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Abstract

A new approach for image processing, dubbed SOM-QE, that exploits the quan-

tization error (QE) from self-organizing maps (SOM) is proposed in this thesis.

SOM produce low-dimensional discrete representations of high-dimensional in-

put data. QE is determined from the results of the unsupervised learning process

of SOM and the input data. SOM-QE from a time-series of images can be used as

an indicator of changes in the time series. To set-up SOM, a map size, the neigh-

bourhood distance, the learning rate and the number of iterations in the learning

process are determined. The combination of these parameters that gives the low-

est value of QE, is taken to be the optimal parameter set and it is used to transform

the dataset. This has been the use of QE. The novelty in SOM-QE technique is

fourfold: first, in the usage. SOM-QE employs a SOM to determine QE for differ-

ent images - typically, in a time series dataset - unlike the traditional usage where

different SOMs are applied on one dataset. Secondly, the SOM-QE value is intro-

duced as a measure of uniformity within the image. Thirdly, the SOM-QE value

becomes a special, unique label for the image within the dataset and fourthly, this
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label is used to track changes that occur in subsequent images of the same scene.

Thus, SOM-QE provides a measure of variations within the image at an instance

in time, and when compared with the values from subsequent images of the same

scene, it reveals a transient visualization of changes in the scene of study. In this

research the approach was applied to artificial, medical and geographic imagery to

demonstrate its performance. Changes that occur in geographic scenes of interest,

such as new buildings being put up in a city or lesions receding in medical im-

ages are of interest to scientists and engineers. The SOM-QE technique provides

a new way for automatic detection of growth in urban spaces or the progressions

of diseases, giving timely information for appropriate planning or treatment. In

this work, it is demonstrated that SOM-QE can capture very small changes in

images. Results also confirm it to be fast and less computationally expensive in

discriminating between changed and unchanged contents in large image datasets.

Pearson’s correlation confirmed that there was statistically significant correlations

between SOM-QE values and the actual ground truth data. On evaluation, this

technique performed better compared to other existing approaches. This work is

important as it introduces a new way of looking at fast, automatic change detection

even when dealing with small local changes within images. It also introduces a

new method of determining QE, and the data it generates can be used to predict

changes in a time series dataset.

Keywords: change detection, self-organizing map, quantization error, time series

images, change prediction, difficulty to detect changes.
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Chapter 1

Introduction

Radiologists use time-series of medical images to monitor a patient’s condition.

They compare information gleaned from sequences of images to gain insight on

progression or remission of the lesions, thus evaluating the progress of a patient’s

condition or response to therapy. Visual methods of determining differences be-

tween one series of images to another can be subjective or fail to detect very small

differences. Similarly, city administrators, planners and politician, among others,

require to monitor infrastructure distribution within their cities and determine the

changes in city status with time. They need to know the effects of resources, for

instance road networks, on the residents’ lives in the different parts of the city. In

this thesis, the application of SOM-QE technique to assist the radiologist and the

city managers to mine information from an image at a particular time and there-

after, monitor subsequent changes occurring with time in the patient and in the
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city is demonstrated. Medical images and satellite images are directly analysed to

eliminate intermediate procedural bias and to produce fast results.

The concept behind the SOM-QE approach is that through use of images, deter-

mination of a scene’s current status is performed and from subsequent images of

the same scene, changes that have occurred in time within the scene can be anal-

ysed. In this chapter, an overview of the use of artificial intelligence systems to

process images and in particular, to detect changes through images is given. The

objectives of the research and the specific area of study are also spelt out to give a

perspective of the thesis.

1.1 Application of Artificial Intelligence on Images

An image refers to a 2D light intensity function f(x,y), where (x,y) denote spatial

coordinates and the value of f at any point (x,y) is proportional to the bright-

ness or gray levels of the image at that point. Cameras can capture objects into

digital images, providing an avenue for manipulation and study of objects in a

computer since the image, f(x,y), has been discretized both in spatial coordinates

and brightness. Images are widely used to represent real objects, for example in

medical field, images are used to study state of internal body organs. Thus, images

provide a ready chance to process a scene data for autonomous machine percep-

tion. There exist advance procedures for extracting information from images in

a form suitable for computer processing. When in the computer, mostly in form
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of arrays, the information can be processed and be put to use in areas such as in

character recognition, industrial machine vision for product assembly and inspec-

tion, military recognizance, automatic recognition of fingerprints and such similar

applications.

Major procedures involved in image processing include

1. image acquisition – the capturing or collection of images,

2. image preprocessing – improving the image in ways that increase the chances

of success of next processes,

3. image representation – to convert the input data to a form suitable for com-

puter processing,

4. image description – to extract features that result in some quantitative infor-

mation of interest or features that are basic for differentiating one class of

objects from another and

5. image interpretation which is assigning meaning to an ensemble of recog-

nized objects.

Thus, images provide a route for real objects to be analysed and studied in the field

of artificial intelligence (AI). The images provide alternatives to other methods of

learning the objects like directly measuring quantities/elements in the object –

such as temperature of a patient, carbon dioxide concentration in air, composition

of soil, among others.
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A common technique used to formulate AI systems is the use of artificial neural

networks (ANNs). An ANN is made up of several nodes, linked together and

whose functioning imitate that of biological neurons of human brain. A node

takes input data, performs simple operations on the data and passes the results to

other nodes, hence forming a network system of processing nodes. The output

at each node, called its activation or node value, can be altered through weight

values associated with the link between nodes, a process called learning. During

learning, weight values in the nodes are compared to the input value and together

with a predetermined learning parameter the amount of change to be effected is

calculated. Thus, as P. R. Oliveira and R. F. Romero [1996] puts it, ANN models

are specified by the network topology, node characteristics and training or learn-

ing rules. The learning rules specify an initial set of weights and indicate how

weights should be adapted during training to improve performance. An important

property of an ANN is the ability to learn from its environment and to improve

its performance through learning. ANN learns about its environment through an

iterative process of adjustments applied to its synaptic weights.

There are two major learning strategies that can be employed by an ANN: the

supervised learning and the unsupervised learning. In supervised learning, the re-

sults given by an ANN are compared with the expected results and the network

makes adjustments based on the errors determined. The goal is to approximate a

mapping function of the input to the output so that when new input data is pro-

vided, its corresponding output can be predicted. This is the case, for instance, in
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pattern recognition. In unsupervised learning, the ANN is provided with the input

data and not the expected output. It aims at modelling the underlying structure or

distribution of data in order to learn more about the data. In this regard, an ANN

algorithm is set up, provided with input data and left on its own to discover and

present the interesting structure in the data. Among the techniques in this category

of ANN is the K-means clustering algorithm and the focus of this thesis: the SOM

algorithm.

Back in 1993, Pal and Pal [1993] predicted that ANNs would become widely ap-

plied in image processing and according to Egmont-Petersen et al. [2002], this

prediction turned out to be right. ANN applications have been developed to solve

different problems in image processing, with strengths and weaknesses being ob-

served on each application. These applications have been deployed to solve var-

ious problems as categorized in Egmont-Petersen et al. [2002]. For example, in

image reconstruction problems, quite complex computations are required and a

unique approach is needed for each application. In Adler and Guardo [1994],

an ADALINE (an early single-layer artificial neural network and the name of

the physical device that implemented this network) network is trained to perform

an electrical impedance tomography (EIT) reconstruction. In image restoration

problems one wants to derive an image that is not distorted by the (physical) mea-

surement system. The system might introduce noise, motion blur, out-of-focus

blur, distortion caused by low resolution, among other distortions. Restoration

can employ all information about the nature of the distortions introduced by the
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system, for example, the point spread function.

Another category of image processing is the image enhancement problems, where

the goal of the ANN is to amplify specific features, with most applications being

based on regression ANNs. A well known enhancement problem is edge detec-

tion. A straightforward application of regression feed-forward ANNs, trained to

behave like edge detection, was reported by Griffiths [1988].

In data reduction problems, ANNs are applied in image compression and feature

extraction. ANN approaches have to compete with well-established compression

techniques such as JPEG, a standard reference in this domain P. R. Oliveira and

R. F. Romero [1996]. The major advantage of ANNs over JPEG is that their

parameters are adaptable, which may give better compression rates when trained

for specific image material. For instance, P. R. Oliveira and R. F. Romero [1996]

performed a comparative study and confirmed the performance of the PCA ANN

as superior to the JPEG for all the compression ratios used to compress the images

in their experiments.

In image segmentation, the image is partitioned into parts that are coherent ac-

cording to some criterion. This may be applied as a classification task where

labels are assigned to individual pixels or voxels.

In object recognition, locating the positions, possible orientations and scales of

instances of objects in an image are done. Egmont-Petersen et al. [2002], has

reported several pixel-based and feature-based object recognition applications of

6



ANNs. Another area in image processing that ANNs are applied is image un-

derstanding which combines techniques from segmentation or object recognition

with knowledge of the expected image content. This can then be applied, for in-

stance, to classify objects such as chromosomes from extracted structures or to

classify ships recognized from pixel data, Egmont-Petersen et al. [2002].

More recently, D. Jiang [2013] has applied a SOM based procedure for MRI im-

age processing. They noted that MRI images are usually corrupted by Rician

noise that is generated during the image formation. Rician is a non-additive, sig-

nal dependent and highly non-linear noise that is difficult to separate from the

signal. The SOM algorithm was applied, taking the Rician noise into considera-

tion, to de-noise and segment an MRI image. In image segmentation, an ensemble

- a learning paradigm where multiple neural networks are jointly used to solve a

problem - of SOMs, Jiang and Zhou [2004], is used to perform segmentation. In,

Chen et al. [2017], a SOM is used to develop a crack recognition model for bridge

inspection.

1.2 Review of change detection work

Change detection is an important domain in computer vision with applications

ranging from video surveillance and medical imaging to remote sensing in urban

and environmental change detection. Before changes can be detected, images are

typically preprocessed to register them geometrically and correct for any radio-

7



metric variation Radke et al. [2005a]. In remote sensing, where the goal is to

detect urban changes such as the extent of urbanization from a series of 2D map

built from satellite images, parallax effects are negligible and synthetic aperture

radar is frequently used to lessen the effect of atmospheric and lighting change

across time. However, medical images require pixel-accurate registration as a

starting point since the situations of their capture are different from that of the

satellite images.

Change detection methods can be classified into several categories depending on

type of scene, changes to detect, methods, and available information, Sakurada

and Okatani [2015]. In 2D image domain, which according to Radke et al. [2005a]

, forms a majority of the work they surveyed, a typical approach involve identi-

fying a scene, the region of interest (ROI), capture a set of its images at different

times, and train an ANN to determine changes between the images. Then a newly

captured query image can be run on the ANN to detect changes. A concern in this

type of studies is dealing with irrelevant changes such as difference in illumina-

tion. It usually requires the images to be captured from the same viewpoint, and

thus cannot deal with query images captured from different viewpoints. SOM-QE

falls under this category and it requires the query image to be brought into sim-

ilar conditions as those of the training image through appropriate preprocessing

procedures.

Image science has proposed methods for the automated processing of medical

images, which involve various image processing techniques to identify specific
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diagnostic ROI and features, such as lesions. Challenges still abound and advance

techniques are required to tackle them. For instance, a simple difference map of

two longitudinal co-registered MRI volumes fails to detect specific tumour evolu-

tion, due to non-linear contrast change between the two data sets, according to An-

gelini et al. [2007]. They proposed a computational framework to enable compar-

ison of MRI volumes based on gray-scale normalization to determine quantitative

tumour growth between successive time intervals. Angelini et al. [2010] proposed

three tumour growth indices, namely; volume, maximum radius and spherical ra-

dius. The approach, however, requires an initial manual segmentation of images,

which can be a time-consuming task. In Konukoglu et al. [2008], they first semi-

automatically segmented a tumour in an initial patient scan and then aligned the

successive scans using a hierarchical registration scheme to measure growth or

shrinkage from the images. This method relies on accurate segmentation and re-

quires manual supervision, in order to detect changes of up to a few voxels in the

pathology. Pohl et al. [2011a] describe a procedure aimed for difficult-to-detect

brain tumour changes. The approach combines input from a medical expert with

a computational technique. In this thesis, a new technique is proposed based on

self-organized mapping that considers the whole medical image, as opposed to an

image segment, as a ROI. This excludes manual benchmarking tasks designed to

eliminate inclusion of structures with similarity to tumour pathology. The basic

principle behind direct image analysis is that there exists an intrinsic relationship

between medical images and their clinical measurements, which can be exploited

to eliminate intermediate procedures in image analysis. Compared to traditional
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methods, direct methods have more clinical significance by targeting the final

outcome. Thus, direct methods not only reduce high computational costs, but also

avoid errors induced by any intermediate operations. Direct methods also serve

as a bridge between emerging machine learning algorithms and clinical image

measurements.

As observed in Radke et al. [2005a], the goal of change detection is to identify the

set of pixels that are significantly different between the last image in a sequence

and the previous images. But significantly different may vary from application to

another, making it difficulty to compare results. SOM-QE technique takes each

input feature vector from the image, labels it, and then uses the label to monitor

changes that have occurred within the same vector with time. By detecting dif-

ference at the input sample level, the technique is able to tell when changes have

occurred or not occurred in parts of the image and by extension, changes within

regions and sub-regions of an area can be quantified.

Image pairs taken at different times may have temporal differences in illumination

and photographing conditions. In Sakurada and Okatani [2015], they had to cope

with visual difference in camera viewpoints for the two images as they were cap-

tured from a vehicle, although running on the same street and had been matched

using GPS data.

To cope with these issues, some of the previous studies consider the problem in

the 3D domain. In this domain, Crispell et al. [2012], Huertas and Nevatla [1998],

Eden and Cooper [2008], and Taneja et al. [2011] , a model of the target scene is
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built to a ‘steady state,’ and used to compared a query image against it to detect

changes. The 3D model of the scene is created using a 3D sensor. In Huertas and

Nevatla [1998], to estimate the existence of a building, the edges extracted from

its aerial images are matched with the projection of its 3D model to detect change.

Schindler and Dellaert [2010] proposed using a large number of images of a city

taken over several decades. Their method performs several types of temporal in-

ferences, such as estimating the time when each building was constructed. More

recently Matzen and Snavely [2014] did similar work only that their method uses

Internet photo collections to detect 2D changes of a scene, such as changes of

advertisements’ billboards and painting on a building’s wall. Work in this domain

assume that a 3D model of a scene is given beforehand or can be created from

images, and that the input images can be registered to the model with pixel-level

accuracy Matzen and Snavely [2014], Schindler and Dellaert [2010] and Taneja

et al. [2013]. However, a 3D model is not always available for every city. Be-

sides, it is sometimes hard to perform precise image registration, due to lack of

sufficient visual features. These are particularly the case when the scene under-

goes enormous amount of changes. Working in 3D domain tends to require large

computational cost, which can be another difficulty when detection of changes for

a large city is required. In the present SOM-QE idea, satellite images, captured

from a fixed position, are used and hence avoid the visual problem. In Sakurada

and Okatani [2015], they used a method that uses features of convolution neural

network (CNN) in combination with super-pixel segmentation. They observed

that though CNN features detect the occurrence of scene changes, it did not pro-
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vide precise segmentation boundaries of the changes, hence the application of

super-pixel segmentation. Therefore, despite having reasonable performance, the

method relies on super-pixel regularization and sky/ground segmentation to delin-

eate changes accurately.

The work by Sakurada et al. [2013] defines a probabilistic framework in which

changes over all possible disparities are evaluated and integrated for each re-

projected ray. While this avoids the need for explicit modelling and additional

information or sensors, their framework makes the assumption of per-pixel in-

dependence in order to be tractable but still remains computationally expensive.

SOM-QE is a computationally efficient approach which works from image data

to determine variability in the image irrespective of the structure of objects in the

image. After the image sequences have been aligned through registration and nor-

malized when need be, a similarity measure, the QE, is calculated and employed

to determine changes of interest between the data while ignoring other nuisance

changes. The definition of what constitutes a change of interest or a nuisance

change varies depending on the task. Changes of interest may be purely geomet-

ric, such as the appearance or disappearance of urban structures Sakurada et al.

[2013], Taneja et al. [2011] and Taneja et al. [2013], or textural, such as changes

in billboards or shop-fronts Matzen and Snavely [2014] or surface defects Stent

[2015]. Nuisance changes may include lighting effects, for example, cast shad-

ows. Stent [2015] proposes training change detection networks from scratch on

image patches to classify changes for industrial inspection. In contrast to these
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prior works, SOM-QE adopts the self-organizing network approach, first used in

Kohonen [1981a] , and demonstrate its ability to learn appropriate, spatially and

precise differences between images.

In their review of change detection algorithms, Skifstad and Jain [1989] reported

that besides the specific technique used for measuring changes, the change detec-

tion process employed in the works they reviewed was generally the same. The

input images are first divided up into defined regions. In SOM-QE technique pro-

posed here, the image is considered as a whole. This avoids segmentation which

can be computationally expensive, depends on some human operator decisions,

or is not suitable to some type of land shapes. As pointed out in Palanivel and

Duraisamy [2012], uncertain nature is present in the image segmentation process.

SOM-QE method assigns a QE value to each input feature vector of an image

based on a trained SOM, providing a clear indication on how far the best match-

ing unit is from the input vector it won during the learning process.

Most existing change detection methods require a decision as to where to place

threshold boundaries in order to separate areas of change from those of no change,

Singh [1989]. The threshold value is supplied empirically or statistically by the

analyst, rendering the results obtained to be subjective. However, with SOM-QE

technique, no thresholding value is required and input feature vectors are treated

equally and with the same weight to arrive at the final decision.

Another approach to determining the changes that have taken place between im-

ages involve determining changes in land-use zones’ size within cities over time.
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Major land uses in a city - built-up, agricultural, water body, undeveloped land,

among others are identified. By use of satellite images of the city, plus informa-

tion from local city authorities, and/or collecting locally relevant data, the size

of each land-use zone is determined. This size is compared for a series of im-

ages taken from the ROI over time to determine the change, given as percentage

occupation of each land-use item. Conclusions are then derived on changes that

have occurred, and the land-use zone that has ‘encroached’ on the other within

the specified period is shown, as in Hegazy and Kaloop [2015], Kayet and Pathak

[2015] among others.

But there are other causes of changes in cities. Changes in city growth are not

limited to the changing size occupied by land-use zones. For example, a new

house built within a land-use zone does not cause change in the size of the area,

and hence such change will not be captured by the method. Besides, it has been

shown that, within a particular land-use zone, features of the other land-use zones

occupy substantial land. As determined in Angel et al. [2016], the share of built-

up area occupied by roads and avenues was on average at 20 ± 2 in 38 cities

across the world, as at the year 2015. Thus, SOM-QE method suggested here is

able to sense small changes, caused by other factors in addition to those caused

by the changing occupational size of a land-use zone. This is done fast enough

and can be appropriate for use in an ideal application scenario. It took less than 3

minutes to determine changes between images in a series of 25 images covering

the 25 years studied for a ROI in Las Vegas city, USA.
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1.3 Motivation for this work

Guthmann et al. [2005] established that shorter return visit interval (RVI) for pa-

tient has a positive correlation with percentage change in blood pressure and that

RVI may be a tool in the management of hypertension. Schectman et al. [2005]

concurs that prolonging the RVI may affect quality of care when prevention mea-

sures and chronic disease management receive less attention as clinic visits be-

come less frequent.

Schwartz et al. [1999] noted that physicians lengthened revisit intervals for routine

visits and shortened them when the visit required a change in the disease manage-

ment. On the other hand, changes that have occurred between shortened RVI may

be too small to be detected by human observers. There is therefore, a need to have

a tool that will enable the automatic detection of subtle but significant changes in

time series of images likely to reflect growing or receding lesions.

Likewise, from satellite images, comparing the status of two cities requires the

capture of minute details in each, which SOM-QE does effectively. The motiva-

tion behind this study is to develop a change detection method that can be used

for visualization of healing or worsening disease condition as captured by medical

images or city urbanization or environmental changes as captured through satel-

lite images, as well as for the purpose of quantifying the change occurring within

time.
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1.4 Objectives of the study

The goals of this thesis are threefold:

1. To develop a platform for

(a) determining the variation status of an object through studying the ob-

ject’s image at a particular time.

(b) tracking changes taking place in the object over time through images

taken from the same object at different times.

2. The platform should be fast enough and appropriate for use in an ideal appli-

cation scenario, for example, during a patient’s clinical visit at the hospital.

3. To develop a new method for calculating quantization error in a time series

image dataset that is more accurate than the existing method.

The goals are attained by accomplishing the following specific objectives:

1. Analyse objects through their images taken for medical diagnosis, environ-

mental monitoring or for city development purposes

2. Assign unique labels to objects through their images based on the object’s

contents

3. Differentiate the content of an object at different times based on the object’s

SOM-QE values at the different times
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4. Detect changes in an object given its series of images taken at different

times.

5. Quantify change and give direction of change within an object over time.

6. Quantify variation within an object through studying its images.

7. Develop a robust and fast application for change detection.

8. Provide data for use in change prediction for a region.

1.5 Statement of the problem

Cancer patients require that their condition be monitored seamlessly, with accu-

racy, and that they be aware and be informed of the outcomes and their status

promptly at every clinical visit. City residents and administrators expect equal de-

velopment and distributions of city resources within the city, easy status compar-

ison with peer cities and monitoring of the environment for example, for harmful

gases, and that they instantly be made aware whenever slight positive or negative

changes occur.

Today there is too many late diagnoses of cancer and other chronic diseases that

results in too many deaths. There is uneven city development and increase in

environmental degradation that has seen the weather pattern changed with unfair

and negative consequence for life. If these problems are ignored; deaths will
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increase and resources to handle the cascading problems will need to be increased

too, the cities may end up being unevenly and skewed developed which could

result in feelings of inequality, discrimination, lawsuits and further damage to the

leadership ability to guide growths within cities.

SOM-QE is designed to detect small changes that have occurred within a patient,

thus reducing periods between clinical visits, senses regional development status

and detect minute environmental changes from the relevant images to improve on

monitoring of patients and city’s status, and thus solve the problem.

In SOM-QE, a clear path to change detection is set: SOM learns the image to

provide its ideal pixel values. Then QE provides the difference between the real

and the ideal values, which for different images within a series can tell when

changes have occurred in the organ or in the city with time.

1.6 Scope

SOM-QE relies on information it gleans from medical and satellite images in-

dividually or/and in the time series image dataset to determine variability and

changes in objects as portrayed through their input features. The learning process

of SOM determines the set of vectors that acts as the platform on which input vec-

tors are referenced to determine their QE values. Hence, the accuracy of the QE

value returned relies on this set of vectors. SOM-QE works better when the input
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vectors have values of between 0 and 1. It should be noted that manual inspec-

tion of scenes can pick up other changes that the current SOM-QE system cannot

detect, such as lesions occluded behind internal body parts or a new construction

appearing just outside of an existing building that obscures its view. In its present

state, SOM-QE takes 2D images as input. 3D images are outside its scope.

1.7 Assumptions

For images to be compared in the proposed SOM-QE algorithm, they must have

been captured under similar lighting, colour and orientation conditions. Medical

images, satellite images and Urban Atlas maps are assumed to be preprocessed

accordingly for effective determination of their SOM-QE values.

1.8 Limitations

SOM-QE uses medical images as provided by radiologist and spatial images from

the available satellites. Though sufficient preprocessing procedures are carried out

on the images, it is beyond SOM-QE algorithm’s mandate to capture the image in

the desired quality. The findings in this research are still valid and useful despite

this limitation.
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1.9 Thesis organization

After a general overview of SOM, its functional principles and the derivation of

QE, the thesis sets out to explain the details behind the SOM-QE concept and

states the hypothesis in chapter 2. In chapter 3, a series of application scenarios

are described before giving an in-depth description of experiments conducted with

human observers on detection of change within images in a ”man versus machine”

style. Then, discussion on SOM-QE’s performance on real medical and satellite

images is presented. Later, it is shown that SOM-QE values from a time series

set of images, can be used to generate predictions on changes in the ROI. The

technique is then evaluated, before a new method of determining QE is introduced.

In chapter 4, the results of SOM-QE performance in various change detection

applications are discussed. Finally, in chapter 5, conclusions on the major findings

of the research are presented and their contribution to knowledge is highlighted.

In this chapter, the use of images in computer systems to analyse objects is dis-

cussed. Details on the analysis of change that has occurred in an object between

two times are provided as they exist in literature, alongside those of the proposed

method. In the next chapter, the structure and the working of the new method are

explained and demonstrated.
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Chapter 2

Self-Organizing Map and the

Quantization Error (SOM-QE)

The new measure of image variation and change detection proposed in this thesis

and referred to as SOM-QE, is discussed in details in this chapter. It involves two

concepts; the self-organizing map (SOM) and the quantization error (QE). QE is

obtained when the final weights of SOM are subtracted from the original input

vectors of the image, effectively telling how close the SOM is to the image. To

fully comprehend the idea behind SOM and hence SOM-QE, it is important to

trace its origin, which is the working of the human brain. This also justifies the

choice of SOM over other ANNs in solving the problem of determining variation

within objects through their images. Then, details on the design of SOM-QE algo-

rithm are presented. Later, the SOM-QE idea is analysed using two basic images
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and validated separately using two commonly used dataset content measures – the

variance and the histogram. The chapter ends by stating the hypothesis that guides

the remaining chapters of the thesis.

2.1 Brain maps and vector quantization

According to Kohonen [2013], for many years it had been known that various cor-

tical areas of the brain are specialized to process different modalities of cognitive

functions. This was confirmed when Mountcastle [1957] and Hubel and Wiesel

[1962] discovered that indeed certain single neural cells in the brain respond se-

lectively to some specific sensory stimuli. These cells, called brain maps, often

form local assemblies, in which their topographic location corresponds to some

feature value of a specific stimulus in an orderly fashion.

Since the brain is an efficient processor of information, it is worth imitating it for

an ANN to post reliable results. Image scene, like the ones in medical or satellite

images, are composed of various objects which require to be processed separately,

or locally, as the brain maps do. For instance, within a lung image there may be a

lesion or a water dam in a city map, each of which is processed by a suitable brain

map. ANN units can be set to process data in a near-similar manner to the brain

maps.

Initially, the believe was that brain maps are determined genetically. Later, the
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brain maps, at least their fine structures and feature scales, were found to de-

pend on sensory experiences and other occurrences. Studies of brain maps that

are strongly modified by experiences were reported by Merzenich et al. [1983],

among others. In the 1970s, Grossberg [1976], Nass and Cooper [1975] and

Perez et al. [1975] investigated whether feature-sensitive cells could be formed

automatically in artificial systems through learning.

These works were among the first to succeed in showing that input-driven self-

organization was possible. Feature-sensitive units were implemented through

competitive learning ANNs. In general, the ANNs had subsets of their units adapt

to different input signals during the training process.

However, these early biologically-inspired brain maps were not suitable for practi-

cal data analysis. First, they produced partitioned maps after the learning process.

The maps were made up of small patches, and there was no global order over

the whole map. But, in particular, Suga and O’Neill [1979], TUNTURI [1950]-

Tunturi [1952] and Zeki [1980] have shown that brain maps of tonotopic maps,

the colour maps and the sonar-echo maps respectively are globally organized, con-

firming the first failure of the early brain maps. The second shortcoming of these

models was lack of ability to scale up as they could not be used for large networks

and high signal dimensionality, even with increased computing power, Kohonen

[2013].

SOM introduced a control factor whose amount depends on local signal activity,

but which does not contribute to the signals. The control factor plays the role
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of determining how much the signal can modify the selected subsets of neural

connections in the network. This allows the ANN to work up to the capacity limit

of the modern computers.

Then to follow up on improvement of the brain maps, optimally tuned feature-

sensitive filters that employed competitive learning, called vector quantization

(VQ), were implemented by LLOYD [1982] and Forgy, E.W. [1965] in scalar

and vector forms respectively. VQ is currently a standard technology in digital

signal processing.

In VQ, feature vectors are partitioned into a finite number of contiguous regions,

each represented by one unit vector, called codebook vector. ‘The codebook vec-

tors are constructed such that the mean distance, measured in some metric, of

an input data item from the best-matching codebook vector, called the winner, is

minimized. That is, the mean quantization error is minimized.’,Kohonen [2013].

For simplicity, the VQ is illustrated using the Euclidean distance metric only. Let

the input data items constitute n-dimensional Euclidean vectors, denoted by x. Let

the codebook vectors be denoted by mi, and mc be a particular codebook vector

called the winner as it has the smallest Euclidean distance from x:

mc = argmin
i
||x−mi|| (2.1)
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If p(x) is the probability density of x, the mean quantization error E is defined as:

E =

∫
v

||x−mi||2P (x)dV (2.2)

where dV is a two-dimensional differential of the data space V. The objective

function E, being an energy function , can be minimized by a gradient-descent

procedure.

When input data items are finite, batch computation VQ can be implemented

in what is sometimes called Lloyd-Forgy, after LLOYD [1982] and Forgy, E.W.

[1965] , and commonly called the k-means clustering.

2.2 SOM

SOM is an ANN that is a non-linear mapping and which is similar to the VQ,

except that its processing units become spatially and globally ordered Kohonen

[1982]. SOM units are associated with the nodes of a regular, usually 2D grid as

shown in Figure 2.1.
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Figure 2.1: An illustration of a Self-Organizing Map. An input data item X is

broadcast to a set of models Mi, of which Mc matches best with X . All models

that lie in the neighbourhood (larger circle) of Mc in the array will be updated

together in a training step to make them match better with X than with the rest at

the end of the step. Figure courtesy of Kohonen [2014b]

According to SOM founder in Kohonen [2013], the learning principles and math-

ematics of SOM are based on a central idea, that; every input data item selects a

unit from the map that it matches best. Then, the selected unit and a subset of its

spatial neighbours in the map, are modified to match the input vector better.

In effect, SOM learns from a given dataset to produce results that:

1. place similar data samples together.

2. as much as possible, maintains the location of each sample in relation to its
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neighbours in the original dataset, that is, topology preserving.

This explains the main reason for the choice of SOM for the task of this research,

that: unlike in most biologically inspired ANNs, the topographic order in the

SOM can always be materialized globally over the whole map. Thus, when a

trained SOM is given a new and previously unknown input vector, this input is

identified with the best-matching unit in SOM and hence it is classified with the

particular unit.

During the learning process, matching by similarity is done between the input

data and the initial unit values in SOM. Both the input data and the SOM unit

values are expressed as real vectors, consisting of numerical results. The vectors

are placed on the same scale, through normalization of both scales, in this case by

having their maximum and minimum become the same. After that, the standard

Euclidean measure is used to determine the level of similarity between the input

vector and the map unit vector. SOM has been known to work with even com-

plex interdependencies of variables and return results by using Euclidean distance

with normalization, Kohonen [2013]. Another consideration made is the presen-

tation of an image as an input vector. Images have natural variations caused by

translations, rotations, differences in size or in lighting conditions. To minimize

the effect of these variation, image registration and normalization are done. Red-

green-blue, (RGB), colour as a characteristic feature of the image, is extracted

and presented as input vector of the image. This enables the input object to be a

restricted set of invariant features, which drastically reduce the computing load,
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Kohonen [2013].

The ANN’s learning procedure is unsupervised with specific self-organizing dy-

namics that do not require error correction as do supervised learning algorithms.

SOM produces a lower-dimension representation of the input space and for each

input vector, a competitive winner-take-all learning algorithm Kohonen [1981a]

achieves the lower-dimension visualization of the input data. SOMs are typically

applied as feature clustering of input data starting from an initially random feature

map. The input data are recursively fed into the learning procedure to optimize the

final map into a stable representation of features and ROI. Each region of the map

can be considered in terms of a specific feature class of the input space. Whenever

the synaptic weights associated with a node of the map match the input vector, that

specific map area is selectively optimized, bringing it closer in resemblance to the

data of the class the input vector belongs to. From an initial distribution of random

weights and over thousands of iterations, SOM progressively sets up a map of sta-

ble representations of image regions or ROI. Each corresponding region of the

final map is a feature cluster and the graphical output is a certain type of feature

map of the input space.

The map structure obtained from the learning process leads to SOM being viewed

as a topology preserving transformation from high dimensional space to a low

dimensional space Kohonen [1995]. This low dimensional space is usually a 2D

or 1D grid. From this point of view SOM can be compared to other dimension-

ality reduction and data unfolding methods, Moosavi [2014]. Among the meth-
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ods, which are rooted in Topological Data Analysis (TDA), Zomorodian [2011],

are; Multidimensional Scaling (MDS),Kruskal [1964], Locally Linear Embedding

(LLE) Roweis and Saul [2000], ISOMAP Tenenbaum [2000], and Mapper Singh

et al. [2007]. But SOM goes beyond this. Besides the transformation of data,

SOM discovers ‘the shape of data’ in terms of topology and geometry, which

leads to successful methods in visualization and exploratory data analysis tasks.

In this view of SOM, regardless of the global dimensionality of the observed data

set, given a similarity measure among individual data points, a self-referential co-

ordinate system can be constructed, by which each instance of the observation

becomes a dimension for itself compared to all the other points, Moosavi [2014].

Topology preservation implies that vectors that are close in the high-dimensional

space end up being mapped to nodes that are close in the 2D space. For example,

lesions in a lung will occupy the same relative position in the trained dataset as

they did in the original image, or that a particular building in the city maintains its

location relative to other buildings in the original image.

Topological preservation is attained when the BMU and its neighbours ‘learn’,

which is accomplished through adjusting their weights to fit more closely to values

of an input vector. The ‘learning’ is more for the BMU and decreases as the

distance of a neighbouring unit from BMU increases, as explained in details in

section 2.4.

These two facts, grouping input samples and topology preservation, makes SOM

a good fit for the goal of this thesis. Data is learned and grouped based on its
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similarity while considering their current location. This means that each data item

makes contribution to the variation in the image from its local location, making

the SOM-QE value to be a more reliable and accurate measure of variation.

2.3 SOM learning: winner-takes-all

The vector space of the SOM is Euclidean Kohonen [1981a], and the central idea

behind the principles of self-organized mapping is that every input data item is

matched to the closest fitting neuron unit of the neural map, the winner. The

winning neurons for the corresponding regions are progressively modified on that

principle until they optimally match the entire data set. The learning procedure

follows the neural-biological principles of lateral inhibition and the general rule

of Hebbian synaptic learning Hartline et al. [1956]. On the other hand, since the

spatial neighbourhood around the winners in the map are continuously modified

during learning, a degree of local and differential ordering of the map is mathemat-

ically applied in the smoothing process. The resulting local ordering effect will

gradually be propagated across the entire SOM. The parameters in SOM model

can be variable and depend on the type of input data being implemented. The goal

of this winner-take-all learning is to ensure that the final map stably represents

critical similarities in the input data.

In general two operations take place in the SOM learning: first, there is the spatial

clustering of activity into one centre of high activity, the location of which is a
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function of the input pattern. This location becomes the winner. Secondly, there

is the adaptive modification of the interconnections in the local area around the

winner such that all neural functions in this area are tuned better to the prevailing

input activity and will respond stronger to it. This local area imitates the brain

map, as explained in section 2.1.

Thus, for different inputs, different local areas will be modified, and in the long

run different areas of the ‘map’ will become selectively tuned to different domains

of the input in an ordered and almost optimal fashion.

Figure 2.1, adapted from Kohonen [2013] , shows the effect of input data to the

map.

Only a subset of the map units is able to learn the present input vector and even

within the subset the amount of learning is varied – strength of learning decreases

as the distance to the unit from the BMU increases. Figure 2.2 is a synonymous

illustration with the real feeling on human skin. The sensing of the sharp object

pressed on the skin is more at the point of touch and reduces outwards from this

point. On SOM, the ‘point of touch’ is the BMU while the rest of the region on

the skin that will feel the touch by the sharp object corresponds to the BMU’s

‘neighbourhood’.
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Figure 2.2: The spatially diffusive local sensitivity of a single touch receptor may

be used to illustrate the functional model underlying SOM. On pressing the skin

surface with a pointed object, the feeling is more intense at the point of touch and

reduces as distance from the point increases outwards.

2.4 Network architecture

A 2D organization of the map units was adapted in this work since it is usually

effective for approximation of similarity relations of high-dimensional data, as is

the case with images, Kohonen [2013]. Since it is not possible to guess or estimate

the exact size of the SOM map beforehand, it was determined by the trial-and-

error method after seeing the quality of the first guess, Kohonen [1981b]. For

most of the images encountered in this work, a 4 by 4 map, giving 16 processing

units, was found to be the optimal size.

The map is connected to the input layer, which can be an n-dimensional vector to
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form the network.

In the detailed implementation of the original SOM algorithm provided in Buck-

land [2005] , each learning unit occupies a specific topological position - an x-y

coordinate on the map - and contains a vector of weights of the same dimension

as the input vectors. In most of the cases in this thesis, RGB values of the image

are extracted and used as input vectors to the map, hence the units are set to have

three weights, one for each element of the input vector: red, green and blue.

The adaptation of the synaptic vectors in the models is done as proposed by Ko-

honen in Kohonen [1981b] and Kohonen [2014a]:

1. Determine the best-matching unit for the current input vector.

2. Make the best-matching unit and its topologically nearest neighbours more

similar to the input vector.

To attain this, SOM does not need a target output to be specified, instead, where

the model weights match the input vector, that area of the map is selectively

changed through the learning process to improve its resemblance to the data in

the input vector. From an initial distribution of random weights in the units, and

after several iterations, the SOM eventually settles into a map of stable zones.

Each zone is effectively a feature classifier, such that the graphical output repre-

sents feature map of the input space, Figure 2.3. At the end of the training process,

if any new, previously unseen input vector is presented to the network, it will stim-

ulate units in the zone with whose weight vectors are more similar to its values
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than the other zones. This effectively, clusters the new input as a member of the

zone it stimulates.

The region around the BMU where units are adjusted at every iteration is identified

by the neighbourhood radius. This is a value that starts large, typically set to the

’radius’ of the map, but diminishes at each time-step. This radius, together with

the learning rate, determine the amount of learning to be effected on the units.

As illustrated in Buckland [2005], the training steps involved in the SOM algo-

rithm are:

1. Each unit’s weights are initialized using vector values picked randomly

from the image.

2. A vector is chosen at random from the set of RGB features extracted from

the image data and presented to the map.

3. Every map unit is evaluated to determine the amount of difference between

its weights’ values and the input vector’s values. The unit with the smallest

difference ‘wins’ the input vector to become its BMU.

4. The radius of the neighbourhood of the BMU is calculated. Any unit found

within this radius from the BMU is deemed to be inside the BMU’s neigh-

bourhood.

5. Weights of units within the BMU’s neighbourhood are adjusted to reduce

their difference with the input vector. The closer a unit is to the BMU, the
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more its weights are altered, making it ‘learn’ more than the units that are

far.

6. steps 2 to 5 are repeated for a specified number of iterations, N.

To know the BMU for the input vector, all the units are iterated as their Euclidean

distance with the current input vector is calculated. The Euclidean distance, d, is

calculated as:

d =

√√√√ i=n∑
i=0

(Vi −Wi)2 (2.3)

where V is the current input vector and W is the unit’s weight vector. The unit

with the lowest distance becomes the BMU for the input vector.

During each iteration and after the BMU has been determined, units within the

BMU’s neighbourhood are identified. These units – they form a local region for

the input vector - will have their weight vectors altered in the next step. This

optimizing of the region for the input vector, sets SOM aside from other ANNs.

To attain this creation of local regions, first the radius of the neighbourhood is

calculated then, with the BMU as the centre, the radius is used to cover a circular

area around the BMU. This becomes the neighbourhood region. At the beginning

of the training, this radius is set at half the map width as in Kohonen [2013].

During learning, the neighbourhood reduces in size over time, effected by the

exponential decay function:
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σ(t) = σ0 exp(
−t
λ

) t = 1, 2, 3... (2.4)

where σ0 denotes the width of the map at time t0 and λ denotes a time constant. t

is the current iteration of the loop. The value of λ depends on σ and on the number

of iterations the algorithm is set to execute:

λ =
N

logσ0
(2.5)

N , the number of iterations to be done by the learning algorithm is set by the user

at the beginning.

In practice, BMU’s location can be anywhere in the map, depending on the input

being processed by the network. With time, the neighbourhood reduces to the size

of one unit, the BMU.

With a known radius, all the units are iterated, determining if they are within

the radius or not. When a unit is within the neighbourhood, its weight vector is

adjusted as follows:

W (t+ 1) = W (t) + Θ(t)L(t)(V (t)−W (t)) (2.6)

This is SOM’s learning method, where t is the time step and L is a small variable

called the learning rate, which decreases with time. From this equation, the new
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adjusted weight for the unit is equal to the old weight (W ), plus a fraction of the

difference, (L and θ), between the old weight and the input vector (V ).

The decay of the learning rate is calculated at each iteration using the equation:

L(t) = L0 exp(
−t
λ

) t = 1, 2, 3... (2.7)

just like in equation 4, except this time it is the learning rate that decays.

The learning rate at the start of training is set by the user. It then gradually decays

over time so that during the last few iterations it is close to zero.

Equation 2.6 incorporates the learning rate decay over time and the learning strength

that is proportional to the distance a unit is from the BMU. At the edges of the

BMUs neighbourhood, the learning process has very little effect.

Ideally, the amount of learning should fade over time following a Gaussian decay.

In equation 2.6, θ represent the amount of influence of a unit’s distance from the

BMU on its learning, and is given by:

Θ(t) = exp(
−d2

2σ2(t)
) t = 1, 2, 3... (2.8)

where d is the distance a unit is from the BMU and σ is the width of the neigh-

bourhood function as calculated in equation 4. θ also decays with time.

Although colour is rendered by the computer using values from 0 to 255 for each
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component - red, green and blue, the input vectors are normalized, so that each

component has a value between 0 and 1. This is to match the range of the values

used for the units’ weights.

SOMs are commonly used in data clustering, abstraction and as visualization aids.

They make it easy for humans to see relationships between the vast amounts of

data carried in images. In this thesis, a new use of SOM is suggested; that the QE

that is derived from SOM can make it easy for humans to see the variations in the

vast data within an image.

2.5 The trained SOM: final synaptic weights

Another view of SOM is that of a statistical method of data analysis using an un-

supervised learning algorithm whose goal is to determine relevant properties of

input data without explicit feedback from expected results. Originally inspired

by feature maps in sensory systems as explained earlier, it has greatly contributed

to our understanding of principles of self-organization in the brain and the de-

velopment of feature maps as observed in Martin and Obermayer [2009]. Koho-

nen [1996] points out that although the brain mechanisms are extremely complex

and contain many details, the theory of their cognitive abilities must be based on

much fewer general principles. This is in line with SOM’s ability to reduce multi-

dimensional data to lower-dimension data. Traditionally it has been held that ‘in-

telligent’ information processing takes place from signal processing in adaptive
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network structures. With a degree of adaptation that is made controllable, SOM is

a successful implementation of this principle and can be viewed on different levels

of abstraction: as a physiological model, or a simplified numerical algorithm.

Through an interplay of neural principles of lateral inhibition and Hebbian synap-

tic learning within a localized region of the one-layered neural network, the SOM

acquires a low-dimensional representation of high-dimensional input features that

respects topological relationships of the input space. This is progressively achieved

through the updating of the initial synaptic weights, using equation 2.6. At the

end of learning, when all neurons optimally match the data from the input data

set, SOM acquires the matrix of the final synaptic weights. Thus, for different

inputs, different local areas will be modified, and in the long run, different areas

of the ‘map’ will become selectively tuned to different domains of the input in an

ordered and almost optimal fashion, Martin and Obermayer [2009].

The final weights of SOM are the BMUs, each being associated to the input vec-

tors it won. A BMU acts like the centroid in VQ to this category of vectors which

are more similar to each other than to those associated to a different BMU. Figure

2.3 shows a trained SOM, with input vectors distributed to the 30 units using the

criteria explained in the previous section.
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Figure 2.3: An example of a trained SOM. Each BMU is represented by a rect-

angular cell on the display. In this particular case, the SOM was a 5 by 6, and

it considered four features, the RGBA, from an Urban Atlas map. It was trained

for 10 000 iterations at a learning rate of 0.2 and a neighbourhood distance of 0.1.

The colour distribution here shows how the samples from the atlas were mapped

into the 30 units of the SOM after the training.

Using the colour bar provided in the figure, one can compare the number of input

data samples won by each SOM unit. The input samples are made members of

the local region with the BMU as their centroid. Effectively, the BMU becomes
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the representative of all the samples it won, drastically reducing the dimension of

the original data.

The task of SOM in SOM-QE is to create a standard platform on which QE is

determined. This standard is composed of a set of 2D vectors, the BMUs, that has

been generated through the competitive process described in sections 2.3 and 2.4

above.

Just like in other standards that provide a scale, for instance, to ensure uniformity

in the results they post, this set of BMUs ensures that variation within images of

a time series is measured and based on a uniform criteria that is capable of being

replicated.

In section 3.7, a new method of calculating the QE is suggested that utilizes a

fixed BMU for each input sample throughout a time series of images.

2.6 The quantization error (QE)

QE of an image dataset address the question; how well does each BMU fit each

of the samples it won? In this section, this question is addressed, taking into

consideration QE’s contribution in determining the variation within an image.

The task of finding a suitable subset that describes and represents a larger set of

data vectors is called vector quantization, Gray [1984]. SOM quantize data since

at the end of the learning process, each BMU has some data samples attached to it.
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The BMU can be regarded as the centroid of the group of samples it won. Despite

the competition among the units to win over input samples, it is likely that the unit

did not become an exact match of the sample. Therefore, even a BMU for an input

may still have some differences with the input from the image despite winning it,

expressed as:

QE = x−BMU (2.9)

where the BMU is taken from the set of final weights attained by the trained

SOM, and x is an input sample it won. QE tells how far the BMU is from the

input vector it won during the learning process.

This difference is the core idea that is applied to attain the objectives of this the-

sis. Equation 2.9 is the mathematical expression of determination of QE. To be a

representative of the entire image, the average QE from each of the image’s input

samples is calculated and used as a label for the image. Statistically, the mean of

data is a preferred measure of central tendency as it takes into considerations all

data points. The mean value gives the lowest amount of error from all other values

in the data set each time a measure is taken. The mean QE is given by equation

2.11. Thus, QE measures variation and when determined for each input sample in

the image, it provides a measure of variations across the image.

Since each QE value is determined from the final weights of the same trained

SOM, the QE values for different images or input vectors can be compared to

each other to determine change between them.
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The change between input feature vector or images from different times is given

through QE:

D(I1, I2) = QE1 −QE2 (2.10)

where D(I1,I2) is the difference metric and QEi is the metric computed for a

particular image space across moments in time. The function is a measure of

change between the two images or corresponding input samples and can either be

designed using domain knowledge or learned from a given dataset. The definition

of change is always problem-specific; this thesis deals with local changes in the

state of a patient, in a city or in the environment such as receding lesions in the

lung, construction of new building or increase in carbon gas concentration in air

respectively.

Most existing change detection methods require a decision as to where to place

threshold boundaries in order to separate areas of change from those of no change,

Jiang and Zhou [2004]. The threshold value is supplied empirically or statisti-

cally by the analyst, rendering the results obtained to be subjective. In SOM-QE

technique, no thresholding value is required and input feature vectors are treated

equally and with the same weight to arrive at the final decision.
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2.7 The SOM-QE concept

To demonstrate this new concept, two artificial images are used. These are basi-

cally simple images meant to ease the understanding of the idea. The first is an

RGB image of shape 1 by 4 by 3, with equal pixels for the three channels; red,

green and blue as shown below:

array([[[0.57735027, 0.57735027, 0.57735027]],

[[0.57735027, 0.57735027, 0.57735027]],

[[0.57735027, 0.57735027, 0.57735027]],

[[0.57735027, 0.57735027, 0.57735027]]])

This is a single row array with four input vectors each consisting of three values.

A second image, same in size and in shape as the first, was created by altering

the values of the second and the fourth input vectors of the first image as shown

below:

array([[[0.57735027, 0.57735027, 0.57735027]],

[[1. , 1. , 1. ]],

[[0.57735027, 0.57735027, 0.57735027]],

[[0.7 , 0.7 , 0.7 ]]])

Thus, the RGB values in the second and fourth pixels were changed to 1 and 0.7
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respectively. All other aspects of the image were maintained constant as they were

in the first image. Any change between the two images can then be attributed to

difference caused by the alteration of the two input vectors. No prediction about

localisation of this change is made. With such basic images it becomes possible

to visualize their content and to follow up any changes that occur between them.

Thus, humans can easily monitor changes between these two images and have

the opportunity to compare their results with those returned by SOM-QE. The

knowledge gained from the conclusion is then used to generalize the working

of SOM-QE when applied to real images, as is done with medical and satellite

images in a later chapter.

To understand these images better, their histograms are used to show the difference

between them, Figure 2.4:
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Figure 2.4: Histogram of the two basic images. On the left, all 12 values are

shown to belong to one category since they are equal in the uniform image. To

the right, the values are placed in three categories of 6 , 3 , and 3, confirming

the variation that exist in the non-uniform image. Note that an input vector has 3

values.

One bin accommodates all the 12 values in the first image since its values are

equal and hence uniform. Three bins are required for the second image, one for

the 6 values in the first and third input vectors since they are equal, and one each
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for the values in second and fourth input vectors since each is unique on its own.

Figure 2.4 depicts the differences in the composition of the two images. Both

images have four input vectors, those of the first image being equal making it

a uniform image. On the other hand, two input vectors are equal in the second

image while the other two are different, making the image to have three distinct

regions.

Further, the difference between the two images can be quantified by determining

the variation within each. One way to attain this is to calculate the image variance.

The image array is a dataset, hence its variance can be computed, giving a measure

of the spread of the distribution. For the two images, their variance is:

uniform image: 0.0000

non-uniform image: 0.0298

This shows there exist difference between the two images, with the non-uniform

image having more variations within it than the uniform image. The variance is

the average of the squared deviations from the mean.

Then, SOM-QE is applied on the two images to detect their differences. After

training a SOM using a different input image, the following QE values are ob-

tained:

uniform image: 0.0000

non-uniform image: 0.2361
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Just like the two methods above, SOM-QE reveals the existence of differences

between the two images. The non-uniform image has varied components, and a

SOM-QE score of 0.2361, while the uniform image has no variations within its

components with SOM-QE score of 0.000. This is depicted in Figure 2.5.

Figure 2.5: Difference between the two basic images. The change mask is a

binary image showing local regions represented by each of the four input vectors

and whether it changed (white) or did not change (black) between the images.
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The code used to produce the results is included in the supplementary material,

appendix B.

SOM-QE calculates the QE of each input vector in the image, using equation 9 ,

which was 0.0 throughout the uniform image and 0.0, 0.7321, 0.000 and 0.2124

for the first, second, third and fourth input vectors respectively for the non-uniform

image. The QE of each input vector is compared in the two images to determine

if there was a change, using equation 2.10. Where the input vector has different

QE values in the two images, the corresponding zone has been marked white,

otherwise the zone is black as shown in Figure 2.5.

SOM-QE gives further details about the changes that occurred between the two

images. In the uniform image, all the four input vectors were won by the same

SOM unit, that is, they have the same BMU. This confirms the image to be a

one-zoned image. The non-uniform image, on the other hand is a two-zoned im-

age according to SOM-QE. Two input vectors - [1., 1., 1.] and [0.7, 0.7, 0.7] -

were won by one SOM unit with an average QE of 0.4722, while the other two –

[0.57735027, 0.57735027, 0.57735027] and [0.57735027, 0.57735027, 0.57735027]

- were won by another SOM unit with an average QE of 0.000.

Thus, SOM-QE is a measure of variation within an image as well as a change

detector between images. This is confirmed when its results are compared to

those posted by the histogram and the variance calculation – two measures used

by the scientific community to determine the distribution of content in a dataset.
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The process of determining the difference between the two images, took SOM-

QE 0.87 second, making it appropriate and convenient for an image series pre-

analysis task. This involved training the SOM, calculating QE for the two images,

comparing the QE for differences, creating the change mask image and displaying

the results. See Figure 2.6 for a schematic representation of the SOM-QE process.

Input image

Normalize/co-register

SOM learning

Process all
image
data?

Equation (11) Equation (9)

Equation (10)

Is it zero?Changed No change

yes no

yesno

Figure 2.6: The SOM-QE set-up as used to determine changes between two im-

ages, using equation 2.11, or between the input vector of the same position within

the two images using equation 2.9.
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SOM-QE value obtained per input vector depends on SOM final weights and the

input vector pixel values. SOM’s final weights constitute the set of vectors from

which a potential BMU is drawn from. The set is a function of the image values

and is created as a result of learning the dataset. This effectively makes SOM the

platform on which QE for the various input vectors is determined. The more the

input vector is from the its BMU, the bigger its QE value.

When the object changes over time, its pixel values increase or decrease accord-

ingly to reflect its new status. When the new input vectors are subjected to SOM

for reference, the change is noticed through increased or decreased QE value be-

tween the two times. The QE is zero when the input vector equals its BMU, and

it increases when the input vector becomes bigger or smaller than the BMU. Only

the magnitude of QE is important at this level. However, when comparing an in-

put vector at two different instances, the QE value at the first instant is subtracted

from that at the second instant, equation 2.10. In this case, a positive QE value

will indicate an increase in variation while a negative QE value will indicate a de-

crease in variation. A zero will mean there was no change in variation for the input

vector. This new observation can be stated as: QE increases with the increase in

local or global variability within the image.

The same SOM settings were used to process the two images, which have same

properties except their distribution of the colour intensity. Due to lack of variation

within it, the first image returned a single cluster, meaning that all vectors within

it were similar. Its QE value is 0 indicating the uniformity – input vectors were
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equal - within the content of the image. But for the second image with varied

colour intensity, the QE value increased reflecting the increased variation of pixel

intensity within the image.

Thus, SOM-QE managed to identify variations created in the second image.

These are two simple images whose status and differences is known and can be

tracked manually. SOM-QE has been used to confirm these differences in the

image status. In the next chapter, the use of SOM-QE on real images – medical

and satellite images - is discussed and demonstrated.

QE has traditionally been used to evaluate the quality of SOMs, or to benchmark

a series of SOMs with different parameters trained on the same dataset Kohonen

[2014a], Gray [1984] and Pölzlbauer [2004]. Thus, QE is a quality measure for

SOM and it is used to determine how good a SOM set-up performs. SOM with

different parameters - map size, learning rate, neighbourhood distance - are run

on a given dataset. On each run, QE is determined. The combination of the

parameters producing the lowest QE value is taken to be the optimal setting for the

SOM. In this thesis, QE is exploited on a different and entirely novel perspective.

The goal here is to benchmark a series of datasets using the same SOM, that is, a

SOM trained under the same parameters. The same SOM - same map size, feature

size, learning rate and neighbourhood radius – is used to analyse series of image

datasets with clinical significance, or glean information from the satellite images.

When, the image data is altered and the SOM parameters are not altered, changes

in the QE can reasonably be attributed to the developments taking place in the
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object whose image is under study. This is why SOM-QE is proposed as, for

example, a clinical determinant of the progression or remission of lesions through

medical images. The QE is the norm of the difference of an input vector x, and the

vector’s best-matching unit. The BMU of x is the final synaptic weight in SOM

that won x. Thus, the QE reflects the average distance between each data vector

and its corresponding BMU:

QE = 1/N
N∑
i=1

||xi − (BMUi)|| (2.11)

where N is the number of input sample vectors x in the input data and BMU is

the final weight that won x among the final weights of SOM.

The QE becomes a statistical measure of variance associated with the final synap-

tic weights of the SOM. It disregards map topology and alignment Pölzlbauer

[2004] and its calculation, like that of the final synaptic weights, results directly

from the unsupervised learning procedure. On this basis, it is postulated that

the QE reflects critical variations in the map-to-data matching process in a similar

way as the statistical variance around a mean reflects the dispersion of the raw data

around that mean. Just like there can be one mean value for differently dispersed

raw data, we can have differently dispersed QE for one final synaptic weight, the

BMU.
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2.8 Hypothesis: SOM-QE value reflects critical vari-

ations in image content and it predicts future

image status.

In an image, such as a lung image, the variation of the content is is captured by

SOM-QE through equation 2.11. When the same is applied to a local region, the

status of the region within the image becomes known. This enables the differen-

tiation of objects within the image and can be used to identify abnormalities in

a scene, such as lesions in a lung. In a set of time series images from the same

scene, variations in the SOM-QE value could be due to small local differences in

the content across the images. This possibility has not been explored before, yet,

it opens new direction for fast automatic processing of a series of image data for

which a quick decision about change or no change needs to be made. In particular,

it is postulated that SOM-QE value:

1. is as a measure of small variations within an image,

2. becomes the image label to be used in tracking changes within the image,

3. determines minute changes that occur within an object through its images

taken at different times.

In this chapter, the fundamental principles of SOM-QE and how they can be ex-

ploited are discussed. The chapter ends by stating the hypothesis that guides the
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rest of the thesis.

In the next chapter, this postulate is tested and validated using a series of simula-

tions on time series images, both computer generated and real.
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Chapter 3

Experimental Methodology

Differences between images of the same scene may be caused by the motion in

the field of view, the addition or removal of an object from the scene, changes

in illumination, or noise from digitization process, Skifstad and Jain [1989]. The

changes due to addition or removal of an object to or from a scene, corresponding

to, for example, a growing or receding lesion (object) in a lung (image scene) is

of importance in the medical field.

In this chapter, determination of such changes is considered and in the process,

the hypothesis postulated in chapter 2 is confirmed.

SOM-QE technique considers the fact that some changes occurring between im-

ages can be unimportant or nuisance. These include changes induced by cam-

era motion, sensor noise, illumination variation or atmospheric absorption among
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others. Hence, as a necessary preprocessing step for all change detection algo-

rithms Radke et al. [2005b], image registration - which aligns several images into

the same coordinate frame is performed. Intensity variations in images caused by

changes in the strength or position of light sources in the scene are also considered

unimportant, hence each image is normalized before processing.

These pre-processing procedure, together with SOM-QE’s style of working at

pixel level and employing brain-like analysis technique makes it superior to other

change detection methods.

The general SOM-QE application is as follows. Image series of a scene of interest

are obtained. Using one of the images, a SOM is trained and then the QE value

of the rest of the images is determined. Comparing the QE of a pair of images

provides the difference and hence the change between them. Figure 2.6 provides

details of the technique. To evaluate SOM-QE, its performance is compared to

real measurements that correspond to a dataset of images and also with the results

of 14 other methods reported in Wang et al. [2014].

This chapter starts by demonstrating five example scenarios where SOM-QE can

be used, section 3.1. In section 3.2, it is shown that the changes detected by SOM-

QE are too small for human experts to see. It then shows the application and the

working of SOM-QE on real images drawn from the medical field and the satellite

images, sections 3.3 and 3.4. Then, a demonstration on use of SOM-QE values

to predict future changes is done in section 3.5, before evaluating the technique’s

performance in section 3.6. In the last section of the chapter, section 3.7, a new
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method of calculating QE is proposed.

3.1 Change detection problems detectable by SOM-

QE

The goal of this section is to demonstrate that SOM-QE value for a series of im-

ages varies consistently, reliably, and predictably with local variations in spatially

distributed contrast signals in random-dot images, and in image series with regu-

larly distributed spatial contrasts in their geometric configurations. Five scenarios

are considered, each being a representative of possible situations in real life where

changes of interest occur and which require accurate monitoring for various rea-

sons. For instance, city administrators may want to know when a new building

comes up in the city. Such can enable them realize when an illegal building is

being erected. In the image, this means a new object appears in a scene it never

existed.

The scenarios describe here are by no means the only situations that SOM-QE can

be applied. These are just examples of the kind of change problems that generally

occur in a scene and which require accurate and fast determination.

Use of artificial images is preferred in this section since their content and compo-

sition is known and hence allows comparison with the SOM-QE results.
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On the grounds of these systematic variations, it will be shown that SOM-QE

is a highly sensitive and reliable indicator of local and global image homogene-

ity: as images from a time series become more heterogeneous in spatial con-

tents, their SOM-QE value increases; conversely, as images from a time series

become more homogeneous in spatial contents, their SOM-QE value consistently

decreases, provided that other factors that may alter the image content are kept

constant across images of a given series.

The artificial images in this section are created in a way to ensure that only the

intended change exists between them. This is achieved by including only the

required content in each image. For the real medical and satellite images, nuisance

causes of change are minimized through use of appropriate image pre-processing

procedures.

Through the simulations in this section, the hypothesis postulated in section 2.8 is

confirmed and proved.

3.1.1 Materials and methods

Time series of images with variable amount of black and white pixel contents, and

of size 792 by 777 pixels, were generated. Content of each image was manipulated

in such a way that the resulting series of images would lead to conclusion that

confirm or contradict the set hypothesis.
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3.1.1.1.Randomly distributed spatial contrast with increasing white pixel con-

tents

Six images were created to form a series dataset, Figure 3.1.

Figure 3.1: Adding local contrast to a scene. The number of the white dots pro-

gressively increases between the first and last image in the series. When a dot

represent an object (like a building) in an image (like a city), then consecutive

changes that occur from one image (like at the beginning of a period) to another

(like at the end of the period) can be quantified and monitored using SOM-QE

status value.

The percentage of the randomly distributed white pixel content was increased
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from +10% in the second image to +60% in the last image of the series. The first,

the original image, is used as the reference for the others in the series. The lumi-

nance intensity of white and black image contents was measured with a standard

photosensitive lens, and was constant at 60 cd/m2 and at 2 cd/m2 for white and

black pixel respectively across all images. Only the spatial extent of local contrast

was varied in this set-up.

3.1.1.2 Spatially increasing extent of geometrically distributed contrast

In the second time series of images, nine images were created, Figure 3.2.
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Figure 3.2: Adding an object at every time instant, to form ‘checkerboard 1’. The

object added is the same at every time instant. The percentage of systematically

spaced white pixel content progressively increases between the first and last image

of this series, producing the ‘checkerboard’ patterns.

The percentage of systematically distributed white pixel content in the images

increases gradually from 8% in the first image to 72% in the ninth image of the

series.
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3.1.1.3 Increasing local content of geometrically distributed spatial contrast

In this time series of nine images, Figure 3.3, the size of systematically spaced

white pixel content in the images increases gradually from 2% in the first image

to 18% in the last image of the series.

Figure 3.3: Objects increase in size, one at a time, to form ‘checkerboard 2’. The

percentage of systematically spaced white pixel content progressively increases

between the first and last image, producing the systematic increase in single ele-

ment size of the ”checkerboard” patterns.
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3.1.1.4 Spatial contrast pattern with increasing contrast area at the centre

In the fourth time series with six images, Figure 3.4, the size of a centrally located

white square increases in the images. From occupying 1% of the image in the first

image, the white pixel occupies 32% in the sixth image.

Figure 3.4: Growing object within a scene. The size of the object increases pro-

portionally from the centre. The percentage of the centrally placed white pixel

contents progressively increases between the first and the last image in this series.

3.1.1.5 Spatial contrast pattern with constant contrast area of varying inten-

sity

Identically sized images with gradually varying contrast intensity of a central re-

gion with constant spatial extent across images were generated for this time series,

Figure 3.5.
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Figure 3.5: Fixed-size object with varying light intensity over time in a scene.

It demonstrate a changing object – local zone – that does not involve change in

size of the object. This type of change is typically missed when determination of

change is done based on changing area occupied by a zone, like when the built-up

zone encroaches the agricultural zone during the city growth.

3.1.1.6. SOM set-up

Before running the images in SOM-QE, each image was normalized to put them

on a single scale. This was done using the relation:

Inew = (
I − Imin

Imax − Imin

)× 255 (3.1)

where I is the current image value, Imin, Imax and Inew are the minimum, max-

imum and the normalized image values respectively. This normalizes the values
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within the 0 to 255 range. In some cases, the normalization of the values is done

within the 0 to 10 range.

Then, a four-by-four SOM, resulting in sixteen artificial units, was implemented

with an initial neighbourhood radius of 1.2 and a learning rate of 0.2. SOM learn-

ing was performed on the last image of each time series. The neural network was

set to learn for 10,000 iterations and its final weight vectors used to determine the

QE value for each image.

Images in section 3.1.1.5 were not normalized to allow SOM-QE capture the

changes caused by the varying intensity of the central region, which is the aim

of the section. When normalized, the images had no change between them, con-

firming their uniformity and that changes occurred between them only due to the

intensity variation. Figure 3.10 shows both results.

Linear regression analyses were performed to test the statistical significance of the

SOM-QE values as a function of the variations in the images. Determining that

SOM-QE values are a function of the variation within images, confirms SOM-QE

as a measure of variation within the images.

3.1.2 Results

SOM-QE value from each image was plotted as a function of the increase (%) in

spatial pixel content in each of the time series dataset. The results are shown in

Figure 3.6, Figure 3.7, Figure 3.8, Figure 3.9 and Figure 3.10 for the five example
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applications of SOM-QE.

As a given extent of spatially distributed contrast increases across images of a

given time series, the QE from the SOM output also increases. The results from

linear regression analysis show excellent goodness of the linear fits, as revealed

by the linear regression coefficients R2, with statistically significant trends as re-

vealed by the t values from the corresponding Student distributions. R2, t, and

the probability limits p of statistical significance are given in the legend of each

Figure.
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Figure 3.6: SOM-QE output as a function of spatial extent of contrast due to vary-

ing number of randomly distributed white dots on the black image background.

When the intensity of contrast is constant across images, as is the case here, the

QE is shown to increase linearly with the increase in spatial extent of contrast

expressed in percentage of the total image area. This increase is statistically sig-

nificant as shown by the t value from the Student distribution of the raw data

and the associated probability limits (p). The phenomenon is accounted for by an

almost perfect linear fit (model), as shown by an R2 value > .99 (almost 1).
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Figure 3.7: Variations in QE output plotted as a function of spatial extent of con-

trast in terms of number of geometrically distributed white squares on the black

image background. The QE is shown to increase linearly with the increase in spa-

tial extent of contrast expressed in % of the total image area. The linear trend is

statistically significant as shown by the t value from the Student distribution of

the raw data and the associated probability limits (p).
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Figure 3.8: SOM-QE value as a function of locally increasing size of geometri-

cally distributed white squares on the black image background of the ”checker-

board 2” series.
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Figure 3.9: Variations in SOM-QE output plotted as a function of increasing con-

trast area at the centre of the black image background. As in the previous cases,

SOM-QE is shown to increase linearly and significantly with the increase in spa-

tial extent of contrast.
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Figure 3.10: Significantly increasing SOM-QE output as a function of increasing

contrast intensity of the area at the centre of the black image background when

the spatial extent of that area is kept constant across images. The SOM-QE is

shown to increase linearly and significantly with the increase in contrast intensity

across the images. After contrast intensity correction of the images from this

series using the transform given in equation 3.1, the SOM-QE value is shown to

remain constant, as shown by the horizontal line in this graph

A common observation in the five cases was that as the spatially distributed con-

trast increased, the SOM-QE value also increased. Linear regression analysis

showed excellent goodness of the linear fits, as revealed by the linear regression
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coefficients R2, with statistically significant trends as revealed by the t values

from the corresponding Student’s t distributions. R2, t, and the probability limits

p of statistical significance are given in the legend of each figure.

The five scenarios provide typical examples of situations where changes can occur

and be captured by SOM-QE algorithm. Each of the type of change can be of

importance in the medical fraternity or in the planning and management of cities.

The simulations suggest that SOM-QE values from a series of images is a statis-

tically reliable indicator of spatial changes in image regions when the intensity of

contrast is constant across images of a given series.

On the basis of these results, it is important that image datasets are of constant

contrast intensities, and where necessary be preprocessed using the contrast in-

tensity correction transform given by equation 3.1.

The results in this section serve to partly confirm the hypothesis put forward in

section 2.8, that SOM-QE can detect changes within images. The next aspect of

the hypothesis - that even small changes are detectable by SOM-QE – is proven

in the following section.

Hence, in the light of these results, SOM-QE capability to reliably detect small

changes in spatial contents across images was put to test. To determine how small

the changes captured by SOM-QE can be, psychophysical detection experiment

were set up with human observers, as explained in the next section.
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The simulations shown above provide substantial proof of concept beyond any

reasonable doubt that the QE from the SOM output is a statistically reliable indi-

cator of spatial changes in image regions under the condition that the intensity of

contrast is constant across images of a given series. On the basis of these results,

it will be made sure that all further analyses of image time series presented here

are run on series of images with constant contrast intensities, if necessary pre-

processed using the contrast intensity correction transform given above to ensure

this condition holds for any given image series. This opens perspectives for the

fast automatic pre-analysis of large bodies of images. In the medical fields these

could be scans or MRI images taken over time from one and the same patient with

a given critical condition the evolution of which is slow and progressive and hard

to detect in the medical images, for example. The algorithm for SOM learning is

easy to implement and the computational times for whole set of analyses are of a

few seconds, bearing in mind that SOM performs a global analysis of the entire

image. This opens new doors for complex problems such as the monitoring cancer

progression/remission, which is often performed via manual segmentation of sev-

eral images in an MRI sequence, which is prohibitively time consuming, or via

automatic segmentation, a challenging and computationally expensive task that

may result in high estimation errors Rey et al. [2002a]. The QE allows to almost

instantly get some idea of the likelihood of change in terms of progression or re-

mission, in real-time, directly from image statistics using the self-organizing ma-

chine learning technique. Moreover, the QE value of the output of these analyses

detects even the smallest changes in potentially relevant local image contents that
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are impossible for humans to see, even when they are expert radiologists Wandeto

et al. [2017]. In the next section, we will compare the QE distributions from SOM

run on time series of original imaging data from a patient before and after blunt

force traumatic injury to test whether the QE consistently and reliably detects the

change in the medical images across time. In a further step, artificial lesion-like

content is added to medical images and SOM analyses are run on these modified

images. This is similar to what was done in previous work Pohl et al. [2011b]

prior to further computational analyses using a metric of visual classification by

an expert.

3.2 How sensitive is SOM-QE? Comparing SOM-

QE to human detection

To answer this question, ground truth data was collected in a series of experiments

involving human observers.

Computer generated random-dot images with different sizes of one of the dots

were used. The changing dot reflects a local zone in an image whose size increases

by 5%, 10 and 30% in three images. The resulting images were identical in size

and spatial configuration. In the experiment, they were paired with the original

image where all dots were of equal size.

In the psychophysical experiments, human observers had to judge whether a given
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image pair appeared the ‘same’ or ‘different’. The decision by the observer was

recorded down for each observation. This same-different paradigm was adopted

for the experimental design from David M. Green [1966] and Dresp et al. [2002].

Then, SOM-QE values from these images were compared to the psychophysical

data and analysed following the principles of signal detection theory in Roweis

and Saul [2000].

3.2.1 Subjects

32 healthy, young novices, 26 male and 6 female, all volunteers aged between 19

and 34 years of age and 3 expert radiologists, 2 male and 1 female, participated in

the studies. Experiments were conducted in conformity with the Helsinki Decla-

ration relative to experimental investigations on human subjects. All subjects had

normal visual acuity and gave written informed consent to participate.

3.2.2 Materials and methods

Four computer generated random-dot images of identical size, identical contrast

and spatial contrast distribution were created using Adobe RGB in Photoshop. In

three of these four images, a dot’s diameter was increased, to yield images with

a 5%, 10% and 30% local dot size increase. The adjusted dot was at exactly the

same location in the images. Thus, a dataset of 4 images was formed consisting
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of an original random-dot image, and three other images created from it with the

various enlarged sizes of one of their dots.

Each of these three images was paired with the original ‘no change’ image by

randomly placing it to its left and to its right, see Figure 3.11.

Figure 3.11: Three random dot-image pairs. In one of the images of a pair, there

is an increase in the size of a single dot by 5 %, 10 % or 30 %. The affected dot is

shown in the right image of each pair, highlighted by the red square. The images

are paired with the original image where no such local change was added, shown

on the left of a pair. Right and left images in a pair varied between presentations,

in random order. Pairs of identical images (not shown here) were also presented

in a task sequence to measure false alert rates, the ‘guess rates’.
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Pairs of identical images were also presented in a task sequence to measure false

alert rate, the ‘guess rate’. This determined the subjects’ tendency to over-diagnose

through the false positive detections. The exposure duration of the image pairs

was varied to test whether the visual processing time affects detection.

The subject was seated at a distance of about 75 centimetres from the computer

screen in a semi-dark room. The image pairs were presented in a random sequence

and each pair was followed by a blank screen presentation of five seconds to avoid

visual after-image, which could have interfered with the task. In one session, the

exposure duration for each image pair was five seconds, in another session, the

exposure duration was observer controlled. This means that the subject could

look at a pair for as long as he deemed necessary to reach a decision, then pressed

a key to get the five-second blank screen before the next pair was displayed. The

task instruction was to ‘decide as swiftly and accurately as possible whether the

two images in a pair appear to be the same or different.’ The number of ‘same’

and ‘different’ judgements in response to a given image pair was recorded into an

individual file, for each subject and session. 16 of the 32 subjects started with the

five second exposure duration session followed by the session with the observer

controlled exposure duration. The other 16 performed the task sessions in the

reversed order to counterbalance possible sequential timing effects.

Any detection of a difference, called correct positive or ‘hit’, could only be due

to detection of the artificially induced local difference in one of the two images

in the pair, as all other image parameters (contrast intensity, contrast sign, spatial
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distribution of contrasts, relative size) were identical in all images used in the

experiments.

3.2.3 Results

The total number of ‘same’ and ‘different’ responses for each type of image pair

was divided by the total number of presentations of that pair for a given subject

and experimental session. These response frequencies were then multiplied by

100 to produce percentages of correct negatives (CN), reflecting the percentage of

‘same’ responses to pairs of the same image, false negatives (FN) reflecting the

percentage of ‘same’ responses to pairs of different images, false positives (FP)

reflecting the percentage of ‘different’ responses to pairs of the same image, and

correct positives (CP) reflecting the percentage of ‘different’ responses to pairs of

different images.

3.2.3.1. Performance of the novice observers

The distributions of responses by the novice population are shown in Table 3.1,

Table 3.2, and Table 3.3 as a function of the change in local image contents, with

5 %, 10% and 30% local increase in single dot size respectively, and as a function

of the exposure duration of the image pairs; a) and b).

It was checked to confirm that the position of an image in a pair, left or right, had
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SAME DIFFERENT

R ”same” 88.7 (CN) 91.4 (FN)
”different” 11.3 (FP) 8.6 (CP)

[a) 5 seconds exposure

SAME DIFFERENT

R ”same” 86.5 (CN) 91.4 (FN)
”different” 13.5 (FP) 8.6 (CP)

(b) observer controlled

Table 3.1: Conditional response rates expressed in percent (%) for the ‘no-change’
image paired with the ‘5% local change’ image under conditions of five seconds
exposure duration (a), and observer controlled exposure duration (b). Correct
positive (CP), often also called ‘hits’, correct negative (CN), false positive (FP),
and false negative (FN) response rates are shown.

SAME DIFFERENT

R ”same” 87.5 (CN) 82.0 (FN)
”different” 12.5 (FP) 18.0 (CP)

(a) 5 seconds exposure

SAME DIFFERENT

R ”same” 87.0 (CN) 77.4 (FN)
”different” 13.0 (FP) 22.6 (CP)

(a) observer controlled

Table 3.2: Conditional response rates for the ‘no-change’ image paired with the
‘10% local change’ image under conditions of five seconds exposure duration (a),
and observer controlled exposure duration (b).

no effect on the responses. That is, there was no positional bias. Therefore, the

average response frequencies for images positioned on left and on right are used.

Comparing the results in a) and b) of Table 3.1, Table 3.2 and Table 3.3, it is clear

that the percentage of FP, the ‘guess rate’, does not vary much with the exposure

duration of the image pairs, whereas the percentage of CP, the ‘hit rate’, increases

markedly when the exposure duration is observer controlled. Given the constant

FP, the subjects consistently used the same decision criterion across sessions, oth-

erwise, the FP would also have varied with the image exposure duration.
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SAME DIFFERENT

R ”same” 85.5 (CN) 66.4 (FN)
”different” 14.5 (FP) 33.6 (CP)

(a) 5 seconds exposure

SAME DIFFERENT

R ”same” 86.5 (CN) 60.9 (FN)
”different” 13.5 (FP) 39.1 (CP)

(b) observer controlled

Table 3.3: Conditional response rates for the ‘no-change’ image paired with the
‘30% change’ image under conditions of five seconds exposure duration (a), and
observer controlled exposure duration (b) for each image pair.

Limiting the image exposure time negatively affects the CP. Also, when compar-

ing between Table 3.1, Table 3.2 and Table 3.3, it is clearly seen that the (CP)

increases as local dot size increases. In pairs where one of the images has a 5%

local dot size increase Table 3.1, the CP is smaller than the FP, which indicates

that the subjects are basically guessing and are unable to detect the local differ-

ence in image contents. In pairs where one of the images has the 10% or the 30%

local dot size increase, the CP is twice, Table 3.2, to three times, Table 3.3, the

FP, which shows that the local difference in the image content is beginning to be

detected. In pairs with observer controlled exposure duration where one image

has the 30% local increase in dot size, the CP is the highest at 40%.

Next, the average CP were submitted to a two-way ANOVA for the three levels of

the ‘lesion’ (the growth in dot size) factor L3 and the two levels of the exposure

duration factor E2 to assess the statistical significance of the effects. It is observed

that there is a statistically significant result for the effect of ‘lesion’ on the average

‘hit rate’, with F(2, 23) = 38.04; p < .001, and a significant effect of exposure
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duration, with F(1, 23) = 8.13; p < .05. The effect’s sizes in terms of means and

standard errors (SEM) are represented in Figure 3.12.

Figure 3.12: Average hit rates (CP) and their standard errors as a function of local

dot-size increase in % and the image exposure duration.

3.2.3.2 Performance of the expert radiologists

With a 5% local dot size increase, Table 3.4, there is no detection even by the

expert radiologists who are experienced in visually scanning complex images for

82



SAME DIFFERENT

R ”same” 41.7 (CN) 58.3 (FN)
”different” 58.3 (FP) 41.7 (CP)

(a) 5 seconds exposure

SAME DIFFERENT

R ”same” 41.7 (CN) 41.7 (FN)
”different” 58.3 (FP) 58.3 (CP)

(b) observer controlled

Table 3.4: The conditional detection rates of the experts for random-dot images
with a 5% increase in local size of a single dot in the image. There is no detection
of this change by the experts, they are basically guessing. Note that the guess rate
(FP rate) of the three experts here is noticeably higher than that of the novices. Ex-
pert radiologists thus, seem to have a stronger tendency to produce false positives,
the ‘better safe than sorry’ strategy.

changes in fine detail.

Here, the experts are basically guessing as can be seen from their CP rate after

subtraction of the FP. Note that the guess rate of the three experts is noticeably

higher than that of the novices. Expert radiologists seem to have a stronger ten-

dency to produce false positives, the ‘better safe than sorry’ strategy. With a 10%

local dot size increase, Table 3.5, the experts are still basically guessing, but begin-

ning to detect the difference in the two images when they can control the exposure

duration - the guess rate is no longer zero.

With a 30% local dot size increase, Table 3.6, the experts, just like the novices

detect the difference between the two images better when they control exposure

duration.

Given the higher guess rates of the experts, who tend to respond ‘different’ when
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SAME DIFFERENT

R ”same” 41.7 (CN) 50.0 (FN)
”different” 58.3 (FP) 50.0 (CP)

(a) 5 seconds exposure

SAME DIFFERENT

R ”same” 41.7 (CN) 16.6 (FN)
”different” 58.3 (FP) 83.4 (CP)

(b) observer controlled

Table 3.5: The conditional detection rates of the experts for random-dot images
with a 10% increase in local size of a single dot in the image. There is no detection
of this change by the experts, they are still basically guessing. Note the high FP
rates.

SAME DIFFERENT

R ”same” 41.7 (CN) 16.6 (FN)
”different” 58.3 (FP) 83.4 (CP)

(a) 5 seconds exposure

SAME DIFFERENT

R ”same” 41.7 (CN) 8.4 (FN)
”different” 58.3 (FP) 91.6 (CP)

(b) observer controlled

Table 3.6: Conditional detection rates of the experts for random-dot images with a
30% local dot size increase. The experts, like the novices, detect a 30% difference
in local dot size between the two images better when they can control exposure
duration. In whole, the FP or guess rates are still too high to conclude that the
experts reliably detect the local change in the images.
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the two images are the same to a greater extent than the novices, it cannot be

concluded that the experts more reliably detect the 30% increase in local dot size.

Their correct positive rate after subtraction of the false negative rate is still well

below a psychophysical threshold of 75% correct. To arrive at detection rate,

the false positives are subtracted from the correct positives as in David M. Green

[1966]. In this case: CP rate – FP rate (guess rate) is no longer zero, but about 25.

The best attained detection rate is 33.3%.

To compare with the human detection performances, the SOM-QE values obtained

from the same random-dot image dataset were plotted as a function of image type,

Figure 3.13.
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Figure 3.13: SOM-QE output as a function of local dot size increase in images.

The change is reliably detected as shown by the consistently increasing SOM-QE

value.

These data show clearly that SOM-QE reliably detects the small local changes in

the random dot images, as reflected by a steadily increasing QE as the size of a

single dot in the image increases.

Here the task of SOM-QE is to determine and assign each image a unique label.

The value of the label is based on the image content. Hence, when the image

content changes, the label changes too, making this label unique for the image

within the dataset. From the label, the difference between images is made clear.
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This can go a long way in assisting the radiologist to minimize guessing in their

image analysis tasks. SOM-QE gives a clear difference between images, pointing

the radiologist to the right direction in the diagnosis process.

3.2.3.3 Evaluating SOM-QE in light of some other approaches

Pohl et al. [2011a] describe a semi-automatic procedure targeted toward identify-

ing difficult-to-detect changes in brain tumour imaging. They synthetically grew

the pathology by simulating tumour growth. They recorded tumour growth per-

centages of 1% (9 mm cubic ), 3%, 5%, 11%, 16%, and 22% (195 mm cubic

).

They noted that ‘visually detecting growths of 1% and 5% is extremely difficult.’

On performance of their own suggested technique, they observed: ‘The metric

was generally a conservative estimate of change for all cases with growth larger

than 1%.’ Sample images from the dataset they used in their work is shown in

Figure 3.14, adapted from Pohl et al. [2011a].
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Figure 3.14: Part of the image dataset used in another approach reported in liter-

ature to detect changes caused by the growing lesion. SOM-QE was also applied

on this dataset and found to detect smaller growth than the other technique.

SOM-QE was run on this dataset in order to compare its performance with this

other approach, Table 3.7.

%lesion growth SOM-QE value Magnitude change
0 142.1839
1 142.0677 0.1162
5 143.5304 1.3465
22 146.0702 3.8863

Table 3.7: SOM-QE performance on a dataset with lesion growth in brain im-
ages. SOM-QE outperformed the other method especially on the identification of
smaller growth.

Note that from the original image to the 1% lesion image the change is detected

as a drop of the SOM-QE value. This implies that the addition of ‘lesion’ reduced
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variation within the image. The changes in the other levels of lesion-growth in-

creased the variations within the image.

Using SOM-QE method, lesion growth was detected even at early stages (lower

percent volumes) - unlike in the case of depending on visual recognition and other

techniques in literature.

This confirms the second aspect of the hypothesis in section 2.8, that the changes

sensed by SOM-QE can be very small.

3.2.4 Discussion

The experiments with human observers confirm that small local changes in images

are hard to detect for humans, while they are reliably captured by the SOM-QE

algorithm used in this work. This work is important as it introduces a new way of

looking at automatic change detection when dealing with the small local changes.

This opens perspectives for the fast automatic pre-analysis of large bodies of im-

ages. In the medical field these could be scans or MRI images taken over time

from the same patient with a given critical condition, the evolution of which is

slow and progressive and hard to detect, for example. The algorithm for SOM

learning is easy to implement and the computational times for the whole set of

analyses are of a few seconds, bearing in mind that SOM-QE performs a global

analysis of the entire image. This opens new doors for complex problems such

as the monitoring of cancer progression/remission, which is often performed via
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manual segmentation of several images in an MRI sequence, is prohibitively time

consuming, or via automatic segmentation, which is a challenging and computa-

tionally expensive task that may result in high estimation errors Rey et al. [2002b].

In SOM-QE, an idea that almost instantly enables the determination of the like-

lihood of change in terms of progression or remission, a contribution in solving

the change detection problem is made. It works in real-time, directly utilizing

statistics from the image collected using the SOM machine learning technique.

Moreover, the SOM-QE value detects even the small changes in potentially rele-

vant local image contents that are impossible for humans to see, even when they

are expert radiologists.

In the next section, SOM-QE is applied on time series of original imaging data

from a patient with an injured knee. Then, artificial lesion-like content is added to

the medical images and SOM-QE is run on the modified images too.

3.3 Change detection in time series of medical im-

ages

In this section, SOM-QE is applied to track clinical information through medical

images.

In medicine, the annotation of image data is subject to considerable differences

between individuals, even when they are highly specialized experts such as radi-
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ologists van Riel, S.J; et al. [2015]. Therefore, the analysis of medical images

through computer techniques can be of assistance to the human expert in clinical

diagnosis. Radiologists have to assess the progression of patients’ conditions on

the basis of often hardly detectable, local changes in medical images. These are

captured through various imaging techniques, such as magnetic resonance imag-

ing (MRI), computerized tomography (CT), and positron emission tomography

(PET), providing the radiologist with visual information about the state or pro-

gression of a given condition and helping to determine the course of treatment.

Traditional methods for handling medical images involve direct visual inspection,

which is by its nature subjective. Image science therefore, has proposed meth-

ods for reducing subjectivity by introducing automated procedures. This involves

various image processing techniques aimed at identifying specific diagnostic re-

gions and specific features representing tumours and lesions. For example, to

avoid time-consuming voxel-by-voxel comparison for detecting changes between

two images, the images can be aligned and displacement fields may be computed

for recovering apparent motion by using a non-rigid registration algorithm van

Riel, S.J; et al. [2015]. This and similar techniques focus on searching of ROI for

tumours or evolving lesions. A computer algorithm compares multiple series of

images to produce a map of the changes, and expert knowledge is then applied to

that map in a series of post-processing steps in order to generate a set of metrics

describing the changes occurring in the images. During this process, domain-

specific knowledge need to be introduced, which attempts to reduce the impact of

91



subjectivity by incorporating generic information an expert might use when an-

notating medical images manually. This, however, does not completely eliminate

subjectivity. Patriarche and Erickson [2007] and Angelini et al. [2007] provide

other approaches that proposed a computational framework to enable comparison

of MRI volumes based on gray-scale normalization, to determine quantitative tu-

mour growth between successive time intervals. Specific tumour growth indices

were computed, such as volume, maximum radius, and spherical radius. This

approach also requires the initial manual segmentation of the images, which is

a time-consuming task. Semi-automatically segmenting successive images and

then aligning them on the basis of hierarchical registration schemes has also been

proposed for measuring growth or shrinkage in local image details, Angelini et al.

[2010]. All these methods rely on the accuracy of segmentation and require man-

ual annotation for classifying local changes in pathology of up to a few voxels.

Other methods such as Konukoglu et al. [2008] which combine input from a medi-

cal expert with a computational technique are more specifically aimed at difficult-

to-detect brain tumour changes. These methods, again, involve a subjectivity fac-

tor which is problematic given the inter-individual differences between experts

Schectman et al. [2005].

The SOM-QE approach to the problem of change detection of time series of med-

ical images considers the whole image as opposed to an image segment of a spe-

cific ROI. Such an approach of direct analysis of the medical image as a whole has

the advantage of not requiring manual benchmarking. The basic idea behind direct

92



analysis is that there exists an intrinsic relationship between images with varying

contents and their clinical significance, and that this relationship can be exploited

directly without additional intermediate procedures of image processing. Com-

pared to some of the traditional methods briefly reviewed above, SOM-QE has a

deeper meaning in the sense that it is close to the most natural approach to the

problem. It directly targets the final outcome of change detection like a medical

expert would, and thereby bridges the gap between machine learning and the clas-

sic medical image inspection approach of the human expert. A medical expert

such as a radiologist explores images in a time-series dataset as a whole, and one

by one to monitor the progression of a patient’s conditions. Like the SOM-QE,

the expert derives diagnostic information from this ‘natural’ procedure to reach a

decision on the likely progression or remission of a condition such as a tumour

or lesion, thereby evaluating the likely progress of a patient’s state or response to

therapy. This classic visual method of determining differences between one series

of images to another can, however, fail to detect very small differences. This can

be overcome by use of SOM-QE algorithm for rapid automatic change detection

in medical image data.

Here, the power of QE to capture critical local changes is tested on time series

of MRI images from a patient with an injured knee. Further, simulations on MRI

images to which Poisson noise as well as synthetic local lesion content were pro-

gressively added, are conducted and show that SOM-QE is fast, and consistently

detects minimal changes in medical image data. It is suggested that SOM-QE al-
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gorithm can be implemented to assist human experts such as radiologists in change

detection decision making.

3.3.1 Materials and methods

A 16 by 16 SOM with an initial neighbourhood radius of 5 and learning rate of

0.2 was set up for image learning. These initial values were obtained after testing

SOMs with different numbers of neurons to make sure that the cluster structures

show sufficient resolution and statistical accuracy Kohonen [2014b]. The learning

process was started with vectors picked randomly from the image array to be the

initial values of the SOM unit vectors. For the following three simulations, the

SOMs used similar parameters.

Images datasets used in this section are provided in the supplementary material

section.

3.3.1.1. Original time series of MRI images

In the first experiment, SOM was run on two sets of MRI images. The images were

captured from a patient with a sprained knee during two consecutive clinical visits,

courtesy of Hopital de Hautepierre, Strasbourg, France. The same acquisition

parameters (machine, sequence, coil, and so on) were used to acquire each set

which consisted of 20 MRI images. The images are included in the appendix
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section.

SOM-QE was run on these images and posted the results shown in Figure 3.17.

3.3.1.2. MRI time series images with artificially added digital lesion contents

In the second experiment, artificial lesion content was added to each of the original

sets of images. On the first MRI set of images, synthetic lesion was added locally

to each image to form a new set of images. Since the aim was to reinforce changes

within the images between time series, the new set of images retained all the

characteristics of the first set, except for the additional lesion content, which was

uniformly positioned in each of the 20 images of the series. Effectively, a synthetic

lesion was introduced on each image in a way that ensured the differences between

the original and new sets are due to the lesion, and not by external factors like

location of camera, lighting, the patient’s position on the MRI machine and so

forth. Furthermore, the spatial extent of the introduced lesion content is known.

Here, it was a 44 by 26 pixels elliptic shape at 72 by 72 dpi gray-scale resolution.

Next, on the set of images with an added lesion, a second lesion was added to

form a third set of images. Thus, three sets of images were ready for simulation

experiment. Each set consisted of 20 images. The first set was the original images

as taken during the first clinical visit of the patient. The second and the third sets

were created by adding one and two lesions respectively to the first set. The three

sets of images formed a time series dataset of images. Figure 3.15 shows the first
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image from each of the three sets.

Figure 3.15: To eliminate external factors that could also contribute to change -

like the patient position on MRI machine – artificial lesions were added on one

set of images. To form the second set of images, one lesion was added to the first

set while two lesions were added to create the third set. This figure shows the first

image from each set of images.

The results of processing this time series dataset of images are shown in Figure

3.18.

In Pohl et al. [2011b], original images were also modified by adding synthetically
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evolving pathological content of 1%, 5% and 22% volume growth and then used

in visual recognition experiments, testing whether the artificial pathologies would

be detected by medical expert. SOM-QE was applied on the same dataset and

results compared as shown in Table 3.7.

3.3.1.3. Medical images with Poisson noise added

In this section Poisson frequency distribution process was used to add noise on

each of the two sets of knee images. Poisson noise was preferred over the other

types of impurities generation because it is correlated with the intensity of each

pixel in the image. The process produces a sample image from a Poisson distribu-

tion for each pixel of the original image.

The SOM-QE values obtained from each of the original sets and the corresponding

noised set are shown in Figure 3.19. The same Poisson distribution parameters

were applied to add the impurities in both series. By its nature, the Poisson method

populates the image with impurities in proportion to existing pixels values hence

the difference in what was ‘added’ to each set of images. Figure 3.16, shows

sample images from this dataset.
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Figure 3.16: Samples of MRI images taken on the first (top left) and second (bot-

tom left) clinical visit by the patient. On the right, the same images after adding

Poisson distributed noise, which represents a way of adding lesion contents syn-

thetically and is less arbitrary compared with adding pixels locally. The complete

image dataset is provided in the supplementary material section.

3.3.2 Results

The SOM-QE values obtained from the two original sets of images are shown in

Figure 3.17 below.
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Figure 3.17: Results from SOM-QE analyses on time series of the original MRI

images, taken at two different clinical visits by the patient. It is shown that the

SOM-QE value increases significantly (t (1, 38) = 3.336; p<.01) between the

two times. Thus, the SOM-QE is a statistically reliable detection measure of the

change between the images from the two series.

The QE distributions were submitted to one-way analysis of variance (ANOVA),

which signalled that differences in SOM-QE values on the two image series is

statistically significant (t (1, 38) = 3.336; p < .01). This significant difference in

the SOM-QE distributions directly reflects the clinical significance of the image

differences between the first and the second visit.
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The results from SOM-QE on the image series with added artificial lesion content,

Figure 3.18, similarly produced systematic increase in the QE between original

image series and the image series with added ‘lesion’. These SOM-QE results

were also submitted to one-way analysis of variance (ANOVA). The differences

between the SOM-QE distributions for the two series are also statistically signifi-

cant (t (1, 38) = 5.61; p < .01 and t (1, 38) = 2.18; p < .05 respectively).

Figure 3.18: Local ‘lesions’ added. Differences between SOM-QE values for

original image and ‘2 lesions added’ image series were statistically significant: (t

(1, 38)=2.055, p <.05).

The results of SOM-QE run on the original MRI image series with and without

Poisson noise are shown in Figure 3.19.
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Figure 3.19: Global ‘lesions’ added on images. The dots, considered here to be

the ‘lesions’, were added to each image based on Poisson distribution frequency.

SOM-QE output increases significantly (t (1, 38)=3336; p < .01) between the

image series. In the original images series 1, small synthetic lesion was added,

while in original images series 2, a larger synthetic lesion was added. For each

manipulation, the difference in the SOM-QE outputs is statistically significant,

that is, (1, 38)=3337; p < .01 for series 1 and t (1, 38)=3336; p < .01 for series 2.

Adding Poisson noise to the original MRI images produces differences in the

SOM-QE distributions that are, again, statistically significant (t (1, 38) = 20.76; p

< .001 f and t (1, 38) = 9.68; p < .01 for series 1 and 2 and their modified ver-

sions, respectively). It is thus shown that adding Poisson frequency distribution
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noise to the original MRI images has increased the SOM-QE values of the images

proportionally.

3.3.3 Discussion

Biomedical signal and image processing focuses on different goals in the educa-

tional and research fields of biomedical engineering, Kaçar and Sakoğlu [2016]

among others. With growing physiological knowledge, a wider range of innova-

tive research on clinical methods makes use of such processing in medical appli-

cations, and many advanced algorithms in the signal and image processing field

rely on time frequency representation approaches, especially in the field of neural-

sciences Mavratzakis et al. [2016], and in functional imaging of the cardiovascular

system.

Imaging modalities are now widely accessible and can deal with the analysis

of disease progression to provide diagnostic information. They, however, in-

volve multiple steps of computational analysis and processing and does not en-

able straightforward and instant decision making. It is important to point out that

a deeper analysis of all these different approaches would be beyond the scope

of this thesis, which is aimed at testing a simple method of fast and almost in-

stant change detection that can be applied to images generated by the different

biomedical imaging approaches. By this virtue, the method described here has the

potential to aid human observing performance to help improve decision making
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of the medical experts.

The results from the series of simulations described in this chapter suggest that

SOM-QE analysis is well-tailored for fast change detection through large bodies

of medical images. It allows the automatic detection of subtle but significant

changes in time series of images likely to reflect growing or receding lesions.

In clinical practice, finding evidence for subtle growth through visual inspection

of serial imaging can be very difficult. This is especially true for scans taken at

relatively short intervals (less than a year). Visual inspection often misses the slow

evolution because the change may be obscured by variations in body position,

slice position, or intensity profile between scans. In some cases, the change can be

too small to be noticed. Surgeons and oncologists frequently compute the change

in tumour volume by comparing the measurements from consecutive scans. When

the change in tumour volume is too small and hence difficult to detect between

two sequential scans, radiologists tend to compare the most recent scan with the

earliest available image to find any visible evidence for an evolution of the tumour.

The resulting analysis does, however, not reflect the current development of the

tumour but rather a retrospective perspective of tumour evolution, as pointed out

earlier. This study addresses this problem, as the fast SOM-QE can easily be

implemented to aid clinicians in deciding on the treatment. The process of ex-

ecuting the code to determine the QE distribution for a series of twenty images

takes about 40 seconds. This involves reading the DICOM images from a folder,

running the SOM and determining the QE for each image, displaying the image
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on the screen and saving the QE value in a text file. In summary, whenever the

SOM-QE value on a patient’s medical images taken at consecutive times rises,

it is a potential indication that lesions or other pathological changes of the organ

under study may be developing, while a decrease of the SOM-QE value may in-

dicate that a pathology is receding. To the best of our knowledge, this approach

is the first to automatically detect potentially critical local changes in a patient by

comparing images taken from subsequent clinical visits without relying on visual

inspection or manual annotations.

The SOM-QE method detects these changes rapidly with a minimal computation

time using consecutive images of an organ without having to rely on derived image

qualities as is the case for image subtraction methods. The SOM-QE method also

represents a clear advantage compared with monitoring a condition, for example

cancer progression or remission, using manual segmentation techniques on each

image from an MRI sequence, which is prohibitively time consuming.

In the human and environmental sciences, time-series of satellite images may re-

veal important data about changes in environmental conditions and natural or ur-

ban landscape structures that are of potential interest to citizens, historians, or

policy makers. The next section gives details of SOM-QE results from extracts of

satellite images for specific geographic regions of interest.
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3.4 Change detection in time series of satellite im-

ages

In this section, SOM-QE is applied to detect changes given satellite images of

specific geographic ROI. It is also used to determine urban growth variability

through Atlas maps and to detect changes in carbon dioxide gas concentration

in air.

The detection and characterization of critical changes in public spaces of the nat-

ural or the built environment reflected by changes in image time series such as

photographs or remotely sensed image data may be of considerable importance

for risk mitigation policies and public awareness. This places a premium on

techniques for discriminating between changed and unchanged contents in large

time series of images. Hence, various computational methods of change detec-

tion in image data including remotely sensed data, exploiting different types of

transforms and algorithms, have been developed to meet this challenge. Exist-

ing methods have been reviewed previously in excellent papers, for example by

Singh [1989] and by Rosin and Ioannidis [2003]. Known computations include

Otsu’s algorithm OTSU [1979], Kapur’s algorithm Kapur et al. [1985], and var-

ious other procedures such as pixel-based change detection, image differencing,

automated thresholding, image rationing, regression analysis on image data, the

least-square method for change detection, change vector analysis, median filter-

ing, background filtering, and fuzzy logic algorithms Devore [2004], Griffiths
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[1988], among others. The scope of any of these methods is limited by the specific

goal pursued.

As pointed out earlier, image change detection involves being able to reveal crit-

ical changes through analysis of discrete data sets drawn from image time se-

ries. One of the major the major sources of such images is the remotely sensed

data obtained from Earth-orbiting satellites. It provides image time series through

repetitive coverage at short intervals with consistent image quality Singh [1989].

We use statistical trend analysis to prove that:

1. the QE distributions from the SOM on the different images corresponding

to the geographical ROI under study reliably reflect these critical changes

across the years

2. the QE output is significantly correlated with the most relevant demographic

data for the same reference time period.

3.4.1 Determining urban growth variability through Atlas maps

In this section, SOM-QE is used to show the status of cities at two different times.

Using satellite-based Atlas images, the status of Berlin and Strasbourg in year

2006 and in year 2012 is determined and compared. To attain this, images of each

city taken at the two times were processed through SOM-QE. The Urban Atlas

maps used are from Copernicus - ‘the European Programme for the establishment
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of a European capacity for Earth Observation’.

The results obtained are shown in Table 3.8.

SOM-QE value Change
City Year 2006 Year 2012
Berlin 0.7210 0.6589 decrease
Strasbourg 0.8175 0.8246 increase

Table 3.8: SOM-QE values for satellite images taken of Berlin decrease as a func-
tion of time, while SOM-QE values for images taken of Strasbourg, during the
same reference period, increase. These trends reflect the evolution in these two
different urban landscapes across the reference time period.

From the SOM-QE values between the two years, the level of uniformity increased

in Berlin, that is, sections within the city changed to resemble or match each other

more in the period between 2006 to 2012. On the other hand, the uniformity

within Strasbourg reduced between the same period. The implication is that some

sections of Strasbourg were developed at the expense of others. This is vital in-

formation for the mayors of the two cities or other concerned authorities. The

information was processed by SOM-QE in under 1 minute.

3.4.2 Regions in Las Vegas

The satellite image extracts used in this section correspond to three distinct geo-

graphical ROI referred here as: Las Vegas City Center, Lake Mead and its close

surroundings, and the Residential North of Las Vegas. Statistical trend analysis is

used to evaluate the SOM-QE performance on visualizing structural change across
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time in the regions, highlighting significantly correlated demographic data for the

specific time period. The statistics is utilized to prove that:

1. the SOM-QE values from the different images corresponding to each ROI

under study reliably reflect these critical changes across the years

2. the SOM-QE output is significantly correlated with the relevant demographic

data for the same reference time period.

Samples from the datasets of images are shown in Figure 3.20. The samples are

the first and the last image from each of the three geographic ROI.
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Figure 3.20: The two images on each row from left to right are the first and the

last in their respective series, captured in year 1984 and year 2008 respectively.

On the top is a section from the residential North of Las Vegas, in the middle

is Lake Mead and its immediate surroundings and at the bottom is a section of

Las Vegas City centre. Complete image datasets for each ROI are provided in the

supplementary material section.

After preprocessing to ensure equivalence in scale, contrast intensity and align-

ment of the extracted images, the image input is exploited directly without addi-

tional or intermediate procedural analysis. To control for differences in intensity

across images of a given time series, a transform as defined by equation 3.1 is ap-

plied. The images in each set were also co-registered by applying the method in,
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Thévenaz et al. [1998], matching them to one image to minimize changes caused

by misalignment.

3.4.2.1 Materials and methods

The images were extracted from a time-lapse animation of the western half of the

city of Las Vegas, Nevada, from 1972-2013, as captured by Landsat sensors. The

animation portrays the outward expansion of the city as made of data from all

the Landsat satellites, Jentoft-Nilsen et al. [2012]. The images are false-colour,

showing healthy vegetation in red.

The large red areas are actually green space, mostly golf courses and city parks.

According to Jentoft-Nilsen et al. [2012], the images became a lot sharper around

1984, when new instrument designs improved the ability to resolve smaller parcels

of land. Consequently, the dataset considered here is for the 25 years between year

1984 and year 2008, with one image per year. Besides, during this period, major

structural changes in the urban landscape of Las Vegas City and the Residential

North, and the gradual dwindling of the nearby Lake Mead’s water levels due

to the effects of global climate change was witnessed. It is these changes that

SOM-QE aims to portray.

From the extracted images, each of the three ROI was cropped out from every

year’s image to form three datasets. Each dataset consists of 25 images, one for

every year between 1984 to 2008.
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The cropping was done in such a way to ensure that the same scene was covered

from each image per dataset. Then, each year’s image was registered with year

2013’s image, for the Residential North dataset and year 2011’s image for the

City Centre and Lake Mead datasets. The choice of these later images as the base

image is motivated by fact that with increasing improving Landsat instruments

over the years, the images were bound to have their scan planes in better location

than the others. Then, the same images were used to train a 4 by 4 SOM for each

dataset using a neighbourhood distance of 1.2 and at a learning rate of 0.2 for

10,000 iterations.

Since the original images used colour to emphasize different areas on the maps,

pixel-based RGB values are used as input features to the SOM. This ensures a

pixel-by-pixel capture of detail and avoids errors due to inaccurate feature calcu-

lation which often occur with complex images Suzuki [2012]. With the trained

SOM, QE values were determined for each of the 25 images of each dataset.

Images datasets used in this section are provided in the supplementary material

section.

Las Vegas City Centre ROI

The City Centre image dataset consist of images of size 72 by 98 pixels. It pro-

vides a special challenge in change detection analysis since few and small changes

were bound to occur in the period of study. The ROI was already built-up by 1984

leaving little room for new constructions, for example. As pointed out in Guest
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and Nelson [1978], it is the suburban that gains in status while the centres of the

oldest metropolitan areas presumably were unattractive to higher status persons,

and the development of the auto-mobile permitted them to leave. This is also ev-

ident from Figure 3.20, top row, where a challenge to tell the difference between

the image on the right and the one to the left will be a difficult one for a visual ob-

server despite the images having been captured 25 years apart. Such a challenge

was the subject of section 3.2, where the human observer was found to perform

dismally in recognition of small differences between two images. Through this

ROI, SOM-QE is used to show that city centres are characterized by a relative

centralization, or at least no decentralization, as reported in Guest and Nelson

[1978].

The income and poverty charts for Las Vegas show how its suburbs still have the

economic advantage as reported in Juday [2015].

The QE values were fed into linear regression analysis, Figure 3.22. To relate the

development captured by SOM-QE figures on the number of visitors to the region

during the period are shown in Figure 3.23 and the population growth is shown

in Figure 3.24. Figure 3.25 and Figure 3.26 relates the SOM-QE values to the

number of visitors and population trends respectively.

Lake Mead ROI

Lake Mead dataset has images covering 430 by 366 pixels. It is an artificial lake

situated lake in the Nevada Desert.
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SOM-QE results from this dataset are shown in Figure 3.27. Figure 3.28 shows

the water level trends during the period while Figure 3.29 is a comparison of the

falling water levels with SOM-QE values.

Residential North

This geographic ROI is a section situated on the North of Las Vegas City, USA.

It corresponds to an image of size 186 by 119 pixels. The selected area encloses

Sun City and North Las Vegas Airport to the top left and right respectively. At the

bottom are the Suncoast Hotel and Casino, to the left, and the Spring Preserve to

the right.

SOM-QE results from this dataset are shown in Figure 3.30. Figure 3.31 shows the

population trend during the period while Figure 3.32 is the relationship between

the population growth and the SOM-QE values.

3.4.2.2 SOM-QE on objects within a ROI

In the next step, changes that occurred in specific areas within the Residential

North ROI are quantified. The SOM-QE for each input vector is determined using

equation 9 and the difference with the corresponding vector in subsequent year(s)

is calculated using equation 10 to give the change. See sample results in Table 3.9.

An input feature vector represents an object within the ROI, enabling changes on

each object within the scene to be monitored. See Figure 3.33.
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3.4.2.3 Results

SOM-QE results from the three ROI are shown and discussed in the light of their

statistical significance from linear trend analysis. Pearson’s correlation method is

used to link the QE to a set of highly relevant demographic data from the same

reference time period. Images from the three datasets are provided in the Supple-

mentary Materials section.

Las Vegas City Centre

During the reference time period, significant but small changes in building density

across the whole of Las Vegas City was witnessed. Photographic snapshots taken

on parts of the ‘Strip’, the central artery of Las Vegas, where most attractions are

located, illustrate some of these changes, Figure 3.21.

Figure 3.21: Photographic snapshots of parts of ‘The Strip’ across the years 1982-

2010. From left to right, the photos were taken in 1984, 1995, 2005 and 2008

respectively. They give some idea of the structural changes that took place in Las

Vegas City during the reference time period of this study, for which the satellite

images generated by NASA were retrieved.
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However, the changes in the small ROI used for this study were not as elaborate

and clear for the human observer as those in the photographs. As Figure 3.22

illustrates the SOM-QE value ranged from 0.2404 in 1984 to a high of 0.3143 in

2008. This translates to an increase of 0.039, or 30.74%, during the 25 years.

Results in terms of QE output of the SOMs for the 25 image extracts correspond-

ing to the ROI Las Vegas City are shown below, Figure 3.22 as a function of the

year in which an image was taken. The variations in the QE shown reflect varying

spatial contrast distribution in the images across time. These are indicative of the

major structural changes in the urban landscape during the reference time period.

Trend analysis (linear regression analysis) on these data reveals a trend towards

increase in QE as a function of time expressed in terms of the progression in years

of the reference period 1984-2008, with a linear regression coefficient R2 = .48,

and a t (1, 24) = 2.13, p<.05 indicating that the trend towards increase in QE with

time is statistically significant. Contrast intensity across images of a time series

for a given ROI being controlled for by preprocessing, the significant increase in

QE from SOM output reliably signals a significant increase in spatial extent of

contrast regions in the images with time. Trend analysis on related demographic

data for Las Vegas City show that both the number of visitors in millions and

the estimated total population in thousands have increased significantly over the

reference time period.
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Figure 3.22: Variations in SOM-QE output plotted as a function of time. SOM-QE

values were found to change in a statistically significant manner in the geographic

ROI ’Las Vegas City’.

From section 3.2, even expert observers could not clearly tell such difference be-

tween images! On average, the ROI grew by about 1.22% per year, which is

out of the ability of visual human observers and other computational approaches

discussed in literature. Yet, SOM-QE performed this, leaving no doubt as to exis-

tence of difference between any two of the images, at a time of 7.1 seconds only.

The variations in the QE shown reflect varying spatial contrast distribution in the

images across time. These are indicative of the major structural changes in the
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urban landscape during the reference time period. Linear regression analysis on

these data reveals a trend towards increase in SOM-QE value as a function of time

during the study period. The one-sample statistic, t (1, 24) = 2.13, p < .05 in-

dicates that this trend over time is statistically significant. It confirms SOM-QE

output as reliable indicator of the significant increase in spatial extent of contrast

regions in the images with time. Trend analysis on related demographic data for

Las Vegas City show that both the number of visitors and the estimated total pop-

ulation have increased significantly over the reference time period, Figure 3.23

and Figure 3.24 respectively.
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Figure 3.23: Number of visitors of Las Vegas City as a function of time. The

linear trend yields a significant regression coefficient R2 = .965. The increase

with time is statistically significant, with t (1, 24) = 15.7, p < .001.
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Figure 3.24: Estimated population total for Las Vegas as a function of time. The

linear trend yields a significant regression coefficientR2 = .995. The increase with

time is statistically significant, with t (1, 24) = 14.2, p < .001.

To assess the statistical correlation between the QE and other relevant demo-

graphic variables from the reference time period, Pearson’s correlation coeffi-

cient was computed on the distributions for QE against number of visitors and

QE against the estimated population total.
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The results of these analyses are shown in Figure 3.25 and Figure 3.26. Pear-

son’s correlation coefficient R gives an estimate of the statistical relationship, or

association, between two independent continuous phenomena, or variables based

on the mathematical concept of covariance. R is associated with a probability p

and carries information about the magnitude of the association, or correlation, as

well as the direction of the relationship. Pearson’s correlation statistic computed

on the paired distributions signals statistically significant correlations between the

QE and the number of visitors and between the QE and the population totals for

the period of study on the Las Vegas City ROI.
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Figure 3.25: Variations in QE output plotted as a function of the number of visitors

of Las Vegas City during the reference time period. Pearson’s correlation statistic

computed on paired distributions gives a statistically significant correlation with

R = .75, p<.05.
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Figure 3.26: SOM-QE output plotted as a function of the number of estimated

population total for each year of the reference period. Pearson’s correlation statis-

tic computed on the paired distributions gives a statistically significant correlation

with R = .90, p<.01.

Lake Mead Reservoir

During the reference time period, Lake Mead water levels progressively dwindled

122



away as a consequence of global climate change. This phenomenon is captured

by SOM-QE as shown in Figure 3.27.

Figure 3.27: SOM-QE output plotted as a function of the time period in which

the corresponding satellite images of Lake Mead were taken. The change detector

(SOM-QE) is shown to decrease with time, reflecting the steady decrease in water

levels of the Lake during this period (compare: Figure 3.28 and Figure 3.29).

Linear regression indicates this to be statistically significant.

Nota Bene

Here we used trend analysis by linear regression to test the direction of change

of either the SOM-QE or demographic data with time. No assumption about a

123



linearity of this change is made. In other words, we are not making any assump-

tion about a linear model to explain the data!

Linear regression analysis on the data reveals a trend towards decrease in SOM-

QE value as a function of time, which is expressed in terms of the progression in

years of the reference period. The data has a linear regression coefficient R2 =

.71, and a t (1, 24) = 9.597, p < .01 indicating that the trend towards decrease in

SOM-QE with time is statistically significant.

SOM-QE output reliably signals a significant decrease in spatial extent of contrast

region in the lake’s images with time. This image phenomenon is directly related

to the shrinking of Lake Mead, as seen in the image samples in Figure 3.20, middle

row. Water level statistics for the reference time period are shown in Figure 3.28.

124



Figure 3.28: Water levels of Lake Mead as a function of time. The linear trend

towards decrease yields a regression coefficient R2 = .36 and is statistically sig-

nificant with t (1, 23) = 3.6, p<.05.

Pearson’s correlation statistic computed on the paired distributions of QE and wa-

ter levels signals a statistically significant correlation, shown in Figure 3.29, for

the period under study the Lake Mead ROI.
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Residential North

The significant changes in building density that occurred in this geographic region

of interest, turning the land from desert into a major densely built-up residential

suburb of Las Vegas City, are well captured by SOM-QE values’ trend, Figure 36.

Linear regression analysis on the QE data returned a regression coefficient R2 =

.7999. The linear relationship between the artificial neural network (SOM) output

in terms of QE and time is statistically significant with t (1, 24) = 33.45; p <

.001. This indicates that the artificial system reliably detects the critical structural

changes in the images of Las Vegas North across time.
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Figure 3.30: QE trend as a function of the year of the reference time period from

which the input images were taken for the Residential North ROI.

The trend towards increased land cover in the North of Las Vegas is further illus-

trated by demographic data for that geographic ROI from the same time period,

as shown in Figure 3.31.
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Figure 3.31: Population totals (estimates in thousands) as a function of time. This

was during the reference period under study. Here, the best model to fit the demo-

graphic data is most likely a parabolic function.

Regression analysis on these data returns a regression coefficient R2 = .92. The

linear relationship between population estimates and time is statistically signifi-

cant with t (1, 24) = 9.23, p < .001. Next, a plot of the SOM-QE output as a

function of these population estimates is shown in Figure 3.32.
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Figure 3.32: SOM-QE output from the image analyses as a function of the popu-

lation estimates for the same geographic ROI Las Vegas North. The two variables

are positively correlated as testified by Pearson’s R.

The link between the increase in QE from the image analyses and the population

estimates for the same geographic ROI Las Vegas North for the reference time

period is described by a positive Pearson correlation with R = .51.

Thus, SOM-QE output from the image dataset reflects the progressive land cover
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changes in this geographic ROI.

Changes in objects within a ROI

The next results, show how SOM-QE can track changing objects within the ROI.

The QE of an input feature vector is monitored between images to determine the

changes. See Table 3.9 and Figure 3.33.

Input vector
position index

SOM-QE value
1984 image

SOM-QE value
1985 image

Change
in QE

353 0.3316 0.3316 0
362 0.3314 0.3314 0
1284 0.2896 0.2896 0
2501 0.1551 0.1551 0
3001 0.0534 0.0566 -0.0033
3587 0.0411 0.0362 0.0049
3955 0.0711 0.0649 0.0062
7065 0.1681 0.1427 0.0254
11689 0.1287 0.1260 0.0027
17587 0.24211 0.2421 0

Table 3.9: Sampled SOM-QE values of regions within the Residential North ROI
on the same position of images captured in 1984 and 1985. The last column
indicates the amount and direction of change in the region as determined by SOM-
QE. Note the two positions, 2501 and 17587, with SOM-QE values of 0.1551 and
0.2421 respectively and whose positions are labelled in Figure 3.33.

Some objects changed by increasing their SOM-QE values, others decreased while

others did not change as shown in the last column of Table 3.9. Figure 3.33 shows

the objects within the ROI, with black dots – pixels- indicating the regions that

did not change between the images on each row. All other objects experienced

changes.
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Figure 3.33: The small, black dots in each year’s image are areas that did not

experience changes between the two years in each row. The rest of the image

had some changes taking place. On the top row, two specific areas are shown

out for illustration. One has a SOM-QE value of 0.2421, the second has SOM-

QE of 0.1551 in both years, 1984 and 1985. The bottom row also shows areas

of no-change between the years 2007 and 2008. It takes 7.1 seconds to detect

changes and label regions between the two pairs of images, making this approach

appropriate for the task.
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3.5 Using SOM-QE to tell future occurrences

In this section, it is shown that given a series of SOM-QE values of an objec-

t/scene, it is possible to determine future SOM-QE values and hence predict the

changes that are likely to occur in the object/scene.

The dataset describes SOM-QE values of images of the City Centre of Las Vegas

city, USA. The images are from the same region, each captured per year from

1984 to 2011. The SOM-QE values depict how this ROI changed during the time

under consideration. The SOM-QE values were generated as described in section

3.4. There are 28 observations, having the trend shown in Figure 3.34.
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Figure 3.34: The variation of SOM-QE values of a section of the city centre of

Las Vegas as a function of time, indicating when change has occurred within the

region.

As shown in the plot of next time step observation (t+ 1) against the observation

at the previous time step (t) of the dataset, the observations fall along a diagonal

line, Figure 3.35.
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Figure 3.35: When SOM-QE is run on each of the images of ROI, a dataset of

SOM-QE values is created. A plot of SOM-QE values, y(t + 1), against their

previous values, y(t). It provides some confirmation that the SOM-QE dataset has

some internal correlation, hence it can be used for prediction purposes. Thus, the

new technique, SOM-QE, generates data that can be applied to determine future

change, its direction and its magnitude.

This is an indication that the data points calculated over time by SOM-QE have
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an internal structure that can be accounted for. Time series modelling is used here

to make predictions of future SOM-QE values for the ROI.

3.5.1 Method

Since the aim is to predict change between consecutive images, the data is first

transformed by differencing, with each observation transformed using the relation:

value(t) = obs(t)− obs(t− 1) (3.2)

where value(t) is the difference between two consecutive observations. This

forms the differenced dataset from the original SOM-QE values dataset.

Next, an auto-regression model with a lag of 6 was trained on the differenced

dataset and used to predict SOM-QE. Auto-regression is a time series model that

uses observations from previous time steps as input to a regression equation to

predict the value at the next time step. 66% of the differenced data was used

to train the model, while the rest was used to test the model. The regression

coefficients learned by the model are used to make predictions in a rolling manner

across the test dataset.

As each time step in the test dataset is executed, the prediction is derived from

the coefficients and stored. The actual observation for the time step is then made

available and stored to be used as a lag variable for future predictions.
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Finally, the differenced dataset was transformed into the original form. This is

done by keeping track of the last actual observation so as the predicted differenced

value can be added to it.

This method focuses on one-step forecasts, but can work for multi-step forecasts

by using the trained model repetitively and applying forecasts of previous time

steps as input lag values to predict observations for subsequent time steps. Table

3.10 gives example results on this aspect.

3.5.2 Results

Training and running the model first gives the Mean Squared Error (MSE) of the

predictions, which is 0.0 (that is, 0 error on average, if the square root is taken

to return the error score to the original units). All changes depicted by SOM-QE

between images are correctly predicted by this model. The MSE tell how the

model is expected to perform on average when making forecasts on new data.

Finally, a graph is created showing the actual observations in the test dataset (blue)

compared to the predictions (red), shown in Figure 3.36.
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Figure 3.36: The results of how predictions are derived from the differenced

SOM-QE dataset. The blue plot is the actual data from the test dataset while

the red plot is for the corresponding predictions.

Table 10 compares the forecasts results for the ROI for the year 2010 and 2011

with the actual observations. The change detection is seen to be on the same

direction for both actual and predicted SOM-QE values in both years.
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Year

Actual
SOM-QE

value

Predicted
SOM-QE

value

Actual change
(current value

minus
previous value)

Predicted change
(current value

minus
previous value)

Direction
of change

2009 0.312736 0.317673

2010 0.314414 0.322340 0.001678 0.004667
Positive
for both

2011 0.297438 0.310476 −0.016976 −0.011864
Negative
for both

Table 3.10: Predicted versus actual observation. The model was used to predict
SOM-QE values for two years, 2010 and 2011. The predicted change in the two
years was the same as the actual observation. Actual observation is obtained by
running SOM-QE on the image captured in the year.

3.6 Evaluating SOM-QE performance

In this section, the performance of SOM-QE is compared with that of other meth-

ods using two image datasets. In the first case, the images are accompanied by

real measurement of the amount of a gas in air providing the ground truth data

to benchmark SOM-QE performance as a change detector and the use of its data

in prediction. In the second case, a change detection dataset that is presented in

literature as posing difficulties for change detection methods is used.

3.6.1 Carbon dioxide gas measurements

To determine the accuracy of using SOM-QE values as a change detector and

in a prediction task, it is tested on a different dataset. This dataset provides real

measurements captured by instruments which are compared with SOM-QE values
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obtained from corresponding images to determine the accuracy.

The dataset is composed of a movie showing the annual cycle of carbon dioxide

gas (CO2) in the Northern Hemisphere. The movie captures the period from

January 1 to December 31, 2012 and indicate the distinct rise and fall of carbon

dioxide levels over a year’s time. Along with the movie, daily average atmospheric

CO2 measurements recorded at Mauna Loa Observatory, Hawaii USA, are also

provided, Thoning et al. [2017].

The unit used to record the gas data is parts per million (ppm), which is the number

of CO2 molecules present in every million molecules of air. The annual pattern

is caused by the uptake and release of CO2 from seasonal plant growth on the

vast landmasses of the Northern Hemisphere. The annual maximum CO2 con-

centration in the Northern Hemisphere occurs around May. The spring build-up

happens because decaying plants have been releasing carbon throughout the win-

ter. The annual minimum concentration occurs around October, after new growth

has withdrawn CO2 from the air during photosynthesis.

The dataset is suitable for use in this instance because, when the pollutants molecules

increase the variation within the 1 million molecules of air increases too. This

means for low ppm, SOM-QE should increase/reduce with increase/reduction of

the amount of CO2.

From the year 2012 movie, 203 frames were extracted to form the time series

dataset of images. The images were of the same size, 2048 by 1026 pixels and

139



being from the same movie, they had similar properties such as alignment and

brightness. A 4 by 4 SOM was set up and, using a neighbourhood radius of 1.2, a

learning rate of 0.2 and 10000 iterations the SOM was trained. Then, the trained

SOM was used to determine the QE value of each image, see Table 3.11.

Month Image

CO2

amount
(ppm)

Change
in
CO2

SOM-QE
value

Change
in

SOM-QE
value

Compare
change in
CO2 and
change in
SOM-QE

value

January 394.8 0.1673

February 393.55 -1.25 0.1910 0.02 miss

March 394.98 1.43 0.2204 0.03 hit
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Month Image

CO2

amount
(ppm)

Change
in
CO2

SOM-QE
value

Change
in

SOM-QE
value

Compare
change in
CO2 and
change in
SOM-QE

value

April 396.28 1.3 0.2465 0.03 hit

May 396.98 0.7 0.2537 0.01 hit

June 396.17 -0.81 0.1794 -0.07 hit

July 394.62 -1.55 0.1419 -0.04 hit
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Month Image

CO2

amount
(ppm)

Change
in
CO2

SOM-QE
value

Change
in

SOM-QE
value

Compare
change in
CO2 and
change in
SOM-QE

value

August 392.34 -2.28 0.1495 0.01 miss

September 390.76 -1.58 0.1247 -0.02 hit

October 390.83 0.07 0.1075 -0.02 miss

November 393.13 2.3 0.1477 0.04 hit
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Month Image

CO2

amount
(ppm)

Change
in
CO2

SOM-QE
value

Change
in

SOM-QE
value

Compare
change in
CO2 and
change in
SOM-QE

value

December 394.82 1.69 0.2023 0.05 hit

Table 3.11: When both changes are in the same direction,

that is, both are an increase or both are a decrease, then a ‘hit’

result is obtained, while when the changes are in opposite

direction, it becomes a ‘miss’ results. 8 out of 11 changes

are hits, which is 72.7 % score. This is a good score and can

be improved if the matching of dates of images’ capture with

those of gas level measurement is improved. That is, the date

of image capture should be as close as possible to the date of

taking the gas measurement.

When the 203 images are evenly spread in the year, an image is picked per month

of the year. Each of the 12 images can then be associated with the correspond-

ing recorded measurement of the month, Table 3.11. The CO2 reading taken at

the mid month – the 15th of every month– is used as the corresponding monthly
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reading.

From the results, the performance of SOM-QE as a change detector can be calcu-

lated as:

precision, p = 8 ÷ 11 = 0.727

recall, r = 8 ÷ 11 = 0.727

and F1 score of (2 × p × r) ÷ (p + r) = 0.727

This is a better score than those reported in related literature. For instance, Saku-

rada and Okatani [2015], reported results posted by various 2D change detectors

where their own was the best with an F1 score of 0.723.

The 12 SOM-QE values obtained from the monthly images were used to train a

predictor. The prediction for SOM-QE value of next image was determined as:

0.224166.

That is, January 2013 image will have a SOM-QE value of 0.2242, up from that

of December 2012 image at 0.2023, a +0.0219 change. On the other hand the

recorded CO2 for January 2013 is 395.5 ppm up from 394.82 ppm recorded for

December 2012, a +0.68 change. This is a ‘hit’, meaning that SOM-QE correctly

predicts that the amount of CO2 in air increased in January 2013.
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3.6.2 Challenging change-detection image dataset

The 2014 CDnet change detection image dataset, Wang et al. [2014], incorpo-

rates challenges encountered in many surveillance settings. It provides realis-

tic, camera-captured (without CGI), diverse set of indoor and out-door videos.

The video sequences represent various challenges divided into categories. Each

change detection challenge in a category is unique to that category. Such a group-

ing is essential for an unbiased and clear identification of the strengths and weak-

nesses of different change detection methods. Among the categories is the PTZ

- pan–tilt–zoom camera - category which requires different type of change detec-

tion techniques in comparison to static camera videos.

In Wang et al. [2014], a total of 14 change detection methods available in litera-

ture were tested and the F-measure for each method was calculated within each

category. In particular, the PTZ category showed the lowest performance, a fact

attributed to its unique challenges posed by the zoomed-in/zoomed-out nature of

the images involved.

Each of the 14 methods posted F1-measure scores of under 0.30. When SOM-QE

was applied to this category, it scored an F1 of 0.39, clearly beating the rest which

are among the best methods in literature.

In the PTZ category, any camera motion (pan, tilt or zoom) caused major false

positives from each method, but SOM-QE minimized them, see Figure 3.37.
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Figure 3.37: On the left and at the middle are sample input and ground truth

images respectively from the 2014 CDnet dataset, PTZ category. To the right is the

image produced by SOM-QE on detecting the changes between the input image

and its next image frame on the video. The PTZ category of images posed unique

challenges on change detection, with other methods in the literature managing F1

score of less than 0.30. SOM-QE scored an F1 score of 0.39, which is the best

score in this category.

3.7 The SOM-QE algorithm: New method to deter-

mine QE in time series images

3.7.1 Introduction

In determination of QE, the difference between the original input vector, , and its

winner, the BMU, is used, see equation 2.9. The BMU is one of the final weights

in the trained SOM and is chosen to be the closest to the input vector.

For a set of time series images where change is to be detected, the winner of
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vector may not be the same across the images. This is inherent from the principle

of competitive learning which SOM practices. Units in the SOM map compete for

the right to respond to the input data vector – the unit with the closest resemblance

to wins, and becomes its BMU. Consequently, if the values in vector changed

between images and it is subjected to the competition, any of the SOM units can

become its BMU. Depending on the changes in , it may find itself having a new

winner among the SOM weight units and this will affect results posted by equation

2.9.

In change detection, the interest is in the change that has occurred in between

subsequent images in a time series dataset. This is the change that is as a result

of changing status of the object whose images were acquired at different times.

When the object has undergone some changes, we expect the changes to be re-

flected in the input vector . The set of SOM final weights, from which x‘s winner

is determined from, carries different values and are not necessarily equal. It there-

fore implies that when switches winners, it affects the results given by equation

2.9 as it include not only the change in , but also the changes due to the use of

a different winner. Reporting change in this manner may be inaccurate, as it in-

cludes the results from two sources: first the actual difference between the input

vector in the first dataset and that of the second dataset, and secondly the use of a

different BMU to calculate the QE for the vector in the two different datasets. To

maintain accuracy, this second source of change need to be eliminated.

For example, suppose we have two images with corresponding input vectors xt1
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and xt2, that is, x at time 1 and x at time 2. The two images are captured at dif-

ferent times and are preprocessed to ensure uniformity in alignment and lighting

exposure. Input vector xt1 and xt2 are from the same position in the two images,

that is, they represent the same object within the image. From a trained SOM,

xt1 may be won by weight w1 while x2 is won by weight w2. Thus, w1 becomes

the BMU for xt1 (BMU1) while w2 becomes the BMU for xt2 (BMU2). The

traditional method to calculate QE is to find the the difference of the input vector

and its BMU. In this case, on applying equation 9, the QE for the two instances

becomes:

QE1 = xt1 −BMU1 (3.3)

and,

QE2 = xt2 −BMU2 (3.4)

and for the entire dataset the QE values for the object form a set:

QEobject = {xt1 −BMU1, xt2 −BMU2, xt3 −BMU3, ...} (3.5)

that is, the object has QE values from each image in the series that is not calculated

from the same BMU.

For a time series dataset this raises an issue. Input vectors xt1 and xt2 represent the
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same object, only that their representation is at different times. It is therefore log-

ical that QE1 and QE2 be determined from a common reference point (BMU) in

order for them to be mathematically comparable and hence accurately determine

whether change has occurred in the object or not.

3.7.2 Method

In this section, the change detection process is restricted to change in x between

images. This is done by ensuring that input vector x is associated to the same

winner across the image dataset. To attain this, the winners determined during the

training phase of SOM are maintained for each x. The index of x in the training

data is used to extract it on testing image and its initial winner from the training

data used to determine QE.

QE = x− original BMU of x (3.6)

and thus equation 3.5 becomes:

QEobject = {xt1 −BMU, xt2 −BMU, xt3 −BMU, ...} (3.7)

where BMU is the original BMU of x.
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3.7.3 Results

When SOM-QE is determined using the two methods – the traditional method and

the new method suggested here - the results shown in Figure 3.38 are obtained.
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Figure 3.38: The two plots show the result of calculating SOM-QE values using

the two methods. At the bottom (fixed BMU), is the result obtained by applying

equation 9 where the BMU of the input vector at a particular image is used to

find the QE. The plot on top (varying BMU), shows results obtained by the new

method where the BMU obtained for every input vector at the end of SOM training

is retained and used to determine QE for that particular vector throughout the time

series, as in equation 3.6.
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In both results, the trend in changing SOM-QE values is similar. But the larger

SOM-QE values obtained when a fixed BMU value is applied make it more sensi-

tive to change. The amount of change sensed by SOM-QE when a fixed BMU for

an input vector is applied is bigger than when a varying BMU is used, see Figure

3.39.

Figure 3.39: The changes that occurred in the ROI as reflected in images are

shown here for the two methods of determination of SOM-QE. The fixed BMU

method shows bigger change occurred between consecutive images in the series

than the varying BMU method. To note change, consider the point’s distance

from 0 (no-change-point, on y-axis) on the two curves. For instance in year 2005,

the change is 0.03 units for the new method and slightly above 0.01 units for the

traditional method.
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Thus, the new method provides a bigger scale of change measurement than the

traditional method, and is found to be more sensitive to changes than the tradi-

tional method. This places it in a better position to detect changes, especially

small changes, between images.

In this chapter, the hypothesis stated in chapter 2 is confirmed. Processing data

within specialized units as is done in the human brain brings in advantages of

spotting small, real changes and considerably avoids the unimportant changes.

Besides, the product of SOM-QE from a time series of images is used to pre-

dict status of the ROI. It is confirmed that data generated by SOM-QE carries

additional information, which can be put to some good use in change prediction.

This adds and complements other prediction data available to planners, forecast-

ing teams, among other related specialists.

In chapter 4, the results of this thesis are discussed, pin pointing how they relate

to modern change application technique.
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Figure 3.29: Variations in SOM-QE output plotted as a function of the water levels
of Lake Mead during the reference time period. Pearson’s correlation statistic
computed on the paired distributions gives a statistically significant correlation
with R = .99, p < .001.
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Chapter 4

Discussion of results

In previous chapters, the role of AI systems in processing objects through their

images is discussed. In finding the differences between two images, SOM-QE

is proposed and shown to detect small differences and give their location on the

image within a short time. On benchmarking with other techniques, the method is

found to outperform them.

Image-based change detection finds application in computer vision and robotics

when identification of changed areas in a scene is required in order to fulfil some

task. For example, it can improve the efficiency of 3D map maintenance by re-

stricting updates to only the changed areas Taneja et al. [2011] ,Ulusoy and Mundy

[2014] or allow a system to learn about the nature of objects in the environment

by segmenting them as they change Finman et al. [2013].
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Fast and accurate change detectors are therefore required, and in some instances

are mandatory to have for some systems to deliver on their mandate. It is no longer

viable to relay on manual expertise nor slow systems. Sakurada and Okatani

[2015] reports that it took twenty minutes on average for an annotator to cre-

ate the ground-truth map for an image pair. This demonstrates the necessity of

a method for detecting scene changes automatically, accurately and fast enough.

This is a role that SOM-QE can easily play, as seen when it takes 7.1 seconds to

analyse the difference between a pair of satellite images and produce their change

mask, section 3.4.

When, the image data is altered and the SOM parameters are not altered, changes

in the QE can reasonably be attributed to the developments taking place in the

scene whose image is under study. This is demonstrated using simple images, on

which human can track the changes manually to confirm and evaluate SOM-QE

results, in section 2.7. SOM-QE is therefore, proposed in this thesis as, for exam-

ple, a clinical determinant of the progression or remission of lesions in medical

images.

Further simulation of SOM-QE on real medical and satellite images confirmed

that the SOM-QE values of a set of images was a function of change within the

image. This was confirmed statistically through linear regression analysis and

hence qualifies SOM-QE technique as a measure of variation within an image.

The hypothesis in this thesis consisted of four aspects, that; SOM-QE is a change

detector, it detects small changes, it attains this relatively fast, and that it produces
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data to predict status of an object. These are necessary features of a modern

change detection mechanisms. The necessity sprouts from the fact that there is

now lots of image data that requires to be analysed fast enough to save lives in the

medical field and to attain efficient monitoring of the environment. The hypothesis

was systematically proved throughout the simulations carried out in chapter three.

In benchmarking with other techniques, it became clear that SOM-QE attains this

hypothesis even when the changes occur in conditions where it is difficulty to tell

between true and false changes.

In the SOM-QE approach, a series of 20 or more images are compared in less than

three minutes, giving the changes at a glance for the whole time series dataset.

There is, to my knowledge, no other method capable of providing such results.

The proof of the relative power of the SOM-QE to sense spatial extents of local

image contrasts at constant intensity is given. It provides a statistically significant

indicator of potentially important local changes in image contents across time

which may reflect a critical evolution of man-induced and natural phenomena in

these geographic regions of interest.

The sensitivity of SOM-QE was shown to be better than that of human observers.

This qualifies it as a tool to accompany the radiologists in preliminary diagnosis

of image data. It can give direction of change and minimize the need to rely on

guess work.

SOM-QE is easy to implement too. It therefore provide instant decision about
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change/no change within a series of images. It represents a promising, non-

expensive technique for the automatic tracking and harvesting of landscape-change

information from large bodies of image data on the basis of, in principle, ready-

to-use simulations. Such information relative to critical changes in environmental

conditions and natural or urban landscape structures can, as shown, be instantly

correlated with other relevant demographic data which are of potential interest to

citizens, historians, or policy-makers.

When changes in an object occur within difficulty-to-detect situation, as demon-

strated in section 3.6.2, SOM-QE is able to detect more true changes with less

nuisance changes than the other techniques reported in literature.

In section 3.5, it was shown that data generated by SOM-QE can be put to other

good use – predicting the status of an image in terms of changed content, its

magnitude and the direction of change.
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Chapter 5

Conclusions and Contribution

When the first problem to be addressed is to decide whether there is a difference

between two medical images, SOM-QE technique comes in handy. The differ-

ence may be clinically important, for instance, in relation to a lesion or a tumour

that is likely to have changed with time, either in the direction of local increase

(the patient’s condition is getting worse) or in the direction of local decrease (the

patient’s condition is getting better). In this thesis, the problem of efficient disease

diagnosis by means of structural change detection has been addressed. The solu-

tion has been shown to be cost-effective and can be adopted to assist radiologist

to quickly determine presence of changes.

The detection and characterization of critical changes in objects, event scenes,

or public spaces of the natural or the built environment may be of considerable
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importance for swift decision making in fields such as medical, human and en-

vironmental safety, policy making for risk mitigation, or public awareness cam-

paigns. In general terms, change detection consists of identifying differences in

the state of an object or phenomenon by observing it at different times and implies

being able to quantify change(s) due to the effect of time on that given object or

phenomenon. The context of emergency places a premium on fast automatic tech-

niques for discriminating between changed and unchanged contents in large image

time series. SOM-QE has been shown to detect changed content, even when the

change is small, and it accomplishes this within a short time.

On the basis of statistical regression analysis, it has been shown that SOM-QE

output provides a statistically significant sensitivity to systematic variations in the

spatial content of images. Just like the brain maps in animals, SOM-QE uses

specialized units to detect changes in corresponding input data. This makes it an

effective clustering tool that can be used as a detector of changes between images.

This thesis has addressed some of the advantages and limitations of approaches

developed to detect change and has brought to the fore some of its major implica-

tions for both science and society.

In SOM-QE, a new image content variation measure has been developed to de-

termine the status of images within a time series dataset. When the images are

from the same object, this measure tracks down the changes that have taken place

within the object with time.
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This new method of change detection comes with features that makes it suite the

needs of its users. In modern times, accurate results are demanded from the analy-

sis of big data, requiring that computational techniques work fast to avoid delays.

Such a technique has the potential to save lives, and enable swift decision making

among administrators that leads to improving the living and working conditions

of the humanity. An additional feature that makes SOM-QE stand out among its

peers is the ability to detect changes even when they are small and/or obscured

by nuisance noise. Besides, SOM-QE locates the area within the image that is af-

fected by the detected changes. This comes in handy for radiologist and surgeons

who are enabled to make the right decision early in a patient’s treatment and care.

SOM-QE results on a time series of images provide a way of predicting the status

of the object in future. This is done with 100% accuracy, providing a new and

reliable method to generate prediction data. Such data finds use among weather

forecasting team, city administrators and many others.

New aspects that make up the contribution to knowledge by this thesis are as

follows:

1. Unsupervised machine learning architecture composed of SOM and QE de-

termination is proposed. It outperforms human experts and other techniques

suggested in literature on the task of change detection while remaining suit-

ably lightweight and fast.

2. Change detection by SOM-QE is at pixel level of the image. This enables
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changed areas within the ROI to be spotted and located even when they are

very small.

3. Detector of change even among noised situations. Even when true changes

within the object are accompanied by noise, SOM-QE performs better than

other techniques in separating true changes from the nuisance changes.

4. New method to calculate QE for a set of time series images is proposed.

When parameters established for each pixel location are kept constant and

used for each image in a series, changes between images are larger, allowing

more accurate determination of smaller changes.

5. The data generated by SOM-QE from a time series set of images of a scene

carries useful information. This data can be used to predict changes in the

scene. The future status of a scene can be determined from available images.
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Appendix B

Sample code: The Python code used

in section 2.7

from math import s q r t

from numpy import ( a r r a y , u n r a v e l i n d e x , n d i t e r , l i n a l g ,

random , s u b t r a c t , power , exp , pi , z e r o s , a range , o u t e r ,

meshgr id , d o t )

from c o l l e c t i o n s import d e f a u l t d i c t

from w a r n i n g s import warn

def f a s t n o r m ( x ) :

””” R e t u r n s norm−2 o f a 1−D numpy a r r a y .
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∗ f a s t e r than l i n a l g . norm i n case o f 1−D a r r a y s ( numpy

1 . 9 . 2 rc1 ) .

”””

re turn s q r t ( d o t ( x , x . T ) )

c l a s s MiniSom ( o b j e c t ) :

def i n i t ( s e l f , x , y , i n p u t l e n , s igma = 1 . 0 ,

l e a r n i n g r a t e = 0 . 5 , d e c a y f u n c t i o n =None , random seed = 3 0 0 0 ) :

”””

I n i t i a l i z e s a S e l f O r g a n i z i n g Maps .

x , y − d i m e n s i o n s o f t h e SOM

i n p u t l e n − number o f t h e e l e m e n t s o f t h e

v e c t o r s i n i n p u t

s igma − sp re ad o f t h e ne ighborhood f u n c t i o n

( Gauss ian ) , needs t o be a d e q u a t e t o t h e

d i m e n s i o n s o f t h e map .

( a t t h e i t e r a t i o n t we have sigma ( t ) = sigma

/ (1 + t / T ) where T i s # n u m i t e r a t i o n / 2 )

l e a r n i n g r a t e − i n i t i a l l e a r n i n g r a t e

( a t t h e i t e r a t i o n t we have l e a r n i n g r a t e ( t ) =

l e a r n i n g r a t e / (1 + t / T ) where T i s

# n u m i t e r a t i o n / 2 )

d e c a y f u n c t i o n , f u n c t i o n t h a t r e d u c e s
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l e a r n i n g r a t e and sigma a t each i t e r a t i o n

d e f a u l t f u n c t i o n : lambda

x , c u r r e n t i t e r a t i o n , m a x i t e r :

x / (1+ c u r r e n t i t e r a t i o n / m a x i t e r ) random seed ,

random seed t o use .

”””

i f s igma >= x / 2 . 0 or s igma >= y / 2 . 0 :

warn ( ’ Warning : s igma i s t o o h igh f o r t h e d imens ion of t h e map . ’ )

i f r andom seed :

s e l f . r a n d o m g e n e r a t o r = random . RandomState

( random seed )

e l s e :

s e l f . r a n d o m g e n e r a t o r = random . RandomState

( random seed )

i f d e c a y f u n c t i o n :

s e l f . d e c a y f u n c t i o n = d e c a y f u n c t i o n

e l s e :

s e l f . d e c a y f u n c t i o n = lambda x , t , m a x i t e r :

x / ( 1 + t / m a x i t e r )

s e l f . l e a r n i n g r a t e = l e a r n i n g r a t e

s e l f . s igma = sigma

s e l f . w e i g h t s = s e l f . r a n d o m g e n e r a t o r . r and

( x , y , i n p u t l e n )∗2−1 # random i n i t i a l i z a t i o n
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f o r i in range ( x ) :

f o r j in range ( y ) :

s e l f . w e i g h t s [ i , j ] = s e l f . w e i g h t s [ i , j ] /

f a s t n o r m ( s e l f . w e i g h t s [ i , j ] )

# n o r m a l i z a t i o n

s e l f . a c t i v a t i o n m a p = z e r o s ( ( x , y ) )

s e l f . n e i g x = a r a n g e ( x )

s e l f . n e i g y = a r a n g e ( y )

# used t o e v a l u a t e t h e ne ighborhood f u n c t i o n

s e l f . n e i g h b o r h o o d = s e l f . g a u s s i a n

def a c t i v a t e ( s e l f , x ) :

””” Updates m a t r i x a c t i v a t i o n m a p , i n t h i s

m a t r i x t h e e l e m e n t i , j i s t h e r e s p o n s e o f t h e

neuron i , j t o x ”””

s = s u b t r a c t ( x , s e l f . w e i g h t s ) # x − w

i t = n d i t e r ( s e l f . a c t i v a t i o n m a p , f l a g s =

[ ’ m u l t i i n d e x ’ ] )

whi le not i t . f i n i s h e d :

s e l f . a c t i v a t i o n m a p [ i t . m u l t i i n d e x ] =

f a s t n o r m ( s [ i t . m u l t i i n d e x ] ) # | | x − w | |

i t . i t e r n e x t ( )
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def a c t i v a t e ( s e l f , x ) :

””” R e t u r n s t h e a c t i v a t i o n map t o x ”””

s e l f . a c t i v a t e ( x )

re turn s e l f . a c t i v a t i o n m a p

def g a u s s i a n ( s e l f , c , s igma ) :

””” R e t u r n s a Gauss ian c e n t e r e d i n c ”””

d = 2∗ p i ∗ s igma ∗ s igma

ax = exp(−power ( s e l f . ne igx−c [ 0 ] , 2 ) / d )

ay = exp(−power ( s e l f . ne igy−c [ 1 ] , 2 ) / d )

re turn o u t e r ( ax , ay ) # t h e e x t e r n a l

p r o d u c t g i v e s a m a t r i x

def winner ( s e l f , x ) :

””” Computes t h e c o o r d i n a t e s o f t h e winn ing neuron

f o r t h e sample x ”””

s e l f . a c t i v a t e ( x )

re turn u n r a v e l i n d e x ( s e l f . a c t i v a t i o n m a p . argmin ( ) ,

s e l f . a c t i v a t i o n m a p . shape )

def u p d a t e ( s e l f , x , win , t ) :

”””

Updates t h e w e i g h t s o f t h e neurons .
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x − c u r r e n t p a t t e r n t o l e a r n

win − p o s i t i o n o f t h e winn ing neuron f o r x ( a r r a y

or t u p l e ) .

t − i t e r a t i o n i n d e x

”””

e t a = s e l f . d e c a y f u n c t i o n ( s e l f . l e a r n i n g r a t e , t ,

s e l f . T )

s i g = s e l f . d e c a y f u n c t i o n ( s e l f . sigma , t , s e l f . T ) #

s igma and l e a r n i n g r a t e d e c r e a s e wi th t h e same r u l e

g = s e l f . n e i g h b o r h o o d ( win , s i g )∗ e t a # i m p r o v e s t h e

p e r f o r m a n c e s

i t = n d i t e r ( g , f l a g s =[ ’ m u l t i i n d e x ’ ] )

whi le not i t . f i n i s h e d :

# e t a ∗ n e i g h b o r h o o d f u n c t i o n ∗ ( x−w)

s e l f . w e i g h t s [ i t . m u l t i i n d e x ] += g [ i t . m u l t i i n d e x ]∗

( x−s e l f . w e i g h t s [ i t . m u l t i i n d e x ] )

# n o r m a l i z a t i o n

s e l f . w e i g h t s [ i t . m u l t i i n d e x ] = s e l f . w e i g h t s

[ i t . m u l t i i n d e x ] / f a s t n o r m ( s e l f . w e i g h t s

[ i t . m u l t i i n d e x ] )

i t . i t e r n e x t ( )

def r a n d o m w e i g h t s i n i t ( s e l f , d a t a ) :
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””” I n i t i a l i z e s t h e w e i g h t s o f t h e SOM p i c k i n g random

sample s from da ta ”””

i t = n d i t e r ( s e l f . a c t i v a t i o n m a p , f l a g s =

[ ’ m u l t i i n d e x ’ ] )

whi le not i t . f i n i s h e d :

s e l f . w e i g h t s [ i t . m u l t i i n d e x ] = d a t a

[ s e l f . r a n d o m g e n e r a t o r . r a n d i n t ( l e n ( d a t a ) ) ]

s e l f . w e i g h t s [ i t . m u l t i i n d e x ] = s e l f . w e i g h t s

[ i t . m u l t i i n d e x ] / f a s t n o r m ( s e l f . w e i g h t s

[ i t . m u l t i i n d e x ] )

i t . i t e r n e x t ( )

def t r a i n r a n d o m ( s e l f , da t a , n u m i t e r a t i o n ) :

””” T r a i n s t h e SOM p i c k i n g samples a t random from

da ta ”””

s e l f . i n i t T ( n u m i t e r a t i o n )

f o r i t e r a t i o n in range ( n u m i t e r a t i o n ) :

r a n d i = s e l f . r a n d o m g e n e r a t o r . r a n d i n t ( l e n ( d a t a ) )

# p i c k a random sample

s e l f . u p d a t e ( d a t a [ r a n d i ] , s e l f . winner ( d a t a

[ r a n d i ] ) , i t e r a t i o n )

def t r a i n b a t c h ( s e l f , da t a , n u m i t e r a t i o n ) :
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””” T r a i n s u s i n g a l l t h e v e c t o r s i n da ta s e q u e n t i a l l y

”””

s e l f . i n i t T ( l e n ( d a t a )∗ n u m i t e r a t i o n )

i t e r a t i o n = 0

whi le i t e r a t i o n < n u m i t e r a t i o n :

i d x = i t e r a t i o n % ( l e n ( d a t a )−1)

s e l f . u p d a t e ( d a t a [ i d x ] , s e l f . winner ( d a t a [ i d x ] ) ,

i t e r a t i o n )

i t e r a t i o n += 1

def i n i t T ( s e l f , n u m i t e r a t i o n ) :

””” I n i t i a l i z e s t h e parame te r T needed t o a d j u s t t h e

l e a r n i n g r a t e ”””

s e l f . T = n u m i t e r a t i o n / 2

def q u a n t i z a t i o n e r r o r c o m p a r e ( s e l f , d a t a ) :

”””

R e t u r n s t h e q u a n t i z a t i o n e r r o r computed as t h e

average d i s t a n c e be tween

each i n p u t sample and i t s b e s t ma tch ing u n i t .

”””

e r r o r = 0

e r r i n d = [ ]
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p i x = [ ]

f o r x in d a t a :

e r r = f a s t n o r m ( x−s e l f . w e i g h t s [ s e l f . winner ( x ) ] )

e r r i n d . append ( e r r )

p i x . append ( x )

re turn e r r i n d , p i x

from p y l a b import

imread , imshow , show , s u b p l o t s , N u l l F o r m a t t e r , N u l l L o c a t o r

from numpy import r e s h a p e , u n r a v e l i n d e x

import t ime

s t a r t t i m e = t ime . t ime ( )

# read t h e t r a i n image

img = imread ( ’ t r a i n . png ’ )

# . . . and r e s h a p i n g t h e p i x e l s m a t r i x

p i x e l s = r e s h a p e ( img , ( img . shape [ 0 ]∗ img . shape [ 1 ] , 3 ) )

# SOM i n i t i a l i z a t i o n and t r a i n i n g
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p r i n t ( ’ t r a i n i n g . . . ’ )

som = MiniSom ( 4 , 4 , 3 , s igma = 1 . 2 , l e a r n i n g r a t e = 0 . 0 2 )

som . r a n d o m w e i g h t s i n i t ( p i x e l s )

som . t r a i n b a t c h ( p i x e l s , 1 0 0 0 0 )

p r i n t ’ . . . done ’

p r i n t ’ Begin change d e t e c t i o n . . . ’

p r i n t ’ . . . . c o l l e c t QE d e a t i l s o f f i r s t image ’

im1 = imread ( ’ f i r s t . png ’ )

p i x I = r e s h a p e ( im1 , ( im1 . shape [ 0 ]∗ im1 . shape [ 1 ] , 3 ) )

qe1 , p ix1 = som . q u a n t i z a t i o n e r r o r c o m p a r e ( p i x I )

p r i n t ’ . . . . f o r t h e second image ’

im2 = imread ( ’ second . png ’ )

p i x I I = r e s h a p e ( im2 , ( im2 . shape [ 0 ]∗ im2 . shape [ 1 ] , 3 ) )

qe2 , p ix2 = som . q u a n t i z a t i o n e r r o r c o m p a r e ( p i x I I )

p r i n t

p r i n t ’ Compare t h e two QE f o r s i m i l a r QE i n t h e two images ’

q e e q u a l = [ ]
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f o r t i in range ( 0 , img . shape [ 0 ] ) :

i f qe1 [ t i ] == qe2 [ t i ] :

q e e q u a l . append ( qe1 )

p ix1 [ t i ]= [ 0 , 0 , 0 ]

e l s e : p ix1 [ t i ] = [ 1 , 1 , 1 ]

p r i n t ’ Unchanged p i x e l s a r e : ’ , l e n ( q e e q u a l )

p r i n t ’ o u t o f : ’ , im1 . shape [ 0 ]∗ im1 . shape [ 1 ]

p r i n t ( ’ b u i l d i n g t h e change mask image . . . ’ )

i m 1 l a b e l = z e r o s ( im1 . shape )

f o r i , q in enumerate ( p ix1 ) : # p l a c e t h e new p i x e l s v a l u e s

i n t o a new image

i m 1 l a b e l [ u n r a v e l i n d e x ( i , dims =( im1 . shape [ 0 ] , im1 . shape [ 1 ] ) ) ]

= q

p r i n t ( ’ done . ’ )

p r i n t ’ P r e p a r e t h e f i g u r e s . . . ’

# show t h e r e s u l t

f , ( ax1 , ax2 , ax3 ) = s u b p l o t s ( 1 , 3 , s h a r e y =True )
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ax1 . y a x i s . s e t m a j o r l o c a t o r ( N u l l L o c a t o r ( ) )

ax1 . x a x i s . s e t m a j o r f o r m a t t e r ( N u l l F o r m a t t e r ( ) )

ax1 . imshow ( im1 )

ax1 . s e t t i t l e ( ’ Uniform image ’ )

ax2 . y a x i s . s e t m a j o r l o c a t o r ( N u l l L o c a t o r ( ) )

ax2 . x a x i s . s e t m a j o r f o r m a t t e r ( N u l l F o r m a t t e r ( ) )

ax2 . imshow ( im2 )

ax2 . s e t t i t l e ( ’Non−un i fo rm image ’ )

ax3 . y a x i s . s e t m a j o r l o c a t o r ( N u l l L o c a t o r ( ) )

ax3 . x a x i s . s e t m a j o r f o r m a t t e r ( N u l l F o r m a t t e r ( ) )

ax3 . imshow ( i m 1 l a b e l )

ax3 . s e t t i t l e ( ’ Change mask ’ )

p r i n t ” The end . ”

p r i n t ( ”−−− %s s e c o n d s −−−” % round ( t ime . t ime ( ) − s t a r t t i m e ,

2 ) )

show ( )
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Appendix C

Real medical images: set 1
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Appendix D

Real medical images: set 2
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Appendix E

Real medical images with added 1

‘lesion’
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Appendix F

Real medical images with global

‘lesions’
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Appendix G

Satellite images: Las Vegas City

Center ROI
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Appendix H

Satellite images: Lake Mead ROI
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Appendix I

Satellite images: Residential North

of Las Vegas ROI
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JOHN MWANGI

WANDETO

DÉTECTION AUTOMATISÉE DE VARIATIONS
CRITIQUES DANS DES SÉRIES TEMPORELLES

D’IMAGES PAR ALGORITHMES
NON-SUPERVISÉES DE KOHONEN

I.1 Résumé

Une façon de déterminer le changement d’un objet à différents moments est

d’analyser les images de l’objet prises à différents moments. De tels besoins

surviennent dans le domaine médical où les radiologues et les chirurgiens

peuvent vouloir suivre l’évolution d’un patient. Ils sont intéressés à déterminer si

un patient réagit positivement ou négativement à une ordonnance. Ils obtiennent

donc les images du patient lors des visites cliniques et les utilisent pour comparer

l’état de chacun d’eux afin de déterminer si la maladie ou l’état est en cours de

progression, de rémission ou de régression. De même, les administrateurs

municipaux peuvent souhaiter connaı̂tre les changements qui se produisent dans

les différentes zones de la ville. Les changements, comme les nouveaux
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bâtiments à venir, peuvent être capturés dans le but de déterminer s’ils sont

légaux ou non ou généralement pour surveiller le taux d’urbanisation, les taux de

boisement/déboisement, entre autres sur les différentes sections de la ville.

Plusieurs approches ont été suggérées au fil des ans sur la façon de déterminer les

différences entre les images d’un objet.

Les travaux de recherche de cette thèse portent sur une nouvelle approche

computationnelle pour la détection du changement dans les images complexes.

L’approche commence par la détermination de la variation à l’intérieur d’une

image qu’elle utilise pour étiqueter l’image. Lorsqu’une série d’images d’un

même objet sont étiquetées, la différence dans les étiquettes correspond aux

changements entre les images. Ceci reflète à son tour les changements qui se sont

produits dans l’objet entre les temps des images capturées. L’idée peut ensuite

être utilisée par un radiologue pour vérifier le changement chez le patient, grâce à

l’utilisation d’images prises lors de différentes visites cliniques. De même, les

administrateurs municipaux peuvent utiliser la même technique pour étudier les

changements qui se produisent au fil du temps dans la ville.

La variation au sein d’une image est calculée en soumettant l’image à un

processus d’apprentissage machine. Ensuite, la différence entre les résultats du

processus d’apprentissage et l’image réelle donne la variation souhaitée. Cette

différence est appelée quantization error (QE) et l’algorithme d’apprentissage

machine utilisé est une self-organizing map (SOM). SOM est une technique de

calcul bien documentée introduite au début des années 80 par Teuvo Kohonen en
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tant qu’architecture de artificial neural networks (ANN) inspirée biologiquement.

Dans la catégorie de l’apprentissage compétitif non supervisé, le SOM produit

une représentation discrète et discrète des vecteurs d’entrée (généralement un ou

deux dimensions). Les sorties SOM sont organisées selon une structure

cartographique dans le même ordre topologique que les données d’entrée, ce qui

les différencie des autres techniques d’apprentissage machine.

Pour configurer et appliquer SOM, l’utilisateur doit déterminer la taille de la

carte, la distance du quartier, le taux d’apprentissage et le nombre d’itérations à

effectuer pendant le processus d’apprentissage. La carte est constituée d’unités

d’apprentissage dont le nombre détermine la taille. Les unités d’apprentissage se

comportent différemment lorsqu’on leur présente les mêmes stimuli - une

adaptation du style d’apprentissage du cerveau humain, où différentes sections

sont connues pour apprendre des stimuli environnementaux spécifiques mieux

que d’autres. Chaque unité d’apprentissage prend une position sur la carte,

formant une grille hexagonale ou rectangulaire régulière. Les unités reçoivent

des valeurs initiales - qui peuvent être prises au hasard à partir de l’image - à

utiliser pour commencer le processus d’apprentissage.

Pendant le processus d’apprentissage, un vecteur d’entrée de l’image est présenté

à la carte. Ceci déclenche un processus de comparaison entre le vecteur d’entrée

et chacune des unités d’apprentissage. Le but de la comparaison est de

déterminer l’unité d’apprentissage qui est plus similaire au vecteur d’entrée que

les autres. Une telle unité est considérée comme étant le vainqueur du vecteur
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d’entrée, et elle devient sa best matching unit (BMU).

Avant d’introduire un autre vecteur d’entrée, la BMU est ajustée de telle sorte

que ses valeurs se rapprochent de celles du vecteur d’entrée qu’elle a gagné. En

outre, et c’est ce qui distingue SOM des autres processus d’apprentissage

machine, les unités voisines de la BMU sont également ajustées. Les voisins sont

les unités qui se situent dans le rayon du quartier déterminé au début du

processus d’apprentissage. Avec le BMU comme centre, la distance de voisinage

forme une zone ”circulaire” autour du BMU sur la carte. Toute unité

d’apprentissage qui se trouve dans la zone circulaire est alors considérée comme

se trouvant dans le voisinage de l’BMU.

L’ajustement des valeurs dans les unités d’apprentissage constitue

l’”apprentissage” de la carte. Il est fait de telle sorte que les valeurs de BMU sont

ajustées (apprendre) plus que les autres unités du quartier. La quantité

d’apprentissage diminue au fur et à mesure que l’on s’éloigne de la BMU dans la

zone de voisinage et est régie par la relation suivante :

W (t+ 1) = W (t) + Θ(t)L(t)(V (t)−W (t)) (I.1)

C’est la méthode d’apprentissage de SOM, où t est le pas de temps et L est une

petite variable appelée le taux d’apprentissage, qui diminue avec le temps. A

partir de cette équation, le nouveau poids ajusté pour l’unité est égal à l’ancien

poids (W ), plus une fraction de la différence, (L et θ), entre l’ancien poids et le
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vecteur d’entrée (V ).

Elle ressemble de près à la sensation qu’une personne ressent lorsqu’un objet

pointu, comme un stylo, est pressé sur la peau. La sensation est plus intense au

point de contact et diminue à mesure que la distance de ce point augmente,

jusqu’à ce qu’elle ne soit pas ressentie à des distances éloignées. Dans ce cas, la

BMU représente le point de contact tandis que les unités du quartier représentent

la région qui éprouvera le sentiment. De cette façon, le processus

d’apprentissage SOM imite le comportement humain en créant une fondation qui

le rendra supérieur dans l’application de détection de changement.

Ce processus d’apprentissage se fait pour chaque vecteur d’entrée de l’image. Au

fur et à mesure que les unités cartographiques apprennent, leurs valeurs se

rapprochent de plus en plus de celles des vecteurs d’entrée qu’ils ont gagnés et de

celles qui leur ressemblent de plus en plus. Chaque unité d’apprentissage devient

une zone qui s’associe et attire certains vecteurs d’intrants. Tout vecteur d’entrée

sera toujours incliné vers une zone donnée, faisant de SOM un algorithme de

clustering. Après que tous les vecteurs d’entrée ont été exposés au SOM, le

processus est répété encore et encore, jusqu’à ce que le nombre prédéterminé de

répétitions soit atteint.

Au fur et à mesure que l’apprentissage progresse, la distance entre les quartiers

diminue et, par conséquent, le nombre d’unités affectées par les vecteurs d’entrée

diminue également. Cela a pour effet d’assurer que l’unité ne gagne que les

vecteurs d’entrée dont les valeurs sont plus proches des siennes et aussi celles qui
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lui sont proches.

Un autre paramètre SOM qui est initialement fourni par l’utilisateur et qui

diminue au fur et à mesure que le processus d’apprentissage progresse est le taux

d’apprentissage. Il fournit la fraction utilisée pour ajuster les valeurs existantes

des unités.

Lorsque le processus d’apprentissage est terminé, une comparaison entre le SOM

appris et les vecteurs d’entrée originaux est faite pour fournir l’EQ. Chaque

vecteur d’entrée a son propre QE, qui est la différence du vecteur avec son BMU.

Ainsi, le QE détermine fondamentalement ”à quel point SOM était proche

d’atteindre les valeurs d’image d’origine”.

Après avoir déterminé le QE pour chaque vecteur d’entrée, on calcule le QE

moyen pour tous les vecteurs de l’image, voir l’équation I.2.

QE = 1/N
N∑
i=1

||xi − (BMUi)|| (I.2)

où N est le nombre de vecteurs en X , l’ensemble des vecteurs de données

d’image et BMU est l’unité dont le vecteur de poids est le plus similaire au

vecteur d’entrée x, pour tous les vecteurs de poids de SOM. partir de cette

relation, l’QE ne tient pas compte de la topologie et de l’alignement de la carte,

ce qui lui permet d’être universellement applicable.

Cette valeur QE devient l’étiquette de l’image qui sera utilisée pour suivre les
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changements qui se produisent dans l’image avec le temps.

L’QE est un sous-produit du SOM et est traditionnellement utilisé pour

déterminer l’exactitude des résultats produits par la carte. Dans l’utilisation

traditionnelle de QE, plusieurs configurations SOM avec des paramètres

variables sont exécutées sur un seul jeu de données et à la fin de chaque

exécution, le QE est déterminé. Le but est de trouver une combinaison de

paramètres qui donne la valeur la plus basse de QE, qui est considéré comme

l’ensemble optimal à utiliser pour qu’un SOM transforme cet ensemble de

données d’entrée.

Dans ce travail, ce produit de SOM, connu sous le nom de SOM-QE, est utilisé

d’une nouvelle manière qui quantifie et détermine les variations des vecteurs de

caractéristiques d’entrée comme mesure de l’uniformité au sein de l’ensemble de

données. Le SOM-QE fournit une mesure des variations à l’intérieur de l’image

à une instance dans le temps, et lorsqu’il est comparé aux valeurs des images

subséquentes du même objet, il révèle une visualisation transitoire des

changements dans l’objet d’étude. Ainsi, SOM-QE est proposé comme une

nouvelle technique pour détecter et quantifier les changements transitoires dans

les images d’objets.

Les images médicales et satellitaires sont prises en compte dans ce travail. Il est

démontré que l’approche SOM-QE est capable de détecter des changements qui

sont trop petits pour être détectés par des observateurs humains, ou qui n’étaient

pas détectables par d’autres approches dans des études précédentes. En outre, il
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s’avère qu’il est moins coûteux en termes de calcul et qu’il prend moins de

temps.

Les changements qui se sont produits dans les objets d’intérêt, comme les

nouveaux bâtiments dans une ville ou la progression des maladies, intéressent

particulièrement les scientifiques et les ingénieurs. SOM-QE fournit un nouveau

moyen de détection automatique de tels changements, fournissant des

informations opportunes pour une planification ou une intervention appropriée.

Par exemple, grâce au SOM-QE, les radiologues et les chirurgiens n’ont pas

besoin d’attendre longtemps avant de programmer des patients pour une chirurgie

ou des visites cliniques de suivi pour vérifier la progression d’une maladie.

SOM-QE constitue un indicateur statistiquement fiable des petits changements

locaux potentiellement critiques sur les images d’une série chronologique. Il est

facile à mettre en œuvre et il a été démontré que les temps de calcul sont compris

entre 18 et 350 secondes pour générer des données à partir d’ensembles de

données de 20 à 25 images médicales ou Landsat. Il est en outre démontré que le

SOM-QE atteint une sensibilité élevée et une spécificité élevée sur les images

médicales. Il a fait preuve d’une grande robustesse dans la détection des

variations systématiques du contraste d’intensité dans les images spatiales.

Pour démontrer le fonctionnement et l’efficacité de l’algorithme SOM-QE

proposé, diverses simulations ont été effectuées sur différentes catégories

d’images dans les domaines d’étude.

Avant d’effectuer les simulations, les images ont été préparées pour être utilisées
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en les soumettant à une procédure de prétraitement. Cela a rendu les résultats

SOM-QE plus fiables et reflète la position réelle des images comparées. Cela

élimine d’autres causes possibles de changement qui pourraient mener à

l’affichage de faux résultats. Par exemple, les images doivent être alignées de la

même manière et les changements causés par un éclairage différent sur l’objet

sont corrigés. De cette façon, l’effet des changements sans importance et / ou

bruyants sur l’exactitude des résultats obtenus est minimisé.

Pour confirmer le concept SOM-QE, des expériences et des simulations avec des

images réelles et artificielles ont été réalisées. Les résultats de chaque expérience

/ simulation ont été comparés aux résultats escomptés et il a été constaté que

l’EQ-SOM-QE donne des résultats fiables. Statistiquement, il a été confirmé que

les résultats étaient fiables et cohérents.

Par exemple, une simulation a été faite avec deux images de base dont les

différences pouvaient être facilement tracées visuellement par l’homme. Lorsque

SOM-QE a été appliqué pour donner les différences entre ces deux images, il a

produit des résultats qui étaient corrects et correspondaient à ceux observés par

un humain visuellement. En outre, l’application des techniques connues et

couramment utilisées pour déterminer le contenu des données d’image -

histogramme et calcul de variance - a donné des résultats qui correspondent à

ceux donnés par SOM-QE. Les histogrammes sont utilisés pour donner une

distribution précise des données numériques. Étant donné qu’une image est un

ensemble de données de ce genre, il s’agissait d’un outil approprié à utiliser et à
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comparer avec les résultats du SOM-QE. La variance, par contre, mesure dans

quelle mesure les valeurs des données sont écartées de leur moyenne. Il donne la

variation à l’intérieur d’un ensemble de données, tout comme SOM-QE. En

donnant des résultats qui correspondent à ceux de ces méthodes standard,

SOM-QE se qualifie pour entrer dans leur ligue et donc concourir et compléter

les méthodes existantes.

Dans une simulation ultérieure, SOM-QE permet de détecter avec précision les

variations contrôlées de la taille d’un seul point local à l’intérieur d’images à

points aléatoires. Il s’est mieux comporté que les observateurs humains, qui

comprenaient des personnes non formées et des radiologues experts. Des

expériences de détection visuelle ont été mises en place, en utilisant des images à

points aléatoires dans une procédure psychophysique ”même différence”. Une

paire d’images a été présentée à l’observateur à un moment donné. La tâche de

l’observateur était de dire si les deux images étaient identiques ou différentes. La

paire d’images présentées a été composée à partir d’un ensemble de données de 4

images différentes. La première image était une image pointillée originale, avec

des points de taille égale et répartis au hasard dans l’image. Les deuxième,

troisième et quatrième images avaient un point dont la taille a été modifiée. Dans

la deuxième image, la taille du point a été augmentée de 5% et de 10% et 30%

dans les troisième et quatrième images respectivement. Les observateurs

humains ont eu des difficultés à noter ces changements, en particulier celui de

5%. Mais SOM-QE a clairement produit les différences requises. Les résultats
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ont montré que les petits changements détectés par SOM-QE sont indétectables

par les observateurs humains, tant les novices que les radiologues experts. Sur la

base de cette preuve de concept, il est postulé que SOM-QE fournit un indicateur

statistiquement fiable de petits changements dans les séries d’images qui peuvent

être indétectables par la vision naturelle humaine.

Ensuite, le SOM-QE a été appliqué à des images d’IRM réelles prises d’un

patient blessé au genou dont les résultats correspondaient au développement

clinique du patient. Lorsqu’il est appliqué à un ensemble de données d’image

utilisé par une autre approche discutée dans la littérature, SOM-QE affiche de

meilleurs résultats, en particulier en ce qui concerne la détection d’une

croissance plus faible dans la série d’images.

Lorsque des impuretés sont systématiquement ajoutées à un ensemble d’images

réelles, SOM-QE renvoie des résultats qui correspondent à l’effet des impuretés

ajoutées dans les images, et les résultats sont également statistiquement

cohérents. Les impuretés ont été ajoutées de deux façons. Tout d’abord, ils ont

été ajoutés pour se comporter comme des croissances locales dans l’image.

C’est-à-dire qu’elles ont causé des changements dans des régions particulières

des images, comme le font les lésions en croissance. Dans la seconde manière,

les impuretés ont été ajoutées à travers les images se comportant comme des

impuretés globales.

Lorsqu’une ” lésion ” a été ajoutée sur chaque image de l’ensemble de données

pour former un autre ensemble de données, les résultats de l’EQ-SOM reflétaient
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cet ajout de lésion. Les résultats étaient également statistiquement importants.

Lorsqu’une deuxième lésion est ajoutée pour former un troisième ensemble de

données d’images et que le SOM-QE est appliqué, l’ajout de la lésion est

également reflété par les résultats du SOM-QE. Si ces séries d’images étaient

réelles, prises lors de 3 visites cliniques consécutives du patient, alors SOM-QE

aura indiqué aux radiologues et chirurgiens que les lésions étaient en

augmentation, ce qui devrait déclencher un changement dans la prise en charge

de l’état du patient. Ainsi, l’EQ-SOM peut dire quand une lésion ou une tumeur

augmente ou diminue dans l’organe d’un patient, ce qui incite le radiologue à

prendre les mesures appropriées.

Les résultats de la série de simulations décrites dans ce travail suggèrent que

l’analyse SOM-QE semble bien adaptée à la détection de changements rapides

dans de grandes quantités d’images médicales de patients. Il permet la détection

automatique de changements subtils mais significatifs dans les séries temporelles

d’images susceptibles de refléter des lésions en croissance ou en recul. Dans la

pratique clinique, il peut être très difficile de trouver des preuves d’une

croissance subtile par l’inspection visuelle de l’imagerie en série. C’est

particulièrement vrai pour les scanners effectués à des intervalles relativement

courts (moins d’un an). L’inspection visuelle rate souvent l’évolution lente parce

que le changement peut être obscurci par des variations dans la position du corps,

la position des tranches ou le profil d’intensité entre les balayages. Dans certains

cas, le changement peut être trop petit pour être remarqué. Les chirurgiens et les
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oncologues calculent fréquemment la variation du volume tumoral en comparant

les mesures des scanners consécutifs. Lorsque le changement de volume de la

tumeur est trop faible et donc difficile à détecter entre deux scanners séquentiels,

les radiologues ont tendance à comparer le dernier scan avec l’image la plus

ancienne disponible pour trouver des preuves visibles d’une évolution de la

tumeur. L’analyse qui en résulte ne reflète toutefois pas l’évolution actuelle de la

tumeur, mais plutôt une perspective rétrospective de l’évolution de la tumeur,

comme nous l’avons souligné précédemment. Cette étude aborde ce problème,

car le SOM rapide pourrait être facilement mis en œuvre pour aider les cliniciens

à décider du traitement. Le processus d’exécution du code pour déterminer la

distribution QE pour une série de vingt images prend environ 40 secondes. Ceci

implique la lecture des images DICOM à partir d’un dossier, l’exécution du

SOM et la détermination du QE pour chaque image, l’affichage de l’image à

l’écran et l’enregistrement de la valeur QE dans un fichier texte. En résumé,

chaque fois que les valeurs SOM-QE des images prises à des moments

consécutifs augmentent, c’est une indication potentielle que des lésions ou

d’autres changements pathologiques de l’organe à l’étude peuvent se développer,

tandis qu’une diminution de la valeur SOM-QE peut indiquer qu’une pathologie

est en recul. Au meilleur de notre connaissance, notre approche est la première à

détecter automatiquement les changements locaux potentiellement critiques chez

un patient en comparant des images prises lors de visites cliniques subséquentes

sans se fier à une inspection visuelle ou à des annotations manuelles. La méthode

SOM-QE détecte rapidement ces changements avec un temps de calcul minimal
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en utilisant des images consécutives d’un organe sans avoir à se fier à des

qualités d’image dérivées comme c’est le cas pour les méthodes de soustraction

d’image, par exemple. La méthode SOM-QE représente également un avantage

certain par rapport à la surveillance d’un état, par exemple la progression ou la

rémission du cancer, en utilisant des techniques de segmentation manuelle sur

chaque image d’une séquence d’MRI, ce qui prend beaucoup de temps.

D’autres simulations sur l’application du SOM-QE ont été réalisées à l’aide

d’images satellitaires capturées par Landsat. La détection et la caractérisation des

changements critiques dans les espaces publics de l’environnement naturel ou

bâti reflétés par les changements dans les séries temporelles d’images à partir de

données d’images télédétectées peuvent être d’une importance considérable pour

les politiques d’atténuation des risques et la sensibilisation du public. Les

résultats de SOM-QE à cette fin ont confirmé qu’il s’agit d’une technique

automatique rapide qui permet de distinguer les contenus modifiés et inchangés

dans les grandes séries temporelles d’images, ce qui a fait défaut, comme le

rapporte la littérature. Les tendances changeantes de la croissance sur

l’urbanisation des régions au sein de la ville de Las Vegas aux États-Unis ont été

étudiées. Entre 1984 et 2008, l’urbanisation de la ville s’est développée pour

couvrir une grande partie de ce qui était auparavant un désert. SOM-QE a

couvert ce phénomène de façon fiable, la corrélation de Pearson montrant des

corrélations statistiquement significatives entre la valeur SOM-QE et le nombre

de visiteurs et le total de la population pour la période. Au niveau des pixels - qui
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se traduisent par des endroits spécifiques dans la ville - SOM-QE a retourné des

résultats montrant les endroits qui ont connu des changements et ceux qui n’ont

pas connu de changements au cours d’une période spécifique. Bien que certaines

approches de détection des changements dans l’utilisation et la couverture du sol

reposent sur le changement de la taille d’une zone d’utilisation du sol d’une

période à l’autre, l’SOM-QE a démontré que même les changements qui n’ont

pas entraı̂né de réduction ou d’augmentation de la taille de la zone d’utilisation

du sol sont détectables. Une zone d’utilisation du sol et de couverture de taille

fixe pour toutes les images à l’étude a été utilisée pour le démontrer. Pour

l’instant, lorsqu’une maison supplémentaire est construite dans une zone bâtie,

un changement se produit, mais la taille de l’utilisation du sol / couverture de la

zone bâtie n’a pas changé. Ainsi, SOM-QE peut détecter les objets changeants à

l’intérieur d’une scène, comme un nouveau bâtiment qui arrive, en fournissant

aux gestionnaires de la ville des informations pour, par exemple, détecter les

bâtiments illégaux en construction.

La ville voisine de Las Vegas est le lac Mead qui a vu son niveau d’eau changer

au cours de cette période. SOM-QE a également fait état de ces résultats de

manière fiable. La statistique de corrélation de Pearson calculée sur les

distributions appariées pour l’SOM-QE et les niveaux d’eau signalait une

corrélation statistiquement significative, pour la période 1984-2008.

L’efficacité de la technique SOM-QE pour déterminer les changements tels qu’ils

sont représentés par les images satellites a été évaluée à l’aide d’un ensemble de

230



données d’images. Lors de la détection de changements entre deux images à

partir de cet ensemble de données, SOM-QE a retourné des résultats qui

correspondaient parfaitement aux résultats de vérité de terrain fournis. La

détection de changement dans les images temporelles à l’aide de SOM-QE,

ouvre de nouvelles possibilités de traitement automatique rapide pour lequel une

décision rapide sur le changement ou pas de changement doit être prise. Les

résultats indiquent que les valeurs SOM-QE varient de façon constante, fiable et

prévisible en fonction des variations locales des signaux de contraste

spatialement distribués dans les images à points aléatoires et dans les séries

d’images avec des contrastes spatiaux régulièrement distribués (configurations

géométriques). Sur la base de ces variations systématiques, SOM-QE est un

indicateur très sensible et fiable de l’homogénéité des images locales et globales :

à mesure que les images d’une série temporelle deviennent plus hétérogènes dans

le contenu spatial, SOM-QE augmente ; inversement, à mesure que les images

deviennent plus homogènes dans le contenu spatial, SOM-QE diminue

constamment, à condition que l’intensité du contraste soit constante à travers les

images d’une série donnée.

En conclusion, il n’existe, à notre connaissance, aucune méthode rapportée qui a

obtenu des résultats supérieurs sur des problèmes similaires. Le travail est

important car il introduit une nouvelle façon d’envisager la détection

automatique des changements lorsqu’il s’agit de très petits changements locaux

dans les images. La méthode proposée est facile à mettre en œuvre, rapide et
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robuste. La méthode vise à fournir des résultats en temps quasi réel pour la

détection et/ou la classification d’images. Il s’agit donc d’une technique

prometteuse et non coûteuse pour la classification automatique des images

médicales ou le suivi des changements dans l’information paysagère à partir d’un

grand nombre de données d’images. Dans les applications médicales, il peut

s’agir de scanners pris dans le temps sur un même patient pour une condition

donnée dont l’évolution peut être lente mais progressive et donc difficilement

détectable par les experts humains. Cela ouvre de nouvelles portes pour la

surveillance de la progression et de la rémission du cancer. Dans l’étude de

l’imagerie par satellite terrestre, les études longitudinales des données

chronologiques des régions d’intérêt sont essentielles pour une planification

adéquate des villes et autres espaces urbains futurs.

Les résultats suivants montrent comment SOM-QE peut suivre les changements

d’objets dans le ROI. La QE d’un vecteur de caractéristiques d’entrée est

surveillée entre les images pour déterminer les changements. Voir Tableau I.1 et

Figure I.1.

Certains objets ont changé en augmentant leurs valeurs SOM-QE, d’autres ont

diminué tandis que d’autres n’ont pas changé comme indiqué dans la dernière

colonne du tableau I.1. La figure I.1 montre les objets dans le ROI, avec des

points noirs - pixels - indiquant les régions qui n’ont pas changé entre les images

sur chaque ligne. Tous les autres objets ont subi des changements.

Une autre conclusion de cette thèse est qu’étant donné une série de valeurs
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[h]

Input vector
position index

SOM-QE value
1984 image

SOM-QE value
1985 image

Change
in QE

353 0.3316 0.3316 0
362 0.3314 0.3314 0
1284 0.2896 0.2896 0
2501 0.1551 0.1551 0
3001 0.0534 0.0566 -0.0033
3587 0.0411 0.0362 0.0049
3955 0.0711 0.0649 0.0062
7065 0.1681 0.1427 0.0254
11689 0.1287 0.1260 0.0027
17587 0.24211 0.2421 0

Table I.1: Samplé SOM-QE des régions du RCI résidentiel Nord sur la même
position des images capturées en 1984 et 1985. La dernière colonne indique
l’ampleur et la direction du changement dans la région, tel que déterminé par
le SOM-QE. Notez les deux positions, 2501 et 17587, avec des valeurs SOM-QE
de 0,1551 et 0,2421 respectivement et dont les positions sont indiquées dans la
Figure I.1.

.

SOM-QE d’un objet/scène, il est possible de déterminer des valeurs SOM-QE

futures et donc de prédire les changements qui sont susceptibles de se produire

dans l’objet/scène.
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Figure I.1: Les petits points noirs dans l’image de chaque année sont des zones

qui n’ont pas subi de changements entre les deux années de chaque rangée. Le

reste de l’image a subi quelques changements. Sur la ligne du haut, deux zones

spécifiques sont illustrées. L’une a une valeur SOM-QE de 0,2421, la seconde a

une valeur SOM-QE de 0,1551 pour les deux années, 1984 et 1985. La ligne du

bas montre également les zones où il n’y a pas eu de changement entre 2007 et

2008. Il faut 7,1 secondes pour détecter les changements et étiqueter les régions

entre les deux paires d’images, ce qui rend cette approche appropriée à la tâche.
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Une visualisation des données SOM-QE calculées à partir d’un ensemble de 28

images de séries temporelles a indiqué que ces points de données calculés dans le

temps par SOM-QE ont une structure interne qui peut être prise en compte.

Lorsqu’elles sont tracées, la valeur actuelle de SOM-QE par rapport à

l’observation à l’étape précédente, les observations tombent le long d’une ligne

diagonale. Il s’agit d’une confirmation que le jeu de données SOM-QE est

corrélé à l’intérieur de celui-ci, ce qui permet de l’utiliser à des fins de prédiction.

Ainsi, la nouvelle technique, SOM-QE, génère des données qui peuvent être

appliquées pour déterminer le changement futur, sa direction et son ampleur.

Lorsqu’un modèle de prédiction est formé et exécuté sur ces données, tous les

changements représentés par SOM-QE entre les images sont correctement

prédits par ce modèle. La détection de changement est vue dans le même sens

(augmentation ou pas de changement ou diminution) que les valeurs réelles.

Pour évaluer la performance du SOM-QE en tant que détecteur de changement et

en tant que fournisseur de données de prévision, il a été testé sur deux ensembles

de données. Le premier ensemble de données était constitué de mesures réelles

capturées par des instruments, qui sont comparées aux valeurs SOM-QE

obtenues à partir d’images correspondantes pour déterminer la précision. Les

mesures portent sur le cycle annuel du gaz carbonique (CO2) dans l’hémisphère

Nord, couvrant la période du 1er janvier au 31 décembre 2012 et indiquent la

hausse et la baisse distinctes des niveaux de dioxyde de carbone sur une période

d’un an.
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L’unité utilisée pour enregistrer les données sur les gaz est le nombre de parties

par million (ppm), c’est-à-dire le nombre de molécules de CO2 présentes dans

chaque million de molécules d’air. La tendance annuelle est causée par

l’absorption et le rejet de CO2 provenant de la croissance saisonnière des plantes

sur les vastes masses continentales de l’hémisphère Nord. La concentration

annuelle maximale de CO2 dans l’hémisphère Nord se situe autour du mois de

mai. L’accumulation printanière se produit parce que les plantes en

décomposition ont libéré du carbone tout au long de l’hiver. La concentration

minimale annuelle se produit autour d’octobre, après que la nouvelle croissance a

retiré CO2 de l’air pendant la photosynthèse.

L’ensemble de données peut être utilisé dans ce cas parce que, lorsque les

molécules de polluants augmentent, la variation à l’intérieur du million de

molécules d’air augmente également. Cela signifie que pour les ppm faibles,

SOM-QE devrait augmenter/réduire avec augmentation/réduction de la quantité

de CO2.

La performance de SOM-QE en tant que détecteur de changement a été calculée

comme suit :

précision, p = 8 ÷ 11 = 0,727

rappel, r = 8 ÷ 11 = 0,727

et F1 score de (2 × p × r) ÷ (p + r) = 0.727
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Il s’agit d’un meilleur score que ceux rapportés dans la littérature connexe. Par

exemple, on rapporte que les meilleurs résultats affichés par divers détecteurs de

changement 2D étaient un score de F1 de 0,723.

Les 12 images mensuelles ont été utilisées pour former un prédicteur. La

prédiction de la valeur SOM-QE de l’image suivante a été déterminée comme

suit : 0.224166

C’est-à-dire que l’image de janvier 2013 aura une valeur SOM-QE de 0,2242, en

hausse par rapport à celle de décembre 2012 à 0,2023, soit un changement de +

0,0219. Par contre, le montant de CO2 enregistré pour janvier 2013 est de 395,5

ppm en hausse par rapport aux 394,82 ppm enregistrés pour décembre 2012, soit

une variation de + 0,68. Il s’agit d’un ” hit ”, ce qui signifie que SOM-QE prédit

correctement que le montant de CO2 dans l’air a augmenté en janvier 2013.

Le deuxième ensemble de données utilisé pour évaluer et comparer SOM-QE

avec d’autres techniques était ce qui a été décrit dans la littérature comme un ”

ensemble de données d’images de détection des changements difficiles ”. Cet

ensemble de données comprend une catégorie d’images appelée PTZ - caméra

panoramique avec zoom et panoramique - catégorie qui nécessite différentes

techniques de détection des changements par rapport aux vidéos de caméras

statiques.

On rapporte qu’un total de 14 méthodes de détection des changements

disponibles dans la littérature ont été testées et la mesure F pour chaque méthode
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a été calculée. En particulier, la catégorie PTZ a affiché la performance la plus

faible, un fait attribué à ses défis uniques posés par la nature zoomée/zoomée des

images concernées.

Chacune des 14 méthodes a affiché des scores de mesure F1 inférieurs à 0,30.

Quand SOM-QE a été appliqué à cette catégorie, il a obtenu une note F1 de 0,39,

battant nettement les autres qui sont parmi les meilleures méthodes de la

littérature.

Dans la catégorie PTZ, tout mouvement de caméra (panoramique, inclinaison ou

zoom) provoquait des faux positifs majeurs pour chaque méthode, mais

SOM-QE les minimisait, voir Figure I.2.

.

Figure I.2: Sur la gauche et au milieu se trouvent des images d’entrée de

l’échantillon et des images de la vérité au sol, respectivement de l’ensemble de

données du CDnet 2014, catégorie PTZ. A droite se trouve l’image produite par

SOM-QE lors de la détection des changements entre l’image d’entrée et son im-

age suivante sur la vidéo. La catégorie d’images PTZ posait des défis uniques en

matière de détection des changements, les autres méthodes de la littérature gérant

un score F1 inférieur à 0,30. SOM-QE a obtenu un score F1 de 0,39, ce qui est le

meilleur score dans cette catégorie.
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Enfin, dans cette thèse, une nouvelle méthode de détermination de l’EQ dans les

images de séries temporelles est proposée. La nouvelle méthode tient compte du

fait qu’une BMU pour un vecteur d’entrée spécifique peut changer le long de la

série temporelle des images.

Dans la détermination traditionnelle de QE, la différence entre le vecteur

d’entrée original, x, et son gagnant, le BMU, est utilisée, voir l’équation I.3. Le

BMU est l’un des poids finaux du SOM entraı̂né et est choisi pour être le plus

proche du vecteur d’entrée.

QE = x−BMU (I.3)

Pour un ensemble d’images de séries temporelles où le changement doit être

détecté, le gagnant du vecteur peut ne pas être le même sur l’ensemble des

images. C’est inhérent au principe de l’apprentissage compétitif que SOM

pratique. Les unités de la carte SOM se disputent le droit de répondre au vecteur

de données d’entrée - l’unité dont la ressemblance est la plus proche gagne et

devient sa BMU. Par conséquent, si les valeurs en vecteur ont changé entre les

images et qu’il est soumis à la concurrence, n’importe laquelle des unités SOM

peut devenir sa BMU. Selon les changements dans, il peut se retrouver avec un

nouveau gagnant parmi les unités de poids SOM et cela affectera les résultats

affichés par l’équation I.3.

Dans la détection de changement, l’intérêt est dans le changement qui s’est
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produit entre les images subséquentes dans un ensemble de données de séries

temporelles. C’est le changement qui résulte du changement d’état de l’objet

dont les images ont été acquises à des moments différents. Lorsque l’objet a subi

des changements, nous nous attendons à ce que les changements soient reflétés

dans le vecteur d’entrée x. L’ensemble des poids finaux de SOM, à partir duquel

le gagnant de x‘s est déterminé, porte des valeurs différentes et ne sont pas

nécessairement égaux. Cela implique donc que lorsque x change de gagnant,

cela affecte les résultats donnés par l’équation I.3 car cela inclut non seulement le

changement dans x, mais aussi les changements dus à l’utilisation d’un gagnant

différent. La déclaration d’un changement de cette manière peut être inexacte,

car elle inclut les résultats de deux sources : premièrement, la différence réelle

entre le vecteur d’entrée dans le premier ensemble de données et celui du

deuxième ensemble de données, et deuxièmement, l’utilisation d’un BMU

différent pour calculer l’EQ pour le vecteur dans les deux ensembles de données

différents. Pour maintenir l’exactitude, il faut éliminer cette deuxième source de

changement.

Par exemple, supposons que nous ayons deux images avec les vecteurs d’entrée

correspondants xt1 et xt2, c’est-à-dire x au temps 1 et x au temps 2. Les deux

images sont capturées à des moments différents et sont prétraitées pour assurer

l’uniformité de l’alignement et de l’exposition à la lumière. Le vecteur d’entrée

xt1 et xt2 proviennent de la même position dans les deux images, c’est-à-dire

qu’ils représentent le même objet dans l’image. A partir d’un SOM formé, xt1
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peut être gagné par poids w1 tandis que x2 est gagné par poids w2. Ainsi, w1

devient la BMU pour xt1 (BMU1) tandis que w2 devient la BMU pour xt2

(BMU2). La méthode traditionnelle de calcul de l’EQ consiste à trouver la

différence entre le vecteur d’entrée et son BMU. Dans ce cas, en appliquant

l’équation I.3, le QE pour les deux instances devient :

QE1 = xt1 −BMU1 (I.4)

et,

QE2 = xt2 −BMU2 (I.5)

et pour l’ensemble du stock de données, les valeurs QE de l’objet forment un

ensemble :

QEobject = {xt1 −BMU1, xt2 −BMU2, xt3 −BMU3, ...} (I.6)

c’est-à-dire que l’objet a des valeurs QE de chaque image de la série qui n’est

pas calculée à partir de la même BMU.

Dans le cas d’un ensemble de données de séries chronologiques, cela soulève un

problème. Les vecteurs d’entrée xt1 et xt2 représentent le même objet, seulement

que leur représentation est à des moments différents. Il est donc logique que QE1

et QE2 soient déterminés à partir d’un point de référence commun (BMU) afin

qu’ils soient mathématiquement comparables et ainsi déterminer avec précision
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si un changement s’est produit dans l’objet ou non.

La proposition est donc de restreindre le processus de détection de changement

pour changer en x entre les images. Pour ce faire, on s’assure que le vecteur

d’entrée x est associé au même gagnant dans l’ensemble des données de l’image.

Pour ce faire, les gagnants déterminés lors de la phase de formation du SOM sont

maintenus pour chaque x. L’indice de x dans les données de formation est utilisé

pour l’extraire sur les images d’essai et son gagnant initial à partir des données

de formation utilisées pour déterminer l’QE.

QE = x− originalBMUofx (I.7)

et donc équation I.6 devient:

QEobject = {xt1 −BMU, xt2 −BMU, xt3 −BMU, ...} (I.8)

Lorsque SOM-QE est déterminé à l’aide des deux méthodes - la méthode

traditionnelle et la nouvelle méthode suggérée ici - les résultats présentés à la

Figure I.3 sont obtenus.

242



Figure I.3: Les deux graphiques montrent le résultat du calcul des valeurs SOM-

QE à l’aide des deux méthodes. En bas, le résultat obtenu en appliquant l’équation

9 où le BMU du vecteur d’entrée à une image particulière est utilisé pour trouver

le QE. Le graphique du haut montre les résultats obtenus par la nouvelle méthode

où la BMU obtenue pour chaque vecteur d’entrée à la fin de la formation SOM

est conservée et utilisée pour déterminer la QE pour ce vecteur particulier tout

au long de la série temporelle d’images, comme dans l’équation I.7. Il y a un

modèle commun dans les deux résultats, mais lorsque la BMU fixe est utilisée, la

différence SOM-QE entre les images est plus grande et donc plus prononcée. Des

images d’une section de Las Vegas capturées entre 1984 et 2008 ont été utilisées

dans cette simulation.

Dans les deux cas, la tendance à l’évolution des valeurs SOM-QE est similaire.
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Mais les valeurs SOM-QE plus élevées obtenues lorsqu’une valeur BMU fixe est

appliquée la rendent plus sensible au changement. La quantité de changement

détectée par SOM-QE lorsqu’une BMU fixe pour un vecteur d’entrée est

appliquée est plus grande que lorsqu’une BMU variable est utilisée, voir Figure

I.4.

Figure I.4: Les changements qui se sont produits dans le ROI tel que reflété dans

les images sont montrés ici pour les deux méthodes de détermination de SOM-

QE. La méthode BMU fixe montre qu’un changement plus important s’est produit

entre les images consécutives de la série que la méthode BMU variable. Pour noter

le changement, considérez la distance du point à partir de 0 (pas de changement de

point, sur l’axe des y) sur les deux courbes. Par exemple, en 2005, le changement

est de 0,03 unité pour la nouvelle méthode et légèrement supérieur à 0,01 unité

pour la méthode traditionnelle.
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Ainsi, la nouvelle méthode fournit une mesure du changement à plus grande

échelle que la méthode traditionnelle et se révèle plus sensible aux changements

que la méthode traditionnelle. Cela le place dans une meilleure position pour

détecter les changements, en particulier les petits changements, entre les images.
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JOHN MWANGI

WANDETO

SELF-ORGANIZING MAP QUANTIZATION
ERROR APPROACH FOR DETECTION OF
TEMPORAL VARIATIONS WITHIN IMAGE

SETS

I.1 Résumé en anglais

One way to determine change in an object at different times is to analyse images

of the object taken at the different times. Such needs occur in the medical field

where radiologists and surgeons may want to monitor the developments in a

patient. They are interested in determining whether a patient is responding

positively or negatively to some prescription. They, therefore, obtain the patient’s

images during clinical visits and use them to compare the status of each in view

of determining if the disease/condition is on progression, remission or regression.

Similarly, city administrators may wish to know changes occurring in various

zones of the city. Changes, like new buildings coming up, can be captured with

the aim of determining whether they are legal or not or generally to monitor the
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urbanization rate, the afforestation/deforestation rates, among others on the

various sections of the city. Several approaches have been suggested over the

years on how to determine the differences between images of an object.

The research work in this thesis deals with a new computational approach to

detection of change in complex images. The approach starts by determining the

variation within an image which it uses to label the image. When a series of

images of the same object are labelled, the difference in the labels is found to

correspond to the changes between the images. This in turn reflects the changes

that have occurred in the object between the times of the images captured. The

idea can then be used by a radiologist to check for change in the patient; done

through use of images taken at different clinical visit. Similarly, city

administrators can employ the same technique to study changes that occur over

time within the city.

Variation within an image is calculated by subjecting the image to a machine

learning process. Then, the difference between the results of the learning process

and the actual image gives the desired variation. This difference is called the

quantization error (QE) and the machine learning algorithm used is

self-organizing maps (SOM). SOM is a well-documented computational

technique introduced in early 80s by Teuvo Kohonen as a biologically inspired

artificial neural network (ANN) architecture. Under the unsupervised

competitive learning category, SOM produces low-dimensional (usually, one or

two-dimensional), discretized representation of the input vectors. SOM output
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are arranged in a map structure in the same topological order as that of the input

data, making it different from other machine learning techniques.

To set-up and apply SOM, the user is required to determine the map size, the

neighbourhood distance, the learning rate and the number of iterations to be

made during the learning process. The map is made up of learning units whose

number determines its size. Learning units behave differently when presented

with the same stimuli – an adaptation of the human brain learning style, where

different sections have been known to learn specific environmental stimuli better

than others. Each learning unit takes up a position on the map, forming a regular

hexagonal or rectangular grid. The units are given initial values – which can be

taken randomly from the image – to be used to start off the learning process.

During the learning process, an input vector from the image is presented to the

map. This triggers a comparison process between the input vector and each of

the learning unit. The aim of the comparison is to determine the learning unit

that is more similar to the input vector than the others. Such a unit is taken to be

the winner of the input vector, and it becomes its best matching unit (BMU).

Before bringing in another input vector, the BMU is adjusted such that its values

become closer to those of the input vector it won. Besides, and this is what set

SOM apart from other machine learning processes, units that neighbour the

BMU are also adjusted. The neighbours are those units that fall within the

neighbourhood radius that was determined at the beginning of the learning

process. With the BMU as the center, the neighbourhood distance forms a
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“circular” area around the BMU on the map. Any learning unit that is within the

circular area is then taken to be in the neighbourhood of the BMU.

The adjustment of the values in the learning units constitute the “learning” of the

map. It is done in such a way that the BMU values are adjusted (learn) more than

the other units in the neighbourhood. The amount of learning reduces as one

moves away from the BMU within the neighbourhood zone and is governed by

the following relation:

W (t+ 1) = W (t) + Θ(t)L(t)(V (t)−W (t)) (I.9)

This is SOM’s learning method, where t is the time step and L is a small variable

called the learning rate, which decreases with time. From this equation, the new

adjusted weight for the unit is equal to the old weight (W ), plus a fraction of the

difference, (L and θ), between the old weight and the input vector (V ).

It resembles closely to the feeling a person gets when a sharp object, like a pen,

is pressed on the skin. The feeling is more intense at the point of touch and

reduces as distance from this point increases, until it is not felt at far distances. In

this case, the BMU represents the point of touch while the units within the

neighbourhood represent the region that will experience the feeling. This way,

SOM learning process imitates the human behaviour creating a foundation that

will make it superior in change detection application.

This learning process is done for each input vector from the image. As the map
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units learn, their values become closer and closer to those of the input vectors

they have won and also to those that have closer resemblance to them. Each

learning unit becomes a zone that will associate and attract certain input vectors.

Any input vector will always be inclined to a given zone, making SOM a

clustering algorithm. After all the input vectors have been exposed to the SOM,

the process is repeated over and over again, until the predetermined number of

repetition is reached.

As the learning progresses, the neighbourhood distance reduces, and hence the

number of units affected by the input vectors reduces too. This has the effect of

ensuring that the unit wins only those input vectors whose values are closer to its

own and also those that are closely located to it.

Another SOM parameter that is initially provided by the user and reduces as the

learning process progresses is the learning rate. It provides the fraction used to

adjust the existing values of units.

When the learning process is complete, a comparison between the learned SOM

and the original input vectors is done to provide the QE. Each input vector has its

own QE, which is the vector’s difference with its BMU. Thus, the QE basically

determines “how close SOM was to attaining the original image values”. After

the QE for each input vector is determined the average QE for all the vectors in

the image is calculated, see equation I.10.
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QE = 1/N
N∑
i=1

||xi − (BMUi)|| (I.10)

where N is the number of vectors in X , the set of image data vectors and BMU is

the unit whose vector of weights is most similar to the input vector x, for all

weight vectors of SOM. From this relation, QE disregards map topology and

alignment, allowing it to be universally applicable.

This QE value becomes the label for the image which will be used to track

changes that occur within the image with time.

QE is a by-product of SOM and is traditionally used to determine the accuracy of

the results produced by the map. In the traditional usage of QE, several SOM

set-ups with varying parameters are run on one dataset and at the end of each run,

the QE is determined. The aim is to find a combination of parameters that gives

the lowest value of QE, which is taken to be the optimal set to be used for a SOM

to transform that input dataset.

In this work, this product of SOM, known as SOM-QE, is used in a novel way

that quantifies and determines the variations in input feature vectors as a measure

of uniformity within the dataset. The SOM-QE provides a measure of variations

within the image at an instance in time, and when compared with the values from

subsequent images of the same object, it reveals a transient visualization of

changes in the object of study. Thus, SOM-QE is proposed as a new technique to

detect and quantify transient changes in object images.
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Medical and satellite imageries are considered in this work. It is shown that the

SOM-QE approach is able to detect changes that are too small to be detected by

human observers, or that were not detectable by other approaches in previous

studies. In addition, it is shown to be less computationally expensive and less

time consuming.

Changes that have occurred in objects of interest, such as new buildings in a city

or progression of illnesses, are of particular interest to scientists and engineers.

SOM-QE provides a new way for automatic detection of such changes, providing

timely information for appropriate planning or intervention. For instance, by use

of SOM-QE, radiologists and surgeons do not have to wait for long periods

before scheduling patients for surgery or follow up clinical visits to check on

progression of an illness. SOM-QE is shown to constitute a statistically reliable

indicator of small potentially critical local changes across images of a time

series. It is easily implemented and has been shown to have computation times of

between 18 and 350 seconds for generating output from datasets of between 20

to 25 medical or Landsat images. It is further shown that SOM-QE achieves high

sensitivity and high specificity on medical images. It showed significant

robustness in detecting of systematic variations in intensity contrast in spatial

images.

To demonstrate the working and effectiveness of the proposed SOM-QE

algorithm various simulations were carried out on different categories of images

in the domains of study.
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Before performing the simulations, the images were prepared for use by

subjecting them to a pre-processing procedure. This made the SOM-QE results

more reliable and reflect the true position of images being compared. This

eliminates other possible causes of change that could lead to posting of false

results. For instance, the images need to be aligned in a similar way and that

changes caused by different illumination on the object are corrected. This way,

the effect of unimportant and / or noisy changes on the accuracy of results

obtained is minimized.

To confirm the SOM-QE concept, experiments and simulations with real and

artificial images were conducted. Each experiment / simulation’s results were

compared with the expected results and SOM-QE was found to give reliable

results. Statistically, it was confirmed that the results were reliable and consistent.

For example, a simulation was done with two basic images whose differences

could easily be traced visually by human. When SOM-QE was applied to give

the differences between these two images, it produced results that were correct

and matched those observed by a human visually. Besides, applying known and

commonly used techniques of determining image data content – histogram and

variance calculation - gave results that correspond to those given by SOM-QE.

Histogram are used to give accurate distribution of numerical data. Since an

image is a dataset of such data, it was an appropriate tool to employ and to

compare to SOM-QE’s findings. Variance, on the other hand, measures how far

data values are spread from their mean. It gives the variation within a dataset,
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just like SOM-QE. By giving results that correspond to those of these standard

methods, SOM-QE qualifies to enter into their league and hence compete and

complement the existing methods.

In further simulation, SOM-QE is shown to accurately sense controlled

variations in the size of a single local dot within random-dot images. It

performed better than human observers, who included untrained persons and also

trained expert radiologists. Visual detection experiments were set-up, using

random-dot images in a psychophysical ”same-different” procedure. A pair of

images was presented to the observer at a time. The observer’s task was to tell

whether the two images were the same or different. The pair of images presented

was composed from a dataset of 4 different images. The first image was an

original dot-image, with dots that were equal in size and were randomly spread

within the image. The second, third and fourth images had a dot that was altered

in size. In the second image, the size of the dot was increased by 5% and by 10%

and 30% in the third and fourth images respectively. The human observers had

difficulties noting these changes, especially the 5% one. But SOM-QE clearly

produced the required differences. The results showed that the small changes

detected by SOM-QE are undetectable by the human observers, both the novices

and the expert radiologists. On the basis of this proof of concept, it is postulated

that SOM-QE provides a statistically reliable indicator of small changes in image

series that may be undetectable by the human natural vision.

Then, SOM-QE was applied to real MRI images taken from a patient with an
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injured knee where its results corresponded with the clinical development within

the patient. When applied to an image dataset used by another approach

discussed in literature, SOM-QE posts better results especially on detection of

smaller growth in the image series.

When impurities are consistently added to a set of real images, SOM-QE returns

results that correspond to the effect of added impurities in the images, and the

results are statistically consistent too. The impurities were added in two ways.

First they were added to behave like local growths in the image. That is, they

impurities caused changes in particular regions of the images, like growing

lesions do. In the second way, the impurities were added throughout the images

behaving like global impurities.

When one ‘lesion’ was added on each image in the dataset to form another

dataset, SOM-QE results reflected this addition of lesion. The results were also

statistically important. When a second lesion is added to form a third dataset of

images and which SOM-QE is applied, the addition of the lesion is reflected by

the SOM-QE results too. If these image datasets were real, taken during 3

consecutive clinical visits by the patient, then SOM-QE will have indicated to the

radiologists and surgeons that the lesions were increasing, which should trigger a

change in management of the patient’s condition. Thus, SOM-QE can tell when a

lesion or tumour is increasing or decreasing in size in a patient’s organ,

triggering the radiologist to take appropriate action.

The results from the series of simulations described in this work suggest that
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SOM-QE analysis seems well-tailored for fast change detection in large bodies

of medical images from patients. It allows the automatic detection of subtle but

significant changes in time series of images likely to reflect growing or receding

lesions. In clinical practice, finding evidence for subtle growth through visual

inspection of serial imaging can be very difficult. This is especially true for scans

taken at relatively short intervals (less than a year). Visual inspection often

misses the slow evolution because the change may be obscured by variations in

body position, slice position, or intensity profile between scans. In some cases,

the change can be too small to be noticed. Surgeons and oncologists frequently

compute the change in tumour volume by comparing the measurements from

consecutive scans. When the change in tumour volume is too small and hence

difficult to detect between two sequential scans, radiologists tend to compare the

most recent scan with the earliest available image to find any visible evidence for

an evolution of the tumour. The resulting analysis does, however, not reflect the

current development of the tumour but rather a retrospective perspective of

tumour evolution, as pointed out earlier. This study addresses this problem, as

fast SOM could be easily implemented to aid clinicians in deciding about

treatment. The process of executing the code to determine the QE distribution for

a series of twenty images takes about 40 seconds. This involves reading the

DICOM images from a folder, running the SOM and determining the QE for

each image, displaying the image on the screen and saving the QE value in a text

file. In summary, whenever SOM-QE values of images taken at consecutive

times rises, it is a potential indication that lesions or other pathological changes
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of the organ under study may be developing, while a decrease of the SOM-QE

value may indicate that a pathology is receding. To the best of our knowledge,

our approach is the first to automatically detect potentially critical local changes

in a patient by comparing images taken from subsequent clinical visits without

relying on visual inspection or manual annotations. The SOM-QE method

detects these changes rapidly with a minimal computation time using consecutive

images of an organ without having to rely on derived image qualities as is the

case for image subtraction methods, for example. The SOM-QE method also

represents a clear advantage compared with monitoring a condition, for example

cancer progression or remission, using manual segmentation techniques on each

image from an MRI sequence, which is prohibitively time consuming.

Other simulations on the application of SOM-QE were done using satellite

images captured by Landsat. The detection and characterization of critical

changes in public spaces of the natural or the built environment reflected by

changes in image time series from remotely sensed image data may be of

considerable importance for risk mitigation policies and public awareness.

SOM-QE results on this end confirmed it to be a fast automatic technique that

discriminates between changed and unchanged contents in large image time

series, something that has been lacking as reported in literature. The changing

trends of growth on urbanization of regions within Las Vegas city in USA was

studied. Between 1984 to 2008, urbanization in the city grew to cover much of

what was previously a desert. SOM-QE reliably covered this phenomenon, with
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Pearson’s correlation showing statistically significant correlations between

SOM-QE value and the number of visitors and the population totals for the time

period. At the pixel level – which translate to specific locations within the city –

SOM-QE returned results that showed locations that experienced change and

those that did not experience changes within a specific period. While some

approaches of detecting changes in land use / cover rely on changing size of

particular land use zone from one time to another, SOM-QE demonstrated that

even changes that did not result to reduction or increase in the size of land use

zone are detectable. A fixed-size land use / cover zone for all images under

consideration was used to demonstrate this. For instant, when an additional

house is built in a built-up zone, a change occurs yet the land-use / cover size of

the built up zone has not changed. Thus SOM-QE can detect changing objects

within a scene, like new building coming up, equipping the city managers with

information to, for instance, potentially detect illegal building being constructed.

Neighbouring Las Vegas city is Lake Mead which has seen its water level change

within this period. SOM-QE reliably reported this results too. Pearson’s

correlation statistic computed on the paired distributions for SOM-QE and water

levels signalled a statistically significant correlation, for the time period

1984-2008.

The effectiveness of the SOM-QE technique to determine changes as portrayed

by satellite images was evaluated using a dataset of images. When detecting

changes between two images from this dataset, SOM-QE returned results that
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fully corresponded with the ground truth results provided. Detection of change in

temporal images using SOM-QE, opens new possibilities for fast automatic

processing for which a quick decision about change or no change needs to be

made. Results indicate that SOM-QE values varies consistently, reliably, and

predictably with local variations in spatially distributed contrast signals in

random-dot images, and in image series with regularly distributed spatial

contrasts (geometric configurations). On the grounds of these systematic

variations, SOM-QE is a highly sensitive and reliable indicator of local and

global image homogeneity: as images from a time series become more

heterogeneous in spatial contents, SOM-QE increases; conversely, as images

become more homogeneous in spatial contents, SOM-QE consistently decreases,

provided the intensity of contrast is constant across images of a given series.

In conclusion, there is, to our knowledge, no reported method that has achieved

superior results on similar problems. The work is important as it introduces a

new way of looking at automatic change detection when dealing with very small

local changes in images. The method proposed is easy to implement, fast, and

robust. The method is aimed to provide near real time results in detection and or

classification of images. Thus, it represents a promising and non-expensive

technique for the automatic classification of medical images or tracking changes

in landscape information from large bodies of image data. In the medical

applications, these could be scans taken over time from the same patient for a

given condition whose evolution may be slow but progressive and therefore not
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easily detectable by human experts. This opens new doors for monitoring of

cancer progression and remission. In the study of land satellite imagery,

longitudinal studies of time-series data of regions of interest is essential for

proper planning of future cities and other urban spaces.

The next results, show how SOM-QE can track changing objects within the ROI.

The QE of an input feature vector is monitored between images to determine the

changes. See Table I.2 and Figure I.5.

Input vector
position index

SOM-QE value
1984 image

SOM-QE value
1985 image

Change
in QE

353 0.3316 0.3316 0
362 0.3314 0.3314 0
1284 0.2896 0.2896 0
2501 0.1551 0.1551 0
3001 0.0534 0.0566 -0.0033
3587 0.0411 0.0362 0.0049
3955 0.0711 0.0649 0.0062
7065 0.1681 0.1427 0.0254
11689 0.1287 0.1260 0.0027
17587 0.24211 0.2421 0

Table I.2: Sampled SOM-QE values of regions within the Residential North ROI
on the same position of images captured in 1984 and 1985. The last column
indicates the amount and direction of change in the region as determined by SOM-
QE. Note the two positions, 2501 and 17587, with SOM-QE values of 0.1551 and
0.2421 respectively and whose positions are labelled in Figure I.5.

Some objects changed by increasing their SOM-QE values, others decreased

while others did not change as shown in the last column of Table I.2. Figure I.5

shows the objects within the ROI, with black dots – pixels- indicating the regions

that did not change between the images on each row. All other objects changed.
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Figure I.5: The small, black dots in each year’s image are areas that did not expe-

rience changes between the two years in each row. The rest of the image had some

changes taking place. On the top row, two specific areas are shown out for illus-

tration. One has a SOM-QE value of 0.2421, the second has SOM-QE of 0.1551

in both years, 1984 and 1985. The bottom row also shows areas of no-change

between the years 2007 and 2008. It takes 7.1 seconds to detect changes and label

regions between the two pairs of images, making this approach appropriate for the

task.
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Another finding in this thesis, is that given a series of SOM-QE values of an

object/scene, it is possible to determine future SOM-QE values and hence predict

the changes that are likely to occur in the object/scene.

A visualization of SOM-QE data calculated from a set of 28 time series images

indicated that this data points calculated over time by SOM-QE have an internal

structure that can be accounted for. When plotted, current SOM-QE value

against the observation at the previous time step, the observations fall along a

diagonal line. This is a confirmation that the SOM-QE dataset has correlation

within it, hence it can be used for prediction purposes. Thus, the new technique,

SOM-QE, generates data that can be applied to determine future change, its

direction and its magnitude.

When a prediction model is trained and run on this data, all changes depicted by

SOM-QE between images are correctly predicted by this model. The change

detection is seen to be on the same direction (increase or no-change or decrease)

with the actual values.

To evaluate SOM-QE performance as a change detector and as a provider of

prediction data, it was tested on two datasets. The first dataset was of real

measurements captured by instruments, which are compared with SOM-QE

values obtained from corresponding images to determine the accuracy. The

measurements are of the annual cycle of carbon dioxide gas (CO2) in the

Northern Hemisphere, covering the period from January 1 to December 31, 2012

and indicate the distinct rise and fall of carbon dioxide levels over a year’s time.
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The unit used to record the gas data is parts per million (ppm), which is the

number of CO2 molecules present in every million molecules of air. The annual

pattern is caused by the uptake and release of CO2 from seasonal plant growth

on the vast landmasses of the Northern Hemisphere. The annual maximum CO2

concentration in the Northern Hemisphere occurs around May. The spring

build-up happens because decaying plants have been releasing carbon throughout

the winter. The annual minimum concentration occurs around October, after new

growth has withdrawn CO2 from the air during photosynthesis.

The dataset is suitable for use in this instance because, when the pollutants

molecules increase the variation within the 1 million molecules of air increases

too. This means for low ppm, SOM-QE should increase/reduce with

increase/reduction of the amount of CO2.

The performance of SOM-QE as a change detector was calculated as:

precision, p = 8 ÷ 11 = 0.727

recall, r = 8 ÷ 11 = 0.727

and F1 score of (2 × p × r) ÷ (p + r) = 0.727

This is a better score than those reported in related literature. For instance, it is

reported that the best results posted by various 2D change detectors was an F1

score of 0.723. This is below that posted by SOM-QE above.

The 12 monthly images were used to train a predictor. The prediction for
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SOM-QE value of next image was determined as: 0.224166

That is, January 2013 image will have a SOM-QE value of 0.2242, up from that

of December 2012 image at 0.2023, a + 0.0219 change. On the other hand the

recorded CO2 for January 2013 is 395.5 ppm up from 394.82 ppm recorded for

December 2012, a + 0.68 change. This is a ‘hit’, meaning that SOM-QE

correctly predicts that the amount of CO2 in air increased in January 2013.

The second dataset used to evaluate and compare SOM-QE with other techniques

was what was described in literature as a ’challenging change-detection image

dataset’. This dataset has a category of images called the PTZ - pan–tilt–zoom

camera - category which requires different type of change detection techniques in

comparison to static camera videos.

It is reported that a total of 14 change detection methods available in literature

were tested and the F-measure for each method was calculated. In particular, the

PTZ category showed the lowest performance, a fact attributed to its unique

challenges posed by the zoomed-in/zoomed-out nature of the images involved.

Each of the 14 methods posted F1-measure scores of under 0.30. When

SOM-QE was applied to this category, it scored an F1 of 0.39, clearly beating the

rest which are among the best methods in literature.

In the PTZ category, any camera motion (pan, tilt or zoom) caused major false

positives from each method, but SOM-QE minimized them, see Figure I.6.
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Figure I.6: On the left and at the middle are sample input and ground truth images
respectively from the 2014 CDnet dataset, PTZ category. To the right is the image
produced by SOM-QE on detecting the changes between the input image and
its next image frame on the video. The PTZ category of images posed unique
challenges on change detection, with other methods in the literature managing F1
score of less than 0.30. SOM-QE scored an F1 score of 0.39, which is the best
score in this category.

Finally, in this thesis, a new method to determine QE in time series images is

proposed. The new method considers the fact that a BMU for a specific input

vector may change along the time series of images.

In the traditional determination of QE, the difference between the original input

vector, x , and its winner, the BMU, is used, see equation I.11. The BMU is one

of the final weights in the trained SOM and is chosen to be the closest to the

input vector.

QE = x−BMU (I.11)

For a set of time series images where change is to be detected, the winner of

vector may not be the same across the images. This is inherent from the principle

of competitive learning which SOM practices. Units in the SOM map compete

for the right to respond to the input data vector – the unit with the closest

resemblance wins, and becomes its BMU. Consequently, if the values in vector
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changed between images and it is subjected to the competition, any of the SOM

units can become its BMU. Depending on the changes in , it may find itself

having a new winner among the SOM weight units and this will affect results

posted by equation I.11.

In change detection, the interest is in the change that has occurred in between

subsequent images in a time series dataset. This is the change that is as a result of

changing status of the object whose images were acquired at different times.

When the object has undergone some changes, we expect the changes to be

reflected in the input vector x. The set of SOM final weights, from which x‘s

winner is determined from, carries different values and are not necessarily equal.

It therefore implies that when x switches winners, it affects the results given by

equation I.11 as it include not only the change in x, but also the changes due to

the use of a different winner. Reporting change in this manner may be inaccurate,

as it includes the results from two sources: first the actual difference between the

input vector in the first dataset and that of the second dataset, and secondly the

use of a different BMU to calculate the QE for the vector in the two different

datasets. To maintain accuracy, this second source of change need to be

eliminated.

For example, suppose we have two images with corresponding input vectors xt1

and xt2, that is, x at time 1 and x at time 2. The two images are captured at

different times and are preprocessed to ensure uniformity in alignment and

lighting exposure. Input vector xt1 and xt2 are from the same position in the two
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images, that is, they represent the same object within the image. From a trained

SOM, xt1 may be won by weight w1 while x2 is won by weight w2. Thus, w1

becomes the BMU for xt1 (BMU1) while w2 becomes the BMU for xt2

(BMU2). The traditional method to calculate QE is to find the the difference of

the input vector and its BMU. In this case, on applying equation I.11, the QE for

the two instances becomes:

QE1 = xt1 −BMU1 (I.12)

and,

QE2 = xt2 −BMU2 (I.13)

and for the entire dataset the QE values for the object form a set:

QEobject = {xt1 −BMU1, xt2 −BMU2, xt3 −BMU3, ...} (I.14)

that is, the object has QE values from each image in the series that is not

calculated from the same BMU.

For a time series dataset this raises an issue. Input vectors xt1 and xt2 represent

the same object, only that their representation is at different times. It is therefore

logical that QE1 and QE2 be determined from a common reference point

(BMU) in order for them to be mathematically comparable and hence
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accurately determine whether change has occurred in the object or not.

The proposal is, therefore, to restrict the change detection process to change in x

between images. This is done by ensuring that input vector x is associated to the

same winner across the image dataset. To attain this, the winners determined

during the training phase of SOM are maintained for each x. The index of x in

the training data is used to extract it on testing images and its initial winner from

the training data used to determine QE.

QE = x− originalBMUofx (I.15)

and thus equation I.14 becomes:

QEobject = {xt1 −BMU, xt2 −BMU, xt3 −BMU, ...} (I.16)

When SOM-QE is determined using the two methods – the traditional method

and the new method suggested here - the results shown in Figure I.7 are obtained.

In both results, the trend in changing SOM-QE values is similar. But the larger

SOM-QE values obtained when a fixed BMU value is applied make it more

sensitive to change. The amount of change sensed by SOM-QE when a fixed

BMU for an input vector is applied is bigger than when a varying BMU is used,

see Figure I.8.

Thus, the new method provides a bigger scale of change measurement than the
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Figure I.7: The two plots show the result of calculating SOM-QE values using the
two methods. At the bottom is the result obtained by applying equation 9 where
the BMU of the input vector at a particular image is used to find the QE. The plot
on top shows results obtained by the new method where the BMU obtained for
every input vector at the end of SOM training is retained and used to determined
QE for that particular vector throughout the time series of images, as in equation
I.15. There is a common pattern in the two results, but when the fixed BMU
is used, the difference in SOM-QE between images is bigger and hence more
pronounced. Images of a section of Las Vegas as captured between year 1984 and
2008 were used in this simulations.

traditional method, and is found to be more sensitive to changes than the

traditional method. This places it in a better position to detect changes, especially

small changes, between images.
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Figure I.8: The changes that occurred in the ROI as reflected in images are shown
here for the two methods of determination of SOM-QE. The fixed BMU method
shows bigger change occurred between consecutive images in the series than the
varying BMU method. To note change, consider the point’s distance from 0 (no-
change-point, on y-axis) on the two curves. For instance in year 2005, the change
is 0.03 units for the new method and slightly above 0.01 units for the traditional
method.
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