P. Lueg, Process of silencing sound oscillations, 1936.

Y. K. Kang, H. C. Park, J. K. , and S. Choi, Interaction of active and passive vibration control of laminated composite beams with piezoceramic sensors/actuators, Mater. Des, vol.23, pp.277-286, 2002.

M. Arafa and A. Baz, Dynamics of active piezoelectric damping composites, Compos. Part B, vol.31, pp.255-264, 2000.

R. L. Forward, Electronic damping of vibrations in optical structures, Appl. Opt, vol.18, issue.5, pp.690-697, 1979.

R. L. Forward, Electronic damping of orthogonal bending modes in a cylindrical mass-experiment, J. Spacecr, vol.18, issue.1, pp.11-17, 1981.

N. W. Hagoog and A. Von-flotow, Damping in structural vibrations with piezoelectric materials and passive electrical networks, J. Sound Vib, vol.146, issue.2, pp.243-268, 1991.

G. Chevallier, S. Ghorbel, and A. Benjeddou, Piezoceramic shunted damping concept: testing, modelling and correlation, Mécanique Ind, vol.10, pp.397-411, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00704099

D. Carponcin, Composite hybride à matrice polymère pour l'amortissement de vibrations par transduction-dissipation locale, 2012.

C. W. Silva, Vibration damping, 2007.

E. Piollet, Amortissement non-linéaire des structures sandwichs à matériau d'âme en fibres enchevêtrées, 2014.

C. D. Johnson, Design of passive damping systems, J. Vib. Acoust, vol.117, pp.171-176, 1995.

G. D. Gounaris, E. Antonakakis, and C. A. Papadopoulos, Hysteretic damping of structures vibrating at resonance: An iterative complex eigensolution method based on damping-stress relation, Comput. Struct, vol.85, pp.1858-1868, 2007.

S. H. Crandall, The hysteretic damping model in vibration theory, J. Mech. Eng. Sci, vol.205, pp.23-28, 1991.

S. T. Latibari, M. Mehrali, L. Mottahedin, A. Fereidoon, and H. S. Metselaar, Investigation of interfacial damping nanotube-based composite, Compos. Part B, vol.50, pp.354-361, 2013.

M. Kireitseu, D. Hui, and G. Tomlinson, Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material, Compos. Part B, vol.39, pp.128-138, 2008.

M. Sumita, H. Gohda, S. Asai, K. Miyasaka, A. Furuta et al., New damping materials composed of piezoelectric and electro-conductive, particle-filled polymer composites: Effect of the electromechanical coupling factor, Makromol. Chem, vol.12, issue.12, pp.657-661, 1991.

J. Curie and P. Curie, Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées, Bull. la Société Minéralogie Fr, vol.3, pp.90-93, 1880.

M. G. Lippman, Notice sur les travaux scientifiques, Bibliothèque numérique Medica, vol.VIII, issue.3, p.1882

P. Papet, Matériaux piézoélectriques, Tech. l'ingénieur, vol.740, issue.2, 2012.

G. Godefroy, Ferroélectricité, Tech. l'ingénieur, vol.1870, issue.2, 1996.

B. Jaffe, R. S. Roth, and S. Marzullo, Directive 2002/95/EC of the European Parliament and of the Council of the European Union, Off. J. Eur. Union, vol.25, pp.19-51, 1954.

J. Rödel, W. Jo, K. T. Seifert, E. M. Anton, T. Granzow et al., Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc, vol.92, pp.1153-1177, 2009.

J. Dubois, Propriétés diélectriques des plastiques, vol.3140, 2001.

W. Margaret, Sodium potassium niobate based piezoelectric ceramics, 2012.

J. F. , Elaboration et analyse des propriétés physiques de nanocomposites hybrides ferroélectriques, 2008.

D. Guyomar, L. Lebrun, and C. Richard, Les matériaux piézoélectriques actuels : céramiques-monocristaux-composites, Ann. Chim. Sci. Mat, vol.29, issue.6, pp.13-22, 2004.

T. Wada, K. Tsuji, T. Saito, and Y. Matsuo, Ferroelectric NaNbO3 ceramics fabricated by spark plasma sintering, Jpn. J. Appl. Phys, vol.42, issue.9B, pp.6110-6114, 2003.

T. Mino, S. Kuwajima, T. Suzuki, I. Kanno, H. Kotera et al., Piezoelectric Properties of Epitaxial NaNbO3 Thin Films Deposited on (001)SrRuO3/Pt/MgO Substrates, Jpn. J. Appl. Phys, vol.46, issue.10B, pp.6960-6963, 2007.

H. Ge, Y. Hou, C. Xia, M. Zhu, H. Wang et al., Preparation and piezoelectricity of NaNbO3 high-density ceramics by molten salt synthesis, J. Am. Ceram. Soc, vol.94, pp.4329-4334, 2011.

R. H. Dungan and D. Golding, Metastable ferroelectric sodium niobate, J. Am. Ceram. Soc, vol.47, issue.2, pp.73-76, 1964.

T. Saito, H. Adachi, T. Wada, and H. Adachi, Pulsed-laser deposition of ferroelectric NaNbO3 thin films, Jpn. J. Appl. Phys, vol.44, issue.9B, pp.6969-6972, 2005.

Y. Yoneda, D. Fu, and S. Kohara, Local structure analysis of NaNbO3, J. Phys. Conf. Ser, vol.502, p.12022, 2014.

M. Tyunina, A. Dejneka, D. Rytz, I. Gregora, F. Borodavka et al.,

. Honolka, Ferroelectricity in antiferroelectric NaNbO3 crystal, J. Phys. Condens. Matter, vol.26, issue.12, pp.1-8, 2014.

Y. I. Yuzyuk, P. Simon, E. Gagarina, L. Hennet, D. Thiaudière et al., Modulated phases in NaNbO3: Raman scattering, synchrotron x-ray diffraction, and dielectric investigations, J. Phys. Condens. Matter, vol.17, issue.33, pp.4977-4990, 2005.

A. Moure, T. Hungría, A. Castro, and L. Pardo, Microstructural effects on the phase transitions and the thermal evolution of elastic and piezoelectric properties in highly dense, submicron-structured NaNbO3 ceramics, J. Mater. Sci, vol.45, issue.5, pp.1211-1219, 2009.

A. Molak and J. Kubacki, Structure of NaNbO3: xMn single crystals at room temperature, Cryst. Res. Technol, vol.36, issue.8-10, pp.893-902, 2001.

H. Pan, G. Zhu, X. Chao, L. Wei, and Z. Yang, Properties of NaNbO3 powders and ceramics prepared by hydrothermal reaction, Mater. Chem. Phys, vol.126, pp.183-187, 2011.

G. Lee, Y. H. Shin, and J. Y. Son, Strain-induced high polarization of a KNbO3 thin film on a single crystalline Rh substrate, J. Am. Ceram. Soc, vol.95, issue.9, pp.2773-2776, 2012.

D. Fasquelle, A. Rousseau, M. Guilloux-viry, S. Députier, A. Perrin et al., Dielectric and structural characterization of KNbO3 ferroelectric thin films epitaxially grown by pulsed laser deposition on Nb doped SrTiO3, Thin Solid Films, vol.518, pp.3432-3438, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00831629

H. Nagata, K. Matsumoto, T. Hirosue, Y. Hiruma, and T. Takenaka, Fabrication and electrical properties of potassium niobate ferroelectric ceramics, Jpn. J. Appl. Phys, vol.46, issue.10B, pp.7084-7088, 2007.

D. G. Lim, B. S. Jang, S. I. Moon, C. Y. Won, and J. Yi, Characteristics of LiNbO3 memory capacitors fabricated using a low thermal budget process, Solid. State. Electron, vol.45, pp.1159-1163, 2001.

W. Weng, H. Wang, N. Ma, Y. Wu, and J. Li, Effect of domain structure on the damping properties of LiNbO3/Al composites, Mater. Des, vol.31, issue.9, pp.4116-4121, 2010.

S. Mishra, N. Choudhury, S. Chaplot, P. Krishna, and R. Mittal, Competing antiferroelectric and ferroelectric interactions in NaNbO3: Neutron diffraction and theoretical studies, Phys. Rev. B, vol.76, pp.1-8, 2007.

T. Furukawa, K. Fujino, and E. Fukada, Electromechanical properties in the composites of epoxy resin and PZT ceramics, Jpn. J. Appl. Phys, vol.15, issue.11, pp.2119-2129, 1976.

R. A. Moreno and B. Gross, Measurement of potential buildup and decay, surface charge density, and charging currents of corona-charged polymer foil electrets, J. Appl. Phys, vol.47, issue.8, pp.3397-3402, 1976.

D. Waller, T. Iqbal, and A. Safari, Poling of lead zirconate titanate ceramics and flexible piezoelectric composites by the corona discharge technique, J. Am. Ceram. Soc, vol.72, pp.322-324, 1989.

C. J. Dias and D. K. Das-gupta, Ferroelectric ceramic polymer composite films for pyroelectric sensors, IEEE Trans. Dielectr. Electr. Insul, vol.3, issue.5, pp.393-396, 1996.

H. L. Chan, M. C. Cheung, and C. L. Choy, Study on BaTiO3/P(VDF-TrFE) 0-3 composites, vol.224, pp.113-120, 1999.

G. Sa-gong, A. Safari, and R. E. Newnham, Poling study of PbTiO3-polymer composites, IEEE 6th Int. Symp. Appl. Ferroelectr, pp.281-284, 1986.

D. Carponcin, E. Dantras, L. Laffont, J. Dandurand, G. Aridon et al., Integrated piezoelectric function in a high thermostable thermoplastic PZT/PEEK composite, J. Non. Cryst. Solids, vol.388, pp.32-36, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956693

C. David, J. F. Capsal, L. Laffont, E. Dantras, and C. Lacabanne, Piezoelectric properties of polyamide 11/NaNbO3 nanowire composites, J. Phys. D. Appl. Phys, vol.45, pp.1-7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00822238

B. Sapoval, Universalités et fractales, 1997.

J. M. Hammersley, Percolation processes: Lower bounds for the critical probability, United Kingdom At. Energy Res. Establ, pp.790-795, 1957.

D. Stauffer and A. Aharony, Introduction to percolation theory, 2003.
DOI : 10.1063/1.2808877

S. Kirkpatrick, Percolation and conduction, Rev. Mod. Phys, vol.45, issue.4, pp.574-588, 1973.

I. Balberg, N. Binenbaum, and N. Wagner, Percolation thresholds in the threedimensional sticks system, Phys. Rev. Lett, vol.52, issue.17, pp.1465-1468, 1984.
DOI : 10.1103/physrevlett.52.1465

E. Charlaix, Percolation threshold of a random array of discs: A numerical simulation, J. Phys. A. Math. Gen, vol.19, pp.533-536, 1986.

L. Vovchenko and V. Vovchenko, Simulation of percolation threshold in composites filled with conducting particles of various morphologies, Materwiss. Werksttech, vol.42, issue.1, pp.70-74, 2011.

A. Celzard, E. Mcrae, C. Deleuze, M. Dufort, G. Furdin et al., Critical concentration in percolating systems containing a high-aspect-ratio filler, Phys. Rev. B, vol.53, issue.10, pp.6209-6214, 1996.

A. I. Medalia, Electrical conduction in carbon black composites, Rubber Chem. Technol, vol.59, pp.432-454, 1986.
DOI : 10.5254/1.3538209

E. Tkalya, M. Ghislandi, R. Otten, M. Lotya, A. Alekseev et al., Experimental and theoretical study of the influence of the state of dispersion of graphene on the percolation threshold of conductive graphene/polystyrene nanocomposites, Appl. Mater. Interfaces, vol.6, pp.15113-15121, 2014.

D. Carponcin, E. Dantras, G. Aridon, F. Levallois, L. Cadiergues et al., Evolution of dispersion of carbon nanotubes in Polyamide 11 matrix composites as determined by DC conductivity, Compos. Sci. Technol, vol.72, pp.515-520, 2012.

P. Van-durmen, Etude de l'influence de la dispersion de nanotubes de carbone sur les propriétés électriques de composites à matrice PEEK, 2014.

A. Lonjon, Nanocomposite Conducteur polymère/nanofils métalliques : Elaboration et analyse des propriétés physiques, 2010.

L. Rivière, A. Lonjon, E. Dantras, C. Lacabanne, P. Olivier et al., Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites, Eur. Polym. J, vol.85, pp.115-125, 2016.

S. Kwon, H. W. Cho, G. Gwon, H. Kim, and B. J. Sung, Effects of shape and flexibility of conductive fillers in nanocomposites on percolating network formation and electrical conductivity, Phys. Rev. E, vol.93, pp.1-9, 2016.

J. Audoit, L. Laffont, A. Lonjon, E. Dantras, and C. Lacabanne, Percolative silver nanoplates/PVDF nanocomposites: Bulk and surface electrical conduction, Polymer, vol.78, pp.104-110, 2015.
DOI : 10.1016/j.polymer.2015.09.062

URL : https://hal.archives-ouvertes.fr/hal-01308066

L. Q. Cortes, A. Lonjon, E. Dantras, and C. Lacabanne, High-performance thermoplastic composites poly(ether ketone ketone)/silver nanowires: Morphological, mechanical and electrical properties, J. Non. Cryst. Solids, vol.391, pp.106-111, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00976576

D. Untereker, S. Lyu, J. Schley, G. Martinez, and L. Lohstreter, Maximum conductivity of packed nanoparticles and their polymer composites, ACS Appl. Mater. Interfaces, vol.1, issue.1, pp.97-101, 2009.

N. F. Mott and E. A. Davis, Electronic processes in non-crystalline materials, 1979.

P. J. Harris, New perspectives on the structure of graphitic carbons, Crit. Rev. Solid State Mater. Sci, vol.30, pp.235-253, 2005.

P. J. Harris, Fullerene-related structure of commercial glassy carbons, Philos. Mag, vol.84, issue.29, pp.3159-3167, 2004.

G. Jenkins, K. Kawamura, and L. Ban, Formation and structure of polymeric carbons, Proc. R. Soc. Lond. A, vol.327, pp.501-517, 1972.

H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, and R. E. Smalley, Nature, vol.60, pp.162-163, 1985.

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon fibers based on C60 and their symmetry, Phys. Rev. B, vol.45, issue.11, pp.6234-6242, 1992.

S. Lijima, T. Ichihashi, and Y. Ando, Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, vol.356, pp.776-778, 1992.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films, Science, vol.306, pp.666-669, 2004.

F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys, vol.111, pp.1-24, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00982880

V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker et al., Graphene based materials: Past, present and future, Prog. Mater. Sci, vol.56, issue.8, pp.1178-1271, 2011.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene, Solid State Commun, vol.146, pp.351-355, 2008.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine structure constant defines visual transperency of graphene, Science, vol.320, p.1308, 2008.

J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken et al., Two-dimensional phonon transport in supported graphene, Science, vol.328, pp.213-216, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00818281

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of elastic properties and intrinsic strength of monolayer graphene, Science, vol.321, pp.385-388, 2008.

D. Carponcin, E. Dantras, J. Dandurand, G. Aridon, F. Levallois et al., Electrical and piezoelectric behavior of polyamide/PZT/CNT multifunctional nanocomposites, Adv. Eng. Mater, vol.16, issue.8, pp.1018-1025, 2014.

D. Carponcin, E. Dantras, G. Michon, J. Dandurand, G. Aridon et al., New hybrid polymer nanocomposites for passive vibration damping by incorporation of carbon nanotubes and lead zirconate titanate particles, J. Non. Cryst. Solids, vol.409, pp.20-26, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139252

M. Hori, T. Aoki, Y. Ohira, and S. Yano, New type of mechanical damping composites composed of piezoelectric ceramics, carbon black and epoxy resin, Compos. Part A, vol.32, pp.287-290, 2001.

S. Y. Kim, T. Tanimoto, K. Uchino, C. H. Nam, S. Nam et al., Effects of PZT particle-enhanced ply interfaces on the vibration damping behavior of CFRP composites, Compos. Part A, vol.42, issue.10, pp.1477-1482, 2011.

X. F. Liu, C. X. Xiong, H. J. Sun, L. J. Dong, R. Li et al., Piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol, vol.127, pp.261-266, 2006.

M. Ma and X. Wang, Preparation, microstructure and properties of epoxy-based composites containing carbon nanotubes and PMN-PZT piezoceramics as rigid piezodamping materials, Mater. Chem. Phys, vol.116, pp.191-197, 2009.

T. Tanimoto, A new vibration damping CFRP material with interlayers of dispersed piezoelectric ceramic particles, Compos. Sci. Technol, vol.67, pp.213-221, 2007.

S. Tian, F. Cui, and X. Wang, New type of piezo-damping epoxy-matrix composites with multi-walled carbon nanotubes and lead zirconate titanate, Mater. Lett, vol.62, pp.3859-3861, 2008.

S. Tian and X. Wang, Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials, J. Mater. Sci, vol.43, pp.4979-4987, 2008.

X. Liu, X. Chuanxi, S. Huajun, D. Lijie, L. Rui et al., Characterization of PZT/PVC composites added with carbon black, J. Wuhan Univ. Technol. Sci. Ed, vol.20, issue.4, pp.60-64, 2005.

C. Zhang, J. F. Sheng, C. A. Ma, and M. Sumita, Electrical and damping behaviors of CPE/BaTiO3/VGCF composites, Mater. Lett, vol.59, pp.3648-3651, 2005.

S. Banerjee and K. A. Cook-chennault, An investigation into the influence of electrically conductive particle size on electromechanical coupling and effective dielectric strain coefficients in three phase composite piezoelectric polymers, Compos. Part A, vol.43, pp.1612-1619, 2012.

N. Saber, S. Araby, Q. Meng, H. Y. Hsu, C. Yan et al., Superior piezoelectric composite films: Taking advantage of carbon nanomaterials, Nanotechnology, vol.25, pp.1-10, 2014.

T. Tanimoto, Interleaving methodology for property tailoring of CFRP laminates, Compos. Interfaces, vol.9, issue.1, pp.25-39, 2002.

A. Treviso, B. Van-genechten, D. Mundo, and M. Tournour, Damping in composite materials: Properties and models, Compos. Part B Eng, vol.78, pp.144-152, 2015.

E. M. Kerwin, Damping of Flexural Waves by a Constrained Viscoelastic Layer, J. Acoust. Soc. Am, vol.31, pp.952-962, 1959.

T. Tanimoto, Carbon-fiber reinforced plastic passive composite damper by use of piezoelectric polymer/ceramic, Jpn. J. Appl. Phys, vol.41, issue.11B, pp.7166-7169, 2002.

F. S. Liao, A. C. Su, and T. C. Hsu, Vibration damping of interleaved carbon fiberepoxy composite beams, J. Compos. Mater, vol.28, issue.18, pp.1840-1854, 1994.

J. Berthelot, Damping analysis of orthotropic composites with interleaved viscoelastic layers: Modeling, J. Compos. Mater, vol.40, issue.21, pp.1889-1909, 2006.

Y. Sefrani, Analyse de l'amortissement de matériaux composites à fibres unidirectionnelles, 2002.

D. A. Saravanos and J. M. Pereira, Effects of interply damping layers on the dynamic characteristics of composite plates, AIAA J, vol.30, issue.12, 1992.

M. Segiet and D. D. Chung, Discontinuous surface-treated submicron-diameter carbon filaments as an interlaminar filler in carbon fiber polymer-matrix composites for vibration reduction, Compos. Interfaces, vol.7, issue.4, pp.257-275, 2000.

D. D. Chung, Materials for vibration damping, J. Mater. Sci, vol.36, pp.5733-5737, 2001.

A. K. Lall, N. T. Asnani, and B. C. Nakra, Damping analysis of partially covered sandwich beams, J. Sound Vib, vol.123, pp.247-259, 1988.

C. Cai, H. Zheng, and G. R. Liu, Vibration analysis of a beam with PCLD patch, Appl. Acoust, vol.65, pp.1057-1076, 2004.

D. Granger and A. Ross, Effects of partial constrained viscoelastic layer damping parameters on the initial transient response of impacted cantilever beams: Experimental and numerical results, J. Sound Vib, vol.321, pp.45-64, 2009.

J. H. Yim, S. Y. Cho, Y. J. Seo, and B. Z. Jang, A study on material damping of 0° laminated composite sandwich cantilever beams with a viscoelastic layer, Compos. Struct, vol.60, pp.367-374, 2003.

K. H. Gardner, B. S. Hsiao, R. R. Matheson, and B. A. Wood, Structure, crystallization and morphology of poly(aryl ether ketone ketone), Polymer, vol.33, issue.12, pp.2483-2495, 1992.

T. Sasuga and M. Hagiwara, Molecular motions of non-crystalline poly(aryl ether ether ketone) PEEK and influence of electron beam irradiation, Polymer, vol.26, pp.501-505, 1985.

L. David and S. Etienne, Sub-Tg relaxation phenomena in poly(aryl ether ether ketone), Macromolecules, vol.25, issue.17, pp.4302-4308, 1992.

C. Carrot and J. Guillet, Viscoélasticité linéaire des polymères fondus, Tech. l'ingénieur, vol.3620, 1999.

J. D. Ferry, Viscoelastic properties of polymers, 1980.

M. L. Williams, R. F. Landel, and J. D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc, vol.77, pp.3701-3707, 1955.

M. Kitagawa, J. Qui, K. Nishida, and T. Yoneyama, Cyclic stress-strain curves at finite strains under high pressures in crystalline polymers, J. Mater. Sci, vol.27, pp.1449-1456, 1992.

M. Kitagawa, T. Mori, and T. Matsutani, Rate-dependent nonlinear constitutive equation of polypropylene, J. Polym. Sci. Part B Polym. Phys, vol.27, pp.85-95, 1989.

S. B. Lang and S. Muensit, Review of some lesser-known applications of piezoelectric and pyroelectric polymers, Appl. Phys. A, vol.85, pp.125-134, 2006.

C. Barbier, R. Dendievel, and D. Rodney, Role of friction in the mechanics of nonbonded fibrous materials, Phys. Rev. E, vol.80, pp.1-5, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00436893

C. Hsieh and Y. C. Pan, Dynamic behavior and modelling of the pre-sliding static friction, Wear, vol.242, pp.1-17, 2000.

C. H. Menq, J. H. Griffin, and J. Bielak, The influence of microslip on vibratory response, Part I: A new microslip model, J. Sound Vib, vol.107, issue.2, pp.295-307, 1986.

E. Syerko, S. Comas-cardona, and C. Binetruy, Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: A review, Compos. Part A, vol.43, pp.1365-1388, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01007088

A. Schönhals, Dielectric spectroscopy on the dynamics of amorphous polymeric systems, Novocontrol Appl. Note Dielectr, vol.1, pp.1-17, 1998.

F. Kremer and A. Schönhals, Broadband dielectric spectroscopy, 2003.

S. Havriliak and S. Negami, A complex plane analysis of ?-dispersions in some polymer systems, J. Polym. Sci. Part C, vol.14, pp.99-117, 1966.

A. Goodwin and R. Marsh, Dielectric and dynamic mechanical relaxation of poly(ether ether ketone)/poly(ether imide) blends below the glass transition, Macromol. Rapid Commun, vol.17, pp.475-480, 1996.

A. Leonardi, E. Dantras, J. Dandurand, and C. Lacabanne, Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current, J. Therm. Anal. Calorim, vol.111, pp.807-814, 2013.

L. E. Cortes, Composites thermoplastiques conducteurs à finalité aéronautique PEKK/fibres de carbone/fils submicroniques d'argent : de l'élaboration aux comportements électrique et mécanique, 2016.

T. A. Ezquerra, M. Zolotukhin, V. P. Privalko, F. J. Balt-calleja, G. Nequlqueo et al., Relaxation behavior in model compounds of poly(aryl ether ketone ketone) as revealed by dielectric spectroscopy, J. Chem. Phys, vol.110, issue.20, pp.10134-10140, 1999.

G. K. Goh, F. F. Lange, S. M. Haile, and C. G. Levi, Hydrothermal synthesis of KNbO3 and NaNbO3 powders, J. Mater. Res, vol.18, pp.338-345, 2003.
DOI : 10.1557/jmr.2003.0044

URL : http://authors.library.caltech.edu/26603/1/GOHjmr03.pdf

H. Zhu, Z. Zheng, X. Gao, Y. Huang, Z. Yan et al., Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: From Nb2O5 grains to microporous Na2Nb2O6 2/3 H2O fibers and NaNbO3 cubes, J. Am. Chem. Soc, vol.128, pp.2373-2384, 2006.

M. Alexandre, C. Bessaguet, C. David, E. Dantras, and C. Lacabanne, Piezoelectric properties of polymer/lead-free ceramic composites, Phase Transitions, vol.89, issue.7-8, pp.708-716, 2016.
DOI : 10.1080/01411594.2016.1206898

URL : https://hal.archives-ouvertes.fr/hal-01469215

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol, vol.3, pp.563-568, 2008.

X. Li, H. Deng, Z. Li, H. Xiu, X. Qi et al., Graphene/thermoplastic polyurethane nanocomposites: Surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction, Compos. Part A, vol.68, pp.264-275, 2015.

P. Yang and F. Liu, Understanding graphene production by ionic surfactant exfoliation : A molecular dynamics simulation study, J. Appl. Phys, vol.116, pp.1-7, 2014.

S. Wang, M. Yi, Z. Shen, and X. Zhang, Adding ethanol can effectively enhance the graphene concentration in water-surfactant, R. Soc. Chem, vol.4, pp.25374-25378, 2014.

C. Yeon, K. Lee, and J. W. Lim, High-yield graphene exfoliation using sodium dodecyl sulfate accompanied by alcohols as surface-tension-reducing agents in aqueous solution, Carbon, vol.83, pp.136-143, 2015.

E. Bessard, Matériaux composites structuraux à base PEEK élaborés par thermocompression dynamique : relation procédé-propriétés, 2012.

J. L. Thomason and A. A. Van-rooyen, Transcrystallized interphase in thermoplastic composites-Part I Influence of fibre type and crystallization temperature, J. Mater. Sci, vol.27, pp.889-896, 1992.

S. L. Gao and J. K. Kim, Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion, Compos. Part A, vol.31, pp.517-530, 2000.

E. H. Kerner, The elastic and thermo-elastic properties of composite media, Proc. Phys. Soc, vol.69, pp.808-813, 2002.

R. E. Newnham, D. P. Skinner, and L. E. Cross, Connectivity and piezoelectricpyroelectric composites, Mater. Res. Bull, vol.13, pp.525-536, 1978.

T. Furukawa, K. Ishida, E. Fukada, T. Furukawa, K. Ishida et al., Piezoelectric properties in the composite systems of polymers and PZT ceramics, J. Appl. Phys, vol.50, issue.7, pp.4904-4912, 1979.

H. Kim, Y. Miura, and C. W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity, Chem. Mater, vol.22, issue.11, pp.3441-3450, 2010.
DOI : 10.1021/cm100477v

S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney et al., Graphene-based composite materials, Nature, vol.442, pp.282-286, 2006.
DOI : 10.1038/nature04969

L. Yang, S. Zhang, Z. Chen, Y. Guo, J. Luan et al., Design and preparation of graphene/poly(ether ether ketone) composites with excellent electrical conductivity, J Mater Sci, vol.49, pp.2372-2382, 2014.

T. Kuila, S. Bose, P. Khanra, N. H. Kim, K. Y. Rhee et al., Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites, Compos. Part A, vol.42, pp.1856-1861, 2011.

Y. V. Syurik, M. G. Ghislandi, E. E. Tkalya, G. Paterson, D. Mcgrouther et al., Graphene network organisation in conductive polymer composites, Macromol. Chem. Phys, vol.213, pp.1251-1258, 2012.
DOI : 10.1002/macp.201200116

P. Fan, L. Wang, J. Yang, F. Chen, and M. Zhong, Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold, Nanotechnology, vol.23, pp.1-8, 2012.
DOI : 10.1088/0957-4484/23/36/365702

C. Gao, S. Zhang, F. Wang, B. Wen, C. Han et al., Graphene networks with low percolation threshold in ABS nanocomposites: Selective localization and electrical and rheological properties, ACS Appl. Mater. Interfaces, vol.6, pp.12252-12260, 2014.

A. K. Jonscher, The 'universal' dielectric response, Nature, vol.267, pp.673-679, 1977.
DOI : 10.1109/ceidp.1990.201316

H. Scher and R. Zallen, Critical density in percolation processes, J. Chem. Phys, vol.53, pp.3759-3761, 1970.
DOI : 10.1063/1.1674565

M. H. Al-saleh and S. Abdul-jawad, Graphene nanoplatelet-polystyrene nanocomposite: Dielectric and charge storage behaviors, J. Electron. Mater, vol.45, pp.3532-3539, 2016.
DOI : 10.1007/s11664-016-4505-6

J. X. Xu, M. Wong, and C. P. Wong, Super high dielectric constant carbon blackfilled polymer composites as integral capacitor dielectrics, Electron. Components Technol. Conf, vol.1, pp.536-541, 2004.

E. Piollet, D. Poquillon, and G. Michon, Dynamic hysteresis modelling of entangled cross-linked fibres in shear, J. Sound Vib, vol.383, pp.248-264, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758580

J. Choi, H. Shin, S. Yang, and M. Cho, The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: A multiscale approach, Compos. Struct, vol.119, pp.365-376, 2015.

F. Al-bender, W. Symens, J. Swevers, and H. Van-brussel, Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems, Int. J. Non. Linear. Mech, vol.39, pp.1721-1735, 2004.

Y. Bereaux, Viscoélasticité Non-Linéaire, 2004.

B. Wielage, T. Lampke, H. Utschick, and F. Soergel, Processing of natural-fibre reinforced polymers and the resulting dynamic-mechanical properties, J. Mater. Process. Technol, vol.139, pp.140-146, 2003.

F. Duc, P. E. Bourdan, C. J. Plummer, and J. A. Manson, Damping of thermoset and thermoplastic flax fibre composites, Compos. Part A, vol.64, pp.115-123, 2014.

J. E. Sader, J. Lee, and S. R. Manalis, Energy dissipation in microfluidic beam resonators: Dependence on mode number, J. Appl. Phys, vol.108, pp.1-14, 2010.

L. Bernard, G. Michon, R. E. Fatmi, and B. Castanié, Static and dynamic analysis of bending-torsion coupling of a CFRP sandwich beam, Compos. Struct, vol.145, p.1, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01924062