å)</td>
<td>2.476</td>
<td>2.534</td>
<td>2.574</td>
<td>2.625</td>
<td>2.657</td>
<td>2.860</td>
<td>2.891</td>
<td>2.917</td>
<td>2.965</td>
<td>2.996</td>
<td>2.834</td>
<td>2.865</td>
<td>2.888</td>
<td>2.935</td>
</tr>
<tr>
<td>12 x M’’-M’’ (Å)</td>
<td>2.438</td>
<td>2.384</td>
<td>2.399</td>
<td>2.415</td>
<td>2.431</td>
<td>2.842</td>
<td>2.765</td>
<td>2.759</td>
<td>2.766</td>
<td>2.775</td>
<td>2.805</td>
<td>2.770</td>
<td>2.757</td>
<td>2.758</td>
</tr>
<tr>
<td>6 x M’’-M’’ (Å)</td>
<td>2.427</td>
<td>2.341</td>
<td>2.352</td>
<td>2.365</td>
<td>2.383</td>
<td>2.800</td>
<td>2.737</td>
<td>2.718</td>
<td>2.715</td>
<td>2.720</td>
<td>2.801</td>
<td>2.730</td>
<td>2.702</td>
<td>2.695</td>
</tr>
<tr>
<td>4 x X-M’ (Å)</td>
<td>1.951</td>
<td>2.368</td>
<td>2.451</td>
<td>2.555</td>
<td>2.604</td>
<td>2.191</td>
<td>2.575</td>
<td>2.685</td>
<td>2.815</td>
<td>2.883</td>
<td>2.138</td>
<td>2.491</td>
<td>2.620</td>
<td>2.763</td>
</tr>
<tr>
<td>ρ = (X-M’’)/(X-M’)</td>
<td>1.46</td>
<td>1.17</td>
<td>1.14</td>
<td>1.10</td>
<td>1.08</td>
<td>1.49</td>
<td>1.25</td>
<td>1.20</td>
<td>1.14</td>
<td>1.12</td>
<td>1.54</td>
<td>1.30</td>
<td>1.22</td>
<td>1.16</td>
</tr>
<tr>
<td>ΔE$_{HOMO-LUMO}$ (eV)</td>
<td>0.72</td>
<td>1.89</td>
<td>1.88</td>
<td>1.91</td>
<td>2.02</td>
<td>0.75</td>
<td>1.49</td>
<td>1.55</td>
<td>1.82</td>
<td>1.88</td>
<td>0.94</td>
<td>1.89</td>
<td>1.98</td>
<td>2.01</td>
</tr>
<tr>
<td>E_C (kcal/mol)a</td>
<td>-63.6</td>
<td>-64.7</td>
<td>-65.1</td>
<td>-61.8</td>
<td>-60.0</td>
<td>-46.1</td>
<td>-47.1</td>
<td>-46.8</td>
<td>-46.3</td>
<td>-45.7</td>
<td>-56.7</td>
<td>-58.0</td>
<td>-57.4</td>
<td>-56.7</td>
</tr>
<tr>
<td>Lowest vibrational frequency (cm$^{-1}$)</td>
<td>-122 (t$_2$)</td>
<td>53 (t$_2$)</td>
<td>-216 (t$_2$)</td>
<td>47 (t$_1$)</td>
<td>54 (t$_1$)</td>
<td>36 (t$_2$)</td>
<td>-70 (t$_2$)</td>
<td>-41 (t$_2$)</td>
<td>17 (t$_1$)</td>
<td>24 (t$_2$)</td>
<td>35 (t$_1$)</td>
<td>-24 (t$_2$)</td>
<td>20 (t$_2$)</td>
<td>14 (t$_1$)</td>
</tr>
</tbody>
</table>

a E_C = cohesion energy = $E_C = \{E([XM_{16}]) - E(X) - 16 \times E(M)\}/17.$
Table 5.5. Relevant results computed for the hypothetical 18-je [X@M\(_{16}\)] (X= Be, Mg, Ca, Sr, Ba; M = Cu, Ag, Au) clusters of \(T_d\) symmetry.

<table>
<thead>
<tr>
<th></th>
<th>[BeCu(_{16})]</th>
<th>[MgCu(_{16})]</th>
<th>[CaCu(_{16})]</th>
<th>[SrCu(_{16})]</th>
<th>[BaCu(_{16})]</th>
<th>[BeAg(_{16})]</th>
<th>[MgAg(_{16})]</th>
<th>[CaAg(_{16})]</th>
<th>[SrAg(_{16})]</th>
<th>[BaAg(_{16})]</th>
<th>[BeAu(_{16})]</th>
<th>[MgAu(_{16})]</th>
<th>[CaAu(_{16})]</th>
<th>[SrAu(_{16})]</th>
<th>[BaAu(_{16})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 x M’-M’’ (Å)</td>
<td>2.502</td>
<td>2.571</td>
<td>2.632</td>
<td>2.674</td>
<td>2.728</td>
<td>2.843</td>
<td>2.919</td>
<td>2.980</td>
<td>3.023</td>
<td>3.075</td>
<td>2.826</td>
<td>2.891</td>
<td>2.946</td>
<td>2.986</td>
<td>3.032</td>
</tr>
<tr>
<td>12 x M’’-M’’ (Å)</td>
<td>2.370</td>
<td>2.377</td>
<td>2.408</td>
<td>2.434</td>
<td>2.473</td>
<td>2.756</td>
<td>2.739</td>
<td>2.753</td>
<td>2.770</td>
<td>2.802</td>
<td>2.767</td>
<td>2.736</td>
<td>2.740</td>
<td>2.753</td>
<td>2.775</td>
</tr>
<tr>
<td>6 x M’’-M’’’ (Å)</td>
<td>2.323</td>
<td>2.314</td>
<td>2.345</td>
<td>2.373</td>
<td>2.415</td>
<td>2.721</td>
<td>2.677</td>
<td>2.680</td>
<td>2.699</td>
<td>2.731</td>
<td>2.724</td>
<td>2.670</td>
<td>2.662</td>
<td>2.673</td>
<td>2.696</td>
</tr>
<tr>
<td>4 x X-M’ (Å)</td>
<td>2.311</td>
<td>2.496</td>
<td>2.593</td>
<td>2.651</td>
<td>2.715</td>
<td>2.444</td>
<td>2.755</td>
<td>2.897</td>
<td>2.970</td>
<td>3.044</td>
<td>2.353</td>
<td>2.688</td>
<td>2.838</td>
<td>2.917</td>
<td>2.990</td>
</tr>
<tr>
<td>(\rho = (X-M'')/(X-M'))</td>
<td>1.19</td>
<td>1.10</td>
<td>1.08</td>
<td>1.06</td>
<td>1.06</td>
<td>1.31</td>
<td>1.15</td>
<td>1.10</td>
<td>1.08</td>
<td>1.07</td>
<td>1.37</td>
<td>1.18</td>
<td>1.12</td>
<td>1.09</td>
<td>1.07</td>
</tr>
<tr>
<td>(\Delta E_{HOMO-LUMO}) (eV)</td>
<td>0.82</td>
<td>1.28</td>
<td>1.88</td>
<td>1.95</td>
<td>1.98</td>
<td>0.39</td>
<td>1.00</td>
<td>1.85</td>
<td>1.98</td>
<td>2.06</td>
<td>0.89</td>
<td>1.51</td>
<td>1.90</td>
<td>1.91</td>
<td>1.89</td>
</tr>
<tr>
<td>(E_C) (kcal/mol)(^a)</td>
<td>-62.5</td>
<td>-60.6</td>
<td>-61.8</td>
<td>-60.0</td>
<td>-58.7</td>
<td>-44.1</td>
<td>-44.5</td>
<td>-47.5</td>
<td>-46.7</td>
<td>-46.6</td>
<td>-55.9</td>
<td>-55.9</td>
<td>-58.6</td>
<td>-57.6</td>
<td>-57.0</td>
</tr>
<tr>
<td>Lowest vibrational frequency (cm(^{-1}))</td>
<td>-44 ((t_2))</td>
<td>73 ((t_1))</td>
<td>58 ((t_1))</td>
<td>50 ((t_1))</td>
<td>40 ((t_1))</td>
<td>-118 ((t_2))</td>
<td>36 ((t_2))</td>
<td>28 ((a_2))</td>
<td>20 ((a_2))</td>
<td>10 ((a_2))</td>
<td>11 ((t_2))</td>
<td>35 ((t_1))</td>
<td>-12 ((a_2))</td>
<td>-23 ((a_2))</td>
<td>-29 ((a_2))</td>
</tr>
</tbody>
</table>

\(^a\) \(E_C = \text{cohesion energy} = E_C = \{E([XM_{16}]) - E(X) - 16 \times E(M)\}/17.$
Chapter 5

When X is a group 2 element, 18-je neutral X@M\textsubscript{16} (M = group 11) species can be considered. The results obtained for X = Be, Mg, Ca, Sr, Ba and M = Cu, Ag, Au are gathered in Table 5.5. Due to the high energy of the group 2 valence ns AO, the cluster 2S orbital is destabilized and the computed X@M\textsubscript{16} 18-je models have significant HOMO-LUMO gaps, especially in the case of X = Ca, Sr and Ba. As a whole, the results of Table 5.5 suggest that these three element are likely to provide viable species when combined with Cu and Ag.

Another way to obtain neutrality for a 20-je species X@M\textsubscript{16} (M = group 11) is to encapsulate group 4 metals, then the new species are labeled as A@M\textsubscript{16} (A = Ti, Zr, Hf). Our calculations on the series corresponding to A = Ti, Zr, Hf and M = Cu, Ag, Au (Table 5.6) led to small HOMO-LUMO gaps, with imaginary vibrational frequencies for the two gold derivatives as well as for [TiAg\textsubscript{16}]. Despite the small \(\rho \) value in these compounds, the 2S HOMO is not enough stabilized due to the relatively high energy of the valence \((n+1)s \) AO of the group 4 atoms. Interestingly, the corresponding HOMO-HOMO-1 gaps are much larger, strongly suggesting stability of such transition-metal species for the count of 18-je (see below). With the same idea, the neutrality for a 16-je species A@M\textsubscript{16} (M = group 11) is also possible by incorporating one A atom from group 12. The results computed for the series, corresponding to A = Zn, Cd, Hg and M = Cu, Ag, Au are given in Table 5.7. Again, for as the previous 20-je species, relatively small HOMO-LUMO gaps are obtained.

To conclude this section, it appears that 20-je species are best favored when encapsulating a group 14 element and 18-je species when encapsulating an atom from group 2.
Chapter 5

Table 5.6. Relevant results computed for the hypothetical 20-je [A@M16] (A = Ti, Zr, Hf; M = Cu, Ag, Au) clusters of T_d symmetry. No convergence for [TiAu16] in T_d symmetry.

<table>
<thead>
<tr>
<th></th>
<th>[TiCu16]</th>
<th>[ZrCu16]</th>
<th>[HfCu16]</th>
<th>[TiAg16]</th>
<th>[ZrAg16]</th>
<th>[HfAg16]</th>
<th>[TiAu16]</th>
<th>[ZrAu16]</th>
<th>[HfAu16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 x M’-M’’ (Å)</td>
<td>2.553</td>
<td>2.598</td>
<td>2.600</td>
<td>2.900</td>
<td>2.936</td>
<td>2.932</td>
<td>-</td>
<td>2.918</td>
<td>2.908</td>
</tr>
<tr>
<td>12 x M’’-M’’ (Å)</td>
<td>2.369</td>
<td>2.382</td>
<td>2.383</td>
<td>2.732</td>
<td>2.734</td>
<td>2.736</td>
<td>-</td>
<td>2.721</td>
<td>2.726</td>
</tr>
<tr>
<td>6 x M’’-M’’ (Å)</td>
<td>2.331</td>
<td>2.356</td>
<td>2.349</td>
<td>2.697</td>
<td>2.698</td>
<td>2.689</td>
<td>-</td>
<td>2.718</td>
<td>2.712</td>
</tr>
<tr>
<td>4 x X-M’ (Å)</td>
<td>2.440</td>
<td>2.521</td>
<td>2.530</td>
<td>2.685</td>
<td>2.782</td>
<td>2.779</td>
<td>-</td>
<td>2.723</td>
<td>2.697</td>
</tr>
<tr>
<td>12 x X-M’’ (Å)</td>
<td>2.758</td>
<td>2.779</td>
<td>2.776</td>
<td>3.185</td>
<td>3.186</td>
<td>3.183</td>
<td>-</td>
<td>3.189</td>
<td>3.189</td>
</tr>
<tr>
<td>$\rho = (X-M’’)/(X-M’)$</td>
<td>1.13</td>
<td>1.10</td>
<td>1.10</td>
<td>1.19</td>
<td>1.15</td>
<td>1.15</td>
<td>-</td>
<td>1.17</td>
<td>1.18</td>
</tr>
<tr>
<td>$\Delta E_{\text{HOMO-LUMO}}$ (eV)</td>
<td>0.37</td>
<td>0.45</td>
<td>0.65</td>
<td>0.07</td>
<td>0.45</td>
<td>0.80</td>
<td>-</td>
<td>0.29</td>
<td>0.45</td>
</tr>
<tr>
<td>$\Delta E_{\text{HOMO-HOMO-1}}$ (eV)</td>
<td>1.74</td>
<td>1.94</td>
<td>1.71</td>
<td>1.69</td>
<td>1.92</td>
<td>1.60</td>
<td>-</td>
<td>1.89</td>
<td>1.75</td>
</tr>
<tr>
<td>E_C (kcal/mol)a</td>
<td>-67.5</td>
<td>-69.0</td>
<td>-69.4</td>
<td>-49.9</td>
<td>-52.0</td>
<td>-52.2</td>
<td>-</td>
<td>-63.0</td>
<td>-63.2</td>
</tr>
<tr>
<td>Lowest vibrational frequency (cm$^{-1}$)</td>
<td>61 (t_1)</td>
<td>68 (t_1)</td>
<td>58 (t_2)</td>
<td>-31 (t_2)</td>
<td>33 (t_2)</td>
<td>33 (t_1)</td>
<td>-</td>
<td>-40 (t_2)</td>
<td>-21 (t_2)</td>
</tr>
</tbody>
</table>

a E_C = cohesion energy = $E_C = \{ E([XM_{12}] - E(X) - 16 x E(M))/17$.

88
Table 5.7

Relevant results computed for the hypothetical 18-je [A@M\textsubscript{16}] (A = Zn, Cd, Hg M = Cu, Ag, Au) clusters of \(T_d\) symmetry. No convergence for [HgAg\textsubscript{16}] in \(T_d\) symmetry.

<table>
<thead>
<tr>
<th></th>
<th>[ZnCu\textsubscript{16}]</th>
<th>[CdCu\textsubscript{16}]</th>
<th>[HgCu\textsubscript{16}]</th>
<th>[ZnAg\textsubscript{16}]</th>
<th>[CdAg\textsubscript{16}]</th>
<th>[HgAg\textsubscript{16}]</th>
<th>[ZnAu\textsubscript{16}]</th>
<th>[CdAu\textsubscript{16}]</th>
<th>[HgAu\textsubscript{16}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 x M'-M' (Å)</td>
<td>3.981</td>
<td>4.166</td>
<td>4.184</td>
<td>4.314</td>
<td>4.560</td>
<td>-</td>
<td>4.218</td>
<td>4.488</td>
<td>4.498</td>
</tr>
<tr>
<td>24 x M'-M'' (Å)</td>
<td>2.549</td>
<td>2.610</td>
<td>2.620</td>
<td>2.888</td>
<td>2.939</td>
<td>-</td>
<td>2.868</td>
<td>2.918</td>
<td>2.924</td>
</tr>
<tr>
<td>12 x M''-M'' (Å)</td>
<td>2.375</td>
<td>2.399</td>
<td>2.351</td>
<td>2.745</td>
<td>2.747</td>
<td>-</td>
<td>2.750</td>
<td>2.744</td>
<td>2.750</td>
</tr>
<tr>
<td>6 x M''-M'' (Å)</td>
<td>2.319</td>
<td>2.341</td>
<td>2.406</td>
<td>2.693</td>
<td>2.685</td>
<td>-</td>
<td>2.689</td>
<td>2.676</td>
<td>2.681</td>
</tr>
<tr>
<td>4 x X-M' (Å)</td>
<td>2.438</td>
<td>2.551</td>
<td>2.562</td>
<td>2.642</td>
<td>2.792</td>
<td>-</td>
<td>2.583</td>
<td>2.748</td>
<td>2.754</td>
</tr>
<tr>
<td>12 x X-M'' (Å)</td>
<td>2.755</td>
<td>2.782</td>
<td>2.792</td>
<td>3.192</td>
<td>3.188</td>
<td>-</td>
<td>3.192</td>
<td>3.182</td>
<td>3.188</td>
</tr>
<tr>
<td>(\rho = (X-M'')/(X-M'))</td>
<td>1.13</td>
<td>1.09</td>
<td>1.09</td>
<td>1.21</td>
<td>1.14</td>
<td>-</td>
<td>1.24</td>
<td>1.16</td>
<td>1.16</td>
</tr>
<tr>
<td>(\Delta E_{\text{LUMO-LUMO+1}}) (eV)</td>
<td>0.09</td>
<td>0.06</td>
<td>0.07</td>
<td>0.19</td>
<td>0.14</td>
<td>-</td>
<td>0.18</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>(\Delta E_{\text{HOMO-LUMO}}) (eV)</td>
<td>0.71</td>
<td>0.89</td>
<td>0.52</td>
<td>0.15</td>
<td>0.45</td>
<td>-</td>
<td>0.81</td>
<td>1.14</td>
<td>0.64</td>
</tr>
<tr>
<td>(E_{\text{c}}) (kcal/mol)a</td>
<td>-58.5</td>
<td>-57.0</td>
<td>-73.0</td>
<td>-41.5</td>
<td>-41.4</td>
<td>-</td>
<td>-52.8</td>
<td>-52.3</td>
<td>-49.5</td>
</tr>
<tr>
<td>Lowest vibrational frequency (cm-1)</td>
<td>65 ((e))</td>
<td>63 ((t_1))</td>
<td>58 ((t_2))</td>
<td>-57 ((t_2))</td>
<td>18 ((t_2))</td>
<td>-</td>
<td>-36 ((t_2))</td>
<td>17 ((t_1))</td>
<td>16 ((t_1))</td>
</tr>
</tbody>
</table>

a \(E_{\text{c}}\) = cohesion energy = \(E_{\text{c}} = \{E([XM_{16}]) - E(X) - 16 \times E(M)\}/17\).
Chapter 5

Conclusion

Our DFT calculations strongly indicate that M$_{16}$ tetrahedral group 11 architectures are unlikely to exist when bearing 20-je. Beside of the large anionic charge required by this electron count, the intrinsic antibonding nature of the 2S HOMO renders this electron count particularly unfavorable. There are two possibilities to avoid this situation in keeping the T_d symmetry. One is to reduce the electron count to 18-je, which is also a “magic” superatomic electron number. In this regard, the heterometallic series [M’$_4$M’’$_{12}$]$^{2+}$ ($M’ =$group 12; $M’’ =$group 11) offers good opportunities for obtaining stable species.

The other alternative for stabilizing the 20-je species is to stabilize its 2S HOMO in adding a supplementary AO of a_1 symmetry by incorporating an additional atom at the center of the cluster. Some neutral [X@M$_{16}$] clusters with X = group 14 and M = group 11 appear to be the best candidates, in spite of the fact that their T_d energy minimum might not always be the global minimum. Interestingly, some neutral [X@M$_{16}$] clusters with 18-je in which X = group 2 and M = group 11 are also susceptible to be observed.

The conclusions drawn above are based on the computed vibrational frequencies, comparison of cohesion energies and the HOMO-LUMO gaps. The latter can be compared to real systems computed at the same level of theory (see Chapters 2 and 4). For example, the HOMO-LUMO gaps obtained for the [M$_{16}$Ni$_{24}$]$_4$ systems are in the range 0.83-1.06 eV. They are in the range 1.34-1.81 eV for the [M$_{20}$] systems. These values compare well with that of the clusters investigated in this current chapter, which are, for example, in the range 1.49-1.94 eV for the heterometallic 18-je [M’$_4$M’’$_{12}$]$^{2+}$ (Table 5.2) 0.72-2.02 eV for the 20-je X@M$_{16}$, (Table 5.4) and 0.39-2.06 eV for the 18-je X@M$_{16}$ (Table 5.5).
Chapter 5

References

ANNEX: Low-symmetry structures of true minima found for some of the investigated X@M$_{16}$ clusters

As mentioned in Chapter 6, some of our computed models are not true minima in T_d symmetry since they are associated with imaginary vibrational frequency we have looked for minima of lower symmetry by following the atomic displacements associated with these imaginary frequencies. Only the structures where it was possible to obtain a convergence and a lack of imaginary frequency are presented below. Indeed for [CCu$_{16}$], [BeCu$_{16}$], [BeAg$_{16}$], [TiAg$_{16}$], [HfAu$_{16}$] and [ZrAu$_{16}$], the minimum could not be reached, so far. The main structures of the energy minima that we obtained are presented in Figure 5.A1.

\textbf{Figure 5.A1.} Different structures corresponding to characterized true energy.
Table 5.A1. Energy minima obtained for some of the hypothetical 20- and 18-je centered M$_{16}$ clusters which do not adopt the T_d symmetry. In parenthesis the difference in kcal/mol between E_{T_d} and E_{new} symmetry.

<table>
<thead>
<tr>
<th>Structure</th>
<th>D_{4d}</th>
<th>C_{3v}</th>
<th>C_{5v-1}</th>
<th>C_{5v-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusters</td>
<td>[GeCu$_{16}$] (122.2)</td>
<td>[SrAu${16}$] (5.4), [CaAu${16}$] (0.0)</td>
<td>[SiAu${16}$] (7.5), [BaAu${16}$] (11.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ZnAu${16}$] (1.9), [PbAu${16}$] (4.1), [GeAg${16}$] (3.0), [HgAg${16}$], [ZnAg$_{16}$] (7.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The characterized energy minima that we were able to obtain are summarized in Table 5.A1 and relevant corresponding computed values are provided in Tables 5.A2 and 5.A3.

Table 5.A2. Relevant results computed for the hypothetical 20-je centered M$_{16}$ clusters in their low symmetry energy minima.

M-M (Å)	8*2.352	10*2.766	6*2.799	6*2.737	6*2.725
	16*2.456	10*2.784	6*2.820	10*2.765	6*2.775
	8*2.488	5*2.785	3*2.824	5*2.780	3*2.802
	8*2.617	5*2.845	6*2.840	5*2.802	6*2.810
	5*2.845	3*2.842	5*2.806	5*2.802	6*2.848
	5*2.856	3*2.848	5*2.806	3*2.890	3*2.890
	5*3.010	3*2.869	3*2.897	3*2.908	3*2.914
	3*2.885	3*2.848	3*2.966	3*2.966	3*2.966
X-M (Å)	8*2.602	5*2.668	3*2.624	5*2.665	1*2.948
	8*2.843	5*2.833	6*2.860	5*2.849	6*2.973
	5*2.668	6*2.860	3*2.624	5*2.665	3*3.080
	5*2.833	6*2.860	5*2.860	5*2.849	3*3.329
	3*2.866	5*2.849	3*2.624	5*2.665	3*3.371
$\Delta E_{\text{HOMO-LUMO}}$ (eV)	1.03	1.45	1.65	1.69	1.93
E_c (kcal/mol)	-64.62	-47.14	-46.99	-57.58	-56.26
Lowest vibrational frequencies	36 (e$_2$)	31 (e$_2$)	17 (a$_2$)	15 (e$_2$)	24 (e$_1$)
Chapter 5

Table 5.A3. Relevant results computed for the hypothetical \(18-fe\) centered \(\text{M}_{16}\) clusters in their low symmetry energy minima.

<table>
<thead>
<tr>
<th>M-M (Å)</th>
<th>[CaAu(_{16})] ((C_3h))</th>
<th>[SrAu(_{16})] ((C_3h))</th>
<th>[BaAu(_{16})] ((C_3h))</th>
<th>[ZnAg(_{16})] ((C_3h))</th>
<th>[ZnAu(_{16})] ((C_3h))</th>
<th>[HgAg(_{16})] ((C_3h))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62.701 62.738 32.770 62.800 62.832 32.870 3*2.902</td>
<td>62.709 32.794 62.816 62.846 32.919 32.944 32.965 33.020</td>
<td>52.795 102.799 52.801 102.816 5*2.890</td>
<td>62.747 32.748 62.806 62.845 32.853 62.854 3*2.859</td>
<td>62.730 32.756 62.783 62.799 32.811 62.816 6*2.836</td>
<td>62.754 32.813 62.821 62.841 32.872 62.873 62.877 62.918</td>
</tr>
<tr>
<td>X-M (Å)</td>
<td>12.899 63.035 1*2.959</td>
<td>53.179 53.198 5*3.199</td>
<td>32.600 62.775</td>
<td>32.650 62.771 1*3.273</td>
<td>32.618 62.831 1*3.360</td>
<td></td>
</tr>
<tr>
<td>(\Delta E_{\text{HOMO-LUMO}}) (eV)</td>
<td>1.84</td>
<td>1.86</td>
<td>1.60</td>
<td>0.50</td>
<td>0.99</td>
<td>0.24</td>
</tr>
<tr>
<td>(E_c) (kcal/mol)</td>
<td>-58.8</td>
<td>-58.0</td>
<td>-57.9</td>
<td>-42.0</td>
<td>-52.9</td>
<td>-39.5</td>
</tr>
<tr>
<td>Lowest vibrational frequencies</td>
<td>22 ((e_1)) 15 ((e_1)) 23 ((e_2)) 20 ((a_2)) 12 ((a_2)) 23 ((e_1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6

Chapter 6: Symmetry lowering by cage doping of [W@Au_{12}]. Evaluation of electronic and optical properties in the 18-je clusters [W@Au_{12}Pt_n] (n = 0-4)

Introduction

Gold nanostructures are a fundamental concern in nanoscience, owing to their potential to serve as useful building blocks towards the design of novel materials with variable sizes displaying novel properties for catalysis, nanoelectronics and biological diagnostics,1-7 among other applications.7-10 The efficiency in catalysis for carbon monoxide oxidation unraveled for discrete clusters is a relevant example of the differences between the inert bulk and clusters with precise numbers of gold atoms.11-13 The current synthetic control to achieve nanoparticles14-22 with selected atomic precision provides valuable opportunities to gain deeper knowledge of the structure-property relationship at regimes involving a few metallic atoms.

Gold chemistry possesses a rich structural diversity owing to the particular role of relativistic effects,23-28 resulting in unusual structures, highlighting the tetrahedral Au_{20} cluster29-32 and the hollow Au_{32} cage cluster.33-35 Furthermore, the doping of heteroatoms into the gold skeletal structure allows us to modify the physical and chemical properties achieving the potential tune of the molecular properties, where the influence of a doping atom is of special importance to the field of catalysis.2,6,36-38

In this concern, the icosahedral [W@Au_{12}] cluster remains as one of the most prominent examples of bare endohedral clusters depicting highly stable closed-shell electronic and geometrical structure. This emblematic 18-jellium electron (18-je) superatom was initially predicted from density functional theory (DFT) calculations by Pyykko and Runeberg39,40 and subsequently characterized experimentally by Li et al.41 showing in addition the appearance of related isoelectronic species.42 The 18-je count ensures an electronic and structural stability owing to a specific electronic shell filling accounted by a 1S^21P^61D^10 spherical jellium configuration.28,43,44 Such shell description resembles that of isolated atoms, from where comes the concept of superatom developed by Jena and Khana.44-
Several clusters have been evaluated in analogy to this cluster taking advantage of the superatom model, where the nature of the endohedral and cage atoms allows to modulate the total number of valence electrons.

Particularly, the doping of the cage results in a loss of the high icosahedral symmetry (symmetry lowering), which has been employed towards the enhancement of optical properties, among other features. Our interest relies in the exploration of the cage doping, allowing the access to viable 18-je clusters related to \([\text{W@Au}_{12}]\), introducing a decrease in symmetry by the inclusion of a heteroatom in the cage which does not contribute formally to the overall electron count. Herein, we propose a new series of neutral clusters adopting the closed-shell 18-je superatom count, namely \([\text{W@Au}_{12}\text{Pt}_n]\) with \(n = 0, 1, 2, 3\) and 4. Indeed, Pt contributes to zero electron to the superatom electron count (in a first approximation 5d AO’s do not participate to bonding). On the other hand, adding one or several Pt atoms to the \([\text{W@Au}_{12}]\) framework should induce less symmetrical structures with cages involving a larger number of vertices. These species are evaluated by using relativistic density functional methods. In addition, their optical properties computed by time-dependent DFT (TD-DFT) calculations are discussed to provide valuable information for a possible experimental characterization, a possible broadening of the absorption peaks in less symmetrical structures will be discussed. In addition, the variation of the molecular electrostatic potential \((V(r))\) along the series is studied in order to evaluate the variation of the most catalytically active sites given by cluster corners, as has been recently reported by Stenlid and Brinck.

6.1. Computational details

Relativistic DFT calculations were carried out by using the ADF code, incorporating scalar corrections via the zeroth-order regular approximation (ZORA) Hamiltonian. All calculations were done employing all-electron triple-\(\zeta\) Slater quality basis set, plus two polarization functions (STO-TZ2P), within the generalized gradient approximation (GGA) according to the Becke-Perdew (BP86) exchange-correlation functionals. The frozen core approximation was applied to the \([1s^2-4f^{14}]\) core electrons for W, Pt and Au, leaving the remaining electrons to be treated explicitly, where the nuclear coordinates does not alter the core electrons defined by a fixed core potential. Geometry optimizations were performed without any symmetry constraint, via the analytical energy gradient method implemented by Versluis and Ziegler followed by the respective vibrational
analyses obtained from analytical second derivatives.70,71 Analyses of the interaction energy between fragments constituting the investigated clusters were carried out within the Morokuma-Ziegler energy decomposition method.72-74 Time-dependent DFT (TD-DFT) calculations were employed at the same level, but using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional75,76 owing to its good performance in the description of optical properties of gold-based clusters at a relative low computational cost, allowing further comparisons to other computational studies.77-81

The molecular electrostatic potential is a well-established tool to provide a quantitative analysis of the molecular charge distribution, which has been shown to be connected to the catalytic activity in gold clusters.84 This quantity can be evaluated according to the formula,

$$V(r) = \sum_A \frac{Z_A}{|R_A - r|} - \int \frac{\rho(r)\,dr}{|r' - r|}$$

where, \(V(r)\) is a scalar function owing to the potential created by the nuclear and electronic density of the charge density, in atomic units. \(Z_A\) is the charge on nucleus located at \(R_A\), given by the atomic number of atom \(A\), and \(\rho(r)\) is the electronic density. The sign and strength of \(V(r)\) is given by the predominance of nuclei (positive) or electronic (negative) effects on different molecular regions. The surface was set to 0.001 a.u. (electrons/Bohr\(^3\)), as contour of the electronic density accounting for van der Waals surface of the molecule.85,86

6.2. Results and discussion

In the followings, the various \([\text{WAu}_{12}\text{Pt}_n] (n = 0-4)\) optimized structures are noted \(\text{Pt}_n\) according to the number of Pt atoms. The \(n = 0\) case (\(\text{Pt}_0\)) corresponds to the reference \([\text{W@Au}_{12}]\) icosahedral cluster calculated at the same level of theory. In the case of \(\text{Pt}_3\) where several isomers of low energy were found, they are associated with a letter \(a, b, c, \ldots\), depending on the increasing order of their relative energy (\(\text{Pt}_2-a\) is the most stable \(\text{Pt}_2\) isomer). We discuss here only the most stable isomers, \textit{i.e.} those lying in a relative energy range of 15 kcal/mol. They are shown in Figure 6.1. The stability of these BP86 results is supported by different comparison to GGA and GGA-Hybrid calculations of gold cluster properties.49,81–83 The structure of \([\text{WAu}_{12}]\) (\(n = 0\)) is also shown for comparison. Relevant computed data are given in Tables 6.1 and 6.2.

The global minimum of \([\text{WAu}_{12}\text{Pt}]\), \(\text{Pt}_1\), can be described as a \(\text{W@Au}_{11}\text{Pt}\) icosahedron of which one triangular face is capped by an Au atom. However, one of the edges of the
capped face is open (Au...Au = 3.38 Å). The next isomer of Pt1 lies 19.7 kcal/mol above, and therefore is not reported in Table 6.1. It depicts a W@Au12 icosahedron face-capped by a Pt atom.

In Pt2-a W is encapsulated into a rather regular Au10Pt2 icosahedron, an edge of which being made of the two Pt atoms. The two faces sharing this edge are capped by two Au atoms which are bonded to each other. The resulting structure is quite compact. Pt2-b is of the same C2v symmetry as Pt2-a and can be derived from it by the permutation of two Pt with two Au. However, the Au10Pt2 skeleton in Pt2-b is missing a bond on its Au-Au edge common to its two capped faces. In Pt2-c W is encapsulated in a fairly unsymmetrical Au10Pt2 polyhedron having 11 triangular and 4 distorted square faces, two square faces being capped by Au atoms.

Only one low-energy isomer having 3 Pt atoms, Pt3, was found. Indeed, the next isomer was computed lying 27.6 kcal/mol above. Pt3 has a fairly unsymmetrical structure which can be viewed as a simple packing of three “hexagonal compact planes”: Au5/3Pt3/Au5.

The only low-energy isomer having 4 Pt atoms was found to be of Td symmetry (the next one was found 26.1 kcal/mol above). Actually, the Au12Pt4 polyhedron in which W is encapsulated in Pt4-a has the same structural feature than that found previously for the [Au16]4- anion87-90 and related Au16 clusters encapsulating various elements.37,91-93 It is composed of an Au12 truncated tetrahedron, the four hexagonal faces of which being capped by the four Pt atoms which in fact are situated close to the centers of the faces.

![Figure 6.1. The low-energy optimized structures of the [W@Au12Pt\textsubscript{n}] (n = 1, 4) clusters.](figure.png)
Chapter 6

Table 6.1. Major computed data for the isomers of lower energy (ΔE: isomer relative energy; n: number of bonding contacts.

<table>
<thead>
<tr>
<th></th>
<th>Pt₀ (Iₖ)</th>
<th>Pt₁ (C₃)</th>
<th>Pt₂-a (C₂ᵥ)</th>
<th>Pt₂-b (C₂ᵥ)</th>
<th>Pt₂-c (C₃)</th>
<th>Pt₃ (Cᵥ)</th>
<th>Pt₄ (Tₐ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE (kcal/mol)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.7</td>
<td>13.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>n(W-Au)</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>n(W-Pt)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Au-Pt range (Å)</td>
<td>-</td>
<td>2.655-3.010</td>
<td>2.716-3.081</td>
<td>2.651-3.000</td>
<td>2.661-2.966</td>
<td>2.651-2.853</td>
<td>2.839-2.839</td>
</tr>
<tr>
<td>Pt-Pt range (Å)</td>
<td>-</td>
<td>-</td>
<td>3.144</td>
<td>-</td>
<td>2.889</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The Ptₙ (n = 1, 3) structures have in common to maintain the maximum of compacity, and keeping the total number of W-metal bonding contacts equal to 12 (or close to), with all the Pt atoms bonded to W. For n = 1 and 2, this is achieved in approaching icosahedral geometry as much as possible. For larger n values, the icosahedral environment of W starts to be problematic to satisfy. The n = 4 case is particular for it allows the Au₁₂Pt₄ cage to adopt a very symmetrical arrangement, derived from an fcc compact structure (ABC stacking with 7, 6 and 3 atoms respectively), but dilated in such a way that it can offer a sufficient space in its center into which W can settle. The number of W-metal “bonds” in Pt₄ is particularly large (16), but the 12 W-Au contacts are quite long (3.224 Å), whereas in the other species reported in Table 6.1 they do not exceed 3.08 Å. On the other hand, the 4 W-Pt distances are particularly short (2.404 Å).

In order to evaluate more quantitatively the strength of the bonding between W and its host in the different Ptₙ structures, we have performed a Morokuma-Ziegler energy decomposition analysis (EDA) relative to this interaction. The results obtained for the four global minima are given in Table 6.2, together with that corresponding to the reference compound [W@Au₁₂], Pt₀.
Chapter 6

Table 6.2. Energy decomposition analysis, HOMO-LUMO gaps (ΔE_{H-L}), per atom cohesion energy (E_c), adiabatic electron affinities (AEA) and adiabatic ionization potentials (AIP) of the Pt_n ($n = 0-4$) global minima.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\text{Pt}_0(I_h)$</th>
<th>$\text{Pt}_1(C_s)$</th>
<th>$\text{Pt}{2-a}(C{2v})$</th>
<th>$\text{Pt}_3(C_1)$</th>
<th>$\text{Pt}_4(T_d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentation</td>
<td>W + Au$_{12}$</td>
<td>W + Au$_{12}$Pt</td>
<td>W + Au$_{12}$Pt$_2$</td>
<td>W + Au$_{12}$Pt$_3$</td>
<td>W + Au$_{12}$Pt$_4$</td>
</tr>
<tr>
<td>Pauli repulsion</td>
<td>68.06</td>
<td>68.37</td>
<td>69.32</td>
<td>67.66</td>
<td>71.82</td>
</tr>
<tr>
<td>Electrostatic interaction (eV)</td>
<td>-41.17</td>
<td>-42.04</td>
<td>-42.80</td>
<td>-42.17</td>
<td>-45.43</td>
</tr>
<tr>
<td>Orbital interaction (eV)</td>
<td>-40.41</td>
<td>-39.72</td>
<td>-39.71</td>
<td>-39.88</td>
<td>-41.76</td>
</tr>
<tr>
<td>E_c (kcal/mol)</td>
<td>-66.1</td>
<td>-69.3</td>
<td>-72.7</td>
<td>-74.9</td>
<td>-79.1</td>
</tr>
<tr>
<td>ΔE_{H-L} (eV)</td>
<td>1.79</td>
<td>1.08</td>
<td>0.99</td>
<td>0.65</td>
<td>1.09</td>
</tr>
<tr>
<td>AEA (eV)</td>
<td>1.87</td>
<td>2.55</td>
<td>2.73</td>
<td>3.05</td>
<td>2.93</td>
</tr>
<tr>
<td>AIP (eV)</td>
<td>7.28</td>
<td>7.05</td>
<td>6.61</td>
<td>6.88</td>
<td>7.12</td>
</tr>
</tbody>
</table>

Following its orbital interaction component, the total bonding energy between W and its host decreases slowly in absolute value when going from $n = 0$ to $n = 2$, and then starts to increase again. Pt_3 and Pt_4 have a stronger bonding interaction than Pt_0. The cluster per atom cohesion energy is defined as $E_c = E(\text{Pt}_n) - [E(\text{W}) - 12 \times E(\text{Au}) - n \times E(\text{Pt})]/(13 + n)$. It increases in absolute value with the number of Pt atoms; therefore the cluster cohesion is stronger for Pt_4. Looking at the HOMO-LUMO gaps which are indicative of kinetic stability and stiffness of the structure, all the Pt-doped clusters have smaller HOMO-LUMO gaps than the Pt_0 reference, Pt_1 and Pt_4 being the most favored on this criterion. Adiabatic electron affinities (AEAs) and ionization potentials (AIPs) are related to chemical stability. AEAs of the Pt-doped species are all larger than that of Pt_0, Pt_3 and Pt_4 being the most stable with respect to reduction. On the other hand, the AIPs of the Pt-doped species are slightly lower than that of Pt_0. From this criterion, Pt_1 and Pt_4 appear to be the most stable with respect to oxidation.

The inclusion of Pt atoms in the golden cage leads to a decrease in symmetry, which vary along the series as $\text{Pt}_0(I_h) \rightarrow \text{Pt}_1(C_s) \rightarrow \text{Pt}_{2-a}(C_{2v}) \rightarrow \text{Pt}_3(C_1) \rightarrow \text{Pt}_4 (T_d)$, and leads to a sizable splitting of the frontiers shells. In Figure 6.2, the 1D-HOMO goes from a five-fold...
shell in the classical [W@Au12] cluster (Pt0(Ih)) to five non-degenerate levels in Pt1(Cs), Pt2-a(C2v) and Pt3(C1), with larger splitting in the Pt2-a cluster owing to the less symmetrical structure. For the [W@Au12Pt1] cluster (Pt4(Td)), the tetrahedral symmetry splits the 1D shell in two set of three- and two-fold levels with a lesser splitting as observed for Pt2 and Pt3 (Figure 6.2). Along the series, the LUMO vary from an orbital of the 2D* shell to a 2S* orbital in Pt3 and Pt4.

Figure 6.2. Representation of the frontier orbitals for Pt0(Ih), Pt1(Cs), Pt2-a(C2v), Pt3(C1), and Pt4 (Td), depicting representative isosurfaces of the frontier orbitals.

In order to provide insights of characteristic fingerprints of the optical properties in the low-energy region, which have been well reported for gold nanoclusters, the optical absorption spectra in the range from 0.0 to 4.5 eV was calculated (Figure 6.3). In these 18-je clusters despite the similar electronic structure, the symmetry lowering away from the icosahedral point group of [W@Au12] (Pt0(Ih)) frontier orbitals splits the 3-peak pattern below 4.5 eV, into several peaks owing to the loss of degeneracy of the frontier 1D shell and 2D* shell. In [W@Au12] the first peak at 2.743 eV (A) is attributed to a 1D→1F transition, the second peak at 3.194 eV (B), concerns a mix between “5d-block”→2D* and “5d-block”→2S* transitions. The third peak at 4.002 eV (C), is originating from a 1D→2P* transition.

For Pt1(Cs), the first peak A spread into three new peaks owing to the latter splitting of the 1D shell, the second peak (B) appears as a new signal and a shoulder due to the splitting of the 2D* band, whereas the peak C is slightly red-shifted in relation to Pt0, showing a 2-
peak pattern. In $\text{Pt}_2\alpha(C_{2v})$, the first peak (A) of 1D→1F character, leads to several peaks in the range between 2.0 - 3.0 eV, where the peak B appears as a single shoulder and two peaks between 3.0 - 3.7 eV, similarly to peak C, which is shown as a 2-peak pattern. Similarly in $\text{Pt}_3(C_1)$, the peak A appears as a broad signal from 2.4 to ~ 3.0 eV, whereas peak B is a broader signal in comparison to the parent Pt_0 cluster. Lastly, peak C appears slightly blue shifted. Moreover, for $\text{Pt}_4(T_d)$, a more defined peak pattern is observed where peak A splits in two absorption bands, similarly to peak B, owing to the splitting of the 1D shell into a set of two- and three-fold levels. Particularly the peak related to the parent peak C in $[\text{W@Au}_{12}]$ ($\text{Pt}_0(I_h)$) is obtained as a peak with a shoulder associated with a larger oscillator strength, denoting a larger transition dipole moment.

These results illustrate the variation of the optical behavior in related clusters retaining a similar superatomic electronic configuration and stability, suggesting that related properties can be modified by the inclusion of different elements which are able to lower the symmetry of the clusters. This approach can be useful for further design of broad black-absorbers, allowing to absorb light in a wide range, thus able to enhance the efficiency of thin film solar cells.94,95

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure6.3.png}
\caption{Calculated optical absorption spectrum for $\text{Pt}_0(I_h)$, $\text{Pt}_1(C_1)$, $\text{Pt}_2\alpha(C_{2v})$, $\text{Pt}_3(C_1)$ and $\text{Pt}_4(T_d)$. The increase in the range of the A transition is denoted by a black line behind the respective region.}
\end{figure}
Furthermore, the surface representation of the molecular electrostatic potential \(V_s(r) \) was investigated, in order to evaluate the variation of the most catalytically active sites given by cluster corners,\(^6\) in function of the charge redistribution along the series. This work was done in the group of Pr. Alvaro Muñoz-Castro at the Universidad Autónoma de Chile (Santiago). Recently, Stenlid and Brinck,\(^8\) gave an intuitive description based on \(V_s(r) \) for atomically precise gold and platinum clusters, where sites with positive potential are located over catalytic relevant sites, with maximum values \((V_{s,max}) \) at atoms with low-coordinated sites and negative potential at bonding regions. In addition, they showed a direct correlation between values of \(V_{s,max} \) and interaction energies towards CO and H\(_2\)O, unraveling the capability of \(V_{s,max} \) to locate and quantify catalytic active sites within a molecular cluster. The surface representation of the molecular electrostatic potential \((V_s(r)) \) for Pt\(_0\)(I\(_h\)), Pt\(_1\)(C\(_s\)), Pt\(_2\)-a(C\(_{2v}\)), Pt\(_2\)-b(C\(_{2v}\)), Pt\(_3\)(C\(_l\)) and Pt\(_4\)(T\(_d\)), is given on Figure 6.4, indicating variation along the series. For the parent [W@Au\(_{12}\)] cluster (Pt\(_0\)(I\(_h\))), a more polarized \(V_s(r) \) is observed in comparison to the icosahedral Au\(_{13}\) reported by Stenlid and Brinck,\(^8\) suggesting an enhanced catalytic activity for the Au vertices in the icosahedral Au\(_{12}\) cage, and more negative regions in the respective edges accounting for Au-Au bonds. When one Pt atom is incorporated to the Au\(_{12}\) cage (Pt\(_1\)(C\(_s\))), a gold atom is exposed as a low-coordinated site, enhancing selectively the catalytic activity to a specific site, where the region of the Pt atom is a smaller positive region in \(V_s(r) \). Similarly, for the case with two Pt atoms (Pt\(_2\)-a(C\(_{2v}\)) and Pt\(_2\)-b(C\(_{2v}\))), a pair of low-coordinated gold sites are generated, suggesting a more active site in such regions, with Pt atoms leading to a smaller positive region in \(V_s(r) \). Lastly, for the case with three Pt atoms (Pt\(_3\)(C\(_l\))), a gold site shows a smaller value on \(V_s(r) \), recovering in part the observed \(V_s(r) \) for the parent cluster.

In sharp contrast, the T\(_d\)-[W@Au\(_{12}\)Pt\(_4\)] exhibits regions with smaller value of \(V_s(r) \), leading a very site-specific region expected for catalytic activity located at the center of each Au(111)-like face, where each Pt atom is located. This situation is comparable to the recent prediction of the efficient catalytic activity of a Mo doped Au(111)-gold-surface, leading to a promising low-temperature N\(_2\) dissociation towards NH\(_3\) production which can have a deep impact in a new generation of the Born-Haber Process.\(^9\) Thus, T\(_d\)-[W@Au\(_{12}\)Pt\(_4\)] can be a useful model to explore the catalytic activity of different clusters retaining a high gold/dopant ratio. Further evaluation of interaction energies can be informative to correlate these observations to catalytic activities of the here discussed clusters.
Chapter 6

Figure 6.4. Surface representation of the molecular electrostatic potential \(V_s(r)\) for \(Pt_0(I_h)\), \(Pt_1(C_s)\), \(Pt_2-a(C_{2v})\), \(Pt_2-b(C_{2v})\), \(Pt_3(C_1)\) and \(Pt_4(T_d)\).

Conclusion

We investigated geometries and energies of a series of viable 18-je clusters related to [W@Au_{12}], introducing a decrease in symmetry with the inclusion of Pt heteroatoms in the golden cage, where W remain as an endohedral atom and strong cluster compacity is maintained. Along the [W@Au_{12}Pt_n] series, with n = 0, 1, 2, 3 and 4, a resulting loss of symmetry from the parent icosahedral symmetry is induced. The calculated cohesion energy shows a relative stability of the proposed clusters in relation to the parent cluster [W@Au_{12}] experimentally characterized. Moreover, the obtained values of HOMO-LUMO gap, adiabatic electron affinities (AEAs) and ionization potentials (AIPs), indicate Pt_1 and Pt_4, as the most stable with respect to oxidation.

The induced symmetry lowering by the favorable inclusion of Pt atoms in the cage, results in a sizable splitting of the frontier superatomic shells, which in turn effectively modify the optical properties relatively to [W@Au_{12}]. The simulated absorption spectra show an interesting broadening effect of the absorption peaks particularly for Pt_1, Pt_2 and Pt_3, thus
likely to be useful for further design of broad black-absorbers, which are able to absorb light in a wider range, with potential capabilities to enhance the efficiency of thin film solar cells and photocatalysis processes, among other applications.

In addition, the catalytic activity of each specific site is evaluated through the surface representation of the molecular electrostatic potential ($V_s(r)$), denoting interesting variations along the series, leading to the selectivity of a few catalytic sites, which can be useful as model, towards more selective catalysts. Interestingly, for T_d-[W@Au$_{12}$Pt$_4$] very site specific regions are obtained, which are located at the center of each Au(111)-like face, where each Pt atom is allocated. Thus, such cluster can be a useful model to explore the catalytic activity of different clusters retaining a high gold-dopant ratio in a closed-shell molecular Au(111) model.

The discussed approach to include heteroatoms within the external cage, can be further developed to modify molecular properties of similar superatomic clusters displaying stable geometrical structures, by the inclusion of well-chosen elements inducing lower symmetries thus permitting to tune and improve the desired properties.
Chapter 6

References

Chapter 6

174201.

Chapter 6

Chapter 6

Chapter 6

1873.

Chapter 7: Bonding analysis of pseudo 2-electron trigonal bipyramidal organometallic Cu/Zn clusters

Introduction

Despite brass is one of the most common alloys found in everyday’s life and has been used for millennia, molecular bimetallic Zn/Cu compounds remain almost unknown. This is somewhat surprising, because copper and zinc can be mixed to form a broad range of uniform solid solutions with different Zn/Cu ratios, making brass a highly homogeneous material. This is very useful since it allows fine-tuning of the alloy properties, in particular the mechanical and electrical properties as well as the resistance to corrosion.

To our knowledge, on the molecular level only two types of clusters are known so far, exhibiting a [ZnₙCuₚ] core in which Cu-Zn bonding is present. All these compounds were reported by the group of R. Fischer in Münich. The first type, namely the two strongly related clusters [(ZnCp*)₄(Cu(tBuNC))₄] and [(ZnCp*)₃(ZnCp)(Cu(tBuNC))₄],¹ display a tetracapped tetrahedral [Cu₄Zn₄] geometry (see Figure 7.1). This motif is also found in γ-brass, though the arrangement of an inner zinc tetrahedron being surrounded by an outer copper tetrahedron is inversed with respect to the molecular species. These compounds have been described as 8-electron superatoms. The other type is exemplified by the σ-aromatic triangular [Zn₂CuCp*₃],² (see Figure 7.2) which is an isolobal analogue of the D_{3h} [H₃]$^+$ ion. The compounds have been defined as molecular and embryonic brass, respectively.¹,² According to the group in Münich, [Zn₂CuCp*₃] can be expected to be useful as a building block for the bottom-up synthesis of larger deltahedral clusters, as a trigonal M₃ (M = metal) unit is the fundamental feature of such species.²
Chapter 7

It turns out that very recently, two new clusters, namely [Zn₄Cu₃Cp*₅] (1) and [Zn₅Cu₂Cp*₅]⁺ (2) were isolated and fully characterized in the Münich group. These two isoelectronic compounds are actually found as impurities in the product of the reaction of the [Zn₂CuCp*₃] synthesis. This latter compound, is obtained from the treatment of Cu(OAc) with an equimolar amounts of [Zn₂Cp*₂] in benzene at room temperature for three days.² Compounds 1 and 2(OAc) were extracted as byproducts from the resulting insoluble dark red suspension containing the triangular [Zn₂CuCp*₃] cluster as the major component. Despite their weak yields, they could be isolated and fully characterized,³ their X-ray molecular structures are shown in Figure 7.3 and relevant corresponding metrical data are given in Table 7.1.

Figure 7.1. Tetracapped tetrahedral geometry displayed by the [Cu₄Zn₄] core of (ZnCp*)₄(Cu(tBuNC))₄ (left). Its total structure (right).

Figure 7.2. Representation of the [Zn₂CuCp*₃] structure.
Figure 7.3. Molecular structure of $[\text{Cu}_3\text{Zn}_4\text{Cp}^*]_3$ (1) (left) and $[\text{Cu}_2\text{Zn}_8\text{Cp}^*]_3^+$ (2) (right). The trigonal bipyramids are highlighted. Orthogonal view on the Cu1, Cu2, Cu3 plane showing the Cu1, Cu2, Cu3, Zn3/2 tetrahedrons of 1 (bottom, left). Orthogonal view on the Cu1, Cu2, Zn3 plane showing the Cu1, Cu2, Zn3, Zn2/4 tetrahedrons of 2 (bottom, right).
Chapter 7

Table 7.1. Selected averaged experimental (X-ray) and optimized (DFT) distances for 1, 1’, 2 and 2’ (in Å). The corresponding averaged computed Wiberg indices are given in parenthesis for 1’ and 2’. The Zn’ and Zn” labels designate the zinc atom bonded to Cp*/Cp and that belonging to the Cu2Zn triangle in 2/2’, respectively.

<table>
<thead>
<tr>
<th></th>
<th>1 (X-ray)</th>
<th>1’ (DFT)</th>
<th>1 (DFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-Cu</td>
<td>2.440</td>
<td>2.414 (0.270)</td>
<td>2.426</td>
</tr>
<tr>
<td>Cu-Zn</td>
<td>2.445</td>
<td>2.470 (0.091)</td>
<td>2.432</td>
</tr>
<tr>
<td>Zn-Zn’</td>
<td>2.318</td>
<td>2.345 (0.600)</td>
<td>2.314</td>
</tr>
<tr>
<td>2 (X-ray)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-Cu</td>
<td>2.415</td>
<td>2.385 (0.339)</td>
<td>2.401</td>
</tr>
<tr>
<td>Cu-Zn</td>
<td>2.487</td>
<td>2.490 (0.074)</td>
<td>2.437</td>
</tr>
<tr>
<td>Cu-Zn’</td>
<td>2.400</td>
<td>2.399 (0.268)</td>
<td>2.401</td>
</tr>
<tr>
<td>Zn-Zn’</td>
<td>2.311</td>
<td>2.338 (0.606)</td>
<td>2.299</td>
</tr>
<tr>
<td>Zn-Zn’’</td>
<td>2.717</td>
<td>2.872 (0.025)</td>
<td>2.682</td>
</tr>
</tbody>
</table>

In both clusters, the metal atoms are arranged in a trigonal bipyramidal fashion, the apical positions of which being occupied by ZnZnCp* units. The Zn2Cu3 trigonal bipyramid in 1 is very close to D_{3h} symmetry. In the case of 2, the bipyramid is distorted due to the heterometallic nature of the ZnCu2 triangle, but the connectivity is basically the same as in 1. However, the capping Zn atoms in 2 are much closer to the Cu atoms than to Zn3, as exemplified by Cu$_{\text{triangle}-\text{Zn2}}$ (avg. 2.463 Å) and Cu$_{\text{triangle}-\text{Zn4}}$ (avg. 2.487 Å) which are significantly shorter than Zn3-Zn2 (2.745(6) Å) and Zn3-Zn4 (2.688(7) Å).

Cluster geometries are strongly related to their electronic structure, associating specific cluster shapes with specific numbers of electrons.4,5 Stable closed-shell organometallic clusters most often obey the Wade-Mingos electron-counting rules.5 These rules state that the number of skeletal electron pairs (SEPs) associated with cluster bonding is equal to the number of vertices of the deltahedron in which the cluster is inscribed, plus one. Accordingly, the trigonal bipyramidal skeletons of 1 and 2, should be associated with 5 + 1 = 6 SEPs. 1 can be formally considered a constituted of five fragments, three CuCp* and two Zn-ZnCp* units. Assuming first that, as generally admitted, the Cu and Zn 3d electrons are not significantly involved in the bonding, CuCp* and Zn-ZnCp* are 0- and 1-electron donor moieties, respectively. One thus ends up with only 1 SEP for 1, as for its isoelectronic relative 2. This makes 1 and 2 highly electron-deficient with respect to the Wade-Mingos rules. It should be however kept in mind that these rules assume that the fragments constituting the cluster participate to cluster bonding with 3 frontier orbitals, one of σ type and two of π type.5 This is obviously the case of the Zn-ZnCp* moiety, the external Zn atom having two available
Chapter 7

non-bonding 4p\(_x\) frontier orbitals as well as one 4s/4p hybrid of \(\sigma\) type (the other sp hybrid is involved in the Zn-Zn single bond). On the other hand, the case of the CuCp\(^*\) (or [ZnCp\(^*\)]\(^+\)) fragment is different since it is generally considered as participating to the bonding with only one frontier orbital of \(\sigma\) type (a 4s/4p hybrid) the occupied low-lying 3d-block being, as said above, discarded. Thus, the Wade-Mingos standard “reference” should be considered with caution when dealing with 1 and 2. To clear out this situation, we have performed density functional (DFT) calculations on these two clusters as well as on several cluster models (see Computational Details). For the sake of simplicity we have first replaced the pentamethylcyclopentadienyl (Cp\(^*\)) ligands in 1 and 2 by simple cyclopentadienyls (Cp). The calculations reported below have been made in collaboration with Julius Harnung from the Fischer group in Munich.

7.1. Computational details

The computations were performed by using the Amsterdam Density Functional (ADF)\(^6\) and the Wiberg indices\(^7\) were computed with the NBO 6.0 program.\(^8\) In these ADF calculations, we employed the triple-\(\zeta\) Slater basis set, plus two polarization functions (STO-
TZ2P) for valence electrons, within the generalized gradient approximation (GGA) according to the Becke–Perdew (BP86) exchange functional.\(^9,10\) London dispersion corrections were included through the pairwise Grimme approach (Grimme-D3).\(^11\) The frozen core approximation was applied to the [1s\(^2\)–3p\(^6\)] for Cu, [1s\(^2\)–3p\(^6\)] for S, and [1s\(^2\)] for C leaving the remaining electrons to be treated variationally. Geometry optimizations were performed without any symmetry restrain, via the the analytical energy gradient method implemented by Verslius and Ziegler\(^12\). A gradient convergence criterion of 10\(^{-4}\) and an energy convergence criterion of 10\(^{-6}\) were utilized to perform our geometry optimizations. Analyses of the interaction energy between fragments constituting the investigated clusters have been carried out within the Morokuma-Ziegler energy decomposition method.\(^13\)

7.2. Results and discussion

The optimized geometries of the [Zn\(_4\)Cu\(_3\)Cp\(_5\)] (1\(^’\)) and [Zn\(_5\)Cu\(_2\)Cp\(_5\)]\(^+\) (2\(^’\)) were found to be energy minima for \(C\(_1\)\) symmetry, with their symmetry plane containing the Cu\(_3\) and ZnCu\(_2\) triangle, respectively. However, the [Zn\(_4\)Cu\(_3\)] metallic core of 1\(^’\) was found to be very
close to D_{3h}, as in the X-ray structure of 1. The lowering of symmetry to C_5 is obviously due to the mismatch of the D_{3h} 3-fold symmetry with the 5-fold symmetry of the Cp ligands. The optimized metrical data of 1’ and 2’ (Table 7.1) are consistent with their experimental counterparts in 1 and 2. The Zn$_4$Cu$_3$ metal framework of 1’ is very close to D_{3h} symmetry. Its Kohn-Sham orbital diagram is shown in Figure 7.4. The large HOMO-LUMO gap is consistent with the stability of 1. In order to get a better insight into its bonding, a Morokuma-Ziegler energy decomposition analysis (EDA) was carried out, considering the interaction between two fragments: [Cu$_3$Cp$_3$]$^{2-}$ triangular unit and its bi-capping [(CpZn$_2$…Zn$_2$Cp)$^{2+}$ “dimeric” unit. The formal fragment charges were chosen for closed-shell simplicity and also considering that [Cu$_3$Cp$_3$]$^{2-}$ is isostructural and isoelectronic to the known [Zn$_2$CuCp*$_3$]$^{3-}$ (see above), which can be viewed as an isolobal analogue of H$_3^+$ (σ-aromatic 2-electron/3-center bonding). A similar fragmentation has been suggested for the cluster [{Pd(C$_6$H$_4$F)$_3$}(µ$_2$-SC$_6$H$_4$Cl)$_3$Ag(H$_2$O)$_2$][BF$_4$]$_2$ implying that an aromatic [Pd$_3$]$^+$ triangle acts as a donor ligand to a Ag$^+$ ion. Our EDA results are given in Table 7.2.

Unsurprisingly, with such a formal fragment partitioning in 1’, the electrostatic interaction component dominates the total bonding energy. Representing 44% of the former, the orbital interaction component is, however, not negligible. Its a' and a'' components, respectively of σ- and π-type with respect to the Cu$_3$ plane, are of similar order, the a' interaction being the strongest. A detailed analysis of the 1’ Kohn-Sham orbital compositions based on its fragment orbitals allowed us to describe the covalent component of the bonding interaction through the simplified qualitative interaction orbital diagram sketched in Figure 7.5, considering D_{3h} pseudo-symmetry.

Table 7.2. Morokuma-Ziegler energy decomposition analysis (EDA) of 1’ and 2’. All values in eV. E_{Pauli} = Pauli repulsion; E_{elstat} = electrostatic interaction; E_{Orb} = orbital interaction. TBE = total bonding energy = $E_{Pauli} + E_{elstat} + E_{Orb} + E_{disp}$.

<table>
<thead>
<tr>
<th></th>
<th>1' (C$_5$)</th>
<th>2' (C$_5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{Pauli}</td>
<td>14.92</td>
<td>10.37</td>
</tr>
<tr>
<td>E_{elstat}</td>
<td>-24.53</td>
<td>-14.15</td>
</tr>
<tr>
<td>E_{Orb}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>decomposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a'</td>
<td>-6.30</td>
<td>-4.30</td>
</tr>
<tr>
<td>a''</td>
<td>-4.55</td>
<td>-3.48</td>
</tr>
<tr>
<td>E_{disp}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{disp}</td>
<td>-1.24</td>
<td>-1.16</td>
</tr>
<tr>
<td>TBE</td>
<td>-21.70</td>
<td>-12.72</td>
</tr>
</tbody>
</table>
Figure 7.4. Kohn-Sham orbital diagram of \(\mathbf{1}^\prime \). The levels are labelled according to \(C_3 \) symmetry (in black) and \(D_{3h} \) pseudo-symmetry (in blue). The \(C_3 \) symmetry plane contains the Cu_3 triangle.
Figure 7.5. Simplified orbital diagram associated with the interaction of the [Cu₃Cp₃]²⁻ and [(CpZn₂…Zn₂Cp)]²⁺ fragments in 1’ (D₃h pseudo-symmetry assumed). The occupied 3d(Zn) and (most of) the 3d(Cu) combinations, not involved in the interaction, are not represented.

The [Zn₄Cp₂]²⁺ “dimer” has six accepting frontier orbitals, the in-phase and out-of-phase combinations of the three accepting orbitals on the terminal Zn of each [Zn₂Cp]¹⁺ “monomer” (see above). In the D₃h pseudo-symmetry of 1’, the sp(Zn) hybrids give rise to a’₁ and a”₂ combinations, whereas the 4pₙ(Zn) AO’s lead to e’ and e” combinations (see left side of Figure 7.5). On the other hand, the [Cu₃Cp₃]²⁻ unit has no accepting orbitals. Its highest occupied levels are the π(Cp) and 3d(Cu) combinations, among which is buried the strongly bonding a’₁ orbital, principally of 4s/4p composition, which contains the 3-center bonding electron pair of this fragment. This Cu₃ a’₁ orbital interacts strongly with the a’₁ LUMO of the [Zn₄Cp₂]²⁺ “dimeric” fragment, giving rise to a fully in-phase, strongly...
bonding, combination which contains the unique SEP that one would consider if no 3d(Cu) orbitals were involved (see above). But in fact 3d(Cu) combinations of proper symmetry interact with the other accepting orbitals of the [Zn₄Cp₂]²⁺ fragment. This can be traced by the occupation of it’s a’’₂, e’ and e’’ frontier orbitals, which is 0.54, 2 x 0.10 and 2 x 0.11, respectively. For comparison, the a’ occupancy is 1.02. The 3d(Cu) counterparts are of 3dₓ (a’’₂ and e’’) and 3dz² (e’) character. Counting the resulting bonding pairs, one ends up with 6 SEPs, all of the proper symmetry (a’₁, a’’₂, e’ and e’’) as in clusters satisfying the Wade-Mingos rules. Thus, to some extent, 1 satisfies the Wade-Mingos rules, despite not all, but only specific, 3dₓ and 3dz² combinations are involved. Moreover, the e’ and e’’ interactions are not very strong, because of the relatively poor energy match between 4p(Zn) and 3d(Cu). On the other hand, some second-order participation to the bonding (not represented in Figure 7.5) and involving the a’₁ and a’’₂ combinations associated with the Zn-Zn bonding pairs can also be traced. This tends to weaken somewhat the strength of the Zn-Zn bonds at the expenses of Zn-Cu bonding, as exemplified by the computed Zn-Zn Wiberg index in 1’ (0.600), significantly weaker than in CpZnZnCp (0.811).

To summarize the above MO analysis, the bonding within the Cu₃Zn₂ trigonal bipyramidal skeleton in 1 can be viewed as intermediate between that of an hypothetical electron-deficient 1-SEP cluster and that of a regular Wade-Mingos 6-SEP species. It should be pointed out that, although not preponderant, the role of the 4pₓ(Zn) AOs in the framework stability is crucial. This can be shown by replacing in 1’ the [CpZnZn]⁺ capping units by [CpZn]⁺ fragments which, assuming η⁵-Cp coordination, do not possess 4pₓ accepting frontier orbitals. Indeed, the optimized geometry of the [Zn₂Cu₃Cp₅] cluster exhibits (η¹-Cp)Zn units, thus leaving the 4pₓ(Zn) orbitals available for bonding within the Zn₂Cu₃ trigonal bipyramidal skeleton. With such a low coordination mode associated with the rather electron-poor character of the Zn₂Cu₃ skeleton, the hypothetical [Zn₂Cu₃Cp₅] cluster appears unlikely to be isolable.

The optimized geometry of 2’ is also in good agreement with the X-ray structure of 2 (see Table 7.1). In particular it shows a rather long Zn(apical)-Zn’’(equatorial) bond of 2.872 Å. It is noteworthy that when the dispersion corrections are not included in the calculations, the Zn-Zn’’ distance is elongated to 3.019 Å, a no-bond value. Thus, despite the small E_{disp} component in the fragment energy decomposition of Table 7.2, the dispersion forces appear to play a significant role in the overall cluster structure. The weak covalent Zn-Zn’’ bonding is also exemplified by its low Wiberg index (0.025). It can be explained by the fact that the
highest 3d-type combinations of the \([\text{Cp}_3\text{Cu}_2\text{Zn}]^-\) fragment have little Zn participation (3d(Zn) levels are lower) and therefore interact with the 4p_{\pi}(Zn) combinations of the \([\text{Zn}_4\text{Cp}_2]^{2+}\) “dimer” primarily through the copper atoms.

The real methylated compounds 1 and 2 have also been optimized and were found to be of \(C_1\) symmetry, slightly distorted away from \(C_s\) due to the steric effect of the methyl groups. Their selected metrical data reported in Table 7.1 are in good agreement with that of the X-ray structure. For these compounds, it was not possible to perform a 2-fragment EDA analysis similar to that carried out for the 1’ and 2’ models. As a matter of fact, it was not possible to converge the \([\text{Cp}^*\text{Zn}_2\ldots\text{Zn}_2\text{Cp}^*]^{2+}\) unit in the proper closed-shell configuration. However, a 3-fragment analysis in which this “dimeric” unit is split into two \([\text{Zn}_2\text{Cp}^*]^+\) fragments was possible. The corresponding results, together with that obtained in a similar way for 1’ and 2’ are provided in Table 7.3. It appears clearly that the 2- and 3-fragment EDA analyses of 1’ and 2’ are fully consistent and indicate negligible interaction between the two capping \([\text{Zn}_2\text{Cp}^*]^+\) units.

Table 7.3. 3-fragment Morokuma-Ziegler energy decomposition analysis (EDA) of 1’ and 2’, 1 and 2. All values in eV. \(E_{\text{Pauli}}\) = Pauli repulsion; \(E_{\text{elstat}}\) = electrostatic interaction; \(E_{\text{Orb}}\) = orbital interaction. TBE = total bonding energy = \(E_{\text{Pauli}} + E_{\text{elstat}} + E_{\text{Orb}} + E_{\text{disp}}\).

<table>
<thead>
<tr>
<th></th>
<th>1’</th>
<th>2’</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>([\text{Cu}_3\text{Cp}_3]^- + 2 [\text{Zn}_2\text{Cp}]^+)</td>
<td>([\text{ZnCu}_2\text{Cp}_3]^- + 2 [\text{Zn}_2\text{Cp}]^+)</td>
<td>([\text{Cu}_3\text{Cp}_3^]^2+ + 2 [\text{Zn}_2\text{Cp}^]^+)</td>
<td>([\text{ZnCu}_2\text{Cp}_3^]^2+ + 2 [\text{Zn}_2\text{Cp}^]^+)</td>
</tr>
<tr>
<td>(E_{\text{Pauli}})</td>
<td>13.42</td>
<td>9.37</td>
<td>16.43</td>
<td>13.09</td>
</tr>
<tr>
<td>(E_{\text{elstat}})</td>
<td>-21.28</td>
<td>-11.21</td>
<td>-21.41</td>
<td>-12.93</td>
</tr>
<tr>
<td>(E_{\text{Orb}})</td>
<td>-10.16</td>
<td>-7.42</td>
<td>-11.78</td>
<td>-9.18</td>
</tr>
<tr>
<td>(E_{\text{disp}})</td>
<td>-1.30</td>
<td>-1.21</td>
<td>-2.64</td>
<td>-2.57</td>
</tr>
<tr>
<td>TBE</td>
<td>-19.32</td>
<td>-10.48</td>
<td>-19.40</td>
<td>-11.58</td>
</tr>
</tbody>
</table>

In Table 7.3, the results obtained for of 1 and 2 with that of 1’ and 2’ indicate that the bonding analysis carried out for the non-methylated models applies to the real methylated compounds. Among the changes upon ligand methylation, one can note an increase of the absolute value of the \(E_{\text{Orb}}\) component by \(~ 1.6/1.8\) eV due a the destabilization of the Cu3 or Cu2Zn 3d(Cu) block. The \(E_{\text{disp}}\) component is also doubled upon methylation, due to methyl…methyl van der Waals interactions. However, with an absolute value increase of \(~ 1.3/1.4\) eV, its contribution to the total bonding interaction remains relatively small (7-10% of the sum of the stabilizing components).
Conclusion

The trigonal bipyramidal clusters 1 and 2 are at first glance with 1 SEP highly electron deficient with regard to the Wade-Mingos rules, owing to the fact that the basal MCp* units lack 4p\text{\textpi} frontier orbitals. However, according to our EDA analysis of the models 1' based on the fragments [Cu_3Cp_3]^2- and [CpZn_2\cdotsZn_2Cp]^2+ not only 4s/p orbitals of the trigonal M_3 basal unit are involved in skeletal bonding, but even, if to at a lower extend, also 3d\pi and 3d_{z^2} combinations. The latter provide frontier orbitals of proper symmetry and five additional SEPs to satisfy the Wade-Mingos rules for trigonal bipyramidal clusters. In spite of the fact that some of these additional SEPs have only moderate bonding character, the metal skeletons of 1 and 2 do not need the help of μ_2/μ_3 ligands for maintaining their unbridged bipyramidal trigonal structures. Dispersion interactions between the Cp* protecting ligands provide additional stabilization to the structures. This is a specific property of Cp* as a ligand, among others, such as its flexible coordination mode ($\eta^1\cdots\eta^5$) and its steric bulk which allows the ligands forming a compact protecting shell around the metal skeleton. Such Cu/Zn clusters are on the borderline between electron deficient and regular Wade-Mingos species and therefore are likely to be highly reactive and should allow further cluster expansion reactions, eventually reaching compositions predicted by the superatom model.
Chapter 7

References

Chapter 7

The work reported in this thesis manuscript is focused on the application of quantum chemistry methods to the study of different types of inorganic transition-metal compounds, all of them made of or containing group 11 elements. Most of these compounds are clusters which can be described as superatoms within the framework of the spherical jellium theory. A new family of organometallic clusters which at first sight violate the Wade-Mingos rules is also analysed, as well as a series of solid-state and molecular hydrides. Our aim was to provide a rationalization of the stability and structure of the investigated species. Properties, mainly optical, are also analyzed in relationship with the electronic structure.

After a general introduction to electron counting rules in chemistry, a series of bare superatomic clusters of Cu, Ag and Au are investigated with the help of DFT calculations. Our results indicate that copper superatoms are almost as stable as gold clusters and more stable than their silver counterparts, in spite of the fact that reported characterized copper superatoms are so far scarce as compared to their silver and gold homologs. TD-DFT calculations show that with an increase of the cluster core nuclearity, the absorption bands are redshifted, allowing differentiating between the clusters types. Moreover, the optical properties of the silver cores are somewhat different from that of their Cu and Au relatives.

The fact that copper superatoms are scarce could result from the general methods of synthesis of the coinage metal superatoms which starts with metal(I) species. The use of borohydride as a reducing agent seems, in the case of copper, to lead preferentially to the stabilization of copper(I) polyhydrides. We then have compared the stability of various coinage metal hydrides, based on DFT calculations on simple extended and molecular models. Our results indicate that copper hydrides are significantly more stable than their silver and gold counterparts. To conclude the two preceding chapters, one can say that copper superatoms are more stable than silver superatoms. However, copper hydrides are even more stable than silver hydrides. This is why chalcogenolate-protected copper superatoms are so scarce. To avoid the thermodynamical well of hydrides, ligands different to chalcogenolates and able to compete with hydrides should be used in the case of copper.

In the next chapter we investigate the electronic structure of Dahl’s [Ag_{16}Ni_{24}(CO)_{40}]^{4-} cluster, as well as its Cu and Ag relatives, in relationship with the emblematic known [Au_{20}]
superatom (and its Cu and Ag relatives). Indeed, both series of compounds have a tetrahedral architecture and contain the same [M$_{16}$]$^{1+}$ central core with a 1S2 1P6 1D10 2S2 jellium configuration. In the case of [Au$_{20}$], the [Au$_{16}$]$^{1+}$ core is capped by four Au$^+$ ions, whereas in [M$_{16}$Ni$_{24}$(CO)$_{40}$]$^{1+}$ it is capped by four Ni$_6$(CO)$_{10}$ units. Our DFT calculations showed that in both cases, the capping entities are a full part of the superatom entity, where it appears that the free (uncapped) [M$_{16}$]$^{1+}$ core must be capped for further stabilization. It follows that the Ni$_6$(CO)$_{10}$ units in [M$_{16}$Ni$_{24}$(CO)$_{40}$]$^{1+}$ should not be considered as external ligands as their bonding with the [M$_{16}$]$^{1+}$ core is mainly associated with a delocalization of the 20 jellium electrons onto the Ni atoms. Thus, the [M$_{16}$Ni$_{24}$(CO)$_{40}$]$^{1+}$ species can be seen as the solution version of tetrahedral M$_{20}$ clusters, encouraging experimental efforts to further develop the chemistry of such complexes as M(111) finite surface section structures, with M = Ag and Au and, particularly promising, with M = Cu. Furthermore, optical properties were simulated by TD-DFT to assist future experimental characterization.

Following the general idea of an unstable [M$_{16}$]$^{1+}$ (M = group 11 metal) tetrahedral unit, in the next part we have tried to find ways to stabilize it by various (often combined) ways: Substituting some of the group 11 atoms by other metals, encapsulating a supplementary atom at the center of the cluster, reducing the electron count from 20 to 18. Our DFT results indicate that M$_{16}$ tetrahedral group 11 core are unlikely to exist when bearing 20-je. In addition to the large anionic charge required by this electron count, the intrinsic antibonding nature of the 2S HOMO makes this electron count particularly unfavorable. There are two possibilities to avoid this situation in keeping the T_d symmetry. One is to reduce the electron count to 18-je, which is also a “magic” superatomic electron number. The second one for the 20-je species is to stabilize its 2S HOMO in adding a supplementary AO of a_1 symmetry by incorporating an additional atom at the center of the cage.

In Chapter 6, we investigate the possibility of doping Pyykkö’s famous icosahedral [W@Au$_{12}$] cluster by adding supplementary 0-electron Pt atoms. DFT calculations on the isoelectronic (18 jellium electrons) models [W@Au$_{12}$Pt$_n$] ($n = 0$-4) indicate that the doped clusters with $n = 1$ and $n = 4$ are the most stable, in particular with respect to oxidation. The symmetry lowering away from the icosahedral symmetry caused by doping induces a sizable energy splitting of the frontiers orbitals, which in turn modify the optical properties of the calculated clusters, as observed from the TD-DFT-calculated optical properties. The simulated absorption spectra show an interesting broadening effect of the absorption peaks, which appears as a useful approach for further design of broad black-absorbers. In addition,
Chapter 8: General conclusion

the variation of expected catalytic sites along the series is accounted through the surface representation of the molecular electrostatic potential.

The last chapter concerns a very recently characterized family of organometallic clusters. These compounds are constituted of Zn and Cu metals, describing a trigonal bipyramidal cluster which is protected by five Cp* ligands. Using the classical Wade-Mingos electron counting rules, these species have only one skeletal bonding pair, whereas six are expected for such compounds to be stable. In fact our DFT calculations have shown that these compounds can be regarded as being intermediates between highly electron deficient clusters (one skeletal electron pair) and regular six-electron pairs systems if the participation to the bonding of some of the 3d(Cu) electrons is considered. Such participation is generally discarded in the classical Wade-Mingos approach, because it is negligible. In our case, this participation is significant, although not very strong. Moreover, the dispersion forces existing between the Cp* ligands bring additional stabilization to the whole architecture.
Résumé

Les travaux décrits dans ce mémoire portent sur le calcul de la structure électronique de clusters homo- ou hétéro-nucléaires de métaux du groupe 11, afin d’en interpréter leur stabilité, leur structure et éventuellement leurs propriétés. Nous nous sommes tout d’abord intéressés au fait que, contrairement à leurs homologues de l’or et de l’argent, les superatomes de cuivre sont très rares. Nos calculs montrent que ces derniers sont plus stables que les superatomes d’argent. Néanmoins, les méthodes de synthèse de superatomes par réduction de complexes de Cu(I) par le borohydure conduisent préférentiellement à la formation de polyhydrures de Cu(I) en raison de leur grande stabilité. Nous nous sommes de plus intéressés à la stabilité de clusters contenant un cœur tétraédrique M_{16}, analogue à celui contenu dans le cluster emblématique $[\text{Au}_{20}]$. Notre étude des clusters organométalliques à 20 électrons $[M_{16}\text{Ni}_{24}(\text{CO})_{40}]^{4-}$ ($M =$ groupe 11) indiquent que les quatre entités périphériques $\text{Ni}_{6}(\text{CO})_{10}$ font partie intégrante du superatome, suggérant que $[M_{16}]^{4+}$ n’est pas viable. Des calculs sur plusieurs séries de systèmes homo- ou hétéro-nucléaires nus proposent de contourner cet écueil soit en réduisant le nombre d’électrons à 18, soit en incorporant un élément encapsulé au centre de l’entité tétraédrique. Dans une autre étude, nous avons exploré la possibilité de dopage du cluster icosaédrique à 18 électrons $[\text{WAu}_{12}]$ par des atomes de platine (donneurs de 0 électron), soit $[\text{WAu}_{12}\text{Pt}_x]$ ($x = 1-4$). Le calcul indique que certains isomères sont viables et présentent un large spectre d’absorption UV-vis leur conférant des applications potentielles. Enfin, nous avons étudié la structure électronique de clusters organométalliques apparemment très déficitaires en électrons, $[\text{Cu}_3\text{Zn}_4\text{Cp}^*]^{-}$ et $[\text{Cu}_2\text{Zn}_5\text{Cp}^*]^{+}$ et montré que ce déficit n’est aussi important qu’il n’apparaît.

Abstract

The work described in this manuscript concerns electronic structure calculations of homo- and hetero-nuclear clusters made of group 11 metals, in order to rationalize their stability, structure and in some cases properties. We have first looked at the fact that copper superatoms are very scarce, contrarily to their gold and silver counterparts. Our calculations indicate that copper superatoms are more stable than silver superatoms. However, the synthetic process based on the reduction of Cu(I) complexes by borohydride leads preferentially to the formation of very stable Cu(I) polyhydrides. On the other hand, we have looked at the stability of clusters containing a tetrahedral M_{16} core similar to the one contained in the emblematic $[\text{Au}_{20}]$ cluster. Our investigation of the 20-electron organometallic clusters $[M_{16}\text{Ni}_{24}(\text{CO})_{40}]^{4-}$ ($M =$ group 11) showed that the four peripheral $\text{Ni}_{6}(\text{CO})_{10}$ units are full part of the superatom entity, suggesting that the $[M_{16}]^{4+}$ entity is not viable. Calculations on several homo- and hetero-nuclear series of bare species indicate that this instability can be avoided either in reducing the electron count to 18, or in incorporating a supplementary element in cluster center. In another investigation, we explored the possibility of doping the icosahedral 18-electron $[\text{WAu}_{12}]$ cluster by 0-electron donor platinum atoms, namely $[\text{WAu}_{12}\text{Pt}_x]$ ($x = 1-4$). Calculations indicate that some isomers are stable and have a large spectrum of UV-vis absorption, providing them potential applications. Finally, we have investigated the electronic structure of organometallic clusters, $[\text{Cu}_3\text{Zn}_4\text{Cp}^*]^{-}$ and $[\text{Cu}_2\text{Zn}_5\text{Cp}^*]^{+}$, which are apparently extremely electron-deficient and showed that this deficiency is not as large as it appears.