M. Bosch, A. Sánchez, F. Rojas, and C. Ojeda, Recent Development in Optical Fiber Biosensors. Sensors, vol.7, pp.797-859, 2007.

T. Vo-dinh and B. Cullum, Biosensors and biochips: advances in biological and medical diagnostics, Fresenius Journal of Analytical Chemistry, vol.366, pp.540-551, 2000.

D. Grieshaber, R. Mackenzie, J. Vörös, R. , and E. , Electrochemical BiosensorsSensor Principles and Architectures. Sensors, vol.8, pp.1400-1458, 2008.

M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. Ferreira, and L. T. Kubota, Biosensors based on gold nanostructures, Journal of the Brazilian Chemical Society, vol.22, pp.3-20, 2011.

J. P. Chambers, B. P. Arulanandam, L. L. Matta, A. Weis, and J. J. Valdes, Biosensors based on gold nanostructures, Current Issues in Molecular Biology, vol.10, pp.1-12, 2008.

W. R. Heineman, W. B. Jensen, C. Leland, and . Clark, Biosensors and Bioelectronics, vol.21, pp.1403-1404, 1918.

L. C. Clark and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of Sciences, vol.102, pp.29-45, 2006.

N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, Introduction to biosensors, Essays In Biochemistry, vol.60, pp.1-8, 2016.

N. Khansili, G. Rattu, K. , and P. M. , Label-free optical biosensors for food and biological sensor applications, Sensors and Actuators B: Chemical, vol.265, pp.35-49, 2018.

J. J. Colás, Dual-Mode Electro-photonic Silicon Biosensors

X. Luo, D. , and J. J. , Electrical biosensors and the label free detection of protein disease biomarkers, Chemical Society Reviews, vol.42, p.5944, 2013.

P. Damborsky, J. Vitel, and J. Katrlik, Optical biosensors, Essays In Biochemistry, vol.60, pp.91-100, 2016.

S. M. Borisov and O. S. Wolfbeis, Optical Biosensors. Chemical Reviews, vol.108, pp.423-461, 2008.

L. M. Lechuga, Biosensors and Modern Biospecific Analytical Techniques, pp.209-250, 2005.

S. N. Jha, Rapid Detection of Food Adulterants and Contaminants

B. Reddy, E. Salm, and R. Bashir, Electrical Chips for Biological Point-of-Care Detection, Annual Review of Biomedical Engineering, vol.18, pp.329-355, 2016.

S. Campuzano, P. Yáñez-sedeño, P. , and J. , Electrochemical Genosensing of Circulating Biomarkers. Sensors, vol.17, p.866, 2017.

L. Wu, J. Ren, and X. Qu, Target-responsive DNA-capped nanocontainer used for fabricating universal detector and performing logic operations, Nucleic Acids Research, vol.42, pp.160-160, 2014.
DOI : 10.1093/nar/gku858

URL : https://academic.oup.com/nar/article-pdf/42/21/e160/14122664/gku858.pdf

A. Chaubey and B. Malhotra, Biosensors and Bioelectronics, vol.17, pp.441-456, 2002.

, General introduction

D. R. Thévenot, K. Toth, R. A. Durst, W. , and G. S. , Electrochemical biosensors: recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry) Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1, Biosensors and Bioelectronics, vol.16, pp.121-131, 2001.

K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtulu?"-lee et al., Recent progress in SERS biosensing, Physical Chemistry Chemical Physics, vol.13, p.11551, 2011.

R. A. Tripp, R. A. Dluhy, and Y. Zhao, Novel nanostructures for SERS biosensing, Nano Today, vol.3, pp.31-37, 2008.
DOI : 10.1016/s1748-0132(08)70042-2

K. Li, S. Wang, L. Wang, H. Yu, N. Jing et al., Fast and Sensitive Ellipsometry-Based Biosensing, Sensors, vol.18, p.15, 2017.
DOI : 10.3390/s18010015

URL : https://www.mdpi.com/1424-8220/18/1/15/pdf

. Homola, J. Springer Series on Chemical Sensors and Biosensors

A. Leung, P. M. Shankar, and R. Mutharasan, A review of fiber-optic biosensors, Sensors and Actuators B: Chemical, vol.125, pp.688-703, 2007.

C. Caucheteur, T. Guo, A. , and J. , Review of plasmonic fiber optic biochemical sensors: improving the limit of detection, Analytical and Bioanalytical Chemistry, vol.407, pp.3883-3897, 2015.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, Evanescent Field in Surface Plasmon Resonance and Surface Plasmon Field-Enhanced Fluorescence Spectroscopies, vol.76, pp.2210-2219, 2004.

S. Zeng, D. Baillargeat, H. Ho, Y. , and K. , Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chemical Society Reviews, vol.43, p.3426, 2014.

J. Homola and M. Piliarik, Springer Series on Chemical Sensors and Biosensors

P. Chen, N. Huang, M. Chung, T. T. Cornell, and K. Kurabayashi, Label-free cytokine micro-and nano-biosensing towards personalized medicine of systemic inflammatory disorders, Advanced Drug Delivery Reviews, vol.95, pp.90-103, 2015.

M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor et al., Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 1999.

A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift für Physik A Hadrons and nuclei, vol.216, pp.398-410, 1968.

E. Kretschmann and H. Raether, Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Zeitschrift für Naturforschung A 23, 1968.
DOI : 10.1515/zna-1968-1247

URL : http://www.degruyter.com/downloadpdf/j/zna.1968.23.issue-12/zna-1968-1247/zna-1968-1247.xml

R. B. Schasfoort and A. Mcwhirter, Handbook of Surface Plasmon Resonance, pp.35-80

A. Suzuki, J. Kondoh, Y. Matsui, S. Shiokawa, and K. Suzuki, Development of novel optical waveguide surface plasmon resonance (SPR) sensor with dual light emitting diodes, Sensors and Actuators B: Chemical, vol.106, pp.383-387, 2005.
DOI : 10.1016/j.snb.2004.08.021

H. Zhao, I. I. Gorshkova, G. L. Fu, and P. Schuck, A comparison of binding surfaces for SPR biosensing using an antibody-antigen system and affinity distribution analysis, Methods, vol.59, pp.328-335, 2013.

L. Newton, T. Slater, N. Clark, and A. Vijayaraghavan, Self assembled monolayers (SAMs) on metallic surfaces (gold and graphene) for electronic applications, J. Mater. Chem. C, vol.1, pp.376-393, 2013.
DOI : 10.1039/c2tc00146b

C. Nicosia and J. Huskens, Reactive self-assembled monolayers: from surface functionalization to gradient formation, Mater. Horiz, vol.1, pp.32-45, 2014.
DOI : 10.1039/c3mh00046j

URL : https://pubs.rsc.org/en/content/articlepdf/2014/mh/c3mh00046j

A. L. Da-silva, M. G. Gutierres, A. Thesing, R. M. Lattuada, and J. Ferreira, SPR Biosensors Based on Gold and Silver Nanoparticle Multilayer Films, Journal of the Brazilian Chemical Society, 2014.

R. G. Nuzzo, A. , and D. L. , Adsorption of bifunctional organic disulfides on gold surfaces, Journal of the American Chemical Society, vol.105, pp.4481-4483, 1983.
DOI : 10.1021/ja00351a063

C. M. Crudden, J. H. Horton, I. I. Ebralidze, O. V. Zenkina, A. B. Mclean et al., Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold, Nature Chemistry, vol.6, pp.409-414, 2014.
DOI : 10.1038/nchem.1891

E. T. Gedig, Handbook of Surface Plasmon Resonance, pp.171-254, 2017.

A. D. Jewell, H. L. Tierney, and E. C. Sykes, Gently lifting gold's herringbone reconstruction, Physical Review B, vol.82, issue.111, 2010.
DOI : 10.1103/physrevb.82.205401

D. V. Leff, L. Brandt, and J. R. Heath, Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines, Langmuir, vol.12, pp.4723-4730, 1996.
DOI : 10.1021/la960445u

M. Frasconi, F. Mazzei, and T. Ferri, Protein immobilization at gold-thiol surfaces and potential for biosensing, Analytical and Bioanalytical Chemistry, vol.398, pp.1545-1564, 2010.
DOI : 10.1007/s00216-010-3708-6

M. Wahlgren, Protein adsorption to solid surfaces, Trends in Biotechnology, vol.9, pp.201-208, 1991.
DOI : 10.1016/0167-7799(91)90064-o

M. A. Stuart, Biopolymers at Interfaces, vol.110, pp.1-19, 2003.

P. Billsten, M. Wahlgren, T. Arnebrant, J. Mcguire, and H. Elwing, Structural Changes of T4 Lysozyme upon Adsorption to Silica Nanoparticles Measured by Circular Dichroism, Journal of Colloid and Interface Science, vol.175, pp.77-82, 1995.

A. P. Minton, Effects of Excluded Surface Area and Adsorbate Clustering on Surface Adsorption of Proteins. II. Kinetic Models, Biophysical Journal, vol.80, pp.1641-1648, 2001.

J. Butler, L. Ni, R. Nessler, K. Joshi, M. Suter et al., The physical and functional behavior of capture antibodies adsorbed on polystyrene, Journal of Immunological Methods, vol.150, pp.77-90, 1992.
DOI : 10.1016/0022-1759(92)90066-3

C. Daniel, Y. Roupioz, T. Livache, and A. Buhot, On the use of aptamer microarrays as a platform for the exploration of human prothrombin/thrombin conversion, Analytical Biochemistry, vol.473, pp.66-71, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01589470

F. Melaine, Y. Roupioz, and A. Buhot, Gold Nanoparticles Surface Plasmon Resonance Enhanced Signal for the Detection of Small Molecules on Split-Aptamer Microarrays, Small Molecules Detection from Split-Aptamers). Microarrays, vol.4, pp.41-52, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01925366

A. Lombana, Z. Raja, S. Casale, C. Pradier, T. Foulon et al., Temporin-SHa peptides grafted on gold surfaces display antibacterial activity, Journal of Peptide Science, vol.20, pp.563-569, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01044512

S. Kim, L. K. Jang, H. S. Park, and J. Y. Lee, Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films, Scientific Reports, vol.6, 2016.

T. Livache, A. Roget, E. Dejean, C. Barthet, G. Bidan et al., Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group, Nucleic Acids Research, vol.22, pp.2915-2921, 1994.

T. Livache, E. Maillart, N. Lassalle, P. Mailley, B. Corso et al., Polypyrrole based DNA hybridization assays: study of label free detection processes versus fluorescence on microchips, Journal of Pharmaceutical and Biomedical Analysis, vol.32, pp.687-696, 2003.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, M. G. Casabona et al., On-chip microbial culture for the specific detection of very low levels of bacteria, p.4024, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01322346

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche et al., Real-time detection of lymphocytes binding on an antibody chip using SPR imaging, p.1206, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00160965

Y. Roupioz, N. Berthet-duroure, T. Leïchlé, J. Pourciel, P. Mailley et al., , 2009.

B. Schweiger, J. Kim, Y. Kim, and M. Ulbricht, Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid, Sensors, vol.15, pp.4870-4889, 2015.

J. Heinze, B. A. Frontana-uribe, and S. Ludwigs, Electrochemistry of Conducting Polymers-Persistent Models and New Concepts ?, Chemical Reviews, vol.110, pp.4724-4771, 2010.

Q. Chi, J. Zhang, J. E. Andersen, and J. Ulstrup, Ordered Assembly and Controlled Electron Transfer of the Blue Copper Protein Azurin at Gold (111) Single-Crystal Substrates, The Journal of Physical Chemistry B, vol.105, pp.4669-4679, 2001.

D. H. Murgida and P. Hildebrandt, Redox and redox-coupled processes of heme proteins and enzymes at electrochemical interfaces, Physical Chemistry Chemical Physics, vol.7, p.3773, 2005.

B. D. Fleming, S. Praporski, A. M. Bond, M. , and L. L. , Electrochemical Quartz Crystal Microbalance Study of Azurin Adsorption onto an, Alkanethiol Self-Assembled Monolayer on Gold. Langmuir, vol.24, pp.323-327, 2008.

J. J. Gray, The interaction of proteins with solid surfaces, Current Opinion in Structural Biology, vol.14, pp.110-115, 2004.

G. T. Hermanson, Bioconjugate Techniques, pp.229-258, 2013.

B. Johnsson, S. Löfås, and G. Lindquist, Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors, Analytical Biochemistry, vol.198, pp.268-277, 1991.

L. Peng, G. J. Calton, and J. W. Burnett, Effect of borohydride reduction on antibodies, Applied Biochemistry and Biotechnology, vol.14, pp.91-99, 1987.

D. Smyth, O. Blumenfeld, and W. Konigsberg, Reactions of N-ethylmaleimide with peptides and amino acids, Biochemical Journal, vol.91, pp.589-595, 1964.

G. Gorin, P. Martic, and G. Doughty, Kinetics of the reaction of N-ethylmaleimide with cysteine and some congeners, Archives of Biochemistry and Biophysics, vol.115, pp.593-597, 1966.

M. D. Partis, D. G. Griffiths, G. C. Roberts, and R. B. Beechey, Cross-linking of protein by ?-maleimido alkanoylN-hydroxysuccinimido esters, Journal of Protein Chemistry, vol.2, pp.263-277, 1983.

J. R. Heitz, C. D. Anderson, A. , and B. M. , Inactivation of yeast alcohol dehydrogenase by N-alkylmaleimides, Archives of Biochemistry and Biophysics, vol.127, pp.627-636, 1968.

D. J. O'shannessy, M. Brigham-burke, and K. Peck, Immobilization chemistries suitable for use in the BIAcore surface plasmon resonance detector, Analytical Biochemistry, vol.205, pp.132-136, 1992.

J. Nie, J. Li, H. Deng, and H. Pan, Progress on Click Chemistry and Its Application in Chemical Sensors, Chinese Journal of Analytical Chemistry, vol.43, pp.609-617, 2015.

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie International Edition, vol.40, 2001.

J. C. Jewett and C. R. Bertozzi, Cu-free click cycloaddition reactions in chemical biology, Chemical Society Reviews, vol.39, p.1272, 2010.

J. B. Gmbh and . Click-chemistry,

V. Hong, S. Presolski, C. Ma, and M. Finn, Analysis and Optimization of CopperCatalyzed Azide-Alkyne Cycloaddition for Bioconjugation, Angewandte Chemie International Edition, vol.48, pp.9879-9883, 2009.

S. I. Presolski, V. P. Hong, and M. Finn, Copper-Catalyzed Azide-Alkyne Click Chemistry for Bioconjugation, Current Protocols in Chemical Biology, vol.3, pp.153-162

A. Barge, S. Tagliapietra, A. Binello, C. , and G. , Click Chemistry Under Microwave or Ultrasound Irradiation, Current Organic Chemistry, vol.15, pp.189-203, 2011.

D. H. Ess, G. O. Jones, and K. N. Houk, Transition States of Strain-Promoted Metal-Free Click Chemistry: 1, 3-Dipolar Cycloadditions of Phenyl Azide and Cyclooctynes, Organic Letters, vol.10, pp.1633-1636, 2008.

N. Subramanian, J. B. Sreemanthula, B. Balaji, J. R. Kanwar, J. Biswas et al., A strain-promoted alkyne-azide cycloaddition (SPAAC) reaction of a novel EpCAM aptamer-fluorescent conjugate for imaging of cancer cells, Chem. Commun, vol.50, pp.11810-11813, 2014.

N. E. Mbua, J. Guo, M. A. Wolfert, R. Steet, and G. Boons, Strain-Promoted AlkyneAzide Cycloadditions (SPAAC) Reveal New Features of Glycoconjugate Biosynthesis, ChemBioChem, vol.12, pp.1912-1921, 2011.

J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang et al., Copper-free click chemistry for dynamic in vivo imaging, Proceedings of the National Academy of Sciences, vol.104, pp.16793-16797, 2007.

J. A. Codelli, J. M. Baskin, N. J. Agard, and C. R. Bertozzi, Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry, Journal of the American Chemical Society, vol.130, pp.11486-11493, 2008.

E. M. Sletten and C. R. Bertozzi, A Hydrophilic Azacyclooctyne for Cu-Free Click Chemistry, Organic Letters, vol.10, pp.3097-3099, 2008.

X. Ning, J. Guo, M. Wolfert, and G. Boons, Visualizing Metabolically Labeled Glycoconjugates of Living Cells by Copper-Free and Fast Huisgen Cycloadditions, Angewandte Chemie International Edition, vol.47, pp.2253-2255, 2008.

, General introduction

J. Dommerholt, S. Schmidt, R. Temming, L. J. Hendriks, F. P. Rutjes et al., Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells, Angewandte Chemie International Edition, vol.49, pp.9422-9425, 2010.

M. F. Debets, C. W. Van-der-doelen, F. P. Rutjes, and F. L. Van-delft, Azide: A Unique Dipole for Metal-Free Bioorthogonal Ligations, ChemBioChem, vol.11, pp.1168-1184, 2010.

A. Kuzmin, A. Poloukhtine, M. A. Wolfert, and V. V. Popik, Surface Functionalization Using Catalyst-Free Azide-Alkyne Cycloaddition, Bioconjugate Chemistry, vol.21, pp.2076-2085, 2010.

L. S. Campbell-verduyn, L. Mirfeizi, A. K. Schoonen, R. A. Dierckx, P. H. Elsinga et al., Strain-Promoted Copper-Free "Click" Chemistry for 18F Radiolabeling of Bombesin, Angewandte Chemie, vol.123, pp.11313-11316, 2011.

J. Dommerholt, F. P. Rutjes, and F. L. Van-delft, Strain-Promoted 1, 3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides, Topics in Current Chemistry, vol.374, 2016.

N. K. Devaraj, R. Weissleder, and S. A. Hilderbrand, Tetrazine-Based Cycloadditions: Application to Pretargeted Live Cell Imaging, Bioconjugate Chemistry, vol.19, pp.2297-2299, 2008.

C. S. Mckay and M. Finn, Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation, Chemistry & Biology, vol.21, pp.1075-1101, 2014.

G. Graziano, Rate enhancement of Diels-Alder reactions in aqueous solutions, Journal of Physical Organic Chemistry, vol.17, pp.100-101, 2004.

M. L. Blackman, M. Royzen, and J. M. Fox, Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels-Alder Reactivity, Journal of the American Chemical Society, vol.130, pp.13518-13519, 2008.

K. Lang, L. Davis, S. Wallace, M. Mahesh, D. J. Cox et al., Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels-Alder Reactions, Journal of the American Chemical Society, vol.134, pp.10317-10320, 2012.

A. L. Mackinnon, T. , and J. , Target Identification by Diazirine Photo-Cross-linking and Click Chemistry, Curr Protoc Chem Biol, vol.1, p.23667793, 2009.

M. Eliasson, A. Olsson, E. Palmcrantz, K. Wiberg, M. Inganas et al., Chimeric IgG-binding receptors engineered from staphylococcal protein A and streptococcal protein G, J. Biol. Chem, vol.263, pp.4323-4327, 1988.

T. Rispens, G. A. Vidarsson, and . Fc,

H. Chandra, P. J. Reddy, and S. Srivastava, Protein microarrays and novel detection platforms, Expert Review of Proteomics, vol.8, pp.61-79, 2011.

C. Betzen, M. S. Alhamdani, S. Lueong, C. Schröder, A. Stang et al., Clinical proteomics: Promises, challenges and limitations of affinity arrays, Proteomics-Clinical Applications, vol.9, pp.342-347, 2015.

P. Driguez, D. L. Doolan, D. M. Molina, A. Loukas, A. Trieu et al., Methods in Molecular Biology

B. Hu, X. Niu, L. Cheng, L. Yang, Q. Li et al., Discovering cancer biomarkers from clinical samples by protein microarrays, Proteomics-Clinical Applications, vol.9, pp.98-110, 2015.

T. E. Hinchliffe, Z. Lin, and T. Wu, Protein arrays for biomarker discovery in lupus, Proteomics-Clinical Applications, vol.10, pp.625-634, 2016.

X. Yu, B. Petritis, and J. Labaer, Advancing translational research with next-generation protein microarrays, Proteomics, vol.16, pp.1238-1250, 2016.

C. Pulito, A. Sacconi, E. Korita, A. Maidecchi, and S. Strano, Methods in Molecular Biology

E. Phizicky, P. I. Bastiaens, H. Zhu, M. Snyder, and S. Fields, Protein analysis on a proteomic scale, Nature, vol.422, pp.208-215, 2003.

H. Sun, G. Y. Chen, and S. Q. Yao, Recent Advances in Microarray Technologies for Proteomics, Chemistry & Biology, vol.20, pp.685-699, 2013.

M. Natesan, U. , and R. G. , Protein Microarrays and Biomarkers of Infectious Disease, International Journal of Molecular Sciences, vol.11, pp.5165-5183, 2010.

V. Romanov, S. N. Davidoff, A. R. Miles, D. W. Grainger, B. K. Gale et al., A critical comparison of protein microarray fabrication technologies, The Analyst, vol.139, pp.1303-1326, 2014.

B. Li, L. Jiang, Q. Song, J. Yang, Z. Chen et al., Protein Microarray for Profiling Antibody Responses to Yersinia pestis Live Vaccine, Infection and Immunity, vol.73, pp.3734-3739, 2005.

B. B. Haab, M. J. Dunham, and P. O. Brown, Genome Biology, vol.2, 2001.

C. P. Paweletz, L. Charboneau, V. E. Bichsel, N. L. Simone, T. Chen et al., Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front, Oncogene, vol.20, pp.1981-1989, 2001.

S. Huang, C. , and C. , Reverse phase protein arrays in signaling pathways: a data integration perspective. Drug Design, Development and Therapy, vol.3519, 2015.

F. R. Sutandy, J. Qian, C. Chen, and H. Zhu, Overview of Protein Microarrays, Current Protocols in Protein Science, vol.72, 2013.

A. Aguilar-mahecha, S. Hassan, C. Ferrario, and M. Basik, Microarrays as Validation Strategies in Clinical Samples: Tissue and Protein Microarrays, OMICS: A Journal of Integrative Biology, vol.10, pp.311-326, 2006.

T. Chang, Binding of cells to matrixes of distinct antibodies coated on solid surface, Journal of Immunological Methods, vol.65, pp.217-223, 1983.

G. Macbeath and S. L. Schreiber, Printing Proteins as Microarrays for High-Throughput Function Determination, Science, vol.289, pp.1760-1763, 2000.

I. Barbulovic-nad, M. Lucente, Y. Sun, M. Zhang, A. R. Wheeler et al., Bio-Microarray Fabrication Techniques-A Review, Critical Reviews in Biotechnology, vol.26, pp.237-259, 2006.

D. A. Hall, J. Ptacek, and M. Snyder, Protein microarray technology, Mechanisms of Ageing and Development, vol.128, pp.161-167, 2007.

W. Kusnezow and J. D. Hoheisel, Solid supports for microarray immunoassays, Journal of Molecular Recognition, vol.16, pp.165-176, 2003.

P. Wu and D. W. Grainger, Comparison of Hydroxylated Print Additives on Antibody Microarray Performance, Journal of Proteome Research, vol.5, pp.2956-2965, 2006.

F. Tseng, C. Ho, C. Su, Y. Chen, H. Huang et al., Characterization of simultaneous protein microarray formation by discrete micro stamper on surfaces of different wettabilities, IEEE International Conference on Robotics and Biomimetics-ROBIO, 2005.

O. Akbulut, A. A. Yu, and F. Stellacci, Fabrication of biomolecular devices via supramolecular contact-based approaches, Chem. Soc. Rev, vol.39, pp.30-37, 2010.

T. Kaufmann and B. J. Ravoo, Stamps, inks and substrates: polymers in microcontact printing, Polymer Chemistry, vol.1, p.371, 2010.

M. Lee, D. Kang, H. Yang, K. Park, S. Y. Choe et al., Protein nanoarray on Prolinker? surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction, Proteomics, vol.6, pp.1094-1103, 2006.

C. Wu, D. N. Reinhoudt, C. Otto, V. Subramaniam, and A. H. Velders, Strategies for Patterning Biomolecules with Dip-Pen Nanolithography, Small, vol.7, pp.989-1002, 2011.

K. Salaita, Y. Wang, and C. A. Mirkin, Applications of dip-pen nanolithography, Nature Nanotechnology, vol.2, pp.145-155, 2007.

Z. Zheng, W. Daniel, L. Giam, F. Huo, A. Senesi et al., Multiplexed Protein Arrays Enabled by Polymer Pen Lithography: Addressing the Inking Challenge, Angewandte Chemie International Edition, vol.48, pp.7626-7629, 2009.

D. Li and . Ed, Encyclopedia of Microfluidics and Nanofluidics, 2008.

P. Ihalainen, A. Määttänen, and N. Sandler, Printing technologies for biomolecule and cell-based applications, International Journal of Pharmaceutics, vol.494, pp.585-592, 2015.

S. Fujita, R. Onuki-nagasaki, J. Fukuda, J. Enomoto, S. Yamaguchi et al., Development of super-dense transfected cell microarrays generated by piezoelectric inkjet printing, Lab Chip, vol.13, pp.77-80, 2013.

L. R. Allain, D. N. Stratis-cullum, and T. Vo-dinh, Investigation of microfabrication of biological sample arrays using piezoelectric and bubble-jet printing technologies, Analytica Chimica Acta, vol.518, pp.77-85, 2004.

C. M. Kolodziej, M. , and H. D. , Electron-Beam Lithography for Patterning Biomolecules at the Micron and Nanometer Scale, Chemistry of Materials, vol.24, pp.774-780, 2012.

M. Mir, S. K. Dondapati, M. V. Duarte, M. Chatzichristidi, K. Misiakos et al., Electrochemical biosensor microarray functionalized by means of biomolecule friendly photolithography, Biosensors and Bioelectronics, vol.25, pp.2115-2121, 2010.

N. Hoffmann, Photochemical Reactions as Key Steps in Organic Synthesis, Chemical Reviews, vol.108, pp.1052-1103, 2008.

G. Delaittre, N. K. Guimard, and C. Barner-kowollik, Cycloadditions in Modern Polymer Chemistry, Accounts of Chemical Research, vol.48, pp.1296-1307, 2015.

S. Chatani, C. J. Kloxin, and C. N. Bowman, The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties, Polym. Chem, vol.5, pp.2187-2201, 2014.

T. K. Claus, S. Telitel, A. Welle, M. Bastmeyer, A. P. Vogt et al., Light-driven reversible surface functionalization with anthracenes: visible light writing and mild UV erasing, Chemical Communications, vol.53, pp.1599-1602, 2017.
DOI : 10.1039/c6cc09897e

G. Delaittre, A. S. Goldmann, J. O. Mueller, and C. Barner-kowollik, Efficient Photochemical Approaches for Spatially Resolved Surface Functionalization, Angewandte Chemie International Edition, vol.54, pp.11388-11403, 2015.

S. Fodor, J. Read, M. Pirrung, L. Stryer, A. Lu et al., Light-directed, spatially addressable parallel chemical synthesis, Science, vol.251, pp.767-773, 1991.
DOI : 10.1126/science.1990438

C. R. Sabanayagam, C. L. Smith, and C. R. Cantor, Oligonucleotide immobilization on micropatterned streptavidin surfaces, Nucleic Acids Res, vol.28, pp.33-33, 2000.
DOI : 10.1093/nar/28.8.e33

URL : http://europepmc.org/articles/pmc102837?pdf=render

J. M. Alonso, A. Reichel, J. Piehler, and A. Campo, Photopatterned Surfaces for Site-Specific and Functional Immobilization of Proteins, Langmuir, vol.24, pp.448-457, 2008.

C. Dulcey, J. Georger, V. Krauthamer, D. Stenger, T. Fare et al., Deep UV photochemistry of chemisorbed monolayers: patterned coplanar molecular assemblies, Science, vol.252, pp.551-554, 1991.

M. J. Tarlov, D. R. Burgess, and G. Gillen, UV photopatterning of alkanethiolate monolayers self-assembled on gold and silver, Journal of the American Chemical Society, vol.115, pp.5305-5306, 1993.

K. Critchley, J. P. Jeyadevan, H. Fukushima, M. Ishida, T. Shimoda et al., A Mild Photoactivated Hydrophilic/Hydrophobic Switch, Langmuir, vol.21, pp.4554-4561, 2005.

N. Dendane, A. Hoang, L. Guillard, E. Defrancq, F. Vinet et al., Efficient Surface Patterning of Oligonucleotides Inside a Glass Capillary through Oxime Bond Formation, Bioconjugate Chemistry, vol.18, pp.671-676, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00174221

H. Yamazoe, T. Uemura, T. , and T. , Facile Cell Patterning on an Albumin-Coated Surface. Langmuir, vol.24, pp.8402-8404, 2008.

J. P. Fouassier, L. , and J. , Photoinitiators for Polymer Synthesis, 2012.
DOI : 10.1002/9783527648245

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527648245.fmatter

J. W. Tucker and C. R. Stephenson, Shining Light on Photoredox Catalysis: Theory and Synthetic Applications, The Journal of Organic Chemistry, vol.77, pp.1617-1622, 2012.
DOI : 10.1021/jo202538x

C. K. Prier, D. A. Rankic, and D. W. Macmillan, Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis, Chemical Reviews, vol.113, pp.5322-5363, 2013.
DOI : 10.1021/cr300503r

URL : http://europepmc.org/articles/pmc4028850?pdf=render

A. L. Mackinnon, T. , and J. , Target Identification by Diazirine Photo-Cross-linking and Click Chemistry, Curr Protoc Chem Biol, vol.1, p.23667793, 2009.

G. W. Preston, W. , and A. J. , Photo-induced covalent cross-linking for the analysis of biomolecular interactions, Chemical Society Reviews, vol.42, p.3289, 2013.

A. B. Lowe, C. E. Hoyle, and C. N. Bowman, Thiol-yne click chemistry: A powerful and versatile methodology for materials synthesis, Journal of Materials Chemistry, vol.20, p.4745, 2010.
DOI : 10.1039/b917102a

Y. Zuo, H. Lu, L. Xue, X. Wang, L. Ning et al., Preparation and characterization of luminescent silicone elastomer by thiol-ene "click" chemistry, J. Mater. Chem. C, vol.2, pp.2724-2734, 2014.
DOI : 10.1039/c3tc32382j

G. Dorman and G. D. Prestwich, Benzophenone Photophores in Biochemistry, Biochemistry, vol.33, pp.5661-5673, 1994.
DOI : 10.1021/bi00185a001

L. Dubinsky, B. P. Krom, and M. M. Meijler, Diazirine based photoaffinity labeling, Bioorganic & Medicinal Chemistry, vol.20, pp.554-570, 2012.
DOI : 10.1016/j.bmc.2011.06.066

M. Y. Balakirev, S. Porte, M. Vernaz-gris, M. Berger, J. Arié et al., Photochemical Patterning of Biological Molecules Inside a Glass Capillary, Analytical Chemistry, vol.77, pp.5474-5479, 2005.
DOI : 10.1021/ac0504619

E. Delamarche, G. Sundarababu, H. Biebuyck, B. Michel, C. Gerber et al., Immobilization of Antibodies on a Photoactive Self-Assembled Monolayer on Gold. Langmuir, vol.12, 1996.

A. L. Mackinnon, J. L. Garrison, R. S. Hegde, T. , and J. , Photo-Leucine Incorporation Reveals the Target of a Cyclodepsipeptide Inhibitor of Cotranslational Translocation, Journal of the American Chemical Society, vol.129, pp.14560-14561, 2007.

G. T. Hermanson, Bioconjugate Techniques, pp.299-339, 2013.

C. Hoyle and C. Bowman, Thiol-Ene Click Chemistry, Angewandte Chemie International Edition, vol.49, pp.1540-1573, 2010.
DOI : 10.1002/anie.200903924

Y. Wang, B. J. Bruno, S. Cornillie, J. M. Nogieira, D. Chen et al., Application of Thiol-yne/Thiol-ene Reactions for Peptide and Protein Macrocyclizations, Chemistry-A European Journal, vol.23, pp.7087-7092, 2017.

P. Jonkheijm, D. Weinrich, M. Köhn, H. Engelkamp, P. Christianen et al., Photochemical Surface Patterning by the Thiol-Ene Reaction, Angewandte Chemie International Edition, vol.47, pp.4421-4424, 2008.

P. Jonkheijm, D. Weinrich, H. Schröder, C. Niemeyer, and H. Waldmann, Chemical Strategies for Generating Protein Biochips, Angewandte Chemie International Edition, vol.47, pp.9618-9647, 2008.

R. K. Lim, L. , and Q. , Azirine ligation: fast and selective protein conjugation via photoinduced azirine-alkene cycloaddition, Chemical Communications, vol.46, p.7993, 2010.
DOI : 10.1039/c0cc02863k

URL : http://europepmc.org/articles/pmc2964347?pdf=render

M. Duroux, L. Gurevich, M. T. Neves-petersen, E. Skovsen, L. Duroux et al., Using light to bioactivate surfaces: A new way of creating oriented, active immunobiosensors, Applied Surface Science, vol.254, pp.1126-1130, 2007.

M. Duroux, E. Skovsen, M. T. Neves-petersen, L. Duroux, L. Gurevich et al., Light-induced immobilisation of biomolecules as an attractive alternative to microdroplet dispensing-based arraying technologies, Proteomics, vol.7, pp.3491-3499, 2007.

A. Parracino, M. T. Neves-petersen, A. K. Di-gennaro, K. Pettersson, T. Lövgren et al., Arraying prostate specific antigen PSA and Fab anti-PSA using light-assisted molecular immobilization technology, Protein Science, vol.19, pp.1751-1759, 2010.

A. Parracino, G. P. Gajula, A. K. Di-gennaro, M. Correia, M. T. Neves-petersen et al., Photonic immobilization of bsa for nanobiomedical applications: creation of high density microarrays and superparamagnetic bioconjugates, Biotechnology and Bioengineering, vol.108, pp.999-1010, 2011.

S. B. Petersen, A. K. Di-gennaro, M. T. Neves-petersen, E. Skovsen, P. et al., Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns, Applied Optics, vol.49, p.5344, 2010.

E. Skovsen, A. B. Kold, M. T. Neves-petersen, and S. B. Petersen, Photonic immobilization of high-density protein arrays using Fourier optics, PROTEOMICS, vol.9, pp.3945-3948, 2009.

S. Yodmongkol, B. Sutapun, V. Praphanphoj, T. Srikhirin, T. Brandstetter et al., Fabrication of protein microarrays for alpha fetoprotein detection by using a rapid photoimmobilization process, Sensing and Bio-Sensing Research, vol.7, pp.95-99, 2016.

E. Lee, E. W. Chan, Y. , and M. N. , Spatio-Temporal Control of, Cell Coculture Interactions on Surfaces. ChemBioChem, vol.10, pp.1648-1653, 2009.

O. E. Zubir, S. Xia, R. E. Ducker, L. Wang, N. Mullin et al., From Monochrome to Technicolor: Simple Generic Approaches to Multicomponent Protein Nanopatterning Using Siloxanes with Photoremovable Protein-Resistant Protecting Groups, Langmuir, vol.33, pp.8829-8837, 2017.

J. Y. Lee, S. S. Shah, C. C. Zimmer, G. Yu-liu, R. et al., Use of Photolithography to Encode Cell Adhesive Domains into Protein Microarrays, Langmuir, vol.24, pp.2232-2239, 2008.

T. Weber, N. Meyerbröker, N. K. Hira, M. Zharnikov, and A. Terfort, UV-mediated tuning of surface biorepulsivity in aqueous environment, Chem. Commun, vol.50, pp.4325-4327, 2014.

M. Frasconi, F. Mazzei, and T. Ferri, Protein immobilization at gold-thiol surfaces and potential for biosensing, Analytical and Bioanalytical Chemistry, vol.398, pp.1545-1564, 2010.

X. Mu, A. Gao, D. Wang, Y. , and P. , Self-Assembled Monolayer-Assisted Negative Lithography, Langmuir, vol.31, pp.2922-2930, 2015.
DOI : 10.1021/la504516e

Y. Zhang, R. H. Terrill, and P. W. Bohn, Ultraviolet Photochemistry and ex Situ Ozonolysis of Alkanethiol Self-Assembled Monolayers on Gold, Chemistry of Materials, vol.11, pp.2191-2198, 1999.

H. Rieley, N. J. Price, T. L. Smith, Y. , and S. , Photo-oxidation and photo-reduction in alkylthiol monolayers self-assembled on gold, Journal of the Chemical Society, vol.92, p.3629, 1996.

N. J. Brewer, S. Janusz, K. Critchley, S. D. Evans, and G. J. Leggett, Photooxidation of Self-Assembled Monolayers by Exposure to Light of Wavelength 254 nm: A Static SIMS Study, The Journal of Physical Chemistry B, vol.109, pp.11247-11256, 2005.

K. A. Peterlinz, G. , and R. , Situ Kinetics of Self-Assembly by Surface Plasmon Resonance Spectroscopy, vol.12, pp.4731-4740, 1996.

L. L. Rouhana, M. D. Moussallem, and J. B. Schlenoff, Adsorption of Short-Chain Thiols and Disulfides onto Gold under Defined Mass Transport Conditions: Coverage, Kinetics, and Mechanism, Journal of the American Chemical Society, vol.133, pp.16080-16091, 2011.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chemical Reviews, vol.105, pp.1103-1170, 2005.

Y. Xue, X. Li, H. Li, and W. Zhang, Quantifying thiol-gold interactions towards the efficient strength control, Nature Communications, vol.5, 2014.

M. N. Khan and M. Zharnikov, Fabrication of ssDNA/Oligo(ethylene glycol) Monolayers and Patterns by Exchange Reaction Promoted by Ultraviolet Light Irradiation, The Journal of Physical Chemistry C, vol.117, pp.24883-24893, 2013.

Y. L. Jeyachandran, T. Weber, A. Terfort, and M. Zharnikov, Application of Long Wavelength Ultraviolet Radiation for Modification and Patterning of Protein-Repelling Monolayers, The Journal of Physical Chemistry C, vol.117, pp.5824-5830, 2013.

Y. L. Jeyachandran, N. Meyerbröker, A. Terfort, and M. Zharnikov, Maskless Ultraviolet Projection Lithography with a Biorepelling Monomolecular Resist, The Journal of Physical Chemistry C, vol.119, pp.494-501, 2015.
DOI : 10.1021/jp510809a

M. Montague, R. E. Ducker, K. S. Chong, R. J. Manning, F. J. Rutten et al., Fabrication of Biomolecular Nanostructures by Scanning Near-Field Photolithography of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers, Langmuir, vol.23, pp.7328-7337, 2007.

R. E. Ducker, S. Janusz, S. Sun, and G. J. Leggett, One-Step Photochemical Introduction of Nanopatterned Protein-Binding Functionalities to Oligo(ethylene glycol)-Terminated SelfAssembled Monolayers, Journal of the American Chemical Society, vol.129, pp.14842-14843, 2007.

J. Huang and J. C. Hemminger, Photooxidation of thiols in self-assembled monolayers on gold, Journal of the American Chemical Society, vol.115, pp.3342-3343, 1993.

H. Choi, Y. Kang, H. Lee, L. , and C. , Photopatterning of gold and copper surfaces by using self-assembled monolayers, Current Applied Physics, vol.7, pp.522-527, 2007.

Y. Luo and Y. Luo, Comprehensive handbook of chemical bond energies, 2007.

Y. S. Won, D. Cho, Y. Kim, J. Lee, and S. S. Park, Degradation of poly(ethylene glycol) by electrolysis during the Cu electroplating: A combined experimental and density functional theory study, Journal of Applied Polymer Science, vol.117, pp.2083-2089, 2010.

C. C. Rowlands, M. , and D. M. , Encyclopedia of Spectroscopy and Spectrometry, pp.173-179, 2017.

M. M. Roessler and E. Salvadori, Principles and applications of EPR spectroscopy in the chemical sciences, Chemical Society Reviews, vol.47, pp.2534-2553, 2018.

X. Xia, M. Yang, Y. Wang, Y. Zheng, Q. Li et al., Quantifying the Coverage Density of Poly(ethylene glycol) Chains on the Surface of Gold Nanostructures, ACS Nano, vol.6, pp.512-522, 2011.

G. R. Buettner, Spin Trapping: ESR parameters of spin adducts 1474 1528V, Free Radical Biology and Medicine, vol.3, pp.259-303, 1987.

B. K. Sinha, Metabolic activation of procarbazine, Biochemical Pharmacology, vol.33, pp.2777-2781, 1984.

D. Ross and P. Moldeus, Generation of reactive species and fate of thiols during peroxidasecatalyzed metabolic activation of aromatic amines and phenols, Environ Health Perspect, vol.64, p.3007092, 1985.

M. J. Davies, L. G. Forni, and S. L. Shuter, Electron spin resonance and pulse radiolysis studies on the spin trapping of sulphur-centered radicals, Chemico-Biological Interactions, vol.61, pp.177-188, 1987.

J. A. Giroto, A. C. Teixeira, C. A. Nascimento, G. , and R. , Degradation of Poly(ethylene glycol) in Aqueous Solution by Photo-Fenton and H 2 O 2 /UV Processes, Industrial & Engineering Chemistry Research, vol.49, pp.3200-3206, 2010.

C. C. Loures, M. A. Alcântara, H. J. Izário-filho, A. Teixeira, F. T. Silva et al., Advanced oxidative degradation processes: fundamentals and applications, International Review of Chemical Engineering, vol.5, pp.102-120, 2013.

B. Shen, R. G. Jensen, and H. J. Bohnert, Mannitol protects against oxidation by hydroxyl radicals, Plant Physiology, vol.115, pp.527-532, 1997.

S. Desagher, J. Glowinski, P. , and J. , Pyruvate protects neurons against hydrogen peroxide-induced toxicity, Journal of Neuroscience, vol.17, pp.9060-9067, 1997.

B. Troxell, J. Zhang, T. J. Bourret, M. Y. Zeng, J. Blum et al., Pyruvate Protects Pathogenic Spirochetes from H2O2 Killing, PLoS ONE, vol.9, p.84625, 2014.

T. L. Whiteside, R. S. Berardi, and B. S. Rabin, Quantitation of Human Peripheral Blood T and B Lymphocytes, International Archives of Allergy and Immunology, vol.48, pp.731-738, 1975.

S. Rizvi, Handbook of Photomask Manufacturing Technology, 2005.

Y. Roupioz, N. Berthet-duroure, T. Leïchlé, J. Pourciel, P. Mailley et al., Individual Blood-Cell Capture and 2D Organization on Microarrays, vol.5, pp.1493-1497, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00369217

S. Srey, I. K. Jahid, and S. Ha, Biofilm formation in food industries: A food safety concern, Food Control, vol.31, pp.572-585, 2013.

H. Ueda, Y. Kikuta, and K. Matsuda, Plant Signaling & Behavior, vol.7, pp.222-226, 2012.

M. Coppola, P. Cascone, V. Madonna, I. D. Lelio, F. Esposito et al., Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato, 2017.

K. Kaliyappan, M. Palanisamy, R. Govindarajan, and J. Duraiyan, Microarray and its applications, Journal of Pharmacy and Bioallied Sciences, vol.4, p.310, 2012.

W. Ryu, Molecular Virology of Human Pathogenic Viruses

A. C. Stanley, L. , and P. , Pathways for Cytokine Secretion, Physiology, vol.25, pp.218-229, 2010.

J. A. Stenken and A. J. Poschenrieder, Bioanalytical chemistry of cytokines-A review, Analytica Chimica Acta, vol.853, pp.95-115, 2015.

D. L. Lefkowitz and S. S. Lefkowitz, Macrophage-neutrophil interaction: A paradigm for chronic inflammation revisited, Immunology and Cell Biology, vol.79, pp.502-506, 2001.

T. Wakita, F. Shintani, G. Yagi, M. Asai, and S. Nozawa, Combination of inflammatory cytokines increases nitrite and nitrate levels in the paraventricular nucleus of conscious rats, Brain Research, vol.905, pp.12-20, 2001.

Q. Han, N. Bagheri, E. M. Bradshaw, D. A. Hafler, D. A. Lauffenburger et al., Polyfunctional responses by human T cells result from sequential release of cytokines, Proceedings of the National Academy of Sciences, vol.109, pp.1607-1612, 2011.

S. Gordon, I. Fraser, D. Nath, D. Hughes, C. et al., Macrophages in tissues and in vitro, Current Opinion in Immunology, vol.4, pp.25-32, 1992.

F. Balkwill, B. , and F. , The cytokine network, Immunology Today, vol.10, pp.299-304, 1989.

M. L. Schmitz, A. Weber, T. Roxlau, M. Gaestel, and M. Kracht, Signal integration, crosstalk mechanisms and networks in the function of inflammatory cytokines, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol.1813, pp.2165-2175, 2011.

P. Dettmer, The Immune System Explained I-Bacteria Infection

T. Schenk, H. Irth, G. Marko-varga, L. Edholm, U. Tjaden et al., Potential of on-line micro-LC immunochemical detection in the bioanalysis of cytokines, Journal of Pharmaceutical and Biomedical Analysis, vol.26, pp.975-985, 2001.

J. Bienvenu, G. Monneret, N. Fabien, and J. P. Revillard, The Clinical Usefulness of the Measurement of Cytokines, Clinical Chemistry and Laboratory Medicine, vol.38, 2000.

C. A. Dinarello, Proinflammatory Cytokines. Chest, vol.118, pp.503-508, 2000.

C. Zheng, X. Zhou, W. , and J. , The dual roles of cytokines in Alzheimer's disease: update on interleukins, TNF-?, TGF-? and IFN-?, Translational Neurodegeneration, vol.5, 2016.

, Chapter 3: Microstructured surfaces for in vitro detection of cell secretions

J. M. Rubio-perez and J. M. Morillas-ruiz, A Review: Inflammatory Process in Alzheimers Disease, Role of Cytokines, The Scientific World Journal, vol.2012, pp.1-15, 2012.

J. Renauld, New insights into the role of cytokines in asthma, Journal of Clinical Pathology, vol.54, pp.577-589, 2001.

J. C. Kips, Cytokines in asthma, European Respiratory Journal, vol.18, pp.24-33, 2001.

M. Brunet, Cytokines as predictive biomarkers of alloreactivity, Clinica Chimica Acta, vol.413, pp.1354-1358, 2012.

M. Krzystek-korpacka, D. Diakowska, B. Kapturkiewicz, M. B?benek, and A. Gamian, Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Possible implications for CRC screening and surveillance, Cancer Letters, vol.337, pp.107-114, 2013.

L. F. Mager, M. Wasmer, T. T. Rau, and P. Krebs, Cytokine-Induced Modulation of Colorectal Cancer, Frontiers in Oncology, vol.6, 2016.

A. Neuner, M. Schindel, U. Wildenberg, T. Muley, H. Lahm et al., Cytokine secretion: clinical relevance of immunosuppression in non-small cell lung cancer, Lung Cancer, vol.34, pp.79-82, 2001.

D. P. Ramji and T. S. Davies, Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets, Cytokine & Growth Factor Reviews, vol.26, pp.673-685, 2015.

J. W. Moss and D. P. Ramji, Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets, Future Medicinal Chemistry, vol.8, pp.1317-1330, 2016.

T. Ito and U. Ikeda, Inflammatory Cytokines and Cardiovascular Disease, Current Drug Target-Inflammation & Allergy, vol.2, pp.257-265, 2003.

S. Kofler, T. Nickel, and M. Weis, Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation, Clinical Science, vol.108, pp.205-213, 2005.

J. Felger and F. Lotrich, Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications, Neuroscience, vol.246, pp.199-229, 2013.

R. K. Farooq, K. Asghar, S. Kanwal, and A. Zulqernain, Role of inflammatory cytokines in depression: Focus on interleukin-1?, Biomedical Reports, vol.6, pp.15-20, 2016.

M. A. Reuter, C. Pombo, and M. R. Betts, Cytokine production and dysregulation in HIV pathogenesis: Lessons for development of therapeutics and vaccines, Cytokine & Growth Factor Reviews, vol.23, pp.181-191, 2012.

K. Kedzierska and S. M. Crowe, Cytokines and HIV-1: Interactions and Clinical Implications, Antiviral Chemistry and Chemotherapy, vol.12, pp.133-150, 2001.

W. Schulte, J. Bernhagen, and R. Bucala, Cytokines in Sepsis: Potent Immunoregulators and Potential Therapeutic Targets-An Updated View, Mediators of Inflammation, vol.2013, pp.1-16, 2013.

H. Chaudhry, J. Zhou, Y. Zhong, M. Mustafa-ali, F. Mcguire et al., Role of Cytokines as a Double-edged Sword in Sepsis, vol.27, pp.669-84, 2013.

H. L. Sadek, The Inflammatory Cytokines in the Pathogenesis of Parkinson's Disease. Journal of Alzheimers Disease & Parkinsonism 04, 2014.

R. N. Alcalay, Cytokines as Potential Biomarkers of Parkinson Disease, JAMA Neurology, vol.73, p.1282, 2016.

I. B. Mcinnes and G. Schett, Cytokines in the pathogenesis of rheumatoid arthritis, Nature Reviews Immunology, vol.7, pp.429-442, 2007.

K. D. Moudgil, C. , and D. , Cytokines in Autoimmunity: Role in Induction, Regulation, and Treatment, Journal of Interferon & Cytokine Research, vol.31, pp.695-703, 2011.

L. Zvezdanovic, V. Djordjevic, V. Cosic, T. Cvetkovic, S. Kundalic et al., The significance of cytokines in diagnosis of autoimmune diseases, Jugoslovenska medicinska biohemija, vol.25, pp.363-372, 2006.

I. Striz, E. Brabcova, L. Kolesar, and A. Sekerkova, Cytokine networking of innate immunity cells: a potential target of therapy, Clinical Science, vol.126, pp.593-612, 2014.

G. Schett, D. Elewaut, I. B. Mcinnes, J. Dayer, and M. F. Neurath, How Cytokine Networks Fuel Inflammation: Toward a cytokine-based disease taxonomy, Nature Medicine, vol.19, pp.822-824, 2013.
DOI : 10.1038/nm.3260

S. X. Leng, J. E. Mcelhaney, J. D. Walston, D. Xie, N. S. Fedarko et al., ELISA and multiplex technologies for cytokine measurement in inflammation and aging research, J. Gerontol. A Biol. Sci. Med. Sci, vol.63, pp.879-884, 2008.
DOI : 10.1093/gerona/63.8.879

URL : https://academic.oup.com/biomedgerontology/article-pdf/63/8/879/1516982/879.pdf

K. Dennis, ELISPOT Assay to Detect Cytokine-Secreting Murine and Human Cells, Current Protocols in Immunology, vol.83, 2008.

M. Forlenza, T. Kaiser, H. F. Savelkoul, and G. F. Wiegertjes, Methods in Molecular Biology, pp.7-23, 2011.

N. Aziz, P. Nishanian, R. Mitsuyasu, R. Detels, and J. L. Fahey, Variables that affect assays for plasma cytokines and soluble activation markers, Clin. Diagn. Lab. Immunol, vol.6, pp.89-95, 1999.

T. B. Martins, B. M. Pasi, J. W. Pickering, T. D. Jaskowski, C. M. Litwin et al., Determination of Cytokine Responses Using a Multiplexed Fluorescent Microsphere Immunoassay, American Journal of Clinical Pathology, vol.118, pp.346-353, 2002.

M. Valentina, F. Jan, N. L. Peder, Z. Bo, D. Hongjie et al., Cytokine detection and simultaneous assessment of rheumatoid factor interference in human serum and synovial fluid using high-sensitivity protein arrays on plasmonic gold chips, BMC Biotechnology, vol.15, 2015.

H. Yssel, J. Wijdenes, R. De-waal-malefyt, J. Mathieu, and P. , J. Immunology of Infection

J. K. Sandberg, N. M. Fast, and D. F. Nixon, Functional Heterogeneity of Cytokines and Cytolytic Effector Molecules in Human CD8 + T Lymphocytes, The Journal of Immunology, vol.167, pp.181-187, 2001.

S. Janetzki, M. Rueger, and T. Dillenbeck, Stepping up ELISpot: Multi-Level Analysis in FluoroSpot Assays, Cells, vol.3, pp.1102-1115, 2014.

S. R. Carding, D. Lu, and K. Bottomly, A polymerase chain reaction assay for the detection and quantitation of cytokine gene expression in small numbers of cells, Journal of Immunological Methods, vol.151, pp.277-287, 1992.

M. A. Plotnikova, S. A. Klotchenko, and A. V. Vasin, Development of a multiplex quantitative PCR assay for the analysis of human cytokine gene expression in influenza A virus-infected cells, Journal of Immunological Methods, vol.430, pp.51-55, 2016.

L. Castillo and D. M. Maccallum, Host-Fungus Interactions, pp.425-434, 2012.

M. Pawlak, E. Schick, M. A. Bopp, M. J. Schneider, P. Oroszlan et al., Zeptosens protein microarrays: A novel high performance microarray platform for low abundance protein analysis, Proteomics, vol.2, p.383, 2002.

S. A. Mustafa, J. D. Hoheisel, A. , and M. S. , Secretome profiling with antibody microarrays, Molecular BioSystems, vol.7, p.1795, 2011.

P. Chen, N. Huang, M. Chung, T. T. Cornell, and K. Kurabayashi, Label-free cytokine micro-and nano-biosensing towards personalized medicine of systemic inflammatory disorders, Advanced Drug Delivery Reviews, vol.95, pp.90-103, 2015.

B. Reddy, E. Salm, and R. Bashir, Electrical Chips for Biological Point-of-Care Detection, Annual Review of Biomedical Engineering, vol.18, pp.329-355, 2016.

A. Baraket, M. Lee, N. Zine, M. Sigaud, J. Bausells et al., A fully integrated electrochemical biosensor platform fabrication process for cytokines detection, Biosensors and Bioelectronics, vol.93, pp.170-175, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01540066

P. Kongsuphol, G. C. Lee, S. K. Arya, S. Y. Chiam, and M. K. Park, Miniaturized electrophoresis electrochemical protein sensor (MEEPS) for multiplexed protein detections, Sensors and Actuators B: Chemical, vol.244, pp.823-830, 2017.

T. Pui, A. Agarwal, F. Ye, Y. Huang, C. et al., Nanoelectronic detection of triggered secretion of pro-inflammatory cytokines using CMOS compatible silicon nanowires, Biosensors and Bioelectronics, vol.26, pp.2746-2750, 2011.

M. M. Hakim, M. Lombardini, K. Sun, F. Giustiniano, P. L. Roach et al., Thin Film Polycrystalline Silicon Nanowire Biosensors, Nano Letters, vol.12, pp.1868-1872, 2012.

H. Zhu, G. Stybayeva, M. Macal, E. Ramanculov, M. D. George et al., A microdevice for multiplexed detection of T-cell-secreted cytokines, p.2197, 2008.

Y. Lu, J. J. Chen, L. Mu, Q. Xue, Y. Wu et al., High-Throughput Secretomic Analysis of Single Cells to Assess Functional Cellular Heterogeneity, Analytical Chemistry, vol.85, pp.2548-2556, 2013.

Y. Lu, Q. Xue, M. R. Eisele, E. S. Sulistijo, K. Brower et al., Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands, Proceedings of the National Academy of Sciences, vol.112, pp.607-615, 2015.

L. Cohen, L. Xie, M. E. Xylas, W. , and D. R. , Single Molecule Arrays for ultra-sensitive detection of rat cytokines in serum, Journal of Immunological Methods, vol.452, pp.20-25, 2018.

M. S. Luchansky and R. C. Bailey, Silicon Photonic Microring Resonators for Quantitative Cytokine Detection and T-Cell Secretion Analysis, Analytical Chemistry, vol.82, pp.1975-1981, 2010.

M. S. Luchansky and R. C. Bailey, Rapid, Multiparameter Profiling of Cellular Secretion Using Silicon Photonic Microring Resonator Arrays, Journal of the American Chemical Society, vol.133, pp.20500-20506, 2011.

J. Knittel, J. H. Chow, M. B. Gray, M. A. Taylor, and W. P. Bowen, Ultrasensitive real-time measurement of dissipation and dispersion in a whispering-gallery mode microresonator, Optics Letters, vol.38, 1915.

A. M. Armani, S. E. Fraser, and K. J. Vahala, Label-free, single molecule detection of cytokines using optical microcavities, LEOS 2007-IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007.

C. Zhang, A. Cocking, E. Freeman, Z. Liu, and S. Tadigadapa, Whispering gallery mode based on-chip glass microbubble resonator for thermal sensing, 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS, 2017.

A. Kami?ska, K. Winkler, A. Kowalska, E. Witkowska, T. Szymborski et al., SERS-based Immunoassay in a Microfluidic System for the Multiplexed Recognition of Interleukins from Blood Plasma, vol.7, 2017.

A. Luna, Encyclopedia of Spectroscopy and Spectrometry, pp.919-923, 2017.

G. Liu, M. Qi, M. R. Hutchinson, G. Yang, and E. M. Goldys, Recent advances in cytokine detection by immunosensing, Biosensors and Bioelectronics, vol.79, pp.810-821, 2016.

J. S. Albala, B. Biomems, and . Nanotechnology,

U. S. Springer, , pp.127-136

J. Homola, Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species, Chemical Reviews, vol.108, pp.462-493, 2008.

T. M. Battaglia, J. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers et al., Quantification of Cytokines Involved in Wound Healing Using Surface Plasmon Resonance, Analytical Chemistry, vol.77, pp.7016-7023, 2005.

C. Yang, E. Brooks, Y. Li, P. Denny, C. Ho et al., Detection of picomolar levels of interleukin-8 in human saliva by SPR, p.1017, 2005.

J. Martinez-perdiguero, A. Retolaza, L. Bujanda, and S. Merino, Surface plasmon resonance immunoassay for the detection of the TNF? biomarker in human serum, Talanta, vol.119, pp.492-497, 2014.

T. Chuang, C. Chang, Y. Chu-su, S. Wei, X. Hong-zhao et al., Disposable surface plasmon resonance aptasensor with membrane-based sample handling design for quantitative interferon-gamma detection, Lab Chip, vol.14, pp.2968-2977, 2014.
DOI : 10.1039/c4lc00249k

H. ?ípová, V. ?evc?, M. Kucha?, J. Ahmad, P. Mikulecký et al., Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma, Sensors and Actuators B: Chemical, vol.174, pp.306-311, 2012.

S. Milgram, S. Cortes, M. Villiers, P. Marche, A. Buhot et al., On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin, Biosensors and Bioelectronics, vol.26, pp.2728-2732, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00940323

A. J. Tudos and R. B. Schasfoort, Handbook of Surface Plasmon Resonance, pp.1-14

K. S. Abou-el-sherbini, P. G. Weidler, D. Schiel, M. H. Amr, H. Niemann et al., Stabilization of Silica Gel against Hydrolysis by Doping with F ? or Zr(IV), Green and Sustainable Chemistry, vol.04, pp.24-32, 2014.

O. Dellea, O. Shavdina, P. Fugier, P. Coronel, E. Ollier et al., Precision Assembly Technologies and Systems

H. Springer-berlin, , pp.107-117, 2014.

S. Wu, C. Mou, L. , and H. , Synthesis of mesoporous silica nanoparticles, Chemical Society Reviews, vol.42, p.3862, 2013.

B. Gouze, J. Cambedouzou, S. Parrès-maynadié, R. , and D. , How hexagonal mesoporous silica evolves in water on short and long term: Role of pore size and silica wall porosity, Microporous and Mesoporous Materials, vol.183, pp.168-176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01998160

J. D. Bass, D. Grosso, C. Boissiere, E. Belamie, T. Coradin et al., Stability of Mesoporous Oxide and Mixed Metal Oxide Materials under Biologically Relevant Conditions, Chemistry of Materials, vol.19, pp.4349-4356, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00184161

W. L. Marshall and J. M. Warakomski, Effect of aqueous salt solutions at 25°C, Geochimica et Cosmochimica Acta, vol.44, pp.915-924, 1980.

D. R. Lide, CRC Handbook of Chemistry and Physics, 90th Edition (CRC Handbook of Chemistry & Physics), 2009.

S. Yang, S. Choi, S. M. Jeon, Y. , and J. , Silica nanoparticle stability in biological media revisited, Scientific Reports, vol.8, 2018.

E. Neofotistou and K. D. Demadis, Silica scale inhibition by polyaminoamide STARBURST® dendrimers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.242, pp.213-216, 2004.
DOI : 10.1016/j.colsurfa.2004.04.067

Q. He, J. Shi, M. Zhu, Y. Chen, C. et al., The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid, Microporous and Mesoporous Materials, vol.131, pp.314-320, 2010.

V. Cauda, A. Schlossbauer, and T. Bein, Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol), Microporous and Mesoporous Materials, vol.132, pp.60-71, 2010.

B. Godin, J. Gu, R. E. Serda, R. Bhavane, E. Tasciotti et al., Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation, Journal of Biomedical Materials Research Part A, vol.9999, 2010.

X. Li, L. Zhang, X. Dong, J. Liang, and J. Shi, Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior, Microporous and Mesoporous Materials, vol.102, pp.151-158, 2007.

Q. Lin, Z. Xu, X. Lan, Y. Ni, L. et al., The reactivity of nano silica with calcium hydroxide, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.99, pp.239-246, 2011.

S. Kuai, Y. Zhang, V. Truong, and X. Hu, Improvement of optical properties of silica colloidal crystals by sintering, Applied Physics A, vol.74, pp.89-90, 2002.

F. Silencieux, M. Bouchoucha, O. Mercier, S. Turgeon, P. Chevallier et al., Mesoporous Silica Nanoparticles under Sintering Conditions: A Quantitative Study, vol.31, pp.13011-13021, 2015.

A. Gamvrellis, S. Gloster, M. Jefferies, P. L. Mottram, P. Smooker et al., Characterisation of local immune responses induced by a novel nano-particle based carrier-adjuvant in sheep, Veterinary Immunology and Immunopathology, vol.155, pp.21-29, 2013.

K. M. Bratlie, T. T. Dang, S. Lyle, M. Nahrendorf, R. Weissleder et al., Rapid Biocompatibility Analysis of Materials via In Vivo Fluorescence Imaging of Mouse Models, PLoS ONE, vol.5, p.10032, 2010.

M. C. Trindade, M. Lind, S. B. Goodman, W. J. Maloney, D. J. Schurman et al., Interferon-gamma exacerbates polymethylmethacrylate particle-induced interleukin-6 release by human monocyte/macrophagesin vitro, Journal of Biomedical Materials Research, vol.47, pp.1-7, 1999.

D. S. Rakshit, K. Ly, T. K. Sengupta, B. J. Nestor, T. P. Sculco et al., Wear Debris Inhibition of Anti-Osteoclastogenic Signaling by Interleukin-6 and Interferon-: Mechanistic Insights and Implications for Periprosthetic Osteolysis, The Journal of Bone & Joint Surgery, vol.88, pp.788-799, 2006.

J. R. Howard, Fluidized Bed Technology, 1989.

S. J. Milne, M. Patel, and E. Dickinson, Experimental studies of particle packing and sintering behaviour of monosize and bimodal spherical silica powders, Journal of the European Ceramic Society, vol.11, pp.1-7, 1993.

A. Lesaine, D. Bonamy, G. Gauthier, C. L. Rountree, L. et al., Highly porous layers of silica nanospheres sintered by drying: scaling up of the elastic properties of the beads to the macroscopic mechanical properties, Soft Matter, vol.14, pp.3987-3997, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01904335

S. Weber, C. Briens, F. Berruti, E. Chan, G. et al., Agglomerate stability in fluidized beds of glass beads and silica sand, Powder Technology, vol.165, pp.115-127, 2006.

J. Quevedo, R. Pfeffer, Y. Shen, R. Dave, H. Nakamura et al., Fluidization of nanoagglomerates in a rotating fluidized bed, AIChE Journal, vol.52, pp.2401-2412, 2006.

A. Clemente, F. Balas, M. P. Lobera, S. Irusta, and J. Santamaria, Fluidized Bed Generation of Stable Silica Nanoparticle Aerosols, Aerosol Science and Technology, vol.47, pp.867-874, 2013.

D. Mortimer and S. T. Mortimer, In Culture Media, Solutions, and Systems in Human ART

P. Quinn and . Ed, , pp.47-67

T. M. Benson, S. V. Boriskina, P. Sewell, A. Vukovic, S. C. Greedy et al., Frontiers in Planar Lightwave Circuit Technology, pp.39-70

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Ultimate Q of optical microsphere resonators, Optics Letters, vol.21, p.453, 1996.

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, Cavity QED with high-Qwhispering gallery modes, Physical Review A, vol.57, pp.2293-2296, 1998.

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, High-Q measurements of fused-silica microspheres in the near infrared, Optics Letters, vol.23, p.247, 1998.

B. Min, E. Ostby, V. Sorger, E. Ulin-avila, L. Yang et al., High-Q surface-plasmon-polariton whispering-gallery microcavity, Nature, vol.457, pp.455-458, 2009.

L. Sun, Z. Chen, Q. Ren, K. Yu, L. Bai et al., Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity, Physical Review Letters, vol.100, 2008.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.9, pp.676-682, 2012.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.9, pp.671-675, 2012.

L. Grosjean, B. Cherif, E. Mercey, A. Roget, Y. Levy et al., A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process, Analytical Biochemistry, vol.347, pp.193-200, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00144353

L. Y. Lee and R. B. Lennox, Electrochemical Desorption ofn-Alkylthiol SAMs on Polycrystalline Gold: Studies Using A Ferrocenylalkylthiol Probe ?, Langmuir, vol.23, pp.292-296, 2007.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, M. G. Casabona et al., On-chip microbial culture for the specific detection of very low levels of bacteria, p.4024, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01322346

T. Livache, E. Maillart, N. Lassalle, P. Mailley, B. Corso et al., Polypyrrole based DNA hybridization assays: study of label free detection processes versus fluorescence on microchips, Journal of Pharmaceutical and Biomedical Analysis, vol.32, pp.687-696, 2003.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche et al., Real-time detection of lymphocytes binding on an antibody chip using SPR imaging, p.1206, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00160965

Y. Roupioz, N. Berthet-duroure, T. Leïchlé, J. Pourciel, P. Mailley et al., Small, vol.13, pp.NA-NA, 2009.

C. R. Kleiveland, The Impact of Food Bioactives on Health

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel et al., Nature, vol.389, pp.827-829, 1997.

E. Adachi, A. S. Dimitrov, and K. Nagayama, Stripe Patterns Formed on a Glass Surface during Droplet Evaporation, Langmuir, vol.11, pp.1057-1060, 1995.
DOI : 10.1021/la00004a003

H. B. Eral, D. M. Augustine, M. H. Duits, M. , and F. , Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting, Soft Matter, vol.7, p.4954, 2011.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel et al., Contact line deposits in an evaporating drop, Physical Review E, vol.62, pp.756-765, 2000.

R. Blossey and A. Bosio, Contact Line Deposits on cDNA Microarrays: A "Twin-Spot Effect, Langmuir, vol.18, pp.2952-2954, 2002.

G. Mchale, Surface free energy and microarray deposition technology, The Analyst, vol.132, 0192.

M. Djaldetti and H. Bessler, Mononuclear cells phagocytic activity affects the crosstalk between immune and cancer cells, Biomedicine & Pharmacotherapy, vol.68, pp.679-683, 2014.

R. I. Freshney, Culture of Animal Cells

G. Kaur and J. M. Dufour, Cell lines. Spermatogenesis, vol.2, pp.1-5, 2012.

H. K. Oie, A. F. Gazdar, J. D. Minna, G. C. Weir, and S. B. Baylin, Clonal Analysis of Insulin and Somatostatin Secretion and L-Dopa Decarboxylase Expression by a Rat Islet Cell Tumor, Endocrinology, vol.112, pp.1070-1075, 1983.

W. Ai, H. Li, N. Song, L. Li, C. et al., Optimal Method to Stimulate Cytokine Production and Its Use in Immunotoxicity Assessment, International Journal of Environmental Research and Public Health, vol.10, pp.3834-3842, 2013.

S. Tsuchiya, M. Yamabe, Y. Yamaguchi, Y. Kobayashi, T. Konno et al., Establishment and characterization of a human acute monocytic leukemia cell line (THP-1), International Journal of Cancer, vol.26, pp.171-176, 1980.

H. Bosshart and M. Heinzelmann, THP-1 cells as a model for human monocytes, Annals of Translational Medicine, vol.4, pp.438-438, 2016.

P. Da-silva-sousa-vasconcelos, . Da-silva, W. Seguins, E. De-souza-luz, /. De-pinho et al., Pattern of cytokine and chemokine production by THP-1 derived macrophages in response to live or heat-killed Mycobacterium bovis bacillus Calmette-Guérin Moreau strain. Memórias do Instituto Oswaldo Cruz, vol.110, pp.809-813, 2015.

G. Müller, Drug Discovery and Evaluation: Pharmacological Assays

A. F. Gazdar, W. L. Chick, H. K. Oie, H. L. Sims, D. L. King et al., Continuous, clonal, insulin-and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor, Proceedings of the National Academy of Sciences, vol.77, pp.3519-3523, 1980.

P. Subash-babu, S. Ignacimuthu, A. , and A. , Nymphayol increases glucose-stimulated insulin secretion by RIN-5F cells and GLUT4-mediated insulin sensitization in type 2 diabetic rat liver, Chemico-Biological Interactions, vol.226, pp.72-81, 2015.

M. Asfari, D. Janjic, P. Meda, G. Li, P. A. Halban et al., Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines, Endocrinology, vol.130, pp.167-178, 1992.

M. Hamid, J. T. Mccluskey, N. H. Mcclenaghan, and P. R. Flatt, Comparison of the secretory properties of four insulin secreting cell lines, Endocrine Research, vol.28, pp.35-47, 2002.

C. A. Aspinwall, J. R. Lakey, K. , and R. T. , Insulin-stimulated insulin secretion in single pancreatic beta cells, The Journal of Biological Chemistry, vol.274, pp.6360-6365, 1999.

W. Liao, J. Lin, L. , and W. J. , IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation, Current Opinion in Immunology, vol.23, pp.598-604, 2011.

S. Gaffen and K. Liu, Overview of interleukin-2 function, production and clinical applications, Cytokine, vol.28, pp.109-123, 2004.

J. R. Schoenborn, W. , and C. B. , Advances in Immunology, pp.41-101, 2007.

K. Schroder, P. J. Hertzog, T. Ravasi, and D. A. Hume, Interferon-?: an overview of signals, mechanisms and functions, Journal of Leukocyte Biology, vol.75, pp.163-189, 2003.

C. Riedhammer, D. Halbritter, and R. Weissert, Methods in Molecular Biology

D. P. Collins, Cytokine and cytokine receptor expression as a biological indicator of immune activation: important considerations in the development of in vitro model systems, Journal of Immunological Methods, vol.243, pp.125-145, 2000.

G. D. Kalliolias and L. B. Ivashkiv, TNF biology, pathogenic mechanisms and emerging therapeutic strategies, Nature Reviews Rheumatology, vol.12, pp.49-62, 2015.

S. Sharma, H. Byrne, and R. J. Okennedy, Antibodies and antibody-derived analytical biosensors, Essays In Biochemistry, vol.60, pp.9-18, 2016.

G. Hassanzadeh-ghassabeh, N. Devoogdt, P. D. Pauw, C. Vincke, and S. Muyldermans, Nanobodies and their potential applications, Nanomedicine, vol.8, pp.1013-1026, 2013.

M. R. Dunn, R. M. Jimenez, and J. C. Chaput, Analysis of aptamer discovery and technology, Nature Reviews Chemistry, vol.1, p.76, 2017.

C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, vol.249, pp.505-510, 1990.

Y. Liu, Q. Zhou, R. , and A. , An aptasensor for electrochemical detection of tumor necrosis factor in human blood, The Analyst, vol.138, p.4321, 2013.

Y. Liu, T. Kwa, R. , and A. , Simultaneous detection of cell-secreted TNF-? and IFN-? using micropatterned aptamer-modified electrodes, Biomaterials, vol.33, pp.7347-7355, 2012.

Y. Liu, Y. Liu, Z. Matharu, A. Rahimian, R. et al., Detecting multiple cell-secreted cytokines from the same aptamer-functionalized electrode, Biosensors and Bioelectronics, vol.64, pp.43-50, 2015.

Y. Liu, A. Rahimian, S. Krylyuk, T. Vu, B. Crulhas et al., Nanowire Aptasensors for Electrochemical Detection of Cell-Secreted Cytokines. ACS Sensors, vol.2, pp.1644-1652, 2017.

L. S. Kumar, X. Wang, J. Hagen, R. Naik, I. Papautsky et al., Label free nano-aptasensor for interleukin-6 in protein-dilute bio fluids such as sweat, Analytical Methods, vol.8, pp.3440-3444, 2016.

S. Farid, X. Meshik, M. Choi, S. Mukherjee, Y. Lan et al., Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor, Biosensors and Bioelectronics, vol.71, pp.294-299, 2015.

S. N. Hashim, A. Tsuchiya, N. Kamiya, and S. Sando, A Single Fluorophore-labeled Aptamer Sensor for the Detection of Interferon Gamma, Chemistry Letters, vol.44, pp.1670-1672, 2015.

Y. Liu, N. Tuleouva, E. Ramanculov, R. , and A. , Aptamer-Based Electrochemical Biosensor for Interferon Gamma Detection, Analytical Chemistry, vol.82, pp.8131-8136, 2010.
DOI : 10.1021/ac101409t

URL : http://europepmc.org/articles/pmc2948235?pdf=render

E. W. Orava, N. Jarvik, Y. L. Shek, S. S. Sidhu, and J. Gariépy, A Short DNA Aptamer That Recognizes TNF? and Blocks Its Activity in Vitro, ACS Chemical Biology, vol.8, pp.170-178, 2013.

C. Daniel, Aptamer biochip : Exploration of an alternative detection technique. Theses, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00954086

E. De-castro, C. J. Sigrist, A. Gattiker, V. Bulliard, P. S. Langendijk-genevaux et al., ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins, Nucleic Acids Research, vol.34, pp.362-365, 2006.

C. Nübel, B. Appel, I. Hospach, M. Mai, N. Krasteva et al., Challenges and Opportunities in the Development of Aptamers for TNF?, Applied Biochemistry and Biotechnology, vol.179, pp.398-414, 2016.

T. F. Scientific and B. Imject,

B. H. Northrop, S. H. Frayne, C. , and U. , Thiol-maleimide "click" chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity, Polymer Chemistry, vol.6, pp.3415-3430, 2015.

. , 153 4.6.3 Diazirine-derivatives for surface functionalization, p.154

. .. Conclusions,

. .. References,

A. Katzir, Selected Papers on Optical Fibers in Medicine, SPIE Milestone Series, vol.11, 1990.

A. Méndez, Optics in Our Time

M. D. Al-amri, M. El-gomati, and Z. , , pp.299-333, 2016.

H. Wen, D. Wiesler, A. Tveten, B. Danver, D. et al., High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications, Ultrasonic Imaging, vol.20, pp.103-112, 1998.

M. Epstein, Fiber optics in medicine, Crit Rev Biomed Eng, vol.7, pp.79-120, 1982.

F. Taffoni, D. Formica, P. Saccomandi, G. Pino, and E. Schena, Optical Fiber-Based MR-Compatible Sensors for Medical Applications: An Overview, Sensors, vol.13, pp.14105-14120, 2013.
DOI : 10.3390/s131014105

URL : http://www.mdpi.com/1424-8220/13/10/14105/pdf

S. S. An, T. T. Nguyen, S. O. Bae, W. J. Yoon, D. M. Kim et al., A regenerative label-free fiber optic sensor using surface plasmon resonance for clinical diagnosis of fibrinogen, International Journal of Nanomedicine, vol.155, 2015.

A. Kishen, M. John, C. Lim, A. , and A. , A fiber optic biosensor (FOBS) to monitor mutans streptococci in human saliva, Biosensors and Bioelectronics, vol.18, pp.1371-1378, 2003.

S. Ko and S. A. Grant, A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium, Biosensors and Bioelectronics, vol.21, pp.1283-1290, 2006.

R. B. Hayman, Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems

D. J. Hu, J. L. Lim, M. K. Park, L. T. Kao, Y. Wang et al., Photonic Crystal Fiber-Based Interferometric Biosensor for Streptavidin and Biotin Detection, IEEE Journal of Selected Topics in Quantum Electronics, vol.18, pp.1293-1297, 2012.
DOI : 10.1109/jstqe.2011.2169492

L. Su, Y. Chang, C. Chou, J. Ho, Y. Li et al., Binding Kinetics of Biomolecule Interaction at Ultralow Concentrations Based on Gold Nanoparticle Enhancement, Analytical Chemistry, vol.83, pp.3290-3296, 2011.

R. Philip-chandy, P. Scully, P. Eldridge, H. Kadim, M. Grapin et al., An optical fiber sensor for biofilm measurement using intensity modulation and image analysis, IEEE Journal of Selected Topics in Quantum Electronics, vol.6, pp.764-772, 2000.
DOI : 10.1109/2944.892616

Y. M. Wong, P. J. Scully, R. J. Bartlett, K. S. Kuang, and W. J. Cantwell, Plastic Optical Fibre Sensors for Environmental Monitoring, Biofouling and Strain Applications. Strain, vol.39, pp.115-119, 2003.

N. Cennamo, A. Varriale, A. Pennacchio, M. Staiano, D. Massarotti et al., An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease, Sensors and Actuators B: Chemical, vol.176, pp.1008-1014, 2013.
DOI : 10.1016/j.snb.2012.10.055

W. Wang, Z. Mai, Y. Chen, J. Wang, L. Li et al., A label-free fiber optic SPR biosensor for specific detection of C-reactive protein, Scientific Reports, vol.7, 2017.

A. Hasegawa, Theory of information transfer in optical fibers: A tutorial review, Optical Fiber Technology, vol.10, pp.150-170, 2004.

J. Senior, Optical Fiber Communications: Principles and Practice
DOI : 10.1063/1.2820238

. Pearson, , 2008.

A. Leung, P. M. Shankar, and R. Mutharasan, A review of fiber-optic biosensors, Sensors and Actuators B: Chemical, vol.125, pp.688-703, 2007.

J. C. Knight, Photonic crystal fibres, Nature, vol.424, pp.847-851, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00717395

J. Haus, Fundamentals and Applications of Nanophotonics, pp.341-395, 2016.

H. Joe, H. Yun, S. Jo, M. B. Jun, M. et al., A review on optical fiber sensors for environmental monitoring, International Journal of Precision Engineering and Manufacturing-Green Technology, vol.5, pp.173-191, 2018.

H. Matsuo, S. Kuniyoshi, K. Kudo, and K. Tanaka, Evanescent wave optical fiber sensor using adsorption LB films, Synthetic Metals, vol.115, pp.37-39, 2000.
DOI : 10.1016/s0379-6779(00)00296-4

B. Sutapun, Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing, Sensors and Actuators B: Chemical, vol.60, pp.27-34, 1999.
DOI : 10.1016/s0925-4005(99)00240-3

B. D. Maccraith, C. M. Mcdonagh, G. Okeeffe, E. T. Keyes, J. G. Vos et al., Fibre optic oxygen sensor based on fluorescence quenching of evanescent-wave excited ruthenium complexes in sol-gel derived porous coatings, The Analyst, vol.118, pp.385-388, 1993.

Y. Xiong, J. Xu, J. Wang, and Y. Guan, A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with, Analytical and Bioanalytical Chemistry, vol.394, pp.919-923, 2009.
DOI : 10.1007/s00216-009-2746-4

M. Ghadiry, M. Gholami, L. C. Kong, C. W. Yi, H. Ahmad et al., Nano-Anatase TiO2 for High Performance Optical Humidity Sensing on Chip, Sensors, vol.16, p.39, 2015.
DOI : 10.3390/s16010039

URL : https://www.mdpi.com/1424-8220/16/1/39/pdf

W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang et al., Optical fiber relativehumidity sensor with evaporated dielectric coatings on fiber end-face, Optical Fiber Technology, vol.20, pp.314-319, 2014.
DOI : 10.1016/j.yofte.2014.03.008

M. Yang, Optical Fiber Sensors with Coatings as Sensitive Elements. Asia Communications and Photonics Conference, 2014.
DOI : 10.1364/acpc.2014.af1i.1

B. D. Gupta and R. Kant, Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures, Optics & Laser Technology, vol.101, pp.144-161, 2018.
DOI : 10.1016/j.optlastec.2017.11.015

C. Caucheteur, T. Guo, A. , and J. , Review of plasmonic fiber optic biochemical sensors: improving the limit of detection, Analytical and Bioanalytical Chemistry, vol.407, pp.3883-3897, 2015.

Y. S. Dwivedi, A. K. Sharma, and B. D. Gupta, Influence of Design Parameters on the Performance of a Surface Plasmon Sensor Based Fiber Optic Sensor, Plasmonics, vol.3, pp.79-86, 2008.

J. Pollet, F. Delport, D. T. Thi, M. Wevers, and J. Lammertyn, Aptamer-based surface plasmon resonance probe, IEEE Sensors, 2008.
DOI : 10.1109/icsens.2008.4716654

S. Khijwania and B. Gupta, Optical and Quantum Electronics, vol.31, pp.625-636, 1999.

D. Littlejohn, D. Lucas, H. , and L. , Bent Silica Fiber Evanescent Absorption Sensors for Near-Infrared Spectroscopy, Applied Spectroscopy, vol.53, pp.845-849, 1999.

T. Guo, F. Liu, B. Guan, A. , and J. , Tilted fiber grating mechanical and biochemical sensors, Optics & Laser Technology, vol.78, pp.19-33, 2016.
DOI : 10.1016/j.optlastec.2015.10.007

URL : https://doi.org/10.1016/j.optlastec.2015.10.007

N. Erdene, Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma, Optical Engineering, vol.50, p.124405, 2011.

Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing, Sensors, vol.10, pp.9397-9406, 2010.

H. Nguyen, F. Sidiroglou, S. F. Collins, T. J. Davis, A. Roberts et al., A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures, Applied Physics Letters, vol.103, 2013.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo et al., Lab-onFiber Technology: Toward Multifunctional Optical Nanoprobes, ACS Nano, vol.6, pp.3163-3170, 2012.
DOI : 10.1021/nn204953e

M. Piliarik, J. Homola, Z. Manikova, C. , and J. , Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber, Sensors and Actuators B: Chemical, vol.90, pp.236-242, 2003.

A. Hassani and M. Skorobogatiy, Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors, Journal of the Optical Society of America B, vol.24, p.1423, 2007.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, R. et al., Polarizationdependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber, Applied Physics Letters, vol.93, p.111102, 2008.

D. Gao, C. Guan, Y. Wen, X. Zhong, Y. et al., Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths, Optics Communications, vol.313, pp.94-98, 2014.
DOI : 10.1016/j.optcom.2013.10.015

S. Shi, L. Wang, R. Su, B. Liu, R. Huang et al., A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays, Biosensors and Bioelectronics, vol.74, pp.454-460, 2015.

H. Qu, F. Tian, S. Chen, Y. Zhang, J. Luo et al., Two-core single-polarization optical fiber with a large hollow coated bimetallic layer, Applied Optics, vol.57, p.2446, 2018.

K. Vindas-yassine, Development and optimization of new plasmon resonance based biochips and biosensors, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01801300

G. A. Spierings, Wet chemical etching of silicate glasses in hydrofluoric acid based solutions, Journal of Materials Science, vol.28, pp.6261-6273, 1993.

H. Kikyuama, N. Miki, K. Saka, J. Takano, I. Kawanabe et al., Principles of wet chemical processing in ULSI microfabrication, IEEE Transactions on Semiconductor Manufacturing, vol.4, pp.26-35, 1991.

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, The effect of HF/NH4F etching on the morphology of surface fractures on fused silica, Journal of Non-Crystalline Solids, vol.355, pp.797-810, 2009.

H. Proksche, The Influence of NH[sub 4]F on the Etch Rates of Undoped SiO 2 in Buffered Oxide Etch, Journal of The Electrochemical Society, vol.139, p.521, 1992.

K. Osseo-asare, Etching Kinetics of Silicon Dioxide in Aqueous Fluoride Solutions: A Surface Complexation Model, Journal of The Electrochemical Society, vol.143, p.1339, 1996.

H. H. Gorris, T. M. Blicharz, W. , and D. R. , Optical-fiber bundles, FEBS Journal, vol.274, pp.5462-5470, 2007.
DOI : 10.1111/j.1742-4658.2007.06078.x

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1742-4658.2007.06078.x

J. Bierlich, J. Kobelke, D. Brand, K. Kirsch, J. Dellith et al., Nanoscopic tip sensors fabricated by gas phase etching of optical glass fibers, Photonic Sensors, vol.2, pp.331-339, 2012.

Z. Zuo, K. Zhu, L. Ning, G. Cui, J. Qu et al., Composite silicon nanostructure arrays fabricated on optical fibre by chemical etching of multicrystal silicon film, Nanotechnology, vol.26, p.155601, 2015.

J. Lin, Recent development and applications of optical and fiber-optic pH sensors, TrAC Trends in Analytical Chemistry, vol.19, pp.541-552, 2000.

F. Deiss, Développement de réseaux multiplexés de biocapteurs électrochimiques, Neso Chimie-Physique Bordeaux, vol.1, 2009.

F. J. Barrera, B. Yust, L. C. Mimun, K. L. Nash, A. T. Tsin et al., Optical and spectroscopic properties of human whole blood and plasma with and without Y 2 O 3 and Nd 3 + :Y 2 O 3 nanoparticles, Lasers in Medical Science, vol.28, pp.1559-1566, 2013.

D. I. Yu, S. W. Doh, H. J. Kwak, H. C. Kang, H. S. Ahn et al., Wetting state on hydrophilic and hydrophobic micro-textured surfaces: Thermodynamic analysis and X-ray visualization, Applied Physics Letters, vol.106, p.171602, 2015.

T. Livache, A. Roget, E. Dejean, C. Barthet, G. Bidan et al., Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group, Nucleic Acids Research, vol.22, pp.2915-2921, 1994.

T. Livache, E. Maillart, N. Lassalle, P. Mailley, B. Corso et al., Polypyrrole based DNA hybridization assays: study of label free detection processes versus fluorescence on microchips, Journal of Pharmaceutical and Biomedical Analysis, vol.32, pp.687-696, 2003.

S. Bouguelia, Y. Roupioz, S. Slimani, L. Mondani, M. G. Casabona et al., On-chip microbial culture for the specific detection of very low levels of bacteria, p.4024, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01322346

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche et al., Real-time detection of lymphocytes binding on an antibody chip using SPR imaging, p.1206, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00160965

Y. Roupioz, N. Berthet-duroure, T. Leïchlé, J. Pourciel, P. Mailley et al., , 2009.

E. Descamps, N. Duroure, F. Deiss, T. Leichlé, C. Adam et al., Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection, vol.13, 2013.

A. R. Carr, R. E. Townsend, and W. L. Badger, Vapor Pressures of Glycerol-Water and Glycerol-Water-Sodium Chloride Systems, Industrial & Engineering Chemistry, vol.17, pp.643-646, 1925.

D. Ohayon, C. Pitsalidis, A. Pappa, A. Hama, Y. Zhang et al., Laser Patterning of Self-Assembled Monolayers on PEDOT:PSS Films for Controlled Cell Adhesion, Advanced Materials Interfaces, vol.4, p.1700191, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01586598

S. E. Kirkwood, M. R. Shadnam, A. Amirfazli, and R. Fedosejevs, Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates, Journal of Physics: Conference Series, vol.59, pp.428-431, 2007.

M. R. Shadnam, S. E. Kirkwood, R. Fedosejevs, A. , and A. , Thermo-Kinetics Study of Laser-Induced Desorption of Self-Assembled Monolayers from Gold: Case of Laser Micropatterning, The Journal of Physical Chemistry B, vol.109, pp.11996-12002, 2005.

L. Iversen, O. Younes-metzler, K. L. Martinez, and D. Stamou, Chemically Specific LaserInduced Patterning of Alkanethiol SAMs: Characterization by SEM and AFM, Langmuir, vol.25, pp.12819-12824, 2009.

T. Balgar, S. Franzka, and N. Hartmann, Laser-assisted decomposition of alkylsiloxane monolayers at ambient conditions: rapid patterning below the diffraction limit, Applied Physics A, vol.82, pp.689-695, 2005.

M. Mathieu and N. Hartmann, Sub-wavelength patterning of organic monolayers via nonlinear processing with continuous-wave lasers, New Journal of Physics, vol.12, p.125017, 2010.

S. Tam-chang, H. A. Biebuyck, G. M. Whitesides, N. Jeon, and R. G. Nuzzo, SelfAssembled Monolayers on Gold Generated from Alkanethiols with the Structure RNHCOCH2SH, Langmuir, vol.11, pp.4371-4382, 1995.

Y. Shon and T. R. Lee, Desorption and Exchange of Self-Assembled Monolayers (SAMs) on Gold Generated from Chelating Alkanedithiols, The Journal of Physical Chemistry B, vol.104, pp.8192-8200, 2000.

N. Nishida, M. Hara, H. Sasabe, and W. Knoll, Thermal Desorption Spectroscopy of Alkanethiol Self-Assembled Monolayer on Au, vol.35, issue.111, p.5866, 1996.

R. G. Nuzzo, B. R. Zegarski, and L. H. Dubois, Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces, Journal of the American Chemical Society, vol.109, pp.733-740, 1987.

M. R. Shadnam, S. E. Kirkwood, R. Fedosejevs, A. , and A. , Direct Patterning of Self-Assembled Monolayers on Gold Using a Laser Beam, Langmuir, vol.20, pp.2667-2676, 2004.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.9, pp.676-682, 2012.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.9, pp.671-675, 2012.

X. Zhang, S. Chu, J. Ho, G. , and C. , Excimer laser ablation of thin gold films on a quartz crystal microbalance at various argon background pressures, Applied Physics A: Materials Science & Processing, vol.64, pp.545-552, 1997.

S. Kirkwood, A. Van-popta, Y. Tsui, and R. Fedosejevs, Single and multiple shot nearinfrared femtosecond laser pulse ablation thresholds of copper, Applied Physics A, vol.81, pp.729-735, 2005.

T. Weber, N. Meyerbröker, N. K. Hira, M. Zharnikov, and A. Terfort, UV-mediated tuning of surface biorepulsivity in aqueous environment, Chem. Commun, vol.50, pp.4325-4327, 2014.

R. E. Ducker, S. Janusz, S. Sun, and G. J. Leggett, One-Step Photochemical Introduction of Nanopatterned Protein-Binding Functionalities to Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers, Journal of the American Chemical Society, vol.129, pp.14842-14843, 2007.

O. Loebich, The optical properties of gold, Gold Bulletin, vol.5, pp.2-10, 1972.

J. P. Fouassier, L. , and J. , Photoinitiators for Polymer Synthesis, 2012.
DOI : 10.1002/9783527648245

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527648245.fmatter

J. W. Tucker and C. R. Stephenson, Shining Light on Photoredox Catalysis: Theory and Synthetic Applications, The Journal of Organic Chemistry, vol.77, pp.1617-1622, 2012.
DOI : 10.1021/jo202538x

C. K. Prier, D. A. Rankic, and D. W. Macmillan, Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis, Chemical Reviews, vol.113, pp.5322-5363, 2013.

A. L. Mackinnon, T. , and J. , Target Identification by Diazirine Photo-Cross-linking and Click Chemistry, Curr Protoc Chem Biol, vol.1, pp.55-73, 2009.

L. Dubinsky, B. P. Krom, and M. M. Meijler, Diazirine based photoaffinity labeling, Bioorganic & Medicinal Chemistry, vol.20, pp.554-570, 2012.
DOI : 10.1016/j.bmc.2011.06.066

Y. Hatanaka and Y. Sadakane, Photoaffinity Labeling in Drug Discovery and Developments: Chemical Gateway for Entering Proteomic Frontier, Current Topics in Medicinal Chemistry, vol.2, pp.271-288, 2002.

G. W. Preston, W. , and A. J. , Photo-induced covalent cross-linking for the analysis of biomolecular interactions, Chemical Society Reviews, vol.42, p.3289, 2013.

P. L. Mueller-remmers, J. , and K. , SINDO1 study of photochemical reaction mechanisms of diazirines, Journal of the American Chemical Society, vol.107, pp.7275-7284, 1985.

T. L. Gilchrist, R. , and C. W. , Carbenes nitrenes and arynes, 1969.
DOI : 10.1007/978-1-4684-7290-5

G. W. Preston, S. E. Radford, A. E. Ashcroft, W. , and A. J. , Covalent Cross-Linking within Supramolecular Peptide Structures, Analytical Chemistry, vol.84, pp.6790-6797, 2012.
DOI : 10.1021/ac301198c

A. Blawas and W. Reichert, Protein patterning, Biomaterials, vol.19, pp.595-609, 1998.

S. Wei, J. Wang, D. Guo, Y. Chen, X. et al., Grafting Organic and Biomolecules on H-Terminated Porous Silicon from a Diazirine, Chemistry Letters, vol.35, pp.1172-1173, 2006.

J. Wang, J. Kubicki, H. Peng, and M. S. Platz, Influence of Solvent on Carbene Intersystem Crossing Rates, Journal of the American Chemical Society, vol.130, pp.6604-6609, 2008.

J. Bishop, A. Chagovetz, B. , and S. , Kinetics of Multiplex Hybridization: Mechanisms and Implications, Biophysical Journal, vol.94, pp.1726-1734, 2008.

G. L. Lukacs, P. Haggie, O. Seksek, D. Lechardeur, N. Freedman et al., Size-dependent DNA Mobility in Cytoplasm and Nucleus, Journal of Biological Chemistry, vol.275, pp.1625-1629, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01604987

T. Jossang, J. Feder, R. , and E. , Photon correlation spectroscopy of human IgG, Journal of Protein Chemistry, vol.7, pp.165-171, 1988.

, A.1.1 SAM formation based on thiol-gold interaction, p.169

A. ,

A. ;. , Determination of lower detection limit of EPR, p.170

, A.1.4 Functionalization of gold nanoparticles for EPR experiments, p.171

, A.1.6 Functionalization of microbead-based biochips, p.171

A. , 7 Chemical composition of solutions used during microbead-based assays

:. .. , A.1.7.a Phosphate Buffered Saline (PBS), p.172

A. , Quantification of insulin secretion

. .. , A.1.10 THP-1 differenciation and activation, p.174

. , 2.1 Effect of ROS inducers in UV-assisted desorption of, p.175

, 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, also know as TEMPOL (2). Phosphate Buffered Saline. An aqueous buffer with 1M KH 2 PO 4 ,1M K 2 HPO 4 and 5M NaCl A.1.7.b Roswell Park Memorial Institute (RPMI 1640): Composition of the culture media