J. Ratkiewicz, Detecting and tracking political abuse in social media, Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, pp.297-304, 2011.

X. Dong, Knowledge-based trust: estimating the trustworthiness of web sources, Proceedings of the VLDB Endowment, vol.8, pp.938-949, 2015.
DOI : 10.14778/2777598.2777603

E. F. Loftus and H. G. Hoffman, Misinformation and memory: The creation of new memories, Journal of Experimental Psychology: General, vol.118, issue.1, pp.100-104, 1989.

J. Steven, R. M. Frenda, E. F. Nichols, and . Loftus, Current numbers and advances in misinformation research, Current Directions in Psychological Science, vol.20, issue.1, pp.20-23, 2011.

S. Vosoughi, D. Roy, and S. Aral, The spread of true and false news online, Science, vol.359, issue.6380, pp.1146-1151, 2018.

C. J. Fox, Information and misinformation: An investigation of the notions of information, misinformation, informing, and misinforming, 1983.

R. Thaler and C. Sunstein, Nudge: Improving Decisions about Health, Wealth, and Happiness, 2008.

F. Galton, Vox populi, Nature, vol.75, pp.450-451, 1907.

F. Galton, One vote one value, Nature, vol.75, p.414, 1907.

J. and S. Armstrong, Principles of forecasting: a handbook for researchers and practitioners, 2001.

K. Hueffer, The wisdom of crowds: Predicting a weather and climate-related event, Judgment and Decision Making, vol.8, issue.2, pp.91-105, 2013.

K. J. Arrow, The promise of prediction markets, Science, vol.320, issue.5878, pp.877-878, 2008.

J. Wolfers and E. Zitzewitz, Prediction markets, Journal of Economic Perspectives, vol.18, issue.2, pp.107-126, 2004.

J. Wolfers and E. Zitzewitz, Interpreting prediction market prices as probabilities, NBER Working Paper Series, 2006.
DOI : 10.24148/wp2006-11

URL : https://www.econstor.eu/bitstream/10419/33261/1/510931871.pdf

M. Wolf, Collective intelligence meets medical decision-making: The collective outperforms the best radiologist, Plos One, vol.10, issue.8, p.134269, 2015.
DOI : 10.1371/journal.pone.0134269

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0134269&type=printable

H. J. Ralf and . Kurvers, Boosting medical diagnostics by pooling independent judgments, Proceedings of The National Academy of Sciences of the United States of America, vol.113, pp.8777-8782, 2016.

C. Marquis-de, Essai sur l'application de l'analysè a la probabilité des décisions renduesàrendues`renduesà la pluralité des voix, 1785.

D. Austen, -. Smith, and J. S. Banks, Information aggregation, rationality, and the condorcet jury theorem, The American Political Science Review, vol.90, issue.1, pp.34-45, 1996.

J. Lorenz, How social influence can undermine the wisdom of crowd effect. Proceedings of the National Academy of Sciences, vol.108, pp.9020-9025, 2011.

M. Moussa¨?dmoussa¨?d, Social influence and the collective dynamics of opinion formation, PLoS ONE, vol.8, issue.11, p.78433, 2013.

G. Madirolas and G. G. De-polavieja, Improving Collective Estimations Using Resistance to Social Influence, PLOS Computational Biology, vol.11, issue.11, p.1004594, 2015.
DOI : 10.1371/journal.pcbi.1004594

URL : https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004594&type=printable

S. Marras and P. Domenici, Schooling fish under attack are not all equal: Some lead, others follow, Plos One, vol.8, issue.6, p.65784, 2013.
DOI : 10.1371/journal.pone.0065784

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0065784&type=printable

A. E. Magurran, The adaptive significance of schooling as an anti-predator defence in fish, Annales Zoologici Fennici, vol.27, issue.2, pp.51-56, 1990.

R. Mach and F. Schweitzer, Modeling vortex swarming in daphnia, Bulletin of Mathematical Biology, vol.69, pp.539-562, 2007.
DOI : 10.1007/s11538-006-9135-3

URL : http://arxiv.org/pdf/q-bio/0404028

D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, vol.73, pp.1067-1141, 2001.
DOI : 10.1103/revmodphys.73.1067

URL : http://arxiv.org/pdf/cond-mat/0012229

P. Jensen, A network-based prediction of retail stores commercial categories and optimal locations, Physical Review E, vol.74, p.35101, 2006.
DOI : 10.1103/physreve.74.035101

URL : https://hal.archives-ouvertes.fr/hal-00090415

L. Jooyong, Modeling lane formation in pedestrian counter flow and its effect on capacity, KSCE Journal of Civil Engineering, vol.20, issue.3, pp.1099-1108, 2016.

Y. Zhou-tao and D. Li-yun, Investigation on lane-formation in pedestrian flow with a new cellular automaton model, Journal of Hydrodynamics, Series B, vol.28, issue.5, pp.794-800, 2016.

W. Guoa, X. Wanga, and X. Zheng, Lane formation in pedestrian counterflows driven by a potential field considering following and avoidance behaviours, Physica A: Statistical Mechanics and its Applications, vol.432, pp.87-101, 2015.

D. Helbing, Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions, Transportation Science, vol.39, issue.1, pp.1-24, 2005.
DOI : 10.1287/trsc.1040.0108

URL : https://pubsonline.informs.org/doi/pdf/10.1287/trsc.1040.0108

N. Shiwakoti, Understanding crowd panic at turning and intersection through model organisms. Pedestrian and Evacuation Dynamics, pp.1175-1183, 2012.
DOI : 10.1007/978-3-319-02447-9_96

D. Helbing, Simulation of pedestrian crowds in normal and evacuation situations. Pedestrian and Evacuation Dynamics, pp.21-58, 2002.

P. Serge, W. Hoogendoorn, and . Daamen, Microscopic calibration and validation of pedestrian models: Cross-comparison of models using experimental data, Traffic and Granular Flow'05, pp.329-340, 2007.

A. Johansson, D. Helbing, and P. K. Shukla, Specification of the social force pedestrian model by evolutionary adjust-ment to video tracking data, Advances in Complex Systems, vol.10, pp.271-288, 2007.

J. Gautrais, Deciphering interactions in moving animal groups, PLoS Computational Biology, vol.8, issue.9, p.1002678, 2012.

H. Shirado and N. A. Christakis, Locally noisy autonomous agents improve global human coordination in network experiments, Nature, vol.545, pp.370-374, 2017.
DOI : 10.1038/nature22332

URL : http://europepmc.org/articles/pmc5912653?pdf=render

B. Latané, The psychology of social impact, American psychologist, vol.36, issue.4, pp.343-356, 1981.

L. Glowacki and L. Molleman, Subsistence styles shape human social learning strategies, Nature Human Behaviour, vol.1, p.98, 2017.
DOI : 10.1038/s41562-017-0098

URL : http://europepmc.org/articles/pmc5444520?pdf=render

A. Laan, G. Madirolas, and G. G. De-polavieja, Rescuing collective wisdom when the average group opinion is wrong, Frontiers in Robotics and AI, vol.4, p.56, 2017.
DOI : 10.3389/frobt.2017.00056

URL : https://www.frontiersin.org/articles/10.3389/frobt.2017.00056/pdf

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence, models, analysis and simulation, Journal of Artificial Societies and Social Simulation, vol.5, p.3, 2002.

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey, International Journal of Modern Physics C, vol.18, issue.12, pp.1819-1838, 2007.