H. Kwon, C. J. Squire, P. G. Young, and E. N. Baker, Autocatalytically generated Thr-Gln ester bond cross-links stabilize the repetitive Ig-domain shaft of a bacterial cell surface adhesin, Proc. Natl. Acad. Sci, vol.111, pp.1367-1372, 2014.

A. P. Hendrickx, J. M. Budzik, S. Y. Oh, and O. Schneewind, Architects at the bacterial surface-Sortases and the assembly of pili with isopeptide bonds, Nat. Rev. Microbiol, vol.9, pp.166-176, 2011.

H. J. Kang and E. N. Baker, Structure and assembly of Gram-positive bacterial pili: unique covalent polymers, Curr. Opin. Struct. Biol, vol.22, pp.200-207, 2012.

H. J. Kang and E. N. Baker, Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes, J. Biol. Chem, vol.284, pp.20729-20737, 2009.

J. A. Pointon, A highly unusual thioester bond in a pilus adhesin is required for efficient host cell interaction, J. Biol. Chem, vol.285, pp.33858-33866, 2010.

L. El-mortaji, The full-length Streptococcus pneumoniae major pilin RrgB crystallizes in a fiber-like structure, which presents the D1 isopeptide bond and provides details on the mechanism of pilus polymerization, Biochemical J, vol.441, pp.833-841, 2012.

L. El-mortaji, R. Terrasse, A. Dessen, T. Vernet, and A. M. Di-guilmi, Stability and assembly of pilus subunits of Streptococcus pneumoniae, J. Biol. Chem, vol.285, pp.12405-12415, 2010.

T. Izoré, Structural basis of host cell recognition by the pilus adhesin from Streptococcus pneumoniae, Structure, vol.18, pp.106-115, 2010.

J. Alegre-cebollada, C. L. Badilla, and J. M. Fernandez, Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes, J. Biol. Chem, vol.285, pp.11235-11242, 2010.

R. M. Hagan, NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond, Angew. Chem. Int. Ed. Engl, vol.49, pp.8421-8425, 2010.

X. Hu, Autocatalytic intramolecular isopeptide bond formation in gram-positive bacterial pili: a QM/MM simulation, J. Am. Chem. Soc, vol.133, pp.478-485, 2011.

B. Zakeri and M. Howarth, Spontaneous intermolecular amide bond formation between side chains for irreversible peptide targeting, J. Am. Chem. Soc, vol.132, pp.4526-4527, 2010.

B. Zakeri, Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin, Proc. Natl. Acad. Sci. USA, vol.109, pp.690-697, 2012.

G. Veggiani, Programmable polyproteams built using twin peptide superglues, Proc. Natl. Acad. Sci. USA, vol.113, pp.1202-1207, 2016.

M. Fairhead, SpyAvidin hubs enable precise and ultrastable orthogonal nanoassembly, J. Am. Chem. Soc, vol.136, pp.12355-12363, 2014.

C. Schoene, S. P. Bennett, and M. Howarth, SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries, Sci. Rep, vol.6, p.21151, 2016.

K. D. Brune, Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization, Sci. Rep, vol.6, 2016.

A. Rath, M. Glibowicka, V. G. Nadeau, G. Chen, and C. M. Deber, Detergent binding explains anomalous SDS-PAGE migration of membrane proteins, Proc. Natl. Acad. Sci. USA, vol.106, pp.1760-1765, 2009.

J. A. Hermoso, Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce, Nat. Struct. Mol. Biol, vol.6, pp.533-538, 2005.

L. J. Pouwels, L. Zhang, N. H. Chan, P. C. Dorrestein, and R. M. Wachter, Kinetic isotope effect studies on the de novo rate of chromophore formation in fast-and slow-maturing GFP variants Biochemistry, vol.47, pp.10111-10122, 2008.

B. J. Feilmeier, G. Iseminger, D. Schroeder, H. Webber, and G. J. Phillips, Green fluorescent protein functions as a reporter for protein localization in Escherichia coli, J. Bacteriol, vol.182, pp.4068-4076, 2000.

T. Dammeyer and P. Tinnefield, Engineered fluorescence proteins illuminate the bacterial periplasm, Comput. Struct. Biotechnol. J, vol.3, 2012.

J. D. Pédelacq, S. Cabantous, T. Tran, T. C. Terwilliger, and G. S. Waldo, Engineering and characterization of a superfolder green fluorescent protein, Nat. Biotechnol, vol.24, pp.79-88, 2006.

T. Dinh and T. G. Bernhardt, Using superfolder green fluorescent protein for periplasmic protein localization studies, J. Bacteriol, vol.193, pp.4984-4987, 2011.

J. Gabadinho, MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments, J Synchrotron Radiat, vol.17, 2010.

R. M. Leal, Experimental procedure for the characterization of radiation damage in macromolecular crystals, J Synchrotron Radiat, vol.18, p.381, 2011.

A. , Program to Display X-ray Diffraction Images, 2016.

W. X. Kabsch, Acta Cryst, vol.66, pp.125-132, 2010.

X. X. Interface, , 2017.

K. Diederichs and P. A. Karplus, Improved R-factors for diffraction data analysis in macromolecular crystallography, Nat. Struct. Biol, vol.4, pp.269-275, 1997.

P. A. Karplus and K. Diederichs, Linking crystallographic model and data quality, Science, vol.336, pp.1030-1033, 2012.

K. Diederichs and P. A. Karplus, Better models by discarding data?, Acta Crystallogr D Biol Crystallogr, vol.69, pp.1215-1222, 2013.

P. A. Karplus and K. Diederichs, Assessing and maximizing data quality in macromolecular crystallography, Curr Opin Struct Biol, vol.34, pp.60-68, 2015.

P. R. Evans and G. N. Murshudov, How good are my data and what is the resolution?, Acta Crystallogr D Biol Crystallogr, vol.69, pp.1204-1214, 2013.

M. D. Winn, Overview of the CCP4 suite and current developments, Acta Crystallogr D Biol Crystallogr, vol.67, pp.235-242, 2011.

A. J. Mccoy, Phaser Crystallographic Software. J. Appl. Cryst, vol.40, pp.658-674, 2007.

G. Langer, S. X. Cohen, V. S. Lamzin, and A. Perrakis, Automated macromolecular model building for x-ray crystallography using ARP/wARP version 7, Nat. Protoc, vol.3, pp.1171-1179, 2008.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, vol.60, pp.2126-2132, 2004.

, Scientific RepoRts |, vol.7

J. Painter and E. A. Merrit, TLSMD web server for the generation of multi-group TLS models, J. Appl. Cryst, vol.39, pp.109-111, 2006.

E. A. Merritt, To B or not to B: a question of resolution?, Acta Crystallogr D Biol Crystallogr, vol.68, pp.468-477, 2012.

G. N. Murshudov, REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr D Biol Crystallogr, vol.67, pp.355-367, 2011.

A. T. Brünger, Free R value: a novel statistical quantity for assessing the accuracy of crystal structures, Nature, vol.355, pp.472-475, 1992.

V. B. Chen, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr D Biol Crystallogr, vol.66, pp.12-21, 2010.

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. Thornton, PROCHECK-a program to check the stereochemical quality of protein structures, J. App. Cryst, vol.26, pp.283-291, 1993.

W. Kabsch and C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.22, pp.2577-637, 1983.

H. M. Berman, The Protein Data Bank, Nucleic Acids Research, vol.28, pp.235-242, 2000.

C. K. Sung, H. Li, J. P. Claverys, and D. A. Morrison, An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae, Appl. Environ. Microbiol, vol.67, pp.5190-5196, 2001.

M. Jacq, Remodeling of the Z-ring nanostructure during Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy, mBio, vol.18, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199165

S. Lacks and K. D. Hotchkiss, A study of the genetic material determining an enzyme in Pneumococcus, Biochim. Biophys. Acta, vol.39, pp.508-518, 1960.

, Autocatalytic association of proteins by covalent bond formation : a Bio Molecular Welding toolbox derived from a bacterial adhesin

R. Mohammed, « Structure of the pneumococcal l,d-carboxypeptidase DacB and pathophysiological effects of disabled cell wall hydrolases DacA and DacB, » In : Mol. Microbiol. 93, vol.6, pp.1365-2958, 2014.

A. Orio and A. G. , « Compensatory evolution of pbp mutations restores the fitness cost imposed by ?-lactam resistance in Streptococcus pneumoniae, PLoS Pathog, issue.2, 2011.

G. O. Andre, « Role of Streptococcus pneumoniae, Proteins in Evasion of Complement-Mediated Immunity. » In : Front. Microbiol, vol.8, p.224, 2017.

G. Andre, « Fluorescence and atomic force microscopy imaging of wall teichoic acids in Lactobacillus plantarum, ACS Chem. Biol, vol.6, pp.1554-8937, 2011.

A. Arbeloa, « Role of class A penicillin-binding proteins in PBP5mediated beta-lactam resistance in Enterococcus faecalis, J. Bacteriol, vol.186, pp.21-9193, 2004.

J. J. Armstrong, « Isolation and structure of ribitol phosphate derivatives (teichoic acids) from bacterial cell walls, J. Chem. Soc, vol.0, p.4344, 1958.

M. L. Atilano, « Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus, » In : Proc. Natl. Acad. Sci. U. S. A. 107, vol.44, pp.18991-18997, 2010.

W. Atkinson, . Wolfe, and . Hamborsky, Epidemiology and Prevention of Vaccine-Preventable Diseases. 13th. Centers for Disease Control et Prevention, 2015.

L. Attaiech, « Role of the Single-Stranded DNA-Binding Protein SsbB in Pneumococcal Transformation : Maintenance of a Reservoir for Genetic Plasticity, Sous la dir. d'Ivan Matic, 2011.

C. Attali, « Streptococcus pneumoniae choline-binding protein E interaction with plasminogen/plasmin stimulates migration across the extracellular matrix, Infect. Immun, vol.76, pp.466-476, 2008.

C. Aubry, « OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence, J. Infect. Dis. 204, vol.5, pp.1537-6613, 2011.

O. T. Avery, C. Macleod, and . Mccarty, STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES : INDUCTION OF TRANSFORMATION BY A DESOXYRIBONUCLEIC ACID FRACTION ISOLATED FROM PNEUMOCOCCUS TYPE III, vol.2, pp.22-1007, 1944.

I. Azuma, « Occurrence of N-glycolylmuramic acid in bacterial cell walls, Biochim. Biophys. Acta-Gen. Subj, vol.208, issue.3, pp.90217-90222, 1970.

K. M. Backus, « Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis, Nat. Chem. Biol, pp.228-235, 2011.

X. Bai and . Hui, « Structure of pneumococcal peptidoglycan hydrolase LytB reveals insights into the bacterial cell wall remodeling and pathogenesis, J. Biol. Chem. 289, vol.34, pp.23403-23416, 2014.

R. Bajaj, « Biochemical characterization of essential cell division proteins FtsX and FtsE that mediate peptidoglycan hydrolysis by PcsB in Streptococcus pneumoniae, » In : Microbiologyopen 5, vol.5, pp.2045-8827, 2016.

P. Balachandran, « The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin, J. Bacteriol, vol.183, pp.21-9193, 2001.

M. Bandara, « The accessory Sec system (SecY2A2) in Streptococcus pneumoniae is involved in export of pneumolysin toxin, adhesion and biofilm formation, Microbes Infect. issn, p.12864579, 2017.

S. M. Barendt, L. Sham, . Malcolm, and . Winkler, « Characterization of mutants deficient in the L,D-carboxypeptidase (DacB) and WalRK (VicRK) regulon, involved in peptidoglycan maturation of Streptococcus pneumoniae serotype 2 strain D39. » In, J. Bacteriol, vol.193, pp.2290-300, 2011.

H. Barreteau, « Cytoplasmic steps of peptidoglycan biosynthesis, FEMS Microbiol. Rev, vol.32, pp.1574-6976, 2008.

S. G. Bartual, « Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae, Nat. Commun, vol.5, pp.2041-1723, 2014.

S. Baur, « Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae, J. Bacteriol, vol.191, pp.1200-1210, 2009.

A. Beaussart, « Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae, » In : Nanoscale 6, vol.24, pp.2040-3372, 2014.

K. Beilharz, « Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase, StkP. » In : Proc. Natl. Acad. Sci. U. S. A. 109, vol.15, 2012.

A. Bera, « Why are pathogenic staphylococci so lysozyme resistant ? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus, Mol. Microbiol, vol.55, pp.778-787, 2004.

A. Bera, « The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity, In : Infect. Immun. 74, vol.8, pp.19-9567, 2006.

K. H. Berg, D. Straume, and L. S. Havarstein, « The function of the transmembrane and cytoplasmic domains of pneumococcal penicillin-binding proteins 2x and 2b extends beyond that of simple anchoring devices, Microbiology 160.Pt_8, pp.1585-1598, 2014.

K. Berg and . Helene, « Peptide-regulated gene depletion system developed for use in Streptococcus pneumoniae, J. Bacteriol, pp.5207-5222, 2011.

K. Berg and . Helene, « Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6, J. Bacteriol, pp.4342-54, 2013.

M. J. Bergé, « Midcell Recruitment of the DNA Uptake and Virulence Nuclease, EndA, for Pneumococcal Transformation, PLoS Pathog. 9.9. Sous la dir. de Gary Dunny, 2013.

S. Bergmann and S. Hammerschmidt, « Versatility of pneumococcal surface proteins, Microbiology 152, vol.2, pp.295-303, 2006.

A. C. Berical, « Pneumococcal Vaccination Strategies. An Update and Perspective, Ann. Am. Thorac. Soc. 13, vol.6, pp.2329-6933, 2016.

E. Bernard, « Characterization of O-acetylation of N-acetylglucosamine : a novel structural variation of bacterial peptidoglycan, J. Biol. Chem, vol.286, pp.1083-351, 2011.

E. Bernard, « Dual Role for the O-Acetyltransferase OatA in Peptidoglycan Modification and Control of Cell Septation in Lactobacillus plantarum, PLoS One 7.10. issn : 19326203, 2012.

A. M. Berry and J. Paton, « Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins, Infect. Immun, vol.68, issue.1, pp.19-9567, 2000.

A. M. Berry, « Contribution of autolysin to virulence of Streptococcus pneumoniae, Infect. Immun, vol.57, pp.19-9567, 1989.

C. Besanceney-webler, « Metabolic labeling of fucosylated glycoproteins in Bacteroidales species, Bioorg. Med. Chem. Lett. 21, vol.17, pp.4989-4992, 2011.

R. Biswas, « Proton-binding capacity of Staphylococcus aureus wall teichoic acid and its role in controlling autolysin activity, PLoS One 7.7. Sous la dir, 2012.

D. E. Blair, « Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor, Proc. Natl. Acad. Sci. U. S. A. 102, vol.43, pp.27-8424, 2005.

C. Blake, « Structure of hen egg-white lysozyme, a three dimensional fourier synthesis at 2?Ångstroms resolution, Nature 206, vol.4986, pp.757-761, 1965.

J. K. Blundell and H. Perkins, « Effects of beta-lactam antibiotics on peptidoglycan synthesis in growing Neisseria gonorrhoeae, including changes in the degree of O-acetylation, J. Bacteriol, vol.147, pp.21-9193, 1981.

J. Blundell and . Keith, « The peptidoglycan of Neisseria gonorrhoeae : Oacetyl groups and lysozyme sensitivity, FEMS Microbiol. Lett, vol.9, pp.259-261, 1980.

M. J. Boersma, « Minimal Peptidoglycan (PG) Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of Streptococcus pneumoniae D39 Growing Planktonically and in Host-Relevant Biofilms, J. Bacteriol, pp.3472-3485, 2015.

A. Borrmann, « Bioorthogonal chemistry in living organisms, Chem. Sci. 5, vol.6, pp.2041-6520, 2014.

A. Bouhss, « The biosynthesis of peptidoglycan lipid-linked intermediates, FEMS Microbiol. Rev, vol.32, pp.1574-6976, 2008.

A. E. Bridy-pappas, « <i>Streptococcus pneumoniae</i> : Description of the Pathogen, Disease Epidemiology, Treatment, and Prevention, Pharmacotherapy 25, vol.9, pp.1193-1212, 2005.

E. B. Briles and . Tomasz, « Pneumococcal Forssman antigen. A cholinecontaining lipoteichoic acid, J. Biol. Chem, vol.248, pp.21-9258, 1973.

E. Briles, A. Barak, and . Tomasz, « Radioautographic evidence for equatorial wall growth in a gram-positive bacterium. Segregation of choline-3Hlabeled teichoic acid, » In : J. Cell Biol, vol.47, issue.3, p.219525, 1970.

J. Brown, S. Hammerschmidt, and C. Orihuela, Streptococcus pneumoniae : molecular mechanisms of host-pathogen interactions, p.9780124105300, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02099772

. Brown, J. P. Stephanie, S. Santa-maria, and . Walker, « Wall Teichoic Acids of Gram-Positive Bacteria, Annu. Rev. Microbiol, vol.67, issue.1, pp.313-336, 2013.

D. E. Brundish and . Baddiley, « The characterization of pneumococcal C-polysaccharide as a ribitol teichoic acid, Biochem. J. 105, vol.2, pp.264-6021, 1967.

J. C. Bryant, « Pyruvate oxidase of Streptococcus pneumoniae contributes to pneumolysin release, BMC Microbiol. 16, vol.1, pp.1471-2180, 2016.

N. Bui and . Khai, « Isolation and analysis of cell wall components from Streptococcus pneumoniae, Anal. Biochem, vol.421, pp.657-666, 2012.

G. Buist, « LysM, a widely distributed protein motif for binding to (peptido)glycans, Mol. Microbiol, vol.68, pp.838-847, 2008.

P. Burghaus, « The influence of different antibiotics on the degree of O-acetylation of staphylococcal cell walls, Target Penicillin. Murein Sacculus Bact, pp.317-322, 1983.

P. Burghout, « Search for genes essential for pneumococcal transformation : the RADA DNA repair protein plays a role in genomic recombination of donor DNA, J. Bacteriol, vol.189, pp.21-9193, 2007.

L. Callewaert and C. Michiels, « Lysozymes in the animal kingdom, J Biosci, vol.35, pp.127-160, 2010.

J. Campbell, « Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus, ACS Chem. Biol. 6, vol.1, pp.1554-8937, 2011.

J. Canvin, « The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus. » In, J. Infect. Dis. 172, vol.1, pp.119-142, 1995.

R. Carapito, « Pneumococcal ?-Lactam Resistance Due to a Conformational Change in Penicillin-binding Protein 2x, J. Biol. Chem, vol.281, issue.3, pp.21-9258, 2006.

A. Cardaci, « Protective Activity of Streptococcus pneumoniae Spr1875 Protein Fragments Identified Using a Phage Displayed Genomic Library, PLoS One 7.5. Sous la dir. de Gunnar F. Kaufmann, e36588. issn, pp.1932-6203, 2012.

F. Cava and P. Miguel-a-de, « Peptidoglycan plasticity in bacteria : emerging variability of the murein sacculus and their associated biological functions, Curr. Opin. Microbiol, vol.18, p.13695274, 2014.

F. Cava, « Emerging knowledge of regulatory roles of d-amino acids in bacteria, Cell. Mol. Life Sci, vol.68, pp.817-831, 2011.

M. Chandler and . Morrison, « Competence for genetic transformation in Streptococcus pneumoniae : molecular cloning of com, J. Bacteriol, vol.169, pp.21-9193, 1987.

J. D. Chang, « Inhibition of <i>Staphylococcus aureus</i> cell wall biosynthesis by desleucyl-oritavancin : a quantitative peptidoglycan composition analysis by mass spectrometry, J. Bacteriol, 2017.

J. D. Chang, « Peptidoglycan O-acetylation increases in response to vancomycin treatment in vancomycin-resistant Enterococcus faecalis, » In : Sci. Rep, vol.7, pp.2045-2322, 2017.

M. Chapot-chartier and . Kulakauskas, « Cell wall structure and function in lactic acid bacteria, In : Microb. Cell Fact, vol.13, pp.1475-2859, 2014.

H. Cho, « Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously, Nat. Microbiol. 1, vol.10, pp.2058-5276, 2016.

C. Cilloniz, « Microbial Etiology of Pneumonia : Epidemiology, Diagnosis and Resistance Patterns, Int. J. Mol. Sci. 17.12. issn, pp.1422-0067, 2016.

E. L. Clark, « Development of Rare Bacterial Monosaccharide Analogs for Metabolic Glycan Labeling in Pathogenic Bacteria, ACS Chem. Biol. 11, vol.12, pp.1554-8929, 2016.

S. E. Clark and J. N. Weiser, « Microbial Modulation of Host Immunity with the Small Molecule Phosphorylcholine, Infect. Immun, vol.81, pp.19-9567, 2013.

A. J. Clarke and . Dupont, « O-acetylated peptidoglycan : its occurrence, pathobiological significance, and biosynthesis, In : Can. J. Microbiol, vol.38, pp.8-4166, 1992.

A. J. Clarke, H. Strating, T. Neil, and . Blackburn, « Pathways for the O-Acetylation of Bacterial Cell Wall Polysaccharides, Glycomicrobiology, pp.187-223, 2002.

J. Claverys, S. Et-leiv, and . Håvarstein, « Cannibalism and fratricide : mechanisms and raisons d'être, Nat. Rev. Microbiol, vol.5, issue.3, pp.1740-1526, 2007.

J. Claverys, B. Martin, and . Leiv-sigve-håvarstein, « Competenceinduced fratricide in streptococci, Mol. Microbiol. 64, vol.6, pp.1423-1433, 2007.

J. Claverys, « The genetic transformation machinery : composition, localization, and mechanism, FEMS Microbiol. Rev, vol.33, issue.3, pp.1574-6976, 2009.

T. J. Coffey, « Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of <i>Streptococcus pneumoniae</i>, Mol. Microbiol, vol.5, pp.2255-2260, 1991.

B. Corsini, « Immunization with LytB protein of Streptococcus pneumoniae activates complement-mediated phagocytosis and induces protection against pneumonia and sepsis, Vaccine 34, vol.50, p.18732518, 2016.

M. I. Crisostomo, « Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae, 2006.

. Microbiol, , vol.61, pp.1497-1509

D. R. Cundell, « Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor, Nature, vol.377, pp.435-438, 1995.

M. Damjanovic, « The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae, J. Bacteriol, vol.189, pp.21-9193, 2007.

T. Dammeyer and P. Tinnefeld, « Engineered fluorescent proteins illuminate the bacterial periplasm, Comput. Struct. Biotechnol. J, 2012.

. October,

C. C. Daniels and P. Shelton, « A Review of Pneumococcal Vaccines : Current Polysaccharide Vaccine Recommendations and Future Protein Antigens, J. Pediatr. Pharmacol. Ther. 21, vol.1, pp.1551-6776, 2016.

K. M. Davis, N. Et-jeffrey, and . Weiser, « Modifications to the peptidoglycan backbone help bacteria to establish infection, Infect. Immun, vol.79, pp.562-570, 2011.

K. M. Davis, « Resistance to Mucosal Lysozyme Compensates for the Fitness Deficit of Peptidoglycan Modifications by Streptococcus pneumoniae, PLoS Pathog. 4.12. Sous la, 2008.

B. De-las-rivas, « Purification and polar localization of pneumococcal LytB, a putative endo-?-N-acetylglucosaminidase : The chain-dispersing murein hydrolase, J. Bacteriol, vol.184, pp.4988-5000, 2002.

D. Elia and M. A. , Lesions in Teichoic Acid Biosynthesis in Staphylococcus aureus Lead to a Lethal Gain of Function in the Otherwise Dispensable Pathway, vol.12, pp.21-9193, 2006.

D. Elia and A. Michael, « Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis, J. Bacteriol, vol.188, pp.21-9193, 2006.

D. Elia and M. A. , Probing Teichoic Acid Genetics with Bioactive Molecules Reveals New Interactions among Diverse Processes in Bacterial Cell Wall Biogenesis, vol.16, p.10745521, 2009.

D. Denapaite, « Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species : lessons from genomes, » In : Microb. Drug Resist, vol.18, pp.1931-8448, 2012.

B. V. Desai and . Donald-a-morrison, « An unstable competenceinduced protein, CoiA, promotes processing of donor DNA after uptake during genetic transformation in Streptococcus pneumoniae, J. Bacteriol. 188, vol.14, pp.5177-86, 2006.

D. Guilmi and A. Marie, « Bifunctional penicillin-binding proteins : focus on the glycosyltransferase domain and its specific inhibitor moenomycin, Curr. Pharm. Biotechnol. 3, vol.2, pp.1389-2010, 2002.

A. Diallo, « Bacterial transformation : ComFA is a DNA-dependent ATPase that forms complexes with ComFC and DprA, Mol. Microbiol. issn, p.950382, 2017.

T. Dinh and T. G. Bernhardt, « Using superfolder green fluorescent protein for periplasmic protein localization studies, J. Bacteriol, vol.193, pp.4984-4987, 2011.

M. Domenech, « In vitro biofilm development of Streptococcus pneumoniae and formation of choline-binding protein-DNA complexes, Environ. Microbiol. Rep, p.17582229, 2015.

E. Donkor, « High levels of recombination among Streptococcus pneumoniae isolates from the Gambia, 2011.

T. J. Dougherty, « Involvement of a change in penicillin target and peptidoglycan structure in low-level resistance to ? ?-lactam antibiotics in Neisseria gonorrhoeae, Antimicrob. Agents Chemother. 28, vol.153, pp.90-95, 1983.

C. Draing, « Comparison of Lipoteichoic Acid from Different Serotypes of Streptococcus pneumoniae, J. Biol. Chem. 281, vol.45, pp.33849-33859, 2006.

S. Dramsi, « Covalent attachment of proteins to peptidoglycan, FEMS Microbiol. Rev, vol.32, pp.1574-6976, 2008.

R. Duman, « Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring, Proc. Natl. Acad. Sci. U. S. A. 110, vol.48, 2013.

A. Dumont, « Click-mediated labeling of bacterial membranes through metabolic modification of the lipopolysaccharide inner core. » In : Angew, Chem. Int. Ed. Engl. 51, vol.13, pp.1521-3773, 2012.

A. Eberhardt, « Cellular localization of choline-utilization proteins in <i>Streptococcus pneumoniae</i> using novel fluorescent reporter systems, Mol. Microbiol, vol.74, pp.1365-2958, 2009.

A. Eberhardt, « Attachment of Capsular Polysaccharide to the Cell Wall in Streptococcus pneumoniae, Microb. Drug Resist, vol.18, pp.1076-6294, 2012.

A. J. Egan, W. Et, and . Vollmer, « The physiology of bacterial cell division, Ann. N. Y. Acad. Sci. 1277, vol.1, pp.8-28, 2013.

A. J. Egan, « Activities and regulation of peptidoglycan synthases, Philos. Trans. R. Soc. B Biol. Sci, vol.370, issue.1679, pp.962-8436, 2015.

A. J. Egan, « Regulation of bacterial cell wall growth, FEBS J. 284, vol.6, pp.851-867, 2016.

V. Eldholm, « Fratricide in Streptococcus pneumoniae : Contributions and role of the cell wall hydrolases CbpD, LytA and LytC, Microbiology 155, vol.7, p.13500872, 2009.

V. Eldholm, « Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide, Mol. Microbiol, vol.76, pp.905-917, 2010.

K. Emami, « RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway, Nat. Microbiol, vol.2, pp.2058-5276, 2017.

R. E. Esser, « Reactivation of streptococcal cell wall-induced arthritis by homologous and heterologous cell wall polymers, Arthritis Rheum. 28, vol.12, pp.4-3591, 1985.

F. Fabretti, « Alanine Esters of Enterococcal Lipoteichoic Acid Play a Role in Biofilm Formation and Resistance to Antimicrobial Peptides, Infect. Immun, vol.74, pp.19-9567, 2006.

D. Fadda, « Characterization of divIVA and other genes located in the chromosomal region downstream of the dcw cluster in Streptococcus pneumoniae, J. Bacteriol, vol.185, issue.20, pp.21-9193, 2003.

D. Fadda, « Streptococcus pneumoniae DivIVA : Localization and interactions in a MinCD-free context, J. Bacteriol. T, vol.189, p.3907067584, 2007.

S. P. Falk, . Et-bernard, and . Weisblum, « Phosphorylation of the <i>Streptococcus pneumoniae</i> cell wall biosynthesis enzyme MurC by a eukaryotic-like Ser/Thr kinase, FEMS Microbiol. Lett, vol.340, pp.19-23, 2013.

F. Fani, « Genomic analyses of DNA transformation and penicillin resistance in Streptococcus pneumoniae clinical isolates, Antimicrob. Agents Chemother, vol.58, pp.1098-6596, 2014.

C. Feldman and R. Anderson, « Epidemiology, virulence factors and management of the pneumococcus, F1000Research 5, pp.2046-1402, 2016.

A. K. Fenton, « CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae, Nat. Microbiol, vol.2, pp.2058-5276, 2016.

C. Fernández-tornero, « A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA, Nat. Struct. Biol. 8, vol.12, pp.1072-8368, 2001.

C. Fernández-tornero, « Two New Crystal Forms of the Choline-binding Domain of the Major Pneumococcal Autolysin : Insights into the Dynamics of the Active Homodimer, J. Mol. Biol. 321, vol.1, pp.163-173, 2002.

S. R. Filipe and . Tomasz, « Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes, Proc. Natl. Acad. Sci. U. S. A. 97, vol.9, pp.4891-4897, 2000.

H. Fischer and . Tomasz, « Production and release of peptidoglycan and wall teichoic acid polymers in pneumococci treated with beta-lactam antibiotics, J. Bacteriol, vol.157, pp.21-9193, 1984.

W. Fischer, « Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoid acid (C polysaccharide). » In, Eur. J. Biochem, vol.215, issue.3, pp.14-2956, 1993.

T. J. Fleming and D. Rosenthal, « Arthropathic properties of gonococcal peptidoglycan fragments : implications for the pathogenesis of disseminated gonococcal disease, Infect. Immun, vol.52, pp.19-9567, 1986.

A. Fleurie, « Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae, 2012.

. Microbiol, , vol.83, pp.746-758

A. Fleurie, « Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division, PLoS Genet, vol.10, 2014.

A. Fleurie, « MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae, Nature 516, vol.7530, pp.259-262, 2014.

A. Formstone, « Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis, J. Bacteriol, vol.190, pp.1812-1833, 2008.

A. Fox, « Arthropathic properties related to the molecular weight of peptidoglycan-polysaccharide polymers of streptococcal cell walls, Infect. Immun, vol.35, issue.3, pp.19-9567, 1982.

E. Frirdich, C. Et-erin, and . Gaynor, « Peptidoglycan hydrolases, bacterial shape, and pathogenesis, Curr. Opin. Microbiol. 16, vol.6, pp.767-778, 2013.

C. Frolet, « New adhesin functions of surface-exposed pneumococcal proteins, BMC Microbiol, vol.10, issue.1, pp.1471-2180, 2010.

G. Garau, « Crystal structure of phosphorylcholine esterase domain of the virulence factor choline-binding protein E from Streptococcus pneumoniae : New structural features among the metallo-?-lactamase superfamily, J. Biol. Chem. 280, vol.31, pp.28591-28600, 2005.

E. García, « Cloning and expression of the pneumococcal autolysin gene in Escherichia coli, » In : Mol. Gen. Genet, vol.201, pp.26-8925, 1985.

E. García, « Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages, » In : Proc. Natl. Acad. Sci. U. S. A, vol.85, issue.3, pp.27-8424, 1988.

P. Garcia, « LytB, a novel pneumococcal murein hydrolase essential for cell separation, Mol. Microbiol, vol.31, pp.1275-1277, 1999.

J. F. Garcia-bustos, B. Chait, and . Tomasz, « Structure of the peptide network of pneumococcal peptidoglycan, J. Biol. Chem. 262, vol.32, pp.21-9258, 1987.

S. Gautam, « Exterior design : strategies for redecorating the bacterial surface with small molecules, Trends Biotechnol, vol.31, pp.1879-3096, 2013.

S. Gautam, « An Activity-Based Probe for Studying Crosslinking in Live Bacteria, vol.36, p.14337851, 2015.

S. Gautam, « Wall teichoic acids prevent antibody binding to epitopes within the cell wall of Staphylococcus aureus, ACS Chem. Biol. 11, vol.1, pp.25-30, 2016.

F. Gehre, « Role of teichoic acid choline moieties in the virulence of Streptococcus pneumoniae, Infect. Immun, vol.77, pp.1098-5522, 2009.

. Geiger, I. M. Otto, C. López-lara, and . Sohlenkamp, « Phosphatidylcholine biosynthesis and function in bacteria, Biochim. Biophys. Acta-Mol. Cell Biol. Lipids, vol.1831, p.13881981, 2013.

K. Geno and . Aaron, Pneumococcal Capsules and Their Types : Past, Present, and Future, vol.28, pp.1098-6618, 2015.

C. Giefing, « The pneumococcal eukaryotic-type serine/threonine protein kinase StkP co-localizes with the cell division apparatus and interacts with FtsZ in vitro, In : Microbiology 156.Pt, vol.6, pp.1465-2080, 2010.

C. Giefing-kroll, « Absence of pneumococcal PcsB is associated with overexpression of LysM domain-containing proteins, Microbiology 157, vol.7, pp.1897-1909, 2011.

N. Gisch, Structural reevaluation of Streptococcus pneumoniae Lipoteichoic acid and new insights into its immunostimulatory potency. » In : J, 2013.

, Biol. Chem. 288, vol.22, pp.1083-351

N. Gisch, « Lipoteichoic acid of Streptococcus oralis Uo5 : a novel biochemical structure comprising an unusual phosphorylcholine substitution pattern compared to Streptococcus pneumoniae, Sci. Rep. 5.October, pp.2045-2322, 2015.

W. F. Goebel, O. Avery, and ;. In, J. Exp. Med. 49, vol.2, pp.22-1007, 1929.

A. González, « Mutations in the tacF gene of clinical strains and laboratory transformants of Streptococcus pneumoniae : impact on choline auxotrophy and growth rate, J. Bacteriol. 190, vol.12, pp.4129-4167, 2008.

E. Gordon, « The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form : implication in drug resistance 1 1Edited by, J. Mol. Biol. 299, vol.2, pp.477-485, 2000.

K. K. Gosink, « Role of novel choline binding proteins in virulence of Streptococcus pneumoniae, Infect. Immun. 68, vol.10, pp.5690-5695, 2000.

C. Grangeasse, « Rewiring the Pneumococcal Cell Cycle with Serine/Threonine-and Tyrosine-kinases, Trends Microbiol, vol.24, pp.713-724, 2016.

T. Grebe and . Hakenbeck, « Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics, Antimicrob. Agents Chemother, vol.40, pp.66-4804, 1996.

N. G. Greene, « Peptidoglycan Branched Stem Peptides Contribute to Streptococcus pneumoniae Virulence by Inhibiting Pneumolysin Release, PLOS Pathog. 11.6. Sous la dir. de Carlos Javier Orihuela, 2015.

T. Greve, J. K. Et, and . Moller, « Accuracy of using the lytA gene to distinguish Streptococcus pneumoniae from related species, J. Med. Microbiol. 61.Pt_4, pp.22-2615, 2012.

F. Griffith, « The Significance of Pneumococcal Types, J. Hyg, issue.2, pp.22-1724, 1928.

A. Gründling and O. Schneewind, « Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus, » In : Proc. Natl. Acad. Sci. U. S. A. 104, vol.20, pp.8478-83, 2007.

S. Guiral, « Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae : genetic requirements, In : Proc. Natl. Acad. Sci. U. S. A. 102, vol.24, pp.8710-8715, 2005.

M. E. Gündo?du, « Large ring polymers align FtsZ polymers for normal septum formation, EMBO J, vol.30, pp.1460-2075, 2011.

R. Ha, « Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni, J. Biol. Chem. 291, vol.43, pp.1083-351, 2016.

R. Hakenbeck, N. Tornette, and . Adkinson, « Interaction of non-lytic beta-lactams with penicillin-binding proteins in Streptococcus pneumoniae, J. Gen. Microbiol, vol.133, issue.3, pp.755-760, 1987.

R. Hakenbeck, « Versatility of choline metabolism and cholinebinding proteins in Streptococcus pneumoniae and commensal streptococci, FEMS Microbiol. Rev, vol.33, issue.3, pp.572-586, 2009.

R. Hakenbeck, « Molecular mechanisms of ?-lactam resistance in <i>Streptococcus pneumoniae</i>, Future Microbiol, pp.1746-0913, 2012.

D. Hamerman, « New p thoughts on the pathogenesis of rheumatoid arthritis, Am. J. Med, vol.40, issue.1, 1966.

D. Hansman and . Andrews, « Hospital infection with pneumococci resistant to tetracycline, In : Med. J. Aust. 1, vol.10, pp.25-729, 1967.

D. J. Harrington, C. Et-iain, and . Sutcliffe, « Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes, Microbiology 148, vol.7, pp.2065-2077, 2002.

D. L. Hava, A. Et, and . Camilli, « Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors, Mol. Microbiol. 45, vol.5, pp.1389-1406, 2002.

L. S. Håvarstein, D. Coomaraswamy, and . Morrison, « An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae, » In : Proc. Natl. Acad. Sci. U. S. A. 92, vol.24, pp.27-8424, 1995.

L. Håvarstein and . Sigve, « Identification of the streptococcal competencepheromone receptor, Mol. Microbiol, vol.21, pp.863-869, 1996.

L. Havarstein and . Sigve, « New insights into the pneumococcal fratricide : relationship to clumping and identification of a novel immunity factor, Mol. Microbiol, vol.59, pp.1297-1037, 2006.

L. Hébert, « Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance, Infect. Immun. 75, vol.11, pp.19-9567, 2007.

C. B. Hergott, « Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection, J. Clin. Invest. 125, vol.10, pp.3878-3890, 2015.

J. A. Hermoso, « Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce, Nat. Struct. Mol. Biol. 12, vol.6, pp.1545-9993, 2005.

M. L. Higgins and G. Shockman, « Study of cycle of cell wall assembly in Streptococcus faecalis by three-dimensional reconstructions of thin sections of cells, J. Bacteriol, vol.127, issue.3, pp.21-9193, 1976.

R. Higuchi, R. Krummel, and . Saiki, « A general method of in vitro preparation and specific mutagenesis of DNA fragments : study of protein and DNA interactions, Nucleic Acids Res. 16, vol.15, pp.305-1048, 1988.

R. Hirst, « The role of pneumolysin in pneumococcal pneumonia and meningitis, Clin. Exp. Immunol, vol.138, pp.195-201, 2004.

R. A. Hirst, « <i>Streptococcus pneumoniae</i> Deficient in Pneumolysin or Autolysin Has Reduced Virulence in Meningitis, J. Infect. Dis. 197, vol.5, pp.744-751, 2008.

N. Hole?ková, « LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae, » In : MBio 6, vol.1, 2014.

J. V. Höltje and . Tomasz, « Teichoic acid phosphorylcholine esterase. A novel enzyme activity in pneumococcus, J. Biol. Chem. 249, vol.21, pp.21-9258, 1974.

L. V. Howard and H. Gooder, Specificity of the autolysin of Streptococcus (Diplococcus) pneumoniae, vol.117, p.219193, 1974.

C. N. Hoyland, Structure of the LdcB LD-carboxypeptidase reveals the molecular basis of peptidoglycan recognition. » In : Structure 22, vol.7, pp.1878-4186, 2014.

Y. Hsu, « Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls, Chem. Sci, vol.8, pp.6313-6321, 2017.

L. Huang, « Enveloped virus labeling via both intrinsic biosynthesis and metabolic incorporation of phospholipids in host cells, Anal. Chem. 85, vol.10, pp.5263-70, 2013.

J. E. Hudak, « Illuminating vital surface molecules of symbionts in health and disease, Nat. Microbiol, vol.2, pp.2058-5276, 2017.

T. Iwata, « Peptidoglycan Acetylation of Campylobacter jejuni Is Essential for Maintaining Cell Wall Integrity and Colonization in Chicken Intestines, » In : Appl. Environ. Microbiol, vol.82, issue.20, pp.1098-5336, 2016.

M. Jacq, « Remodeling of the Z-Ring Nanostructure during the Streptococcus pneumoniae Cell Cycle Revealed by Photoactivated Localization Microscopy, pp.2150-7511, 2015.

C. Y. Jao, « Metabolic labeling and direct imaging of choline phospholipids in vivo, Proc. Natl. Acad. Sci. 106, vol.36, pp.27-8424, 2009.

A. Jensen, « Commensal streptococci serve as a reservoir for ?lactam resistance genes in Streptococcus pneumoniae, Antimicrob. Agents Chemother. 59, vol.6, pp.1098-6596, 2015.

O. Johnsborg, V. Eldholm, and . Leiv-sigve-håvarstein, « Natural genetic transformation : prevalence, mechanisms and function », In : Res. Microbiol. 158, vol.10, pp.767-778, 2007.

O. Johnsborg and . Et-leiv-sigve-håvarstein, « Pneumococcal LytR, a protein from the LytR-CpsA-Psr family, is essential for normal septum formation in Streptococcus pneumoniae, J. Bacteriol, vol.191, pp.5859-64, 2009.

O. Johnsborg, « A predatory mechanism dramatically increases the efficiency of lateral gene transfer in <i>Streptococcus pneumoniae</i> and related commensal species, Mol. Microbiol, vol.69, issue.1, pp.245-253, 2008.

C. Johnston, « Bacterial transformation : distribution, shared mechanisms and divergent control, Nat. Rev. Microbiol, vol.12, issue.3, pp.1740-1534, 2014.

C. Johnston, Streptococcus pneumoniae, le transformiste, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117721

C. Johnston, « Fine-tuning of choline metabolism is important for pneumococcal colonization, Mol. Microbiol, vol.100, pp.972-988, 2016.

L. J. Jones, . Carballido-lópez, and . Errington, « Control of cell shape in bacteria : helical, actin-like filaments in Bacillus subtilis, » In : Cell, vol.104, pp.92-8674, 2001.

I. G. Jong and . De, « Live Cell Imaging of Bacillus subtilis and Streptococcus pneumoniae using Automated Time-lapse Microscopy, J. Vis. Exp, vol.53, 2011.

C. Karlsson, P. Erik-jansson-et-uffe, and B. Skov-sørensen, « The pneumococcal common antigen C-polysaccharide occurs in different forms : Monosubstituted or di-substituted with phosphocholine, Eur. J. Biochem, vol.265, p.142956, 1999.

J. Kasahara, « Teichoic Acid Polymers Affect Expression and Localization of dl-Endopeptidase LytE Required for Lateral Cell Wall Hydrolysis in Bacillus subtilis, 198.11. Sous la dir. de T. M. Henkin, pp.1585-1594, 2016.

L. Kausmally, « Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis, » In : J. Bacteriol. 187, vol.13, pp.21-9193, 2005.

P. Kele, « Dual Labeling of Biomolecules by Using Click Chemistry : A Sequential Approach, p.14337851, 2009.

L. E. Keller, D. Ashley-robinson, and L. S. Mcdaniel, « Nonencapsulated Streptococcus pneumoniae : Emergence and Pathogenesis, pp.1792-1807, 2016.

N. Khan and . Arif-t-jan, Towards Identifying Protective B-Cell Epitopes : The PspA Story, vol.8, p.742, 2017.

A. S. Kharat, A. Et, and . Tomasz, « Drastic reduction in the virulence of Streptococcus pneumoniae expressing type 2 capsular polysaccharide but lacking choline residues in the cell wall, Mol. Microbiol, vol.60, issue.1, pp.93-107, 2006.

A. S. Kharat, « Different pathways of choline metabolism in two choline-independent strains of Streptococcus pneumoniae and their impact on virulence, J. Bacteriol, vol.190, pp.5907-5921, 2008.

/. Jb, , pp.628-636

B. Khare, V. L. Sthanam, and . Narayana, « Pilus biogenesis of Grampositive bacteria : Roles of sortases and implications for assembly, Protein Sci. issn, p.9618368, 2017.

C. C. Kietzman, « Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium, Nat. Commun, vol.7, pp.2041-1723, 2016.

M. Kilian, « Evolution of Streptococcus pneumoniae and Its Close Commensal Relatives, PLoS One 3.7. Sous la dir. de Niyaz Ahmed, 2008.
DOI : 10.1371/journal.pone.0002683

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002683&type=printable

J. O. Kim and J. Weiser, « Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae, J. Infect. Dis, vol.177, pp.22-1899, 1998.

L. Kim, « Biological and Epidemiological Features of AntibioticResistant Streptococcus pneumoniae in Pre-and Post-Conjugate Vaccine Eras : a United States Perspective, Clin. Microbiol. Rev, vol.29, pp.525-552, 2016.

Y. Kiriyama, « Localization and expression of the Bacillus subtilis DL-endopeptidase LytF are influenced by mutations in LTA synthases and glycolipid anchor synthetic enzymes, In : Microbiology 160.Pt, vol.12, pp.1465-2080, 2014.

O. Kocaoglu and . Erin-e-carlson, « Progress and prospects for smallmolecule probes of bacterial imaging, Nat. Chem. Biol, vol.12, pp.472-478, 2016.
DOI : 10.1038/nchembio.2109

URL : http://europepmc.org/articles/pmc5736371?pdf=render

O. Kocaoglu, « Profiling of ?-lactam selectivity for penicillinbinding proteins in Streptococcus pneumoniae D39, Antimicrob. Agents Chemother. 59, vol.6, pp.1098-6596, 2015.
DOI : 10.1128/aac.05142-14

URL : https://aac.asm.org/content/59/6/3548.full.pdf

M. B. Koenigs, H. Elizabeth-a-richardson-et-danielle, and . Dube, « Metabolic profiling of Helicobacter pylori glycosylation, » In : Mol. Biosyst, vol.5, pp.1742-2051, 2009.
DOI : 10.1039/b902178g

T. Koga, « Acute joint inflammation in mice after systemic injection of the cell wall, its peptidoglycan, and chemically defined peptidoglycan subunits from various bacteria, » In : Infect. Immun, vol.50, issue.1, pp.19-9567, 1985.

K. Kolbe, « Azido Pentoses : A New Tool To Efficiently Label <i>Mycobacterium tuberculosis</i> Clinical Isolates, ChemBioChem. issn, p.14394227, 2017.
DOI : 10.1002/cbic.201600706

M. Kovács, « A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae, J. Bacteriol, vol.188, pp.5797-805, 2006.

A. Kovacs-simon, « Lipoproteins of bacterial pathogens, Infect. Immun, vol.79, pp.1098-5522, 2011.
DOI : 10.1128/iai.00682-10

URL : https://iai.asm.org/content/79/2/548.full.pdf

J. Krauss and . Hakenbeck, « A mutation in the D,D-carboxypeptidase penicillin-binding protein 3 of Streptococcus pneumoniae contributes to cefotaxime resistance of the laboratory mutant C604, Antimicrob. Agents Chemother. 41, vol.5, pp.66-4804, 1997.

M. Krupka, « Role of the FtsA C terminus as a switch for polymerization and membrane association, » In : MBio 5, vol.6, 2014.

T. Kruse, J. Bork-jensen, and K. Gerdes, « The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex, Mol. Microbiol, vol.55, issue.1, pp.78-89, 2004.
DOI : 10.1111/j.1365-2958.2004.04367.x

E. Kuru, « In Situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with Fluorescent D-Amino Acids, 2012.

, , vol.50, p.14337851

E. Kuru, « Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ, Nat. Protoc, vol.10, issue.1, pp.1750-2799, 2015.

M. Laaberki and . Halima, « O-acetylation of peptidoglycan is required for proper cell separation and S-layer anchoring in Bacillus anthracis, J. Biol. Chem. 286, vol.7, pp.5278-5288, 2011.

S. Lacks and . Neuberger, « Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae, J. Bacteriol, vol.124, issue.3, pp.21-9193, 1975.

S. Lacks and R. D. Hotchkiss, « A study of the genetic material determining an enzyme activity in Pneumococcus, Biochim. Biophys. Acta, vol.39, pp.90205-90210, 1960.

L. Lagartera, « Pneumococcal phosphorylcholine esterase, Pce, contains a metal binuclear center that is essential for substrate binding and catalysis, In : Protein Sci. 14, vol.12, pp.961-8368, 2005.

A. D. Land, « Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39, Mol. Microbiol, vol.90, pp.939-955, 2013.

K. Lang and J. W. Chin, « Bioorthogonal Reactions for Labeling Proteins, ACS Chem. Biol, vol.9, pp.1554-8929, 2014.

T. R. Larson, J. Et, and . Yother, « <i>Streptococcus pneumoniae</i> capsular polysaccharide is linked to peptidoglycan via a direct glycosidic bond to ?-D-<i>N</i>-acetylglucosamine », Proc. Natl. Acad. Sci. P. 201620431. issn, pp.27-8424, 2017.

R. Laurenceau, « A Type IV Pilus Mediates DNA Binding during Natural Transformation in Streptococcus pneumoniae, PLoS Pathog. 9.6. Sous la dir. de Carlos Javier Orihuela, 2013.

C. Li, « Practical labeling methodology for choline-derived lipids and applications in live cell fluorescence imaging, Photochem. Photobiol, vol.90, issue.3, pp.1751-1097, 2014.

J. Li and . Peng-r-chen, « Development and application of bond cleavage reactions in bioorthogonal chemistry, Nat. Chem. Biol, vol.12, issue.3, pp.1552-4469, 2016.

L. Li, . Et-zhiyuan, and . Zhang, « Development and Applications of the CopperCatalyzed Azide-Alkyne Cycloaddition (CuAAC) as a Bioorthogonal Reaction, Molecules 21, vol.10, pp.1420-3049, 2016.

Q. Li, « Full-length structure of the major autolysin LytA, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.71, p.13990047, 2015.

H. Liang, « Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications, Nat. Commun, vol.8, pp.2041-1723, 2017.

F. Liu, « The engineering of bacteria bearing azido-pseudaminic acid-modified flagella, Chembiochem 10, vol.8, pp.1439-7633, 2009.

X. Liu, « High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae, » In : Mol. Syst. Biol. 13, vol.5, pp.1744-4292, 2017.

J. Löfling, « Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues, Cell. Microbiol, vol.13, pp.186-197, 2011.

R. López, « Biological roles of two new murein hydrolases of Streptococcus pneumoniae representing examples of module shuffling, 2000.

, , pp.172-180

J. Lunderberg and . Mark, « Bacillus anthracis acetyltransferases PatA1 and PatA2 modify the secondary cell wall polysaccharide and affect the assembly of S-layer proteins, J. Bacteriol, vol.195, pp.977-89, 2013.

P. Macheboeuf, « Active site restructuring regulates ligand recognition in class A penicillin-binding proteins, Proc. Natl. Acad. Sci. 102.3, pp.27-8424, 2005.

P. Macheboeuf, « Penicillin Binding Proteins : key players in bacterial cell cycle and drug resistance processes, FEMS Microbiol. Rev, vol.30, pp.1574-6976, 2006.

A. Madhour, P. Maurer, and R. Hakenbeck, « Cell surface proteins in S. pneumoniae, S. mitis and S. oralis, Iran. J. Microbiol. 3, vol.2, pp.58-67, 2011.

B. Maestro, M. Jesús, and . Sanz, Choline Binding Proteins from Streptococcus pneumoniae : A Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials. » In : Antibiot, 2016.

B. Maestro, « Recognition of peptidoglycan and ?-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae, FEBS Lett, vol.585, pp.357-363, 2011.

J. Mainardi, « Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria, FEMS Microbiol. Rev, vol.32, pp.1574-6976, 2008.

B. Mann, « Multifunctional role of choline binding protein G in pneumococcal pathogenesis, Infect. Immun, vol.74, pp.19-9567, 2006.

S. Manuse, « Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ, Nat. Commun, vol.7, pp.2041-1723, 2016.

J. E. Marshall, « The Crystal Structure of Pneumolysin at 2.0 Å Resolution Reveals the Molecular Packing of the Pre-pore Complex, Sci. Rep. 5, vol.1, pp.2045-2322, 2015.

B. S. Marteyn, « ZapE is a novel cell division protein interacting with FtsZ and modulating the Z-ring dynamics, MBio 5.2. issn, p.21507511, 2014.

A. C. Martín, . López, and . García, « Functional analysis of the two-gene lysis system of the pneumococcal phage Cp-1 in homologous and heterologous host cells. » In, J. Bacteriol, vol.180, pp.21-9193, 1998.

M. , H. Herbert, and G. Jobst, « Modification of Peptidoglycan Structure by Penicillin Action in Cell Walls of Proteus mirabilis, Eur. J. Biochem, vol.95, issue.3, pp.14-2956, 1979.

B. Martínez, « Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the Lactococcal two-component system CesSR, 2007.

. Microbiol, , vol.64, pp.473-86

A. Martner, « Pneumolysin released during Streptococcus pneumoniae autolysis is a potent activator of intracellular oxygen radical production in neutrophils, Infect. Immun, vol.76, pp.4079-4087, 2008.

A. Martner, « Streptococcus pneumoniae autolysis prevents phagocytosis and production of phagocyte-activating cytokines, Infect. Immun, vol.77, pp.3826-3837, 2009.

O. Massidda, « Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae, Microbiology 144, vol.11, pp.3069-3078, 1998.

. Massidda, L. Orietta, W. Nováková, and . Vollmer, « From models to pathogens : how much have we learned about <i>Streptococcus pneumoniae</i> cell division ?, In : Environ. Microbiol. 15, vol.12, pp.3133-3157, 2013.

J. Maspons, « Identification of Living <i>Legionella pneumophila</i> Using Species-Specific Metabolic Lipopolysaccharide Labeling, p.14337851, 2014.

C. S. Mckay and M. Finn, « Click chemistry in complex mixtures : bioorthogonal bioconjugation, Chem. Biol, vol.21, pp.1879-1301, 2014.

D. C. Mcpherson, L. David, and . Popham, « Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis, J. Bacteriol, vol.185, pp.21-9193, 2003.

A. J. Meeske, « SEDS proteins are a widespread family of bacterial cell wall polymerases. » In : Nature 537, vol.7622, pp.1476-4687, 2016.

P. Mellroth, « LytA, major autolysin of Streptococcus pneumoniae, requires access to nascent peptidoglycan, J. Biol. Chem. 287, vol.14, pp.11018-11029, 2012.

P. Mellroth, « Structural and functional insights into peptidoglycan access for the lytic amidase LytA of Streptococcus pneumoniae, MBio 5.1. issn, p.21612129, 2014.

M. Meyrand, « Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis, Microbiology 153, vol.10, pp.3275-3285, 2007.

A. Minnen, « SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae, Mol. Microbiol, vol.81, issue.3, pp.676-688, 2011.

T. Mohammadi, « Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane, EMBO J, vol.30, pp.1425-1432, 2011.

R. Molina, « Crystal structure of CbpF, a bifunctional cholinebinding protein and autolysis regulator from Streptococcus pneumoniae, In : EMBO Rep, vol.10, pp.1469-3178, 2009.

B. Monterroso, « Unravelling the structure of the pneumococcal autolytic lysozyme, Biochem. J. 391, vol.1, pp.264-6021, 2005.

C. Morlot, « Interaction of Penicillin-Binding Protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis, Mol. Microbiol. 90, vol.1, pp.88-102, 2013.

C. Morlot, « Growth and division of Streptococcus pneumoniae : Localization of the high molecular weight penicillin-binding proteins during the cell cycle, Mol. Microbiol, vol.50, issue.3, pp.845-855, 2003.

C. Morlot, « The D,D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae, » In : Mol. Microbiol. 51, vol.6, pp.950-382, 2004.

I. Mortier-barrière, « A Key Presynaptic Role in Transformation for a Widespread Bacterial Protein : DprA Conveys Incoming ssDNA to RecA, Cell 130, vol.5, pp.824-836, 2007.

M. Moscoso, E. Garcia, and R. Lopez, « Biofilm Formation by Streptococcus pneumoniae : Role of Choline, Extracellular DNA, and Capsular Polysaccharide in Microbial Accretion, J. Bacteriol, vol.188, pp.7785-7795, 2006.

J. L. Mosser and . Tomasz, « Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme, J. Biol. Chem. 245, vol.2, p.219258, 1970.

N. Mouz, « Mutations in the active site of penicillin-binding protein PBP2x from Streptococcus pneumoniae. Role in the specificity for beta-lactam antibiotics, J. Biol. Chem, vol.274, pp.21-9258, 1999.

P. J. Moynihan, J. Et-anthony, and . Clarke, « O-acetylation of peptidoglycan in gram-negative bacteria : Identification and characterization of peptidoglycan O-acetyltransferase in Neisseria gonorrhoeae, Int. J. Biochem. Cell Biol. issn, vol.17, p.13572725, 2010.

P. J. Moynihan, D. Sychantha, and A. J. Clarke, « Chemical biology of peptidoglycan acetylation and deacetylation, Bioorg. Chem, vol.54, pp.44-50, 2014.

R. Mukerji, « Pneumococcal surface protein A inhibits complement deposition on the pneumococcal surface by competing with the binding of C-reactive protein to cell-surface phosphocholine, J. Immunol, vol.189, pp.1550-6606, 2012.

A. Müller, A. Klöckner, and T. Schneider, « Targeting a cell wall biosynthesis hot spot, Nat. Prod. Rep, vol.34, pp.1460-4752, 2017.

A. Mura, « Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae, J. Bacteriol, vol.199, issue.3, 2016.

J. W. Nelson, « A biosynthetic strategy for re-engineering the Staphylococcus aureus cell wall with non-native small molecules, ACS Chem. Biol. 5, vol.12, pp.1554-8937, 2010.

F. C. Neuhaus and J. Baddiley, « A continuum of anionic charge : structures and functions of D-alanyl-teichoic acids in gram-positive bacteria, » In : Microbiol. Mol. Biol. Rev, vol.67, pp.1092-2172, 2003.

G. U. Nienhaus, « The Green Fluorescent Protein : A Key Tool to Study Chemical Processes in Living Cells, vol.47, p.14337851, 2008.

M. Noirclerc-savoye, « In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae, Mol. Microbiol, vol.55, pp.413-424, 2005.

L. Nováková, « Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates, FEBS J. 272, vol.5, pp.1243-1254, 2005.

A. D. Ogunniyi, « Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model, Infect. Immun, vol.75, pp.19-9567, 2007.

N. Ohno, . Yadomae, and . Miyazaki, « Enhancement of autolysis of Streptococcus pneumoniae by lysozyme, » In : Microbiol. Immunol, vol.26, pp.385-5600, 1982.

Y. Oku, « Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic acid in growth of Staphylococcus aureus cells, J. Bacteriol, vol.191, issue.1, pp.141-51, 2009.

N. K. Olrichs, « A Novel in vivo Cell-Wall Labeling Approach Sheds New Light on Peptidoglycan Synthesis in Escherichia coli, ChemBioChem 12, vol.7, p.14394227, 2011.

U. Omasits, « Protter : Interactive protein feature visualization and integration with experimental proteomic data, Bioinformatics, vol.30, p.13674803, 2014.

C. J. Orihuela, « Tissue-specific contributions of pneumococcal virulence factors to pathogenesis, J. Infect. Dis, vol.190, pp.22-1899, 2004.

E. Pagliero, « Biochemical characterization of Streptococcus pneumoniae penicillin-binding protein 2b and its implication in beta-lactam resistance, Antimicrob. Agents Chemother, vol.48, pp.66-4804, 2004.

E. Pagliero, « The Inactivation of a New Peptidoglycan Hydrolase Pmp23 Leads to Abnormal Septum Formation in Streptococcus pneumoniae, Open Microbiol. J, vol.2, issue.1, pp.107-121, 2008.

J. Paik, « Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin-binding proteins, J. Bacteriol. 181, vol.12, p.219193, 1999.

A. Paintdakhi, « Oufti : An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis, vol.4, pp.767-777, 2016.

S. Pares, X-ray structure of Streptococcus pneumoniae PBP2x, vol.3, pp.1072-8368, 1996.

L. Pasquina, « A synthetic lethal approach for compound and target identification in Staphylococcus aureus, Nat. Chem. Biol, vol.12, issue.1, pp.1552-4469, 2016.

D. M. Patterson, A. Lidia, J. A. Nazarova, and . Prescher, « Finding the Right (Bioorthogonal) Chemistry, ACS Chem. Biol, vol.9, pp.1554-8929, 2014.

J. Pédelacq, « Engineering and characterization of a superfolder green fluorescent protein, Nat. Biotechnol. 24, vol.1, pp.1087-0156, 2006.

S. Peppoloni, « The Spr1875 protein confers resistance to the microglia-mediated killing of Streptococcus pneumoniae, Microb. Pathog. 59-60, pp.42-47, 2013.

M. G. Percy and A. Gründling, « Lipoteichoic Acid Synthesis and Function in Gram-Positive Bacteria, Annu. Rev. Microbiol, vol.68, pp.1545-3251, 2014.

I. Pérez-dorado, S. Galan-bartual, and J. A. Hermoso, « Pneumococcal surface proteins : when the whole is greater than the sum of its parts, Mol. Oral Microbiol, vol.27, p.20411006, 2012.

. Pérez-dorado and . Inmaculada, « Crystallization of the pneumococcal autolysin LytC : in-house phasing using novel lanthanide complexes, Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66.Pt, vol.4, pp.1744-3091, 2010.

K. Peters, « Streptococcus pneumoniae PBP2x mid-cell localization requires the C-terminal PASTA domains and is essential for cell shape maintenance, Mol. Microbiol, vol.92, pp.733-755, 2014.

J. M. Pfeffer, « Peptidoglycan O acetylation and autolysin profile of Enterococcus faecalis in the viable but nonculturable state, J. Bacteriol, vol.188, issue.3, pp.902-908, 2006.

J. Philippe, « Pneumococcus morphogenesis and resistance to betalactams, 2014.

J. Philippe, « Mechanism of b-lactam action in Streptococcus pneumoniae : the piperacillin paradox, Antimicrob. Agents Chemother. 59, vol.1, p.10986596, 2015.

S. E. Pidgeon, « Metabolic Profiling of Bacteria by Unnatural Cterminated D-Amino Acids, Angew. Chem. Int. Ed. Engl. 54, vol.21, pp.1521-3773, 2015.

M. G. Pinho, M. Kjos, and J. Veening, « How to get (a)round : mechanisms controlling growth and division of coccoid bacteria, Nat. Rev. Microbiol, vol.11, pp.1740-1526, 2013.

D. L. Popham and . Setlow, « Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins, J. Bacteriol, vol.178, pp.21-9193, 1996.

R. Raaphorst, M. Van, J. Kjos, and . Veening, « Chromosome segregation drives division site selection in Streptococcus pneumoniae, » In : Proc. Natl. Acad. Sci. U. S. A. P, pp.1091-6490, 2017.

M. Rajagopal and S. Walker, « Envelope Structures of GramPositive Bacteria, pp.1-44, 2015.

C. P. Ramil and Q. Lin, « Bioorthogonal chemistry : strategies and recent developments, Chem. Commun, pp.11007-11029, 2013.

E. Ramos-sevillano, « Nasopharyngeal colonization and invasive disease are enhanced by the cell wall hydrolases LytB and LytC of Streptococcus pneumoniae, PLoS One 6.8. issn : 19326203, 2011.

E. Ramos-sevillano, « Pleiotropic effects of cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response, Infect. Immun, vol.83, p.10985522, 2015.

L. Rane, ;. Subbarow, V. Ii, V. , and V. , « Nutritional Requirements of the Pneumococcus : I. Growth Factors for Types I, J. Bacteriol, vol.40, pp.21-9193, 1940.

G. Regev-yochay, « SpxB is a suicide gene of Streptococcus pneumoniae and confers a selective advantage in an in vivo competitive colonization model, J. Bacteriol, vol.189, pp.6532-6539, 2007.

R. Sadamoto, « Cell-Wall Engineering of Living Bacteria, 2002.

S. G. Richter, « Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria, » In : Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.3531-3537, 2013.

P. Rico-lastres, « Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence, In : Sci. Rep, vol.5, pp.2045-2322, 2015.

A. C. Rios, « Alternatives to overcoming bacterial resistances : State-of-the-art, Microbiol. Res, vol.191, pp.51-80, 2016.

J. L. Rodriguez, B. Ankur, . Dalia, . Jeffrey, and . Weiser, « Increased chain length promotes pneumococcal adherence and colonization, Infect. Immun, vol.80, pp.1098-5522, 2012.

P. Romero, R. López, and E. García, « Key role of amino acid residues in the dimerization and catalytic activation of the autolysin LytA, an important virulence factor in Streptococcus pneumoniae, J. Biol. Chem. 282, vol.24, pp.17729-17737, 2007.

C. Rosenow, « Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae, » In : Mol. Microbiol. 25, vol.5, pp.819-829, 1997.

R. S. Rosenthal, J. Blundell, and H. Perkins, « Strain-related differences in lysozyme sensitivity and extent of O-acetylation of gonococcal peptidoglycan, In : Infect. Immun, vol.37, pp.19-9567, 1982.

B. E. Rued, « Suppression and synthetic-lethal genetic relationships of ? <i>gps</i> <i>B</i> mutations indicate that GpsB mediates protein phosphorylation and penicillin-binding protein interactions in <i>S</i> <i>treptococcus pneumoniae</i> D39, Mol. Microbiol. 103, vol.6, pp.931-957, 2017.

R. Sadamoto, « Control of Bacteria Adhesion by Cell-Wall Engineering, J. Am. Chem. Soc. 126, vol.12, pp.3755-3761, 2004.

R. Sadamoto, « Bacterial Surface Engineering Utilizing Glucosamine Phosphate Derivatives as Cell Wall Precursor Surrogates, vol.33, pp.10192-10195, 2008.

B. Salerno, G. Anne, and F. R. Bryant, « DNA Binding Compatibility of the Streptococcus pneumoniae SsbA and SsbB Proteins, PLoS One 6.9. Sous la dir. de Vladimir N. Uversky, e24305. issn, pp.1932-6203, 2011.

. Sanchez-puelles and M. José, « Searching for autolysin functions : Characterization of a pneumococcal mutant deleted in the lytA gene, Eur. J. Biochem, vol.158, pp.289-293, 1986.

T. Sandalova, « The crystal structure of the major pneumococcal autolysin LytA in complex with a large peptidoglycan fragment reveals the pivotal role of glycans for lytic activity, Mol. Microbiol, vol.101, issue.6, pp.954-967, 2016.

J. Sanz, R. Miguel, J. Lopez, and . Garcia, « Structural requirements of choline derivatives for 'conversion' of pneumococcal amidase A new single-step procedure for purification of this autolysin, FEBS Lett, vol.232, pp.80759-80761, 1988.

P. Sarkar, « A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics, Med. Chem. Commun, vol.8, issue.3, pp.2040-2503, 2017.

L. Sasková, « Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae, J. Bacteriol, vol.189, pp.21-9193, 2007.

E. Sauvage and M. Terrak, Glycosyltransferases and Transpeptidases/Penicillin Binding Proteins : Valuable Targets for New Antibacterials. » In : Antibiot, pp.2079-6382, 2016.

E. Sauvage, « The penicillin-binding proteins : structure and role in peptidoglycan biosynthesis, FEMS Microbiol. Rev, vol.32, pp.1574-6976, 2008.

K. Schaefer, « In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins, Nat. Chem. Biol, vol.13, pp.396-401, 2017.

K. Schirner, « Distinct and essential morphogenic functions for wall-and lipo-teichoic acids in Bacillus subtilis, EMBO J, vol.28, pp.1460-2075, 2009.

M. Schlag, « Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl, Mol. Microbiol, vol.75, pp.864-873, 2010.

K. H. Schleifer and . Kandler, « Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev, vol.36, pp.5-3678, 1972.

O. Schneewind, M. Dominique, and . Missiakas, « Protein secretion and surface display in Gram-positive bacteria, » In : Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.367, pp.1123-1162, 2012.

O. Scholz, « Quantitative analysis of gene expression with an improved green fluorescent protein, Eur. J. Biochem, vol.267, pp.1565-1570, 2000.

M. R. Schroeder, S. Et-david, and . Stephens, « Macrolide Resistance in Streptococcus pneumoniae, Front. Cell. Infect. Microbiol, vol.6, pp.2235-2988, 2016.

C. Schuster, B. Dobrinski, and R. Hakenbeck, « Unusual septum formation in Streptococcus pneumoniae mutants with an alteration in the D,Dcarboxypeptidase penicillin-binding protein 3, J. Bacteriol, vol.172, p.219193, 1990.

A. Severin and . Tomasz, « Naturally occurring peptidoglycan variants of Streptococcus pneumoniae, J. Bacteriol, vol.178, pp.21-9193, 1996.

A. Severin, « Altered murein composition in a DD-carboxypeptidase mutant of Streptococcus pneumoniae, J. Bacteriol, vol.174, pp.21-9193, 1992.

L. Sham, « Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39, Proc. Natl. Acad. Sci. 108, vol.45, 2011.

. Sham and . Lok-to, « Involvement of FtsE ATPase and FtsX extracellular loops 1 and 2 in FtsEX-PcsB complex function in cell division of Streptococcus pneumoniae D39, pp.2150-7511, 2013.

T. Shimada, « Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion, Cell Host Microbe, pp.1934-6069, 2010.

D. Shiomi, « Mutations in cell elongation genes mreB, mrdA and mrdB suppress the shape defect of RodZ-deficient cells, » In : Mol. Microbiol, vol.87, pp.1365-2958, 2013.

T. Sidow, L. Johannsen, and H. Labischinski, « Penicillininduced changes in the cell wall composition of Staphylococcus aureus before the onset of bacteriolysis, Arch. Microbiol. 154, vol.1, pp.73-81, 1990.

S. D. Siegel, J. Liu, and H. Ton-that, « Biogenesis of the Grampositive bacterial cell envelope, Curr. Opin. Microbiol, vol.34, p.13695274, 2016.

S. J. Siegel, N. Et-jeffrey, and . Weiser, « Mechanisms of Bacterial Colonization of the Respiratory Tract, Annu. Rev. Microbiol, vol.69, issue.1, pp.66-4227, 2015.

M. S. Siegrist, « Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface, FEMS Microbiol. Rev, vol.39, pp.1574-6976, 2015.

M. Siegrist and . Sloan, « (D)-Amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen, ACS Chem. Biol, vol.8, issue.3, pp.1554-8937, 2013.

K. Sivakumar, « A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes, Org. Lett. 6, vol.24, pp.4603-4609, 2004.

S. Skovbjerg, « Intact Pneumococci Trigger Transcription of Interferon-Related Genes in Human Monocytes, while Fragmented, Infect. Immun. 85.5. Sous la dir. de Nancy E. Freitag, pp.19-9567, 2017.

E. M. Sletten, R. Carolyn, and . Bertozzi, « Bioorthogonal chemistry : fishing for selectivity in a sea of functionality, Angew. Chem. Int. Ed. Engl, vol.48, pp.1521-3773, 2009.

O. Sliusarenko, « High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics, Mol. Microbiol, vol.80, issue.3, pp.612-627, 2011.

A. M. Smith and . Keith-p-klugman, « Amino acid mutations essential to production of an altered PBP 2X conferring high-level beta-lactam resistance in a clinical isolate of Streptococcus pneumoniae. » In : Antimicrob. Agents Chemother. 49.11, pp.66-4804, 2005.

T. J. Smith, A. Steve, . Blackman, J. Simon, and . Foster, « Autolysins of <i>Bacillus subtilis</i> : Multiple enzymes with multiple functions, Microbiology 146, vol.2, pp.249-262, 2000.

C. Sohlenkamp, O. López-lara, and . Geiger, « Biosynthesis of phosphatidylcholine in bacteria, Prog. Lipid Res, vol.42, pp.163-7827, 2003.

J. Song and . Young, « Diagnosis of Pneumococcal Pneumonia : Current Pitfalls and the Way Forward, Infect. Chemother, vol.45, pp.2093-2340, 2013.

C. D. Spicer, G. Et-benjamin, and . Davis, « Selective chemical protein modification, Nat. Commun, vol.5, pp.2041-1723, 2014.

A. J. Standish, J. Jonathan, R. Whittall, and . Morona, « Tyrosine phosphorylation enhances activity of pneumococcal autolysin LytA, Microbiology 160, pp.2745-2754, 2014.

H. Steinmoen, E. Knutsen, and . Leiv-sigve-håvarstein, « Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population, » In : Proc. Natl. Acad. Sci. U. S. A. 99, vol.11, pp.7681-7687, 2002.

S. Stimpson, « Arthropathic properties of cell wall polymers from normal flora bacteria, Infect. Immun. 51, vol.1, pp.19-9567, 1986.

H. Strating and A. J. Clarke, « Differentiation of Bacterial Autolysins by Zymogram Analysis, Anal. Biochem. 291, vol.1, pp.149-154, 2001.

D. Straume, « Overexpression of the fratricide immunity protein ComM leads to growth inhibition and morphological abnormalities in Streptococcus pneumoniae, Microbiology 163.1, pp.9-21, 2017.

X. Sun, « Phosphoproteomic Analysis Reveals the Multiple Roles of Phosphorylation in Pathogenic Bacterium Streptococcus pneumoniae, J. Proteome Res, vol.9, issue.1, pp.275-282, 2010.

C. K. Sung, « An rpsL Cassette, Janus, for Gene Replacement through Negative Selection in Streptococcus pneumoniae, Appl. Environ. Microbiol, vol.67, pp.5190-5196, 2001.

H. Tsui and . Tiffany, « Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in <i>S</i> <i>treptococcus pneumoniae</i> D39, Mol. Microbiol, vol.100, pp.1039-1065, 2016.

R. D. Turner, W. Vollmer, J. Simon, and . Foster, « Different walls for rods and balls : the diversity of peptidoglycan, Mol. Microbiol. 91, vol.5, pp.862-874, 2014.

A. Typas, « From the regulation of peptidoglycan synthesis to bacterial growth and morphology, Nat. Rev. Microbiol, vol.10, pp.1740-1526, 2011.

E. Vassal-stermann, « Human L-Ficolin Recognizes Phosphocholine Moieties of Pneumococcal Teichoic Acid, J. Immunol, vol.193, pp.22-1767, 2014.

P. Veiga, « SpxB Regulates O-Acetylation-dependent Resistance of Lactococcus lactis Peptidoglycan to Hydrolysis, J. Biol. Chem, vol.282, pp.21-9258, 2007.

P. Veiga, « SpxB Regulates O-Acetylation-dependent Resistance of Lactococcus lactis Peptidoglycan to Hydrolysis, J. Biol. Chem, vol.282, pp.19342-19354, 2007.

F. J. Veyrier, « De-O-acetylation of peptidoglycan regulates glycan chain extension and affects in vivo survival of Neisseria meningitidis, Mol. Microbiol, vol.87, pp.1100-1112, 2013.

D. Vocadlo, « Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. » In : Nature 412, vol.6849, pp.28-0836, 2001.

J. E. Volanakis and M. Kaplan, « Specificity of C-reactive protein for choline phosphate residues of pneumococcal C-polysaccharide, In : Proc. Soc. Exp. Biol. Med. 136, vol.2, pp.37-9727, 1971.

W. Vollmer and . Tomasz, « The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae, J. Biol. Chem, vol.275, pp.21-9258, 2000.

W. Vollmer, A. Et, and . Tomasz, « Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae, Mol. Microbiol. 39, vol.6, pp.1610-1622, 2001.

W. Vollmer, « Structural variation in the glycan strands of bacterial peptidoglycan, FEMS Microbiol. Rev, vol.32, pp.287-306, 2008.

W. Vollmer, D. Blanot, A. Miguel, and . De-pedro, « Peptidoglycan structure and architecture, FEMS Microbiol. Rev, vol.32, pp.1574-6976, 2008.

W. Vollmer, J. Stephen, and . Seligman, « Architecture of peptidoglycan : more data and more models, Trends Microbiol, vol.18, pp.59-66, 2010.

W. Vollmer and A. Tomasz, « Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae, » In : Infect. Immun. 70, vol.12, pp.19-9567, 2002.

W. Vollmer, « Bacterial peptidoglycan (murein) hydrolases, FEMS Microbiol. Rev, vol.32, pp.259-286, 2008.

S. Voss, « The choline-binding protein PspC of Streptococcus pneumoniae interacts with the C-terminal heparin-binding domain of vitronectin, J. Biol. Chem. 288, vol.22, pp.1083-351, 2013.

X. Wang, P. M. Llopis, and . David-z-rudner, « Bacillus subtilis chromosome organization oscillates between two distinct patterns, Proc. Natl. Acad. Sci, pp.12877-82, 2014.

X. Wang and . David-z-rudner, « Spatial organization of bacterial chromosomes, Curr. Opin. Microbiol, vol.22, pp.66-72, 2014.

S. Wanner, « Wall teichoic acids mediate increased virulence in Staphylococcus aureus, Nat. Microbiol, vol.2, pp.2058-5276, 2017.

F. Wartha, « Capsule and d-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps, 2007.

. Microbiol, , vol.5, pp.1162-1171

J. T. Weadge, J. Et-anthony, and . Clarke, « Identification and Characterization of O-Acetylpeptidoglycan Esterase : A Novel Enzyme Discovered in Neisseria gonorrhoeae, 2005.

J. T. Weadge, J. M. Pfeffer, J. Anthony, and . Clarke, « Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria, BMC Microbiol, vol.5, pp.1471-2180, 2005.

C. Weidenmaier and A. Peschel, « Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions, Nat. Rev. Microbiol, vol.6, pp.1740-1526, 2008.

J. Weiser, « Phase variation in pneumococcal opacity : relationship between colonial morphology and nasopharyngeal colonization, Infect. Immun. 62, vol.6, pp.19-9567, 1994.

J. Weiser, « Relationship between phase variation in colony morphology, intrastrain variation in cell wall physiology, and nasopharyngeal colonization by Streptococcus pneumoniae, Infect. Immun. 64, vol.6, pp.19-9567, 1996.

A. Whatmore and . M-et-c-g-dowson, « The autolysin-encoding gene (lytA) of Streptococcus pneumoniae displays restricted allelic variation despite localized recombination events with genes of pneumococcal bacteriophage encoding cell wall lytic enzymes, In : Infect. Immun, vol.67, pp.19-9567, 1999.

R. Wheeler, « Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria, Mol. Microbiol, vol.82, pp.1096-1109, 2011.

T. M. Wizemann, « Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection, Infect. Immun, vol.69, issue.3, pp.1593-1598, 2001.

K. Wu, « A novel protein, RafX, is important for common cell wall polysaccharide biosynthesis in Streptococcus pneumoniae : implications for bacterial virulence, J. Bacteriol, vol.18, pp.3324-3358, 0196.

H. Xu, « Pneumococcal wall teichoic acid is required for the pathogenesis of Streptococcus pneumoniae in murine models, J. Microbiol, vol.53, pp.1225-8873, 2015.

H. Yamamoto, « The major and minor wall teichoic acids prevent the sidewall localization of vegetative dl-endopeptidase LytF in <i>Bacillus subtilis</i>, Mol. Microbiol, vol.70, pp.297-310, 2008.

M. Yang, J. Li, and . Peng-r-chen, « Transition metal-mediated bioorthogonal protein chemistry in living cells, Chem. Soc. Rev, vol.43, pp.6511-6537, 2014.

. Yeats, R. D. Corin, A. Finn, and . Bateman, « The PASTA domain : A ?-lactam-binding domain, Trends Biochem. Sci, vol.27, pp.438-440, 2002.

W. Yi, « Remodeling bacterial polysaccharides by metabolic pathway engineering, » In : Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.1091-6490, 2009.

T. Yother, « Capsules, The pneumococcus. Sous la dir. d'E Tuomanen et al. American Society of Microbiology, pp.30-48, 2004.

N. Young, S. J. Martin, W. W. Foote, and . Wakarchuk, « Review of phosphocholine substituents on bacterial pathogen glycans : Synthesis, structures and interactions with host proteins, Mol. Immunol, vol.56, pp.563-573, 2013.

Y. , S. Y. , J. K. Broome-smith, and B. G. Spratt, « Lysis of Escherichia coli by.-Lactam Antibiotics : Deletion Analysis of the Role of Penicillinbinding Proteins 1A and 1B, Microbiology 131, vol.10, pp.2839-2845, 1985.

R. Yunck, H. Cho, G. Thomas, and . Bernhardt, « Identification of MltG as a potential terminase for peptidoglycan polymerization in bacteria, Mol. Microbiol, vol.99, pp.700-718, 2016.

M. Zalacain, « A global approach to identify novel broadspectrum antibacterial targets among proteins of unknown function, » In : J, 2003.

, Mol. Microbiol. Biotechnol. 6, vol.2, pp.1464-1801

A. Zapun, C. Contreras-martel, and T. Vernet, « Penicillinbinding proteins and ?-lactam resistance, FEMS Microbiol. Rev, vol.32, pp.1574-6976, 2008.

A. Zapun, T. Vernet, and M. G. Pinho, « The different shapes of cocci, FEMS Microbiol. Rev, vol.32, pp.1574-6976, 2008.

G. Zhang, « Illuminating biological processes through site-specific protein labeling, Chem. Soc. Rev, vol.44, pp.1460-4744, 2015.