N. .. Méthode,

H. .. Méthode,

H. .. , 90 4.5 Application sur le problème de l'écoulement autour d'un cylindre

. .. Conclusion-du-chapitre, , vol.105, p.81

. , 110 5.2 Contrôle optimal réduit avec adaptation de la base réduite, p.113

. .. De-burgers, 122 5.2.4 Application au contrôle de l'équation de Navier-Stokes, p.128

. , Contrôle optimal réduit en utilisant les algorithmes génétiques. .. 134 5.3.1 Principe des algorithmes génétiques

. .. Conclusion-du-chapitre, , vol.144, p.109

. Bibliographie,

M. R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and Applications, vol.4, pp.303-320, 1969.

M. J. Powell, A method for nonlinear constraints in minimization problems, pp.283-298, 1969.

F. Abergel and R. Temam, On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, vol.1, 1990.

A. Iollo, M. Ferlauto, and L. Zannetti, An aerodynamic optimization method based on the inverse problem adjoint equations, Journal of Computational Physics, vol.173, 2001.

N. K. Yamaleev, B. Diskin, and E. J. Nielsen, Local-in-time adjoint-based method for design optimization of unsteady flows, Journal of Computational Physics, vol.229, 2010.

D. Papadimitriou and K. Giannakoglou, A continuous adjoint method with objective function derivatives based on boundary integrals, for inviscid and viscous flows, Computers and Fluids, vol.36, 2007.

J. Céa, Optimisation Theorie et Algorithmes (Opitimization Theory and Algorithms), 1971.

J. Culioli, , 1994.

F. Bonnans, J. Gilbert, C. Lemaréchal, and C. Sagastizábal, Optimisation Numerique : Aspects theoriques et pratiques (Mathématiques et Applications), 1997.

F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, 2000.

G. Allaire, Analyse numérique et optimisation : Une introduction à la modélisation mathématique et à la simulation numérique, 2005.

P. Colmez, Eléments d'analyse et d'algèbre (et de théorie des nombres). Ecole polytechnique, 2009.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2011.

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, MOS-SIAM Series on Optimization, 2009.

J. Hiriart-urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms I : Fundamentals, vol.305, 1993.

R. G. Michel-fortin, Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems, Studies in mathematics and its applications, vol.15, 1983.

I. Kazufumi and K. Karl, Lagrange Multiplier Approach to Variational Problems and Applications, 2008.

D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. ACADEMIC PRESS, INC, 1982.

M. Gunzburger, Perspectives in Flow Control and Optimization. Society for Industrial and Applied Mathematics, 2002.

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, 2013.

Y. Liang, W. Lin, H. Lee, S. Lim, K. Lee et al., Proper orthogonal decomposition and its applications-part ii : Model reduction for MEMS dynamical analysis, Journal of Sound and Vibration, vol.256, 2002.

J. P. Thomas, E. H. Dowell, and K. C. Hall, Three-dimensional transonic aeroelasticity using Proper orthogonal decomposition-based reduced-order models, Journal of Aircraft, vol.40, 2003.

D. J. Lucia, P. S. Beran, and W. A. Silva, Reduced-order modeling : new approaches for computational physics, Progress in Aerospace Sciences, vol.40, 2004.

S. Park, J. Lee, C. Yun, and D. J. Inman, Electro-mechanical impedance-based wireless structural health monitoring using PCA-Data compression and k-means Clustering Algorithms, Journal of Intelligent Material Systems and Structures, vol.19, 2007.

A. Al-dmour and K. Mohammad, Active control of flexible structures using principal component analysis in the time domain, Journal of Sound and Vibration, vol.253, 2002.

V. Buljak and G. Maier, Proper orthogonal decomposition and radial basis functions in material characterization based on instrumented indentation, Engineering Structures, vol.33, 2011.

P. De-boe and J. Golinval, Principal component analysis of a piezosensor array for damage localization, Structural Health Monitoring, vol.2, 2003.

U. Galvanetto, C. Surace, A. Tassotti, ;. C. Shane, and R. Jha, Proper orthogonal decomposition based algorithm for detecting damage location and severity in composite beams, Mechanical Systems and Signal Processing, vol.46, 2011.

S. Han and B. Feeny, Application of Proper orthogonal decomposition to structural vibration analysis, Mechanical Systems and Signal Processing, vol.17, 2003.

M. A. Singer and W. H. Green, Using adaptive Proper orthogonal decomposition to solve the reaction-diffusion equation, Applied Numerical Mathematics, vol.59, 2009.

J. L. Lumley, The Structure of Inhomogeneous Turbulent Flows, Atmospheric turbulence and radio propagation, pp.166-178, 1967.

N. Aubry, P. Holmes, J. L. Lumley, and E. Stone, The dynamics of coherent structures in the wall region of a turbulent boundary layer, Journal of Fluid Mechanics, vol.192, pp.115-173, 1988.

W. Cazemier, R. W. Verstappen, and A. E. Veldman, Proper orthogonal decomposition and low-dimensional models for driven cavity flows, Physics of Fluids, vol.10, issue.7, pp.1685-1699, 1998.

A. Tallet, C. Allery, and C. Leblond, Optimal flow control using a POD based Reduced-Order Model, Numerical Heat Transfer, Part B, vol.170, 2016.

P. Druault and C. Chaillou, Use of Proper orthogonal decomposition for reconstructing the 3D in-cylinder mean-flow field from PIV data, Comptes Rendus Mécanique, vol.335, issue.1, pp.42-47, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02140548

C. Allery, C. Béghein, and A. Hamdouni, Applying Proper orthogonal decomposition to the computation of particle dispersion in a two-dimensional ventilated cavity, Communications in Nonlinear Science and Numerical Simulation, vol.10, pp.907-920, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00312147

N. Verdon, C. Allery, D. Ryckelnyck, and A. Hamdaoui, An adaptive ROM approach for solving transfer equations, vol.15, pp.589-605, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00312311

C. Allery, C. Beghein, and A. Hamdouni, On investigation of particle dispersion by a POD approach, International Applied Mechanics, vol.44, pp.110-119, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00404055

C. Béghein, C. Allery, M. Wac?awczyk, and J. Pozorski, Application of POD-based dynamical systems to dispersion and deposition of particles in turbulent channel flow, International Journal of Multiphase Flow, vol.58, pp.97-113, 2014.

M. Pomarede, A. Hamdouni, E. Liberge, E. Longatte, and J. Sigrist, Tackling FSI simulation for fiv problems in tube bundle systems with POD approach, ASME 2011 Pressure Vessels and Piping Conference, vol.4, pp.337-343, 2011.

M. Pomarede, E. Liberge, A. Hamdouni, E. Longatte, and J. Sigrist, Numerical study of fluid-structure interactions in tube bundles with multiphase-POD reducedorder approach, 11th Biennial Conference on Engineering Systems Design and Analysis, vol.2, p.137, 2012.

S. Sanghi and N. Aubry, Mode interaction models for near-wall turbulence, Journal of Fluid Mechanics, vol.247, 1993.

G. Berkooz, P. Holmes, and J. L. Lumley, Intermittent dynamics in simple models of the turbulent wall layer, Journal of Fluid Mechanics, vol.230, 1991.

G. Berkooz, P. Holmes, and J. L. Lumley, On the relation between low-dimensional models and the dynamics of coherent structures in the turbulent wall layer, Theoretical and Computational Fluid Dynamics, vol.4, pp.255-269, 1993.

A. Glezer, Z. Kadioglu, and A. J. Pearlstein, Development of an extended Proper orthogonal decomposition and its application to a time periodically forced plane mixing layer, Physics of Fluids A Fluid Dynamics, vol.1, 1989.

S. Ciliberto, F. Francini, and F. Simonelli, Real time measurements of optical disuniformity fields, Optics Communications, vol.54, 1985.

S. Ciliberto and B. Nicolaenko, Estimating the number of degrees of freedom in spatially extended systems, Europhysics Letters), vol.14, 1991.

R. E. Arndt, D. F. Long, and M. N. Glauser, The Proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet, Journal of Fluid Mechanics, vol.340, 1997.

C. E. Tinney, M. N. Glauser, and L. S. Ukeiley, Low-dimensional characteristics of a transonic jet. part 1. Proper orthogonal decomposition, Journal of Fluid Mechanics, vol.612, 2008.

S. Hong and F. Payne, )] 19th aiaa, fluid dynamics, plasma dynamics, and lasers conference-development of large-eddy interaction model for inhomogeneous turbulent flows, american institute of aeronautics and astronautics 19th aiaa, fluid dynamics, plasma dynamics, 1987.

P. Moin and R. D. Moser, Characteristic-eddy decomposition of turbulence in a channel, Journal of Fluid Mechanics, vol.200, 1989.

L. Sirovich and J. Rodriguez, Coherent structures and chaos : A model problem, Physics Letters A, vol.120, pp.211-214, 1987.

L. Sirovich, M. Kirby, and M. Winter, An eigenfunction approach to large scale transitional structures in jet flow, 1990.

L. Sirovich and H. Park, Turbulent thermal convection in a finite domain : Part i. theory, Physics of Fluids A Fluid Dynamics, vol.2, 1990.

E. Merzari, H. Ninokata, A. Mahmood, and M. Rohde, Proper orthogonal decomposition of the flow in geometries containing a narrow gap, Theoretical and Computational Fluid Dynamics, vol.23, 2009.

S. Glegg and W. Devenport, Proper orthogonal decomposition of turbulent flows for aeroacoustic and hydroacoustic applications, Journal of Sound and Vibration, vol.239, 2001.

B. O'donnell and B. Helenbrook, Proper orthogonal decomposition and incompressible flow : An application to particle modeling, Computers and Fluids, vol.36, 2007.

B. Moore, Principal component analysis in linear systems : controllability, observability and model reduction, IEEE Trans. Autom. Contr, pp.17-32, 1981.

P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Mechanics, vol.656, pp.5-28, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01020654

J. Burkardt, M. Gunzburger, and H. Lee, Centroidal voronoi tessellation-based reduced-order modeling of complex systems, SIAM Journal on Scientific Computing, vol.28, pp.459-484, 2006.

C. Kenney and G. Hewer, Necessary and sufficient conditions for balancing unstable systems, 1987.

K. Glover, All optimal Hankel-norm approximation of linear multivariable systems and their L ?-error bounds, Int. J. Control, pp.1115-1193, 1984.

D. Enns, Model reduction with balanced realizations : An error bound and a frequency weighted generalization, IEEE Conference on Decision and Control-Las, pp.127-132, 1984.
DOI : 10.1109/cdc.1984.272286

L. Sirovich, Turbulence and the dynamics of coherent structures : Part I, II and III, Quarterly of Applied Mathematics, pp.461-590, 1987.

S. Puntanen, Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition by, vol.79, 2011.

M. Azaïez, F. B. Belgacem, and T. C. Rebollo, Recursive POD expansion for reaction-diffusion equation, Advanced Modeling and Simulation in Engineering Sciences, vol.3, 2016.

G. Tissot, L. Cordier, N. Benard, and B. R. Noack, Model reduction using dynamic mode decomposition, Comptes Rendus Mécanique, vol.342, pp.410-416, 2014.
DOI : 10.1016/j.crme.2013.12.011

T. W. Muld, G. Efraimsson, and D. S. Henningson, Flow structures around a highspeed train extracted using Proper orthogonal decomposition and dynamic mode decomposition, Computers and Fluids, vol.57, pp.87-97, 2012.
DOI : 10.1016/j.compfluid.2011.12.012

M. Grilli, P. J. Schmid, S. Hickel, and N. A. Adams, Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction, Journal of Fluid Mechanics, vol.700, p.2012
URL : https://hal.archives-ouvertes.fr/hal-00994470

A. Seena and H. J. Sung, Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations, International Journal of Heat and Fluid Flow, vol.32, pp.1098-1110, 2011.

C. W. Rowley, I. Mezic, S. Bagheri, P. Schlatter, and D. S. Hennigson, Spectral analysis of nonlinear flows, Journal of Fluid Mechanics, vol.641, p.115, 2009.

P. J. Schmid, Application of the dynamic mode decomposition to experimental data, Experiments in Fluids, vol.50, pp.1123-1130, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01025583

A. Quarteroni and G. Rozza, Numerical solution of parametrized Navier-Stokes equations by reduced basis methods, Numerical Methods for Partial Differential Equations, vol.23, pp.923-948, 2007.
DOI : 10.1002/num.20249

URL : http://mox.polimi.it/it/progetti/pubblicazioni/quaderni/mox88.pdf

G. Rozza, Reduced basis methods for Stokes equations in domains with non-affine parameter dependence, Computing and Visualization in Science, vol.12, pp.23-35, 2009.
DOI : 10.1007/s00791-006-0044-7

URL : http://doc.rero.ch/record/311040/files/791_2006_Article_44.pdf

D. Xiao, F. Fang, A. Buchan, C. Pain, I. Navon et al., Non-linear model reduction for the Navier-Stokes equations using residual deim method, Journal of Computational Physics, vol.263, pp.1-18, 2014.
DOI : 10.1016/j.jcp.2014.01.011

URL : http://www.csit.fsu.edu/%7Enavon/pubs/deim.pdf

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An 'empirical interpolation' method : application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol.339, pp.667-672, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00021702

B. R. Noack, P. Papas, and P. A. Monkewitz, The need for a pressure-term representation in empirical galerkin models of incompressible shear flows, Journal of Fluid Mechanics, vol.523, pp.339-365, 2005.

M. Bergmann, C. Bruneau, and A. Iollo, Enablers for robust POD models, Journal of Computational Physics, vol.228, pp.516-538, 2009.
DOI : 10.1016/j.jcp.2008.09.024

URL : https://hal.archives-ouvertes.fr/inria-00338203

A. J. Chorin, The numerical solution of the Navier-Stokes equations for an incompressible fluid, Bulletin of the American Mathematical Society, vol.73, pp.928-932, 1967.

R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (i), Archive for Rational Mechanics and Analysis, vol.32, pp.135-153, 1969.

I. Akhtar, A. H. Nayfeh, and C. J. Ribbens, On the stability and extension of reduced-order galerkin models in incompressible flows, Theoretical and Computational Fluid Dynamics, vol.23, 2009.

G. Stabile, S. Hijazi, A. Mola, S. Lorenzi, and G. Rozza, POD-galerkin reduced order methods for cfd using finite volume discretisation : vortex shedding around a circular cylinder, Communications in Applied and Industrial Mathematics, vol.8, p.2017
DOI : 10.1515/caim-2017-0011

URL : https://content.sciendo.com/downloadpdf/journals/caim/8/1/article-p210.pdf

G. Stabile and G. Rozza, Finite volume POD-galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations, Computers and Fluids, vol.2, 2018.

C. Leblond, C. Allery, and C. Inard, An optimal projection method for the reducedorder modeling of incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.200, pp.2507-2527, 2011.

A. Tallet, C. Allery, C. Leblond, and E. Liberge, A minimum residual projection to build coupled velocity-pressure POD-rom for incompressible Navier-Stokes equations, Communications in Nonlinear Science and Numerical Simulation, vol.22, pp.909-932, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01939673

B. Podvin and J. Lumley, A low-dimensional approach for the minimal flow unit, Journal of Fluid Mechanics, vol.362, pp.121-155, 1998.

L. Ukeiley, L. Cordier, R. Manceau, J. Delville, M. Glauser et al., Examination of large-scale structures in a turbulent plane mixing layer. part 2. dynamical systems model, Journal of Fluid Mechanics, vol.441, 2001.

S. Sirisup and G. Karniadakis, A spectral viscosity method for correcting the longterm behavior of POD models, Journal of Computational Physics, vol.194, pp.92-116, 2004.

D. Rempfer, Kohärenten structuren une chaos beim laminair-turbulenten Grenzschichtumschlag, 1998.

A. Iollo, A. Dervieux, J. Désidéri, and S. Lanteri, Two stable POD-based approximations to the Navier-Stokes equations, Computing and Visualization in Science, vol.3, pp.61-66, 2000.

A. Iollo, S. Lanteri, and J. Désidéri, Stability properties of POD-galerkin approximations for the compressible Navier-Stokes equations, Theoretical and Computational Fluid Dynamics, vol.13, pp.377-396, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00073091

T. Akman, Local improvements to reduced order approximations of optimal control problems governed by diffusion convection reaction equation, Computers and Mathematics with Applications, vol.70, pp.104-131, 2015.

H. P. Langtangen and A. Logg, Solving PDEs in Python : The FEniCS Tutorial I, 2017.

E. Liberge and A. Hamdouni, Reduced order modelling method via Proper orthogonal decomposition (POD) for flow around an oscillating cylinder, Journal of Fluids and Structures, vol.26, issue.2, pp.292-311, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00533622

M. Bergmann, L. Cordier, and J. Brancher, Drag Minimization of the Cylinder Wake by Trust-Region Proper orthogonal decomposition, pp.309-324, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00338822

M. J. Mifsud, S. T. Shaw, and D. G. Macmanus, A high-fidelity low-cost aerodynamic model using Proper orthogonal decomposition, International Journal for Numerical Methods in Fluids, vol.63, 2010.

D. Amsallem and C. Farhat, An interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA Journal, pp.1803-1813, 2008.

D. Amsallem, J. Cortial, K. Carlberg, and C. Farhat, A method for interpolating on manifolds structural dynamics reduced-order models, International Journal for Numerical Methods in Engineering, vol.80, 2009.

D. Shepard, proceedings of the 1968 23rd acm national conference on-a two-dimensional interpolation function for irregularly-spaced data, pp.517-524, 1968.

A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM Journal on Matrix Analysis and Applications, vol.20, pp.303-353, 1998.

R. Wald, General relativity, 1984.
URL : https://hal.archives-ouvertes.fr/hal-02116509

N. Boumal and P. Absil, Low-rank matrix completion via preconditioned optimization on the Grassmann manifold, Linear Algebra and its Applications, vol.475, pp.200-239, 2015.

T. Connie, M. K. Goh, and A. B. Teoh, A Grassmannian approach to address view change problem in gait recognition, IEEE Transactions on Cybernetics, pp.1-14, 2016.

A. Srivastava and E. Klassen, Bayesian and geometric subspace tracking, Advances in Applied Probability, vol.36, pp.43-56, 2004.

H. Cetingul and R. Vidal, Intrinsic mean shift for clustering on Stiefel and Grassmann manifolds, 2009.

M. T. Harandi, C. Sanderson, S. Shirazi, and B. C. Lovell, Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching, CVPR 2011, pp.2705-2712, 2011.

M. Harandi, R. Hartley, M. Salzmann, and J. Trumpf, Dictionary Learning on Grassmann Manifolds, pp.145-172, 2016.

A. Absil, R. Mahony, and R. Sepulchre, Riemann geometry of Grassmann manifolds with a view on algorithmic computation, Acta Applicandae Mathematicae, vol.80, pp.199-220, 2004.

P. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, 2007.

Y. Chikuse, Statistics on Special Manifolds, vol.174, 2002.

J. Hamm and D. D. Lee, Grassmann discriminant analysis : A unifying view on subspace-based learning, Proceedings of the 25th International Conference on Machine Learning, ICML '08, pp.376-383, 2008.

M. T. Harandi, M. Salzmann, S. Jayasumana, R. Hartley, and H. Li, Expanding the Family of Grassmannian Kernels : An Embedding Perspective, pp.408-423, 2014.

B. Wang, Y. Hu, J. Gao, Y. Sun, and B. Yin, Low Rank Representation on Grassmann Manifolds, pp.81-96, 2015.

E. Begelfor and M. Werman, Affine invariance revisited, vol.2, pp.2087-2094, 2006.

I. U. Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schroder, Multiscale representations for manifold-valued data, Multiscale Modeling and Simulation, vol.4, pp.1201-1232, 2005.

Q. Rentmeesters, P. A. Absil, P. V. Dooren, K. Gallivan, and A. Srivastava, An efficient particle filtering technique on the grassmann manifold, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.3838-3841, 2010.

P. Ladevèze and A. Nouy, On a multiscale computational strategy with time and space homogenization for structural mechanics, Multiscale Computational Mechanics for Materials and Structures, vol.192, pp.3061-3087, 2003.

P. Ladeveze, Nonlinear computational structural mechanics : New approaches and nonincremental methods of calculation, 1999.

P. Ladevèze, J. Passieux, and D. Néron, The latin multiscale computational method and the proper generalized decomposition, Multiscale Models and Mathematical Aspects in Solid and Fluid Mechanics, vol.199, issue.21, pp.1287-1296, 2010.

A. Nouy, generalized spectral decomposition technique to solve a class of linear stochastic partial di erential equations, Computer Methods in Applied Mechanics and Engineering, vol.196, pp.521-4537, 2007.

A. Nouy and O. P. Maitre, Generalized spectral decomposition for stochastic nonlinear problems, Journal of Computational Physics, vol.228, pp.202-235, 2009.

A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, Journal of Non-Newtonian Fluid Mechanics, vol.139, issue.3, pp.153-176, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01004909

B. Mokdad, E. Pruliere, A. Ammar, and F. Chinesta, On the simulation of kinetic theory models of complex fluids using the fokker-planck approach, Applied Rheology, vol.17, issue.2, pp.1-14, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00352442

E. Pruliere, F. Chinesta, and A. Ammar, On the deterministic solution of multidimensional parametric models using the proper generalized decomposition, Mathematics and Computers in Simulation, vol.81, issue.4, pp.791-810, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00704427

A. Dumon, C. Allery, and A. Ammar, Proper general decomposition (PGD) for the resolution of Navier-Stokes equations, Journal of Computational Physics, vol.230, issue.4, pp.1387-1407, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01061383

A. Dumon, C. Allery, and A. Ammar, Proper generalized decomposition method for incompressible flows in stream-vorticity formulation, European Journal of Computational Mechanics, vol.19, issue.5-7, pp.591-617, 2011.

A. Dumon, C. Allery, and A. Ammar, Proper generalized decomposition method for incompressible Navier-Stokes equations with a spectral discretization, Applied Mathematics and Computation, vol.219, issue.15, pp.8145-8162, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01062396

A. Dumon, C. Allery, and A. Ammar, Simulation of heat and mass transport in a square lid-driven cavity with proper generalized decomposition (pgd), Numerical Heat Transfer, Part B : Fundamentals, vol.63, issue.1, pp.18-43, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01207113

C. Leblond and C. Allery, A priori space-time separated representation for the reduced order modeling of low reynolds number flows, Computer Methods in Applied Mechanics and Engineering, vol.274, pp.264-288, 2014.

F. Chinesta, A. Ammar, and P. Joyot, The nanometric and micrometric scales of the structure and mechanics of materials revisited : An introduction to he challenges of fully deterministic numerical descriptions, International Journal for Multiscale Computational Engineering, vol.6, pp.191-213, 2008.

B. Bognet, F. Bordeu, F. Chinesta, A. Leygue, and A. Poitou, Advanced simulation of models defined in plate geometries : 3D solutions with 2d computational complexity, Computer Methods in Applied Mechanics and Engineering, pp.1-12, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01462825

E. Giner, B. Bognet, J. J. Ródenas, A. Leygue, F. J. Fuenmayor et al., The proper generalized decomposition (pgd) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics, International Journal of Solids and Structures, vol.50, issue.10, pp.1710-1720, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01007373

B. Bognet, A. Leygue, and F. Chinesta, Separated representations of 3D elastic solutions in shell geometries, Advanced Modeling and Simulation in Engineering Sciences, vol.1, p.4, 2014.

C. Ghnatios, F. Masson, A. Huerta, A. Leygue, C. E. et al., Proper generalized decomposition based dynamic data-driven control of thermal processes, Computer Methods in Applied Mechanics and Engineering, issue.2, pp.29-41, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01728702

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto et al., Pgd-based computational vademecum for efficient design, optimization and control, Archives of Computational Methods in Engineering, vol.20, pp.31-59, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01515083

D. Xiao, F. Fang, C. Pain, and I. Navon, A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications, Computer Methods in Applied Mechanics and Engineering, vol.317, pp.868-889, 2017.

D. Xiao, P. Yang, F. Fang, J. Xiang, C. Pain et al., Non-intrusive reduced order modelling of fluid-structure interactions, Computer Methods in Applied Mechanics and Engineering, vol.303, 2016.

V. Shinde, E. Longatte, F. Baj, Y. Hoarau, and M. Braza, A galerkin-free model reduction approach for the Navier-Stokes equations, Journal of Computational Physics, vol.309, pp.148-163, 2016.

M. Joyner, Comparison of two techniques for implementing the Proper orthogonal decomposition method in damage detection problems, Mathematical and Computer Modelling, vol.40, 2004.

L. Fiabane, M. Gohlke, and O. Cadot, Characterization of flow contributions to drag and lift of a circular cylinder using a volume expression of the fluid force, European Journal of Mechanics-B/Fluids, vol.30, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01289951

W. R. Graham, J. Peraire, and K. Y. Tang, Optimal control of vortex shedding using low-order models. part ii-model-based control, International Journal for Numerical Methods in Engineering, vol.44, 1999.

M. Bergmann, L. Cordier, and J. Brancher, Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model, Physics of Fluids, vol.17, issue.9, pp.97-101, 2005.

S. S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD, Journal of Scientific Computing, vol.15, 2000.

S. Ravindran, Control of flow separation over a forward-facing step by model reduction, Computer Methods in Applied Mechanics and Engineering, vol.191, 2002.
DOI : 10.1016/s0045-7825(02)00395-x

S. S. Ravindran, Reduced-order controllers for control of flow past an airfoil, International Journal for Numerical Methods in Fluids, vol.50, 2006.

S. Ravindran, Optimal boundary feedback flow stabilization by model reduction, Computer Methods in Applied Mechanics and Engineering, vol.196, 2007.
DOI : 10.1016/j.cma.2006.11.026

A. Tallet, C. Allery, and C. Leblond, Optimal flow control using a POD-based reduced-order model, Numerical Heat Transfer Part B Fundamentals, vol.06, pp.1-24, 2016.
DOI : 10.1080/10407790.2016.1173472

J. Atwell and B. King, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations, Mathematical and Computer Modelling, vol.33, 2001.
DOI : 10.1016/s0895-7177(00)00225-9

URL : https://doi.org/10.1016/s0895-7177(00)00225-9

K. Kunisch and S. Volkwein, Control of the burgers equation by a reduced-order approach using Proper orthogonal decomposition, Journal of Optimization Theory and Applications, vol.102, p.1999

K. Kunisch and L. Xie, POD-based feedback control of the burgers equation by solving the evolutionary hjb equation, Computers and Mathematics with Applications, vol.49, 2005.

F. Leibfritz and S. Volkwein, Reduced order output feedback control design for pde systems using Proper orthogonal decomposition and nonlinear semidefinite programming, Linear Algebra and its Applications, vol.415, 2006.
DOI : 10.1016/j.laa.2004.12.024

URL : https://doi.org/10.1016/j.laa.2004.12.024

L. T. Agarwal, A trust-region framework for constrained optimization using reduced order modeling, Optimization and Engineering, vol.14, p.2013
DOI : 10.1007/s11081-011-9164-0

M. Bergmann and L. Cordier, Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models, Journal of Computational Physics, vol.227, pp.7813-7840, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00368500

M. Oulghelou and C. Allery, A fast and robust sub-optimal control approach using reduced order model adaptation techniques, Applied Mathematics and Computation, vol.333, pp.416-434, 2018.
DOI : 10.1016/j.amc.2018.03.091

URL : https://hal.archives-ouvertes.fr/hal-01939171

J. H. Holland, Adaptation in Natural and Artificial Systems, 1975.
DOI : 10.7551/mitpress/1090.001.0001

D. E. Goldberg and K. Deb, A comparative analysis of selection schemes used in genetic algorithms, of Foundations of Genetic Algorithms, vol.1, pp.69-93, 1991.

T. Weise, Global optimization algorithms-theory and application, vol.1, 2009.

P. Gajda, Smolyak's algorithm for weighted l 1-approximation of multivariate functions with boundedrth mixed derivatives over R d, Numerical Algorithms, vol.40, 2005.

M. M. Rolando, Thèse : Interpolation sur les variétés Grassmanniennes et applications à la réduction de modèles en mécanique, 2018.