W. Iru-wkh-3 and Z. \hdu, LJXUH 3 7KH, 2012.

$. and F. Vxiihu,

L. Ru, , 2004.

G. Gu\-vhdvrqv and W. 80%,

$. Suhflslwdwlrq-wr-2020, L. , 0. , W. , and 1. Orvv, , 2014.

R. Lo and L. 6rxwk, , 2012.

R. Do, , 2004.

D. Wkh, , 2004.

3. Rq and &. &kdqjh, , vol.3, 2014.

L. , Q. References, A. , and B. A. , ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis, The Plant Cell, vol.19, pp.1665-1681, 2007.

A. and S. , DroughtDB: an expert-curated compilation of plant drought stress genes and their homologs in nine species, Database, vol.15, p.46, 2015.

A. , R. J. Walker-simmons, and M. K. , Isolation of a wheat cDNA clone for an Abscisic acid-inducible transcript with homology to protein kinases, Proceedings of the National Academy of Sciences, vol.89, pp.10183-10187, 1992.

A. and F. , The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers, Theoretical and Applied Genetics, vol.104, pp.894-900, 2002.

A. and E. D. , Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil

. Pesquisa-agropecuária-brasileira, , pp.1057-1064, 2004.

A. and G. A. , Leaf miner incidence in coffee plants under different drip irrigation regimes and planting densities. Pesquisa Agropecuária Brasileira, vol.47, pp.157-162, 2012.

B. and A. , Ecophysiological diversity of wild Coffea arabica populations in Ethiopia: drought adaptation mechanisms, 2007.

B. and C. , Identification of features regulating OST1 kinase activity and OST1 function in guard cells, Plant Physiology, vol.141, pp.1316-1327, 2006.

B. and G. , The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis, Plant Cell Reports, issue.8, pp.1357-1369, 2012.

B. and B. , Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs, arabica. Theoretical and Applied Genetics, vol.107, issue.1, pp.379-395, 2003.

B. and S. B. , Cold acclimation in the moss Physcomitrella patens involves abscisic aciddependent signaling, Journal of Plant Physiology, vol.169, pp.137-145, 2012.

B. and U. , Characterization of potential ABA receptors in Vitis vinifera, Plant Cell Reports, issue.2, pp.311-321, 2012.

B. and P. , The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues, Protein Science, issue.5, pp.1421-1425, 1996.

B. , M. ;. Barbier-brygoo, H. ;. Lauriere, and C. , Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana, Journal of Biological Chemistry, vol.279, pp.41758-41766, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122336

B. and M. , Different phosphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid, Plant Molecular Biology, vol.63, issue.4, pp.491-503, 2007.

B. and J. , Étude expérimentale des effets du régime d'humidité du sol sur la croissance végétative, la floraison et la fructification des caféiers Robusta. Café Cacao Thé, vol.13, pp.187-200, 1969.

C. , A. P. Santinato, R. Cortez, and J. G. , Aptidão climática para qualidade da bebida nas principais regiões cafeeiras de Arábica no Brasil, BRAZILIAN CONGRESS OF COFFEE RESEARCH, vol.18, pp.70-74, 1992.

C. and J. , Parkinson disease and Alzheimer disease: environmental risk factors, Neurologia, vol.29, issue.9, pp.541-549, 2014.

C. and S. , Coffee consumption and risk of type 2 diabetes in finnish twins, International Journal of Epidemiology, issue.3, pp.616-617, 2004.

C. , F. De, and A. , Estrutura e diversidade genética de uma população de Coffea canephora conilon utilizando marcadores SNPs identificados por nextRAD, vol.9, p.10, 2015.

C. and C. , Light-regulated stomatal aperture in, Arabidopsis Mol. Plant, issue.5, pp.566-572, 2012.

C. , W. R. Carvalho, and C. R. , Comparison of the Coffea canephora and C. arabica karyotype based on chromosomal DNA content, Plant Cell Reports, vol.28, pp.73-81, 2009.

C. and M. C. , Regulatory divergence between parental alleles determines gene expression patterns in hybrids, Genome Biology and Evolution, issue.4, pp.1110-1121, 2015.

C. Abastecimento, , vol.104, 2015.

C. and J. W. , Chemistry and Physiology of 'Dormins' in sycamore: identity of sycamore 'Dormin' with Abscisin II, Nature, pp.1269-1270, 1965.

C. and S. R. , Abscisic acid: emergence of a core signaling network, Annual Review of Plant Biology, vol.61, pp.651-679, 2010.

D. and F. M. , Drought tolerance of two field-grown clones of Coffea canephora, Plant Science, vol.164, pp.111-117, 2003.

D. , F. M. Ramalho, and J. D. , Impacts of drought and temperature stress on coffee physiology and production: a review, Brazilian Journal of Plant Physiology, vol.18, pp.55-81, 2006.

D. Olivas and N. H. , Effect of prior drought and pathogen stress on Arabidopsis transcriptome changes to caterpillar herbivory, New Phytologist, pp.1344-1356

D. and A. P. , An annotated taxonomic conspectus of the genus Coffea (Rubiaceae), Journal of the Linnean Society, vol.152, pp.465-512, 2006.

D. and A. P. , The impact of climate change on indigenous Arabica coffee (Coffea arabica): predicting future trends and identifying priorities, PLoS ONE, p.47981, 2012.

D. and F. , The coffee genome provides insight into the convergent evolution of caffeine biosynthesis, Science, vol.345, pp.1181-1184, 2014.

D. Marais and D. L. , Physiological genomics of response to soil drying in diverse Arabidopsis accessions, The Plant Cell, pp.893-914, 2012.

D. and P. , Le rapport longuer pivot/longuer hypocotyle des plantules de Coffee racemosa Lour. et de quelques autres espècies du genre. Café Cacao Thé, vol.12, pp.127-134, 1968.

F. and J. , Abscisic acid has a key role in modulating diverse plant-pathogen interactions, Plant Physiology, vol.150, pp.1750-1761, 2009.

F. and L. C. , Resistência de Coffea racemosa ao Meloidogyne exigua. Bragantia, Campinas, v. 36, n. 29, pp.297-307, 1975.

F. and R. , EMCAPA 8141-Robustão Capixaba, variedade clonal de café Conilon tolerante à seca, desenvolvida para o estado do Espírito Santo, Ceres, pp.555-560, 2000.

F. and R. , Abscisic acid synthesis and response. The Arabidopsis Book, Bethesda, p.166, 2013.

F. and A. F. , Conilon Vitória-Incaper 8142: improved Coffea canephora var, Crop Breeding and Applied Biotechnology, pp.1-3, 2004.

F. and S. , Type 2C protein phosphatases in plants, FEBS Journal, vol.280, issue.2, pp.681-693, 2013.

F. , H. ;. Zhu, and J. K. , Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress, Proceedings of the National Academy of Sciences USA, vol.106, pp.8380-8385, 2009.

F. , Y. ;. Yoshida, T. ;. Yamaguchi-shinozaki, and K. , Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants, Physiology Plantarum, vol.147, pp.15-27, 2013.

F. and T. , Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1, Proceedings of the National Academy of Sciences USA, issue.103, 1988.

G. and S. , Does coffee protect against hepatocellular carcinoma?, British Journal of Cancer, vol.87, issue.9, pp.956-959, 2002.

G. and G. A. , Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape, Planta, vol.232, pp.219-234

G. and D. M. , Response of perennial horticultural crops to climate change, Horticultural Reviews, vol.47, p.130, 2014.

G. and M. , Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance, Journal of Experimental Botany, vol.15, pp.4451-4464, 2014.

G. and F. , ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling, Plant Cell, issue.11, pp.1897-1909, 1999.

H. and K. , Origin and evolution of genes related to ABA metabolism and its signaling pathways, Journal of Plant Research, vol.124, issue.4, pp.455-65, 2011.

H. and Q. , The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins, Molecular Cell, vol.42, issue.5, pp.662-672, 2011.

H. and W. , Abscisic acid in the xylem: where does it come from, where does it go to, Journal of Experimental Botany, vol.53, pp.27-32, 2002.

H. and T. , Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation, Plant Cell Reports, vol.19, pp.106-110, 1999.

H. and J. L. , Climate change: challenges for future crop adjustments, pp.1-26, 2013.

H. , F. ;. Waadt, R. Schroeder, and J. I. , Evolution of abscisic acid synthesis and signaling mechanisms, Current Biology, issue.9, pp.346-355, 2011.

H. , R. R. Mishra, V. K. Chaturvedi, and R. , Crop improvement under adverse conditions, vol.394, 2013.

J. V. Higdon and B. Frei, Coffee and health: a review of recent human research, Critical Reviews in Food Science and Nutrition, vol.46, issue.2, pp.101-123, 2006.

H. , D. K. Hagemann, and M. , Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms, The Biochemical Journal, vol.383, pp.277-283, 2004.

H. and K. E. , Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions, Genes & Development, pp.1695-1708, 2010.

I. and K. , Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit, Journal of Plant Research, vol.122, pp.235-243, 2009.

G. and B. Van, Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE Study, European Journal of Clinical Nutrition, pp.5891-5896, 2007.

L. and C. , Evaluation of conilons for genetic diversity, cup quality and biochemical composition, INTERNATIONAL SCIENTIFIC COLLOQUIUM ON COFFEE, vol.22, p.1, 2008.

L. and D. , Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity, Genome Biology and Evolution, vol.19, issue.2, pp.488-503, 2010.

L. and K. H. , Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid, Cell, vol.126, pp.1109-1120, 2006.

L. and N. , Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant, Plant Cell, vol.16, pp.596-615, 2004.

L. and J. , Mécanisme moléculaire d'action de l'acide abscissique en réponse à la sécheresse chez les végétaux: the ABC of abscisic acid action in plant drought stress responses, Biologie Aujourd'hui, pp.301-312, 2012.

L. I. and W. , Molecular basis for the selective and ABA-independent inhibition of PP2CA by PYL13, Cell Research, issue.23, pp.1369-1379, 2013.

L. and E. A. , The multi-resistant reaction of drought-tolerant Coffee 'Conilon Clone 14' to Meloidogyne spp. and late hypersensitive-like response in Coffea canephora, Phytopathology, pp.805-814, 2015.

L. and J. , Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging, American Journal of Epidemiology, vol.156, issue.5, pp.445-453, 2002.

L. and X. , A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid, Science, vol.315, pp.1712-1716, 2007.

L. and S. , Protein phosphatases in plants, Annual Review Plant Biology, vol.54, pp.63-92, 2003.

M. A. and Y. , Regulators of PP2C phosphatase activity function as abscisic acid sensors, Science, vol.324, pp.1064-1068, 2009.

M. and P. , Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora, Journal of Experimental Botany, vol.63, pp.4191-4212, 2012.

M. and P. , RBCS1 expression in coffee: coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress, BMC Plant Biology, issue.11, pp.1471-2229, 2011.

M. and P. , Cafés de qualidade: aspectos tecnológicos, científicos e comerciais. Campinas: Instituto Agronômico de Campinas, REVIEW OF RELATED LITERATURE, vol.65, pp.73-90, 2007.

M. and K. , A gate-latch-lock mechanism for hormone signaling by abscisic acid receptors, Nature, vol.462, pp.602-608, 2009.

M. and S. , The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway, Plant Journal, vol.25, pp.295-303, 2001.

M. and R. , Oxidative stress, antioxidants and stress tolerance, Trends in Plant Science, pp.405-410, 2002.

M. and T. , Structure and function of abscisic acid receptors, Trends in Plant Science, vol.18, issue.5, pp.259-266, 2013.

M. , K. , and I. , Structural basis of Abscisic acid signaling, Nature, vol.462, pp.609-614, 2009.

M. and L. S. , Identification of candidate genes for drought tolerance in coffee by highthroughput sequencing in the shoot apex of different Coffea arabica cultivars, BMC Plant Biology, vol.16, p.94, 2016.

M. , C. ;. Cubry, P. Leroy, and T. , Amélioration génétique du caféier Coffea canephora Pierre: connaissances acquises, stratégies et perspectives. Cahiers Agricultures

M. , C. Leroy, and T. , Réaction à la sécheresse de jeunes caféiers Coffea canephora de Côted'Ivoire appartenant à différents groupes génétiques. Café Cacao Thé, vol.37, pp.179-190, 1993.

M. and C. P. , Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set, Journal of Geophysical Research: Atmospheres, 2012.

M. and A. , Potent and selective activation of abscisic acid receptors in vivo by mutational stabilization of their agonist-bound conformation, Proceedings of the National Academy of Sciences USA, pp.20838-20843, 2011.

N. and M. , Mechanism of high-affinity abscisic acid binding to PYL9/RCAR1, Genes to Cells, vol.19, issue.5, pp.386-404, 2014.

N. , E. ;. Marion-poll, and A. , Abscisic acid biosynthesis and catabolism, Annual Review of Plant Biology, vol.56, pp.165-185, 2005.

N. G. and L. M. , Abscisic acid perception and signaling: structural mechanisms and applications, Acta Pharmacologica Sinica, vol.35, issue.5, pp.567-584, 2014.

N. and D. , How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory, Plant Molecular Biology, issue.6, pp.1-14, 2016.

N. and N. , PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis, The Plant Journal: for Cell and Molecular Biology, vol.61, issue.2, pp.290-299, 2010.

H. P. Medina-filho, A. Carvalho, and D. M. Medina, Germoplasma de C. racemosa e seu potencial no melhoramento do cafeeiro. Bragantia, Campinas, v, vol.36, pp.43-46

E. S. Ober and R. E. Sharp, Proline accumulation in maize (Zea mays L.) primary roots at low water potentials: I., requirement for increased levels of abscisic acid, Plant Physiology, vol.105, pp.981-987, 1994.

O. and K. , Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions, BMC Molecular Biology, vol.142, p.1, 1963.

D. and F. , The coffee genome provides insight into the convergent evolution of caffeine biosynthesis, Science, issue.5, pp.1181-1184, 2014.

G. and M. , Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid, The Plant Cell, issue.6, pp.2483-96, 2012.

G. and J. , Guard cells: transcription factors regulate stomatal movements, Current Biology, vol.15, pp.593-595, 2005.

H. , A. M. Woodward, and F. I. , The role of stomata in sensing and driving environmental change, Nature, vol.424, pp.901-908, 2003.

H. , D. R. Arnon, and D. I. , The water culture method for growing plants without soils

I. , D. ;. Tal, and M. , Phenotypic reversion of flacca, a wilty mutant of tomato, by abscisic acid

, Science, vol.169, pp.592-593, 1970.

J. , R. J. Mansfield, and T. A. , Suppression of stomatal opening in leaves treated with abscisic acid, Journal of Experimental Botany, pp.714-719, 1970.

K. and T. H. , Guard cell signal transduction network: advances in understanding abscisic acid, CO 2 , and Ca 2+ Signaling, Annual Review of Plant Biology, pp.561-591, 2010.

L. and H. Y. , The soluble ABA receptor PYL8 regulates drought resistance by controlling ABA signaling in Arabidopsis, Plant Biotechnology Reports, issue.5, pp.319-330, 2015.

L. and C. W. , Arabidopsis PYL8 plays an important role for ABA signaling and drought stress responses, The Plant Pathology Journal, pp.471-476, 2013.

M. and P. , Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora, Journal of Experimental Botany, vol.63, issue.11, pp.4191-4212, 2012.

M. and P. , RBCS1 expression in coffee: coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between, BMC Plant Biology, issue.11, p.85, 2011.

M. , J. ;. Gilmore, S. R. Farquhar, and G. D. , The ERECTA gene regulates plant transpiration efficiency in Arabidopsis, Nature, vol.436, pp.866-870, 2005.

M. and E. , PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation, Plant Physiology, vol.162, issue.3, pp.1652-1668, 2013.

M. and L. S. , Identification of candidate genes for drought tolerance in coffee by highthroughput sequencing in the shoot apex of different Coffea arabica cultivars, BMC Plant Biology, vol.16, p.94, 2016.

N. , S. E. Assmann, and S. M. , The control of transpiration: insights from Arabidopsis, Plant Physiology, vol.143, pp.19-27, 2007.

P. and F. , The dual effect of abscisic acid on stomata, New Phytologist, vol.197, issue.1, pp.65-72, 2013.

P. and S. Y. , Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA-binding START proteins, Science, vol.324, pp.1068-1071, 2009.

P. and H. A. , Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora, Annals of Botany, pp.101-108, 2005.

R. and R. M. , Delayed leaf senescence induces extreme drought tolerance in a flowering plant, Proceedings of the National Academy of Sciences, vol.104, pp.19631-19636, 2007.

S. and A. , Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling, Plant Journal, issue.1, pp.354-369, 2003.

S. and J. , The abscisic acid receptor PYR1 in complex with abscisic acid, Nature, vol.462, pp.665-668, 2009.

S. and J. , Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade IIA PP2Cs, The Plant Journal, vol.60, pp.575-588, 2009.

S. and J. I. , Guard cell signal transduction, Annual Review of Plant Physiology and Plant Molecular Biology, vol.52, pp.627-658, 2001.

S. , A. Attia, Z. ;. Moshelion, and M. , Bundle-sheath cell regulation of xylemmesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA?, The Plant Journal, issue.1, pp.72-80, 2011.

S. and C. , The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action, Journal of Experimental Botany, vol.60, pp.1439-1463, 2009.

T. , M. ;. Imber, D. ;. Itai, and C. , Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato: I., root effect and kinetin-like activity, Plant Physiology, vol.46, pp.367-72

T. , F. ;. Simonneau, and T. , Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours, Journal of Experimental Botany, pp.419-432, 1998.

Y. and R. , The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis, Journal of Biological Chemistry, pp.5310-5318, 2006.

Z. and Y. , Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Proceedings of the National Academy of Sciences, vol.113, issue.7, pp.3389-3402, 1997.

G. An, P. R. Ebert, A. Mitra, and S. B. Ha, Plant molecular biology manual, pp.3-4, 1993.

V. Arondel, F. Tchang, B. Baillet, F. Vignols, F. Grellet et al., Multiple mRNA coding for phospholipid-transfer protein from Zea mays arise from alternative splicing, Gene, vol.99, pp.133-136, 1991.

F. Boutrot, A. Guirao, R. Alary, P. Joudrier, and M. Gautier, Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds, Biochim Biophys Acta, vol.1730, pp.114-125, 2005.

F. Boutrot, D. Meynard, E. Guiderdoni, P. Joudrier, and M. F. Gautier, The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice, Planta, vol.225, pp.843-862, 2007.

F. Boutrot, N. Chantret, and M. F. Gautier, Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining, BMC Genomics, vol.9, p.86, 2008.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-254, 1976.

Y. Bromberg and B. Rost, SNAP: predict effect of non-synonymous polymorphisms on function, Nucl Acids Res, vol.35, pp.3823-3835, 2007.

K. D. Cameron, M. A. Teece, and L. B. Smart, Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco, Plant Physiol, vol.140, pp.176-183, 2006.

J. Castresana, Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis, Mol Biol Evol, vol.17, pp.540-552, 2000.

W. C. Chang, T. Y. Lee, H. D. Huang, H. Y. Huang, and R. L. Pan, PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups, BMC Genomics, vol.9, p.561, 2008.

D. Chasman and R. M. Adams, Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure based assessment of amino acid variation, J Mol Biol, vol.307, pp.683-706, 2001.

M. H. Chen, C. Bergman, S. Pinson, and R. Fjellstrom, Waxy gene haplotypes: associations with apparent amylose content and the effect by the environment in an international rice germplasm collection, J Cereal Sci, vol.47, pp.536-545, 2008.

M. H. Chen, C. J. Bergman, S. Pinson, and R. Fjellstrom, Waxy gene haplotypes: associations with pasting properties in an international rice germplasm collection, J Cereal Sci, vol.48, pp.781-788, 2008.

F. Cruz, S. Kalaoun, P. Nobile, C. Colombo, J. Almeida et al., Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR, Mol Breed, vol.23, pp.607-616, 2009.

D. Castro, R. D. Marraccini, and P. , Cytology, biochemistry and molecular changes during coffee fruit development, Braz J Plant Physiol, vol.18, pp.175-199, 2006.

A. De-kochko, S. Akaffou, A. C. Andrade, C. Campa, D. Crouzillat et al., Advances in Coffea genomics, Advances in botanical research, vol.53, pp.23-53, 2010.

D. Pater, S. Pham, K. Chua, N. H. Memelink, J. Kijne et al., A 22-bp fragment of the pea lectin promoter containing essential TGAClike motifs confers seed-specific gene expression, Plant Cell, vol.5, pp.877-886, 1993.

F. Decazy, J. Avelino, B. Guyot, J. J. Perriot, C. Pineda et al., Quality of different Honduran coffees in relation to several environments, J Food Sci, vol.68, pp.2356-2361, 2003.

E. Dentan, Etude microscopique du développement et de la maturation du grain de café, Proceedings of the international congress of ASIC 11, pp.381-398, 1985.

R. Dias, F. G. Campanha, L. Vieira, L. P. Ferreira, D. Pot et al., Evaluation of kahweol and cafestol in coffee tissues and roasted coffee by a new high-performance liquid chromatography methodology, J Agric Food Chem, vol.58, pp.88-93, 2010.

R. Donald and A. R. Cashmore, Mutation of either G box or l box sequences profoundly affects expression from the Arabidopsis rbcS-1A promoter, EMBO J, vol.9, pp.1717-1726, 1990.

J. J. Doyle and J. L. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem Bull, vol.19, pp.11-15, 1987.

J. F. Dufayard, L. Duret, S. Penel, M. Gouy, F. Rechenmann et al., Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases, Bioinformatics, vol.21, pp.2596-2603, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00427861

O. Emanuelsson, S. Brunak, G. Von-heijne, and H. Nielsen, TargetP: locating proteins in the cell using TargetP, SignalP, and related tools, Nat Protoc, vol.2, pp.953-971, 2007.

A. J. Fleming, T. Mandel, S. Hofmann, P. Sterk, S. C. De-vries et al., Expression pattern of a tobacco lipid transfer protein gene within the shoot apex, Plant J, vol.2, pp.855-862, 1992.

P. Folstar, Coffee-chemistry, vol.1, pp.203-220, 1985.

J. M. Garcia-garrido, M. Menossi, P. Puigdoménech, J. A. Martinez-izquierdo, and M. Delseny, Characterization of a gene encoding an abscisic acid-inducible type-2 lipid transfer protein from rice, FEBS Lett, vol.428, pp.193-199, 1998.

F. García-olmedo, A. Molina, A. Segura, and M. Moreno, The defensive role of nonspecific lipid-transfer proteins in plants, Trends Microbiol, vol.3, pp.72-74, 1995.

C. Geromel, L. P. Ferreira, S. M. Guerreiro, A. A. Cavalari, D. Pot et al., Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development, J Exp Bot, vol.57, pp.3243-3258, 2006.

B. Giardine, C. Riemer, and R. C. Hardison, Galaxy: a platform for interactive large-scale genome analysis, Genome Res, vol.15, pp.1451-1455, 2005.
DOI : 10.1101/gr.4086505

URL : http://genome.cshlp.org/content/15/10/1451.full.pdf

S. Guindon, J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0, Syst Biol, vol.59, pp.307-321, 2010.
DOI : 10.1093/sysbio/syq010

URL : https://hal.archives-ouvertes.fr/lirmm-00511784

E. Harada, J. A. Kim, A. J. Meyer, R. Hell, S. Clemens et al., Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses, Plant Cell Physiol, vol.51, pp.1627-1637, 2010.

R. B. Horsch, J. Fry, N. Hoffmann, J. Neidermeyer, S. G. Rogers et al., Plant molecular biology manual, pp.5-6, 1993.

D. H. Huson, D. C. Richter, C. Rausch, T. Dezulian, M. Franz et al., Dendroscope: an interactive viewer for large phylogenetic trees, BMC Bioinform, vol.8, p.460, 2007.
DOI : 10.1186/1471-2105-8-460

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-8-460

K. Jakobsen, S. S. Klemsdal, R. B. Aalen, M. Bosnes, D. Alexander et al., Barley aleurone development: molecular cloning of aleurone-specific cDNAs from immature grains, Plant Mol Biol, vol.12, pp.285-293, 1989.
DOI : 10.1007/bf00043205

R. A. Jefferson, T. A. Kavanagh, and M. W. Bevan, GUS fusions: ?glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J, vol.6, pp.3901-3907, 1987.
DOI : 10.1002/j.1460-2075.1987.tb02730.x

T. Joët, A. Laffargue, J. Salmona, S. Doulbeau, F. Descroix et al., Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study, New Phytol, vol.182, pp.146-162, 2009.

J. C. Kader, Lipid transfer proteins in plants, Annu Rev Plant Physiol Plant Mol Biol, vol.47, pp.627-654, 1996.
DOI : 10.1146/annurev.arplant.47.1.627

J. C. Kader, Lipid-transfer proteins: a puzzling family of plant proteins, Trends Plant Sci, vol.2, pp.66-70, 1997.
DOI : 10.1016/s1360-1385(97)82565-4

R. Kalla, K. Shimamoto, R. Potter, P. S. Nielsen, C. Linnestad et al., The promoter of the barley aleurone specific gene encoding a putative 7-kDa lipid transfer protein confers aleurone cellspecific expression in transgenic rice, Plant J, vol.6, pp.849-860, 1994.

K. Katoh and H. Toh, Recent developments in the MAFFT multiple sequence alignment program, Brief Bioinform, vol.9, pp.286-298, 2008.
DOI : 10.1093/bib/bbn013

URL : https://academic.oup.com/bib/article-pdf/9/4/286/740625/bbn013.pdf

Y. Kawagoe and N. Murai, Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein ?-phaseolin gene conferring spatial and temporal control, Plant J, vol.2, pp.927-936, 1992.

A. Kharabian, An efficient computational method for screening functional SNPs in plants, J Theor Biol, vol.265, pp.55-62, 2010.

A. Krause, C. J. Sigrist, I. Dehning, H. Sommer, and W. J. Broughton, Accumulation of transcripts encoding a lipid transfer-like protein during deformation of nodulation-competent Vigna unguiculata root hairs, Mol Plant Microbe Interact, vol.7, pp.411-418, 1994.

A. K. Kristensen, J. Brunstedt, K. K. Nielsen, P. Roepstorff, and J. D. Mikkelsen, Characterization of a new antifungal non-specific, Plant Mol Biol, vol.85, pp.11-31, 2000.

, lipid transfer protein (nsLTP) from sugar beet leaves, Plant Sci, vol.155, pp.31-40

P. D. Larkin and W. D. Park, Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice, Oryza sativa L.). Mol Breed, vol.12, pp.335-339, 2003.

P. Lashermes, A. C. Andrade, and H. Etienne, Genomics of coffee, one of the world's largest traded commodities, Genomics of tropical crop plants, pp.203-226, 2008.

T. Leroy, F. Ribeyre, B. Bertrand, P. Charmetant, M. Dufour et al., Genetics of coffee quality, Braz J Plant Physiol, vol.18, pp.229-242, 2006.

P. A. Lessard, R. D. Allen, F. Bernier, J. D. Crispino, T. Fujiwara et al., Multiple nuclear factors interact with upstream sequences of differentially regulated ?-conglycinin genes, Plant Mol Biol, vol.16, pp.397-413, 1991.

C. W. Lin, L. A. Mueller, M. Carthy, J. Crouzillat, D. Pétiard et al., Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts, 2005.

, Theor Appl Genet, vol.112, pp.114-130

K. Lindorff-larsen and J. R. Winther, Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases, FEBS Lett, vol.488, pp.145-148, 2001.

C. Linnestad, A. Lönneborg, R. Kalla, and O. A. Olsen, Promoter of a lipid transfer protein gene expressed in barley aleurone cells contains similar myb and myc recognition sites as the maize BzMcC allele, Plant Physiol, vol.97, pp.841-843, 1991.

B. Lüscher and R. N. Eisenman, New light on Myc and Myb. Part II. Myb. Genes Dev, vol.4, pp.2235-2241, 1990.

A. Marchler-bauer, C. Zheng, and F. Chitsaz, CDD: conserved domains and protein three-dimensional structure, Nucl Acids Res, vol.41, issue.D1, pp.348-352, 2013.
DOI : 10.1093/nar/gks1243

URL : https://academic.oup.com/nar/article-pdf/41/D1/D348/3705485/gks1243.pdf

D. Marion, J. P. Douliez, T. Michon, and K. Elmorjani, Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels, J Cereal Sci, vol.32, pp.1-20, 2000.

P. Marraccini, A. Deshayes, V. Pétiard, and W. J. Rogers, Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants, Plant Physiol Biochem, vol.37, pp.273-282, 1999.

P. Marraccini, C. Courjault, V. Caillet, F. Lausanne, B. Lepage et al., Rubisco small subunit of Coffea arabica: cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants, Plant Physiol Biochem, vol.41, pp.17-25, 2003.

P. Marraccini, L. P. Freire, and G. Alves, RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress, BMC Plant Biol, vol.11, p.85, 2011.

P. Marraccini, F. Vinecky, and G. Alves, Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora, J Exp Bot, vol.63, pp.4191-4212, 2012.

A. Molina, A. Segura, and F. García-olmedo, Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens, FEBS Lett, vol.316, pp.119-122, 1993.

J. Mondego, R. O. Vidal, and M. F. Carazzolle, An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora, BMC Plant Biol, vol.11, p.30, 2011.

L. A. Mueller, T. H. Solow, and N. Taylor, The SOL genomics network. A comparative resource for Solanaceae biology and beyond, Plant Physiol, vol.138, pp.1310-1317, 2005.

T. Murashige and F. Skoog, A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol Plant, vol.15, pp.473-497, 1962.

J. Nieuwland, R. Feron, B. Huisman, A. Fasolino, C. W. Hilbers et al., Lipid transfer proteins enhance cell wall extension in tobacco, Plant Cell, vol.17, pp.2009-2019, 2005.

J. Ostergaard, C. Vergnolle, F. Schoentgen, and J. C. Kader, Acylbinding lipid-transfer proteins from rape seedlings, a novel category of proteins interacting with lipids, Biochim Biophys Acta, vol.1170, pp.109-117, 1993.

A. S. Petitot, A. C. Lecouls, and D. Fernandez, Sub-genomic origin and regulation patterns of a duplicated WRKY gene in the allotetraploid species Coffea arabica, Tree Genet Genomes, vol.3, pp.379-390, 2008.
URL : https://hal.archives-ouvertes.fr/ird-00291677

J. L. Pons and G. Labesse, @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes, Nucleic Acids Res, vol.37, issue.2, pp.485-491, 2009.

J. Pyee, H. Yu, and P. E. Kolattukudy, Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves, Arch Biochem Biophys, vol.311, pp.460-468, 1994.

C. Ramakers, J. M. Ruijter, R. H. Deprez, and A. F. Moorman, Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data, Neurosci Lett, vol.339, pp.62-66, 2003.

T. B. Rasmussen and I. A. Donaldson, Investigation of the endosperm specific sucrose synthase promoter from rice using transient expression of reporter genes in guar seed tissue, Plant Cell Rep, vol.25, pp.1035-1042, 2006.

L. Rizhsky, H. Liang, J. Shuman, V. Shulaev, S. Davletova et al., When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress, Plant Physiol, vol.134, pp.1683-1696, 2004.

J. Salmona, S. Dussert, F. Descroix, A. De-kochko, B. Bertrand et al., Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches, Plant Mol Biol, vol.66, pp.105-124, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01193274

D. Samuel, Y. J. Liu, C. S. Cheng, and P. C. Lyu, Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa), J Biol Chem, vol.277, pp.35267-35273, 2002.

C. T. Saunders and D. Baker, Evaluation of structural and evolutionary contributions to deleterious mutations prediction, J Mol Biol, vol.332, pp.891-901, 2002.

J. Schmutz, S. B. Cannon, and J. Schlueter, Genome sequence of the palaeopolyploid soybean, Nature, vol.14, pp.178-183, 2010.

I. A. Shahmuradov, A. J. Gammerman, J. M. Hancock, P. M. Bramley, and V. V. Solovyev, PlantProm: a database of plant promoter sequences, Nucl Acids Res, vol.31, pp.114-117, 2003.

J. Shi, T. L. Blundell, and K. Mizuguchi, FUGUE: sequence structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties, J Mol Biol, vol.310, pp.243-257, 2001.

A. H. Shirsat, N. Wilford, R. Croy, and D. Boulter, Sequences responsible for tissue specific promoter activity of a pea legumin gene in tobacco, Mol Gen Genet, vol.215, pp.326-331, 1989.

S. D. Simpson, K. Nakashima, Y. Narusaka, M. Seki, K. Shinozaki et al., Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence, Plant J, vol.33, pp.259-270, 2003.

K. Skriver, R. Leah, F. Müller-uri, F. L. Olsen, and J. Mundy, Structure and expression of the barley lipid transfer protein gene Ltp1, Plant Mol Biol, vol.18, pp.585-589, 1992.

J. Söding, Protein homology detection by HMM-HMM comparison, Bioinformatics, vol.21, pp.951-960, 2005.

K. Speer and I. Kölling-speer, The lipid fraction of the coffee bean, Braz J Plant Physiol, vol.18, pp.201-216, 2006.

K. Takishima, S. Watanabe, M. Yamada, and G. Mamiya, The aminoacid sequence of the nonspecific lipid transfer protein from germinated castor bean endosperms, Biochim Biophys Acta, vol.870, pp.248-255, 1986.

, ning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions, J Sci Food Agric, vol.86, pp.197-204

R. O. Vidal, J. Mondego, D. Pot, A. B. Ambrosio, A. C. Andrade et al., A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica, Plant Physiol, vol.154, pp.1053-1066, 2010.

R. Vidal, J. C. Alekcevetch, T. Leroy, F. De-bellis, D. Pot et al., High-throughput sequencing of cDNA shows that cv. Rubi and IAPAR59 of Coffea arabica have different molecular response to water privation, 24th International colloquium on the chemistry of Coffee, vol.18, pp.95-108, 2006.

M. Vincentz, A. Leite, and G. Neshich, ACGT and vicilin core sequences in a promoter domain required for seed-specific expression of a 2S storage protein gene are recognized by the opaque-2 regulatory protein, Plant Mol Biol, vol.34, pp.879-889, 1997.

N. J. Wang, C. C. Lee, C. S. Cheng, W. C. Lo, Y. F. Yang et al., Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB), BMC Genom, vol.13, issue.1, p.9, 2012.

A. J. Wilson, M. Petracco, E. Illy, P. Asic, C. Y. Wu et al., Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression, 17th International colloquium on the chemistry of Coffee, vol.23, pp.415-421, 1997.

T. H. Yeats and J. Rose, The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs), Protein Sci, vol.17, pp.191-198, 2008.

E. M. Yubero-serrano, E. Moyano, N. Medina-escobar, J. Muñoz-blanco, and J. L. Caballero, Identification of a strawberry gene encoding anon-specific lipid transfer protein that responds to ABA, wounding and cold stress, J Exp Bot, vol.54, pp.1865-1877, 2003.

H. Zhou and Y. Zhou, SPARKS 2 and SP3 servers in CASP6, Proteins, vol.61, pp.152-156, 2005.

U. Zottich, D. Cunha, M. Carvalho, and A. O. , Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with ?-amylase inhibitor properties, Biochim Biophys Acta, vol.1810, pp.375-383, 2011.

, Cultivars (RUB Rubi and I59: IAPAR59) of C. arabica and treatments (C control and D drought) are indicated IAPAR59 commercial cultivars of C. arabica. The authors are also very grateful to Drs Antonio Fernando Guerra and Omar Cruz Rocha (Embrapa Cerrados) for their assistance during the field trial experiments. The authors wish also to thank Daphne Goodfellow, as well as Peter Biggins and Cécile Fovet-Rabot (CIRAD-DGDRS) for English revision of the manuscript. Funding PM acknowledges financial support from CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement, ACA acknowledges financial support from the Brazilian Coffee R&D Consortium, FINEP and INCT-café (CNPq/FAPEMIG). MFC and GAGP acknowledge financial support from the Center for Computational Engineering and Sciences-FAPESP/Cepid, pp.8293-8300, 2013.

, Campinas, SP, Brazil. 5 present address: Embrapa Café, INOVACAFÉ, Campus UFLA, SP, Brazil. 2 Embrapa Recursos Genéticos e Biotecnologia (LGM-NTBio), vol.209, pp.37200-37200, 2009.

, Statistics of production, 2015.

F. M. Damatta and J. C. Ramalho, Impact of drought and temperature stress on coffee physiology and production: a review, Braz J Plant Physiol, vol.18, pp.55-81, 2006.

E. A. Silva, P. Mazzafera, O. Brunini, E. Sakai, F. B. Arruda et al., The influence of water management and environmental conditions on the chemical composition and beverage quality of coffee beans, Braz J Plant Physiol, vol.17, pp.229-267, 2005.

C. Bunn, P. Läderach, P. Jimenez, J. G. Montagnon, C. Schilling et al., Multiclass classification of agro-ecological zones for Arabica coffee: an improved understanding of the impacts of climate change, PLoS One, vol.10, p.140490, 2015.

C. Montagnon and T. Leroy, Réaction à la sécheresse de jeunes caféiers Coffea canephora de Côte-d'Ivoire appartenant à différents groupes génétiques

, Café Cacao Thé, vol.37, pp.179-90, 1993.

H. A. Pinheiro, F. M. Damatta, A. Chaves, M. E. Loureiro, and C. Ducatti, Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora, Ann Bot, vol.96, pp.101-109, 2005.

A. Beining, J. Burkhardt, and M. Fetene, Water relations of Ethiopian wild coffee populations: genetic fixation and phenotypic plasticity, Proceedings of the 22 nd International Scientific Colloquium on Coffee, 2008.

K. Shinozaki and K. Yamaguchi-shinozaki, Gene networks involved in drought stress response and tolerance, J Exp Bot, vol.58, pp.221-228, 2007.

P. Marraccini, F. Vinecky, G. Alves, H. Ramos, S. Elbelt et al., Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora, J Exp Bot, vol.63, pp.4191-212, 2012.

N. G. Vieira, F. A. Carneiro, P. S. Sujii, J. C. Alekcevetch, L. P. Freire et al., Different molecular mechanisms account for drought tolerance in Coffea canephora var. Conilon, Trop Plant Biol, vol.6, pp.181-90, 2013.

C. Lin, L. A. Mueller, J. Mccarthy, D. Crouzillat, V. Pétiard et al., Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts, Theor Applied Genet, vol.112, pp.114-144, 2005.

V. Poncet, M. Rondeau, C. Tranchand, A. Cayrel, S. Hamon et al., SSR mining in coffee tree EST databases: potential use of EST-SSRs as marker across Coffea genus, Mol Gen Genet, vol.276, pp.436-485, 2006.

L. Vieira, A. C. Andrade, C. A. Colombo, A. Moraes, A. Metha et al., Brazilian coffee genome project: an EST-based genomic resource, Braz J Plant Physiol, vol.18, pp.95-108, 2006.

S. D. Guzzo, R. Harakava, and S. M. Tsai, Identification of coffee genes expressed during systemic acquired resistance and incompatible interaction with Hemileia vastatrix, J Phytopathol, vol.157, pp.625-663, 2009.

D. Fernandez, P. Santos, C. Agostini, M. C. Bon, A. S. Petitot et al., Coffee (Coffea arabica L.) genes early expressed during infection by the rust fungus (Hemileia vastatrix), Mol Plant Pathol, vol.5, pp.527-563, 2004.

J. Traas and T. Vernoux, The shoot apical meristem: the dynamics of a stable structure, Philos T Roy Soc B, vol.357, pp.737-784, 2002.

T. T. Torres, M. Metta, B. Ottenwalder, and C. Schlotterer, Gene expression profiling by massively parallel sequencing, Genome Res, vol.18, pp.172-179, 2008.

C. Carvalho, L. C. Fazuoli, G. R. Carvalho, O. Guerreiro-filho, A. A. Pereira et al., Cultivares de Café: origem, características e recomendações. Brasilia: Embrapa Café, pp.157-226, 2008.

J. A. Ratter, J. F. Ribeiro, and S. Bridgewater, The Brazilian cerrado vegetation and threats to its biodiversity, Ann Bot, vol.80, pp.223-253, 1997.

A. Lécolier, M. Noirot, J. Escoute, H. Chrestin, and J. L. Verdeil, Early effects of the mutation laurina on the functioning and size of the shoot apex in coffee tree and analysis of the plastochron phases: relationships with the dwarfism of leaves, Trees, vol.23, pp.1043-51, 2009.

M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S. Bader et al., Genome sequencing in microfabricated high-density picolitre reactors, Nature, vol.437, pp.376-80, 2005.

Z. Ning, A. J. Cox, and J. C. Mullikin, SSAHA: a fast search method for large DNA databases, Genome Res, vol.11, pp.1725-1734, 2001.

J. Mondego, R. O. Vidal, M. F. Carazzolle, E. K. Tokuda, L. P. Parizzi et al., An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora, BMC Plant Biol, vol.11, p.30, 2011.

C. Baudet and Z. Dias, New EST trimming strategy in: Brazilian Symposium on Bioinformatics, vol.3594, pp.206-215, 2005.

B. Chevreux, T. Pfisterer, B. Drescher, A. J. Driesel, W. Müller et al., Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs, Genome Res, vol.14, pp.1147-59, 2004.

A. Conesa, S. Götz, J. M. García-gómez, J. Terol, M. Talón et al., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, pp.3674-3680, 2005.

S. Anders and W. Huber, Differential expression analysis for sequence count data

, Genome Biol, vol.11, p.106, 2010.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-179, 2010.

N. G. Vieira, Identificação e caracterização de genes órfãos, 2013.

F. Vinecky, F. R. Silva, and A. C. Andrade, Análise in silico das bibliotecas de cDNA SH2 e SH3 para a identificação de genes responsivos à seca em cafeeiro, Coffee Sci, vol.7, pp.1-19, 2012.

M. G. Cotta, L. Barros, J. D. De-almeida, F. De-lamotte, E. A. Barbosa et al., Lipid transfer proteins in coffee: isolation of Coffea orthologs, Coffea arabica homeologs, expression during coffee fruit development and promoter analysis in transgenic tobacco plants, Plant Mol Biol, vol.85, pp.11-31, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268596

P. Marraccini, L. P. Freire, G. Alves, N. G. Vieira, F. Vinecky et al., RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress, BMC Plant Biol, vol.11, p.85, 2011.

C. Ramakers, J. M. Ruijter, R. H. Deprez, and A. F. Moorman, Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data, Neurosci Lett, vol.339, pp.62-68, 2003.

J. Schwendiman, C. Pannetier, and N. Michaux-ferriere, Histology of somatic embryogenesis from leaf explants of the oil palm Elaeis guineensis, Ann Bot, vol.62, pp.43-52, 1988.

J. Buffard-morel, J. L. Verdeil, and C. Pannetier, Embryogenèse somatique du cocotier (Cocos nucifera L.) à partir d'explant foliaire: étude histologique, Can J Bot, vol.70, pp.735-776, 1992.

D. B. Fisher, Protein staining of ribonned epon section for light microscopy, Histochemie, vol.16, pp.92-98, 1968.

R. R. Sokal and J. F. Rohlf, Biometry: the principles and practice of statistics in biological research, vol.887, 1995.

P. Lashermes, A. C. Andrade, and H. Etienne, Genomics of coffee, one of the world's largest traded commodities, Genomics of tropical crop plants, pp.203-229, 2008.

A. Bardil, J. D. De-almeida, M. C. Combes, P. Lashermes, and B. Bertrand, Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature, New Phytologist, vol.192, pp.760-74, 2011.

N. S. Mishra, R. Tuteja, and N. Tuteja, Signaling through MAP kinase networks in plants, Arch Biochem Biophys, vol.452, pp.55-68, 2006.

E. C. Burnett, R. Desikan, R. C. Moser, and S. J. Neill, ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA, J Exp Bot, vol.51, pp.197-205, 2000.

H. Shen, C. Liu, Y. Zhang, X. Meng, X. Zhou et al., OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice, Plant Mol Biol, vol.80, pp.241-53, 2012.

E. Krupková, P. Immerzeel, M. Pauly, and T. Schmülling, The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development, Plant J, vol.50, pp.735-50, 2007.

U. Von-groll, D. Berger, and T. Altmann, The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development, Plant Cell, vol.14, pp.1527-1566, 2002.

M. F. Pompelli, S. Martins, E. F. Celin, M. C. Ventrella, and F. M. Damatta, What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions?, Braz J Biol, vol.70, pp.1083-1091, 2010.

T. Kufa and J. Burkhardt, Stomatal characteristics in Arabica coffee germplasm accessions under contrasting environments at Jimma, southwestern Ethiopia, Intern J Bot, vol.7, pp.63-72, 2011.

G. C. Rodrigues, J. Rojas, O. Roupsard, T. Leroy, D. Pot et al., Preliminary results on phenotypic plasticity of coffee (Coffea arabica cv. Rubi and Iapar59) plants in response to water constraint under field conditions, Proceedings of the 23 rd International Scientific Colloquium on Coffee, 2010.

S. H. Schwartz, K. M. Léon-kloosterziel, M. Koornneef, and J. Zeevaart, Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana, Plant Physiol, vol.114, pp.161-167, 1997.

A. Santino, M. Taurino, D. Domenico, S. Bonsegna, S. Poltronieri et al., Jasmonate signaling in plant development and defense response to multiple (a) biotic stresses, Plant Cell Rep, vol.32, pp.1085-98, 2013.

E. H. Kim, Y. S. Kim, S. H. Park, Y. J. Koo, Y. D. Choi et al., Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice, Plant Physiol, vol.149, pp.1751-60, 2009.

R. Alcázar, T. Altabella, F. Marco, C. Bortolotti, M. Reymond et al., Polyamines: molecules with regulatory functions in plant abiotic stress tolerance, Planta, vol.231, pp.1237-1286, 2010.

H. Bae, S. H. Kim, M. S. Kim, R. C. Sicher, D. Lary et al., The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses, Plant Physiol Biochem, vol.46, pp.174-88, 2008.

A. Peremarti, L. Bassie, P. Christou, and T. Capell, Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase, Plant Mol Biol, vol.70, pp.253-64, 2009.

A. S. Duque, A. M. Almeida, A. B. Silva, J. M. Silva, A. P. Farinha et al., Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive, pp.49-101, 2013.

C. Hutin, L. Nussaume, M. N. Moya, I. Kloppstech, K. Havaux et al., Early light induced proteins protect Arabidopsis from photoxidative stress, Proc Natl Acad Sci, vol.100, pp.4921-4927, 2003.

S. S. Araújo, A. S. Duque, J. M. Silva, D. Santos, A. B. Silva et al., Water deficit and recovery response of Medicago truncatula plants expressing the ELIPlike DSP22, Biol Plantarum, vol.57, pp.159-63, 2013.

S. M. Alvarenga, E. T. Caixeta, B. Hufnagel, F. Thiebaut, E. M. Zambolim et al., In silico identification of coffee genome expressed sequences potentially associated with resistance to diseases, Gen Mol Biol, vol.33, pp.795-806, 2010.

N. Samson, M. G. Bausher, S. B. Lee, R. K. Jansen, and H. Daniell, The complete nucleotide sequence of the coffee (Coffea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms, Plant Biotechnol J, vol.5, pp.339-53, 2007.

F. Denoeud, L. Carretero-paulet, A. Dereeper, G. Droc, R. Guyot et al., The coffee genome provides insight into the convergent evolution of caffeine biosynthesis, Science, vol.345, pp.1181-1185, 2014.

J. Salmona, S. Dussert, F. Descroix, A. De-kochko, B. Bertrand et al., Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches, Plant Mol Biol, vol.66, pp.105-129, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01193274

D. Fernandez, E. Tisserant, P. Talhinhas, H. Azinheira, A. Vieira et al., 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction, Mol Plant Pathol, vol.13, pp.17-37, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01267893

L. X. Yu, M. Djebrouni, H. Chamberland, J. G. Lafontaine, and Z. Tabaeizadeh, Chitinase: differential induction of gene expression and enzyme activity by drought stress in the wild (Lycopersicon chilense Dun.) and cultivated (L. esculentum Mill.) tomatoes, J Plant Physiol, vol.153, pp.745-53, 1998.

M. M. Dana, J. A. Pintor-toro, and B. Cubero, Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents, Plant Physiol, vol.142, pp.722-752, 2006.

D. K. Hincha, A. E. Oliver, and J. H. Crowe, Lipid composition determines the effects of arbutin on the stability of membranes, Biophys J, vol.77, pp.2024-2058, 1999.

K. Iwai, N. Kishimoto, Y. Kakino, Y. Mochida, and T. Fujita, In vitro antioxidative effects and tyrosinase inhibitory activities of seven hydroxycinnamoyl derivatives in green coffee beans, J Agric Food Chem, vol.52, pp.4893-4901, 2004.

T. Will and A. Van-bel, Physical and chemical interactions between aphids and plants, J Exp Bot, vol.57, pp.729-766, 2006.

W. F. Tjallingii, Salivary secretions by aphids interacting with proteins of phloem wound responses, J Exp Bot, vol.57, pp.739-784, 2006.

J. Kehr, Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects, J Exp Bot, vol.57, pp.767-74, 2006.

C. Zhang, H. Shi, L. Chen, X. Wang, B. Lü et al., Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae, BMC Plant Biol, vol.11, p.11, 2011.

C. Zhang, Z. Bao, Y. Liang, X. Yang, X. Wu et al., Abscisic acid mediates Arabidopsis drought tolerance induced by HrpNEa in the absence of ethylene signaling, Plant Mol Biol Rep, vol.25, pp.98-114, 2007.

C. Walz, M. Juenger, M. Schad, and J. Kehr, Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes, Plant J, vol.31, pp.189-97, 2002.

A. Nishizawa, Y. Yabuta, and S. Shigeoka, Galactinol and raffinose constitute a novel function to protect plants from oxidative damage, Plant Physiol, vol.147, pp.1251-63, 2008.

T. B. Santos, I. Budzinski, C. J. Marur, C. Petkowicz, L. Pereira et al., Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses, Plant Physiol Biochem, vol.49, pp.441-449, 2011.

L. P. Freire, P. Marraccini, G. C. Rodrigues, and A. C. Andrade, Análise da expressão do gene da manose 6 fosfato redutase em cafeeiros submetidos ao déficit hídrico no campo, Coffee Sci, vol.8, pp.17-23, 2013.

K. De-carvalho, C. Petkowicz, G. T. Nagashima, B. Filho, J. C. Vieira et al., Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica

, Mol Genet Genomics, vol.289, pp.951-63, 2014.

F. M. Damatta, A. Chaves, H. A. Pinheiro, C. Ducatti, and M. E. Loureiro, Drought tolerance of two field-grown clones of Coffea canephora, Plant Sci, vol.164, pp.111-118, 2003.

D. Tautz and T. Domazet-lo?o, The evolutionary origin of orphan genes, Nat Rev Genet, vol.12, pp.692-702, 2011.

M. B. Treviño, O. Connell, and M. A. , Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different patterns of expression, Plant Physiol, vol.116, pp.1461-1469, 1998.

H. W. Jung, W. Kim, and B. K. Hwang, Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses, Plant Cell Environ, vol.26, pp.915-943, 2003.

C. S. Jang, H. J. Lee, S. J. Chang, and Y. W. Seo, Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat, Triticum aestivum L.). Plant Sci, vol.167, pp.995-1001, 2004.

K. D. Cameron, M. A. Teece, and L. B. Smart, Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco, Plant Physiol, vol.140, pp.176-83, 2006.

P. Schweizer, G. Felix, A. Buchala, C. Muller, and J. P. Metraux, Perception of free cutin monomers by plant cells, Plant J, vol.10, pp.331-372, 1996.

K. D. Cameron, W. A. Moskal, and L. B. Smart, A second member of the Nicotiana glauca lipid transfer protein gene family, NgLTP2, encodes a divergent and differentially expressed protein, Funct Plant Biol, vol.33, pp.141-52, 2006.

M. Fujita, Y. Fujita, Y. Noutoshi, F. Takahashi, Y. Narusaka et al., Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks, Curr Opin Plant Biol, vol.9, pp.436-478, 2006.

R. O. Vidal, J. Mondego, D. Pot, A. B. Ambrósio, A. C. Andrade et al., Submit your next manuscript to BioMed Central and we will help you at every step: ? We accept pre-submission inquiries ? Our selector tool helps you to find the most relevant journal ? We provide round the clock customer support ? Convenient online submission ? Thorough peer review ? Inclusion in PubMed and all major indexing services ? Maximum visibility for your research, Plant Physiol, vol.154, pp.1053-66, 2010.