, Our ship, Martin Löf Type Theory dependent products, this interprets a type theory with annotated products (see Section 2.3 for an example of such annotations)

, Run TemplateProgram (?E ? TranslateRec emptyTC equiv

?. Translaterec and ?. E. ,

. Implement-?e-"notunivalence-;-?-a-b,-equiv-a-b-×-?-p,-p-a-×-(p-b-?-false,

, Let's conclude this section by mentioning that Pujet and Annenkov are currently working on reimplementing the forcing plugin of Pédrot [P´] with the translation plugin. The forcing plugin implement the forcing translation

, For the second factorization system, we need cylinders, which are the dual of fibers, Interactive Theorem Proving, pp.20-39, 2018.

T. Altenkirch, P. Capriotti, and G. Dijkstra, Nicolai Kraus, and Fredrik Nordvall Forsberg. Quotient inductive-inductive types, International Conference on Foundations of Software Science and Computation Structures, pp.293-310, 2018.

T. Altenkirch, P. Capriotti, and N. Kraus, Extending Homotopy Type Theory with Strict Equality, 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, vol.62, pp.1-21, 2016.

B. Ahrens, P. Capriotti, and R. Spadotti, Non-wellfounded trees in Homotopy Type Theory, 2015.

R. Adams, Pure type systems with judgemental equality, Journal of Functional Programming, vol.16, issue.2, pp.219-246, 2006.

J. Avigad, L. De-moura, and S. Kong, Theorem Proving in Lean. Microsoft Research, 2015.

M. Armand, B. Grégoire, A. Spiwack, and L. Théry, Extending Coq with Imperative Features and its Application to SAT Verification, Interactive Theorem Proving, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00502496

T. Altenkirch and A. Kaposi, Normalisation by evaluation for dependent types, LIPIcs-Leibniz International Proceedings in Informatics, vol.52, 2016.

T. Altenkirch and A. Kaposi, Type theory in type theory using quotient inductive types, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.18-29, 2016.

T. Altenkirch, Extensional Equality in Intensional Type Theory, 14th Annual IEEE Symposium on Logic in Computer Science, pp.412-420, 1999.

B. Ahrens, P. Lefanu-lumsdaine, and V. Voevodsky, Categorical structures for type theory in univalent foundations, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579271

T. Altenkirch, C. Mcbride, and W. Swierstra, Observational equality, now! In, Proceedings of the ACM Workshop Programming Languages Meets Program Verification, pp.57-68, 2007.

A. Abel and G. Scherer, On irrelevance and algorithmic equality in predicative type theory, 2012.

A. Assaf, A calculus of constructions with explicit subtyping, 20th International Conference on Types for Proofs and Programs (TYPES 2014), vol.39, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01097401

B. Barras, Auto-Validation d'un Système de Preuves Avec Familles Inductives, 1999.

M. Bezem, T. Coquand, and S. Huber, A Model of Type Theory in Cubical Sets(BCH), 19th International Conference on Types for Proofs and Programs (TYPES 2013, vol.26, pp.107-128, 2014.

M. Bezem, T. Coquand, and S. Huber, The univalence axiom in cubical sets, 2017.

B. Barras and B. Grégoire, On the role of type decorations in the calculus of inductive constructions, International Workshop on Computer Science Logic, pp.151-166, 2005.

A. Bauer, J. Gross, P. Lefanu-lumsdaine, M. Shulman, M. Sozeau et al., The HoTT Library: A formalization of homotopy type theory in Coq, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421212

J. Bernardy, P. Jansson, and R. Paterson, Parametricity and dependent types, ACM Sigplan Notices, vol.45, pp.345-356, 2010.

J. , P. Bernardy, and M. Lasson, Realizability and parametricity in pure type systems, International Conference on Foundations of Software Science and Computational Structures, pp.108-122, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00589893

S. Boulier, P. Pédrot, and N. Tabareau, The next 700 syntactical models of type theory, Certified Programs and Proofs (CPP 2017), pp.182-194, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01445835

S. Boulier and N. Tabareau, Model structure on the universe in a two level type theory, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579822

P. Capriotti, Models of Type Theory with Strict Equality, 2017.

C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, Cubical Type Theory: A constructive interpretation of the univalence axiom (CCHM), 2016.

T. Coquand and G. Huet, The Calculus of Constructions, INRIA, 1986.
URL : https://hal.archives-ouvertes.fr/inria-00076024

J. Chapman, Type theory should eat itself, Electronic Notes in Theoretical Computer Science, vol.228, pp.21-36, 2009.

T. Coquand, S. Huber, and A. Mörtberg, On Higher Inductive Types in Cubical Type Theory (CCHM2), 2018.

. Cubical-type-theory,

O. Danvy and A. Filinski, Representing control: A study of the CPS transformation, Mathematical structures in computer science, vol.2, pp.361-391, 1992.

O. Danvy and L. R. Nielsen, CPS transformation of beta-redexes. Information Processing Letters, vol.94, pp.217-224, 2005.

P. Dybjer, Internal type theory, International Workshop on Types for Proofs and Programs, pp.120-134, 1995.

P. Dybjer, A general formulation of simultaneous inductive-recursive definitions in type theory, The Journal of Symbolic Logic, vol.65, issue.2, pp.525-549, 2000.

H. Geuvers, The Church-Rosser property for beta eta-reduction in typed lambda-calculi, Logic in Computer Science, 1992. LICS'92., Proceedings of the Seventh Annual IEEE Symposium On, pp.453-460, 1992.

N. Gambino and R. Garner, The identity type weak factorisation system, Theoretical Computer Science, vol.409, issue.1, pp.94-109, 2008.

G. Gilbert, Coq with SProp

H. Goguen, Justifying Algorithms for-Conversion, Foundations of Software Science and Computational Structures, pp.410-424, 2005.

H. Herbelin, On a few open problems of the Calculus of Inductive Constructions and on their practical consequences, 2009.

P. S. Hirschhorn, Model Categories and Their Localizations. Number 99, 2009.

M. Hofmann, Syntax and Semantics of Dependent Types, Semantics and Logics of Computation, pp.79-130, 1997.

M. Hofmann, Extensional Constructs in Intensional Type Theory, 2012.

M. Hovey, Model Categories. Number 63, 2007.

M. Hofmann and T. Streicher, Lifting Grothendieck Universes, 1997.

M. Hofmann and T. Streicher, The groupoid interpretation of type theory. Twenty-five years of constructive type theory, vol.36, pp.83-111, 1995.

S. Huber,

G. Jaber, G. Lewertowski, P. Pédrot, M. Sozeau, and N. Tabareau, The definitional side of the forcing, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp.367-376, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01319066

A. Kaposi, Tt-in-tt

A. Kaposi, Type Theory in a Type Theory with Quotient Inductive Types, 2017.

C. Keller and M. Lasson, Parametricity in an Impredicative Sort, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00730913

M. Lasson, Réalisabilité et Paramétricité Dans Les Systèmes de Types Purs, 2012.

M. Lasson, Canonicity of Weak-groupoid Laws Using Parametricity Theory. Electronic Notes in Theoretical Computer Science, vol.308, pp.229-244, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01105252

N. Li, Quotient Types in Type Theory, 2015.

M. Lasson, C. Keller, and . Paramcoq,

D. R. Licata, I. Orton, A. M. Pitts, and B. Spitters, Internal Universes in Models of Homotopy Type Theory, 2018.

. Peter-lefanu-lumsdaine, Model structures from higher inductive types, 2011.

Z. Luo, ECC, an extended calculus of constructions, Logic in Computer Science, 1989. LICS'89, Proceedings., Fourth Annual Symposium On, pp.386-395, 1989.

S. Maclane and I. Moerdijk, Sheaves in Geometry and Logic: A First Introduction to Topos Theory, 2012.

F. Fredrik-nordvall, , 2013.

, Categorical models of dependent types

H. T. Nlab and . System,

B. Nordström, K. Petersson, and J. M. Smith, Programming in MartinLöf's Type Theory, vol.200, 1990.

A. Nuyts, Robust Notions of Contextual Fibrancy. Presentation at HoTT/UF '18 workshop, 2018.

I. Orton and A. M. Pitts, Axioms for Modelling Cubical Type Theory in a Topos, 2017.

I. Orton and A. Pitts, Code supporting Axioms for Modelling Cubical Type Theory in a Topos, 2018.

N. Oury, Extensionality in the calculus of constructions, International Conference on Theorem Proving in Higher Order Logics, pp.278-293

. Springer, , 2005.

P. Pédrot, Coq Forcing

R. Pollack, Typechecking in pure type systems, WORKSHOP ON, p.271, 1992.

, The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics, 2013.

J. C. Reynolds, Types, Abstraction and Parametric Polymorphism, IFIP Congress, pp.513-523, 1983.

C. Sattler, The Equivalence Extension Property and Model Structures, 2017.

V. Siles and H. Herbelin, Pure type system conversion is always typable, Journal of Functional Programming, vol.22, issue.2, pp.153-180, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00497177

M. Sozeau, Program-ing Finger Trees in Coq, Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP '07, pp.13-24, 2007.

T. Streicher, Semantics of Type Theory: Correctness, Completeness and Independence Results, Progress in Theoretical Computer Science. Birkhäuser Basel, 1991.

M. Heine-sørensen and P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, vol.149, 2006.

A. Swan, An Algebraic Weak Factorisation System on 01-Substitution Sets: A Constructive Proof, Journal of Logic and Analysis, 2016.

, Coq Development Team. The Coq proof assistant reference manual

V. Voevodsky, A simple type system with two identity types, 2013.

P. Wadler, Theorems for free!, Proceedings of the Fourth International Conference on Functional Programming Languages and Computer Architecture, pp.347-359, 1989.

T. Winterhalter, M. Sozeau, and N. Tabareau, Eliminating Reflection from Type Theory: To the Legacy of Martin Hofmann, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01849166

B. Ziliani, D. Dreyer, R. Neelakantan, A. Krishnaswami, V. Nanevski et al., Mtac: A monad for typed tactic programming in Coq, Journal of Functional Programming, vol.25, 2015.