P. A. Grimont and F. Weill, & others. Antigenic formulae of the Salmonella serovars

, WHO Collab. Cent. Ref. Res. Salmonella, vol.9, pp.1-161, 2007.

S. Issenhuth-jeanjean, , 2008.

L. Minor-scheme, Res. Microbiol, vol.165, pp.526-530, 2014.

, Shigella,Salmonella

N. Gay, S. Le-hello, F. Weill, B. De-thoisy, and F. Berger, Salmonella serotypes in reptiles and humans, Vet. Microbiol, vol.170, pp.167-171, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01104934

S. Spanò, Mechanisms of Salmonella Typhi Host Restriction, Adv. Exp. Med. Biol, vol.915, pp.283-294, 2016.

S. L. Foley, T. J. Johnson, S. C. Ricke, R. Nayak, and . Danzeisen, J. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars. Microbiol. Mol. Biol. Rev. MMBR, vol.77, pp.582-607, 2013.

P. L. Mcdonough, D. Fogelman, S. J. Shin, M. A. Brunner, and D. H. Lein, Salmonella enterica serotype Dublin infection: an emerging infectious disease for the northeastern United States, J. Clin. Microbiol, vol.37, pp.2418-2427, 1999.

M. Dominguez, Outbreak of Salmonella enterica serotype Montevideo infections in France linked to consumption of cheese made from raw milk, Foodborne Pathog. Dis, vol.6, pp.121-128, 2009.

N. J. Golden, Review of induced molting by feed removal and contamination of eggs with Salmonella enterica serovar Enteritidis, Vet. Microbiol, vol.131, pp.215-228, 2008.

F. Boyen, Non-typhoidal Salmonella infections in pigs: A closer look at epidemiology, pathogenesis and control, Vet. Microbiol, vol.130, pp.1-19, 2008.

K. H. Darwin and V. L. Miller, Molecular Basis of the Interaction of Salmonella with the Intestinal Mucosa, Clin. Microbiol. Rev, vol.12, pp.405-428, 1999.

B. B. Finlay and S. Falkow, Comparison of the invasion strategies used by Salmonella cholerae-suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication, Biochimie, vol.70, pp.1089-1099, 1988.

M. Hensel, Evolution of pathogenicity islands of Salmonella enterica, Int. J. Med

, Microbiol. IJMM, vol.294, pp.95-102, 2004.

R. Rotger and J. Casadesús, The virulence plasmids of Salmonella, Int. Microbiol, vol.2, pp.177-184, 1999.

B. M. Ahmer, M. Tran, and F. Heffron, The virulence plasmid of Salmonella typhimurium is self-transmissible, J. Bacteriol, vol.181, pp.1364-1368, 1999.

M. Furman, A. Fica, M. Saxena, J. L. Di-fabio, and F. C. Cabello, Salmonella typhi iron uptake mutants are attenuated in mice, Infect. Immun, vol.62, pp.4091-4094, 1994.

R. L. Danner, Endotoxemia in human septic shock, Chest, vol.99, pp.169-175, 1991.

B. B. Finlay and S. Falkow, Virulence factors associated with Salmonella species

, Microbiol. Sci, vol.5, pp.324-328, 1988.

S. Eng, Salmonella : A review on pathogenesis, epidemiology and antibiotic resistance, Front. Life Sci, vol.8, pp.284-293, 2015.

M. A. Gordon, Invasive Non-typhoidal Salmonella Disease-epidemiology, pathogenesis and diagnosis, Curr. Opin. Infect. Dis, vol.24, pp.484-489, 2011.

, Santé publique France-Epidémie nationale de salmonelloses à Salmonella Agona en cours associée à des laits pour nourrissons distribués à l'échelon international, vol.22, p.8, 2018.

A. Hardy, Salmonella: a continuing problem, Postgrad. Med. J, vol.80, pp.541-545, 2004.

J. A. Crump, S. P. Luby, and E. D. Mintz, The global burden of typhoid fever

, World Health Organ, vol.82, pp.346-353, 2004.

F. Weill, Les fièvres typhoïdes et paratyphoïdes en France de, 2001.

P. R. Reeves, Bacterial polysaccharide synthesis and gene nomenclature, Trends Microbiol, vol.4, pp.495-503, 1996.

C. J. Jones and S. Aizawa, The bacterial flagellum and flagellar motor: structure, assembly and function, Adv. Microb. Physiol, vol.32, pp.109-172, 1991.

J. Craigie and C. H. Yen, The Demonstration of Types of B. typhosus by Means of Preparations of Type II Vi Phage. I. Principles and Technique. Can, Public Health J, vol.29, pp.448-63, 1938.

Z. Dragas, Lysotyping of Salmonella typhimurium. Stydy of strains from hospital epidemics, Arch. Roum. Pathol. Exp. Microbiol, vol.28, pp.991-996, 1969.

E. S. Anderson, L. R. Ward, M. J. De-saxe, and J. D. De-sa, Bacteriophage-typing designations of Salmonella typhimurium, J Hyg, vol.297, p.300, 1977.

T. I. and -. , The Geographical Distribution of Salmonella typhi and Salmonella paratyphi A and B Phage Types during the Period 1, J. Hyg, vol.71, pp.59-84, 1966.

F. Grimont and P. A. Grimont, Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools, Ann. Inst. Pasteur Microbiol, vol.137, pp.165-175, 1986.

B. Regnault, F. Grimont, and P. A. Grimont, Universal ribotyping method using a chemically labelled oligonucleotide probe mixture, Res. Microbiol, vol.148, pp.649-659, 1997.

M. Altwegg, F. W. Hickman-brenner, and J. J. Farmer, Ribosomal RNA gene restriction patterns provide increased sensitivity for typing Salmonella typhi strains, J. Infect

. Dis, , vol.160, pp.145-149, 1989.

R. K. Selander, Genetic population structure, clonal phylogeny, and pathogenicity of Salmonella paratyphi B, Infect. Immun, vol.58, pp.1891-1901, 1990.

E. Esteban, K. Snipes, D. Hird, R. Kasten, and H. Kinde, Use of ribotyping for characterization of Salmonella serotypes, J. Clin. Microbiol, vol.31, pp.233-237, 1993.

A. Renvoisé, F. Brossier, W. Sougakoff, V. Jarlier, and A. Aubry, Broad-range PCR: past, present, or future of bacteriology?, Med. Mal. Infect, vol.43, pp.322-330, 2013.

M. A. Echeita and M. A. Usera, Chromosomal rearrangements in Salmonella enterica serotype typhi affecting molecular typing in outbreak investigations, J. Clin. Microbiol, vol.36, pp.2123-2126, 1998.

D. C. Schwartz and C. R. Cantor, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis, Cell, vol.37, pp.67-75, 1984.

S. B. Hunter, Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard, J. Clin. Microbiol, vol.43, pp.1045-1050, 2005.

T. Murase, A. Nakamura, A. Matsushima, and S. Yamai, An Epidemiological Study of Salmonella enteritidis by Pulsed-Field Gel Electrophoresis (PFGE): Several PFGE Patterns Observed in Isolates from a Food Poisoning Outbreak, Microbiol. Immunol, vol.40, pp.873-875, 1996.

C. H. Sandt, The Key Role of Pulsed-Field Gel Electrophoresis in Investigation of a Large Multiserotype and Multistate Food-Borne Outbreak of Salmonella Infections Centered in Pennsylvania, J. Clin. Microbiol, vol.44, pp.3208-3212, 2006.

F. Weill, Multidrug resistance in Salmonella enterica serotype Typhimurium from humans in France, J. Clin. Microbiol, vol.44, pp.700-708, 1993.

Y. Liu, The evaluation and application of multilocus variable number tandem repeat analysis (MLVA) for the molecular epidemiological study of Salmonella enterica subsp. enterica serovar Enteritidis infection, Ann. Clin. Microbiol. Antimicrob, vol.15, p.4, 2016.

, Salmonella infections, PloS One, vol.7, p.36995, 2012.

L. A. Marraffini, CRISPR-Cas immunity in prokaryotes, Nature, vol.526, pp.55-61, 2015.

R. Barrangou, CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1712, 2007.

M. A. Kohanski, D. J. Dwyer, and J. J. Collins, How antibiotics kill bacteria: from targets to networks, Nat. Rev. Microbiol, vol.8, pp.423-435, 2010.

J. M. Munita and C. A. Arias, Mechanisms of Antibiotic Resistance. Microbiol. Spectr

G. A. Jacoby, Extrachromosomal resistance in gram-negative organisms: the evolution of ?-lactamase, Trends Microbiol, vol.2, pp.357-360, 1994.

K. J. Shaw, P. N. Rather, R. S. Hare, and G. H. Miller, Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes, Microbiol. Rev, vol.57, pp.138-163, 1993.

B. G. Spratt, Resistance to antibiotics mediated by target alterations, Science, vol.264, pp.388-393, 1994.

H. Nikaido, Prevention of drug access to bacterial targets: permeability barriers and active efflux, Science, vol.264, pp.382-388, 1994.

W. K. Mass, Mutations to antibiotic resistance, Antibiotics in laboratory and medicine, pp.669-682

J. L. Martinez and F. Baquero, Mutation Frequencies and Antibiotic Resistance

, Antimicrob. Agents Chemother, vol.44, pp.1771-1777, 2000.

L. A. Actis, M. E. Tolmasky, and J. H. Crosa, Bacterial plasmids: replication of extrachromosomal genetic elements encoding resistance to antimicrobial compounds

. J. Biosci and . Libr, , vol.4, pp.43-62, 1999.

R. P. Novick, Plasmid incompatibility, Microbiol. Rev, vol.51, p.381, 1987.

M. Couturier, F. Bex, P. L. Bergquist, and W. K. Maas, Identification and classification of bacterial plasmids, Microbiol. Rev, vol.52, pp.375-395, 1988.

J. E. Davies, Origins, acquisition and dissemination of antibiotic resistance determinants, Ciba Found. Symp, vol.207, pp.27-35, 1997.

P. M. Bennett, Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement, Methods Mol. Biol. Clifton NJ, vol.266, pp.71-113, 2004.

V. Burrus and M. K. Waldor, Shaping bacterial genomes with integrative and conjugative elements, Res. Microbiol, vol.155, pp.376-386, 2004.

N. Kleckner, R. K. Chan, B. K. Tye, and D. Botstein, Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition, J. Mol. Biol, vol.97, pp.561-575, 1975.

K. Bush and G. A. Jacoby, Updated Functional Classification of ?-Lactamases

, Antimicrob. Agents Chemother, vol.54, pp.969-976, 2010.

D. Sirot, Extended-spectrum plasmid-mediated ?-lactamases, J. Antimicrob

. Chemother, , vol.36, pp.19-34, 1995.

A. A. Medeiros, Br. Med. Bull, vol.40, pp.18-27, 1984.

M. Accou-demartin, Salmonella enterica Serotype Typhi with Nonclassical

, Quinolone Resistance Phenotype. Emerg. Infect. Dis, vol.17, pp.1091-1094, 2011.

J. Wain and C. Kidgell, The emergence of multidrug resistance to antimicrobial agents for the treatment of typhoid fever, Trans. R. Soc. Trop. Med. Hyg, vol.98, pp.423-430, 2004.

J. Wain, Quinolone-resistant Salmonella typhi in Viet Nam: molecular basis of resistance and clinical response to treatment, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, vol.25, pp.1404-1410, 1997.

D. J. Eaves, Prevalence of Mutations within the Quinolone ResistanceDetermining Region of gyrA, gyrB, parC, and parE and Association with Antibiotic Resistance in Quinolone-Resistant Salmonella enterica, Antimicrob. Agents Chemother, vol.48, pp.4012-4015, 2004.

E. Miró, Resistance to quinolones and ?-lactams in Salmonella enterica due to mutations in topoisomerase-encoding genes, altered cell permeability and expression of an active efflux system

, Enferm. Infecc. Microbiol. Clin, vol.22, pp.204-211, 2004.

T. A. Le, Endemic, epidemic clone of Salmonella enterica serovar typhi harboring a single multidrug-resistant plasmid in Vietnam between 1995 and, J. Clin, 2002.

. Microbiol, , vol.42, pp.3094-3099, 2004.

C. H. Ramsey and P. R. Edwards, Resistance of Salmonellae isolated in 1959 and 1960 to tetracyclines and chloramphenicol, Appl. Microbiol, vol.9, pp.389-391, 1961.

Y. A. Chabbert and L. Le-minor, Transfer of the resistance to several antibiotics in

. Enterobacteriaceae, Definition-general bacteriology of the transfer

, Presse Med, vol.74, pp.2407-2410, 1966.

A. Raffi, M. Véron, A. Kazmierczak, P. Colin, and J. Schirrer, Pediatrie, vol.25, pp.721-733, 1970.

L. Su, C. Chiu, C. Chu, and J. T. Ou, Antimicrobial resistance in nontyphoid Salmonella serotypes: a global challenge, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, vol.39, pp.546-551, 2004.

L. Hello and S. , International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin, J. Infect. Dis, vol.204, pp.675-684, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01121157

K. L. Hopkins, Multiresistant Salmonella enterica serovar 4, Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull, vol.15, p.19580, 2010.

, DNA Sequencing Costs: Data. National Human Genome Research Institute (NHGRI) Available at, p.10, 2017.

F. Miescher, Letter I

. Tübingen, Briefwechsel Von F Miescher, vol.1, pp.33-38, 1869.

Y. Kohara, K. Akiyama, and K. Isono, The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library, Cell, vol.50, pp.495-508, 1987.

F. Sanger, Nucleotide sequence of bacteriophage phi X174 DNA, Nature, vol.24, pp.687-95, 1977.

J. C. Venter, The sequence of the human genome, Science, vol.291, pp.1304-1351, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00465088

E. S. Lander, Initial sequencing and analysis of the human genome, Nature, vol.409, pp.860-921, 2001.

T. Jarvie, Next generation sequencing technologies, Drug Discov. Today Technol, vol.2, pp.255-260, 2005.

. Illumina, Sequencing and array-based solutions for genetic research, p.9, 2017.

H. Biosciences, , p.9, 2017.

, Sequencing Platforms | Compare NGS platforms (benchtop, production-scale)

, The Ion PGM TM System, with 400-base read length hemistry, enables routine high-quality de novo assembly of small genomes, p.24, 2013.

M. A. , A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers, SMRT Sequencing: Read Lengths. Pacific Biosciences 118. Quail, vol.13, p.341, 2012.

S. Chhangawala, G. Rudy, C. E. Mason, and J. A. Rosenfeld, The impact of read length on quantification of differentially expressed genes and splice junction detection

, Genome Biol, vol.16, 2015.

, Designing Next-Generation Sequencing Runs, p.24, 2017.

A. Criscuolo and S. Brisse, AlienTrimmer: A tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads, Genomics, vol.102, pp.500-506, 2013.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, pp.10-12, 2011.

B. Ewing and P. Green, Base-calling of automated sequencer traces using phred. II. Error probabilities, Genome Res, vol.8, pp.186-194, 1998.

R. Staden, A new computer method for the storage and manipulation of DNA gel reading data, Nucleic Acids Res, vol.8, pp.3673-3694, 1980.

J. R. Miller, S. Koren, and G. Sutton, Assembly Algorithms for Next-Generation Sequencing Data, Genomics, vol.95, pp.315-327, 2010.

G. Denisov, Consensus generation and variant detection by Celera Assembler

, Bioinforma. Oxf. Engl, vol.24, pp.1035-1040, 2008.

X. Huang and A. Madan, CAP3: A DNA sequence assembly program, Genome Res, vol.9, pp.868-877, 1999.

R. M. Idury and M. S. Waterman, A New Algorithm for DNA Sequence Assembly

, Comput. Biol, vol.2, pp.291-306, 1995.

S. Boisvert, F. Laviolette, and J. Corbeil, Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies, J. Comput. Biol. J. Comput. Mol. Cell Biol, vol.17, pp.1519-1533, 2010.

D. R. Zerbino and E. Birney, Velvet: Algorithms for de novo short read assembly using de Bruijn graphs, Genome Res, vol.18, pp.821-829, 2008.

D. R. Zerbino, Using the Velvet de novo assembler for short-read sequencing technologies, Curr. Protoc. Bioinforma. Ed. Board Andreas Baxevanis Al CHAPTER, 2010.

A. Bankevich, SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing, J. Comput. Biol, vol.19, pp.455-477, 2012.

D. Sims, I. Sudbery, N. E. Ilott, A. Heger, and C. P. Ponting, Sequencing depth and coverage: key considerations in genomic analyses, Nat. Rev. Genet, vol.15, pp.121-132, 2014.

M. Escalona, S. Rocha, and D. Posada, A comparison of tools for the simulation of genomic next-generation sequencing data, Nat. Rev. Genet, vol.17, pp.459-469, 2016.

S. Schbath, Mapping Reads on a Genomic Sequence: An Algorithmic Overview and a Practical Comparative Analysis, J. Comput. Biol, vol.19, pp.796-813, 2012.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinforma. Oxf. Engl, vol.25, pp.1754-1760, 2009.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

C. Camacho, BLAST+: architecture and applications, BMC Bioinformatics, vol.10, p.421, 2009.

, classification; a report of the discussion meeting of the Society for General Microbiology, PRINCIPLES of Microbial, vol.12, pp.314-386, 1954.

H. R. Chang, L. H. Loo, K. Jeyaseelan, L. Earnest, and E. Stackebrandt, Phylogenetic relationships of Salmonella typhi and Salmonella typhimurium based on 16S rRNA sequence analysis, Int. J. Syst. Bacteriol, vol.47, pp.1253-1254, 1997.

D. M. Hillis, M. W. Allard, and M. M. Miyamoto, Analysis of DNA sequence data: phylogenetic inference, Methods Enzymol, vol.224, pp.456-487, 1993.

L. Excoffier and P. E. Smouse, Using Allele Frequencies and Geographic Subdivision to Reconstruct Gene Trees within a Species: Molecular Variance Parsimony, Genetics, vol.136, pp.343-359, 1994.

D. R. Brooks, Quantitative Phylogenetic Analysis in the 21st Century, Rev. Mex. Biodivers, 2007.

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, pp.1312-1313, 2014.

A. Stamatakis, P. Hoover, and J. Rougemont, A rapid bootstrap algorithm for the

, RAxML Web servers. Syst. Biol, vol.57, pp.758-771, 2008.

A. J. Drummond and A. Rambaut, BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol, vol.7, p.214, 2007.

K. E. Sanderson, M. Demerec, . The, . Linkage, . Of et al., Genetics, vol.51, pp.897-913, 1965.

M. Mcclelland, Complete genome sequence of Salmonella enterica serovar Typhimurium LT2, Nature, vol.413, pp.852-856, 2001.

J. Parkhill, Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18, Nature, vol.413, pp.848-852, 2001.

S. Mukherjee, Genomes OnLine Database (GOLD) v.6: data updates and feature enhancements, Nucleic Acids Res, vol.45, pp.446-456, 2017.

S. Zhang, Salmonella serotype determination utilizing high-throughput genome sequencing data, J. Clin. Microbiol, vol.53, pp.1685-1692, 2015.

R. E. Reyes, C. R. González, R. C. Jiménez, M. O. Herrera, and A. A. Andrade, Mechanisms of O-Antigen Structural Variation of Bacterial Lipopolysaccharide (LPS), 2012.

C. A. Schnaitman and J. D. Klena, Genetics of lipopolysaccharide biosynthesis in enteric bacteria, Microbiol. Rev, vol.57, pp.655-682, 1993.

C. E. Yoshida, The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies, PloS One, vol.11, p.147101, 2016.

K. A. Jolley, Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain, Microbiol. Read. Engl, vol.158, pp.1005-1015, 2012.

E. Zankari, Identification of acquired antimicrobial resistance genes

. Antimicrob and . Chemother, , vol.67, pp.2640-2644, 2012.

M. V. Larsen, Benchmarking of methods for genomic taxonomy, J. Clin

. Microbiol, , vol.52, pp.1529-1539, 2014.

D. Saputra, Reads2Type: a web application for rapid microbial taxonomy identification, BMC Bioinformatics, vol.16, p.398, 2015.

M. V. Larsen, Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria, J. Clin. Microbiol, vol.50, pp.1355-1361, 2012.

A. Carattoli, In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing, Antimicrob. Agents Chemother, vol.58, pp.3895-3903, 2014.

P. Leekitcharoenphon, snpTree-a web-server to identify and construct SNP trees from whole genome sequence data, BMC Genomics, vol.13, p.6, 2012.

R. S. Kaas, P. Leekitcharoenphon, F. M. Aarestrup, and O. Lund, Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms, PLOS ONE, vol.9, p.104984, 2014.

P. Leekitcharoenphon, E. M. Nielsen, R. S. Kaas, O. Lund, and F. M. Aarestrup, Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica, PloS One, vol.9, p.87991, 2014.

K. G. Joensen, Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli, J. Clin. Microbiol, vol.52, pp.1501-1510, 2014.

S. Nurk, Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads, Research in Computational Molecular Biology 158-170, 2013.

, / wiki / Salmonella Statistics-Bitbucket. Available, p.12, 2017.

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinforma. Oxf. Engl, vol.30, pp.2068-2069, 2014.

C. Laing, Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions, BMC Bioinformatics, vol.11, p.461, 2010.

Y. Zhou, Y. Liang, K. H. Lynch, J. J. Dennis, D. S. Wishart et al., A Fast Phage Search Tool, Nucleic Acids Res, vol.39, pp.347-352, 2011.

D. Arndt, PHASTER: a better, faster version of the PHAST phage search tool, Nucleic Acids Res, vol.44, pp.16-21, 2016.

S. Casjens, Prophages and bacterial genomics: what have we learned so far? Mol

. Microbiol, , vol.49, pp.277-300, 2003.

M. Land, Insights from 20 years of bacterial genome sequencing, Funct. Integr. Genomics, vol.15, pp.141-161, 2015.

N. Genome, Information by organism-Prokaryotes, p.17, 2017.

E. C. Todd, Epidemiology of foodborne diseases: a worldwide review, World Health Stat. Q. Rapp. Trimest. Stat. Sanit. Mond, vol.50, pp.30-50, 1997.

, World Health Organization & Foodborne Disease Burden Epidemiology Reference Group. WHO estimates of the global burden of foodborne diseases, 2015.

L. M. Kuijpers, Genomic analysis of Salmonella enterica serotype Paratyphi A during an outbreak in Cambodia, Microb. Genomics, vol.2, p.92, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01523637

O. T. Bishop, Bioinformatics and Data Analysis in Microbiology, 2014.

S. I. Nikolenko, A. I. Korobeynikov, and M. A. Alekseyev, BayesHammer: Bayesian clustering for error correction in single-cell sequencing, BMC Genomics, vol.14, p.7, 2013.

N. Vyahhi, A. Pyshkin, S. Pham, and P. A. Pevzner, From de Bruijn Graphs to Rectangle Graphs for Genome Assembly, Algorithms in Bioinformatics, pp.249-261, 2012.

Y. Chen, T. Liu, C. Yu, T. Chiang, and C. Hwang, Effects of GC Bias in Next-Generation-Sequencing Data on De Novo Genome Assembly, PLoS ONE, vol.8, 2013.

T. J. Treangen and S. L. Salzberg, Repetitive DNA and next-generation sequencing: computational challenges and solutions, Nat. Rev. Genet, vol.13, pp.36-46, 2011.

, Multi-country outbreak of Salmonella Enteritidis phage type 8, MLVA type 2-9-7-3-2 and 2-9-6-3-2 infections, EFSA (European Food Safety Authority & ECDC (European Centre For Disease Prevention and Control, 2016.

, EFSA-Salmonella%20Enteritidis.pdf. (Accessed, p.15, 2017.

C. R. Braden, Salmonella enterica Serotype Enteritidis and Eggs: A National Epidemic in the United States, Clin. Infect. Dis, vol.43, pp.512-517, 2006.

D. J. Henzler, E. Ebel, J. Sanders, D. Kradel, and J. Mason, Salmonella enteritidis in eggs from commercial chicken layer flocks implicated in human outbreaks, Avian Dis, vol.38, pp.37-43, 1994.

K. Ziebell, Subtyping of Canadian isolates of Salmonella Enteritidis using

, Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) alone and in combination with Pulsed-Field Gel Electrophoresis (PFGE) and phage typing, J. Microbiol. Methods, vol.139, pp.29-36, 2017.

, Global action plan on antimicrobial resistance. Geneva: World Health Organization, p.26, 2017.

R. Bud and . Penicillin, Triumph and Tragedy, 2007.

A. Fleming, On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzae, Br. J. Exp. Pathol, vol.10, pp.226-236, 1929.

F. R. Batchelor, F. P. Doyle, J. H. Nayler, and G. N. Rolinson, Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations, Nature, vol.183, pp.257-258, 1959.

R. Knox, A survey of new penicillins, Nature, vol.192, pp.492-496, 1961.

N. Datta and P. Kontomichalou, Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae, Nature, vol.208, pp.239-241, 1965.

R. W. Hedges, N. Datta, P. Kontomichalou, and J. T. Smith, Molecular specificities of R factor-determined ?-lactamases: correlation with plasmid compatibility, J. Bacteriol, vol.117, pp.56-62, 1974.

K. E. Cox and J. F. Schildbach, Sequence of the R1 plasmid and comparison to F and R100, Plasmid, vol.91, pp.53-60, 2017.

E. S. Anderson, N. Datta, and . Enterobacteriaceae, Lancet Lond. Engl, vol.1, pp.407-409, 1965.

Y. A. Chabbert and J. G. Baudens, Transmissible resistance to six groups of antibiotics in Salmonella infections, Antimicrob. Agents Chemother, vol.5, pp.380-383, 1965.

J. N. Grindley and D. Nakada, The nucleotide sequence of the replication origin of plasmid NTP1, Nucleic Acids Res, vol.9, pp.4355-4366, 1981.

E. S. Anderson, Drug resistance in Salmonella typhimurium and its implications

, Med. J, vol.3, pp.333-339, 1968.

E. S. Anderson, E. J. Threlfall, J. M. Carr, M. M. Mcconnell, and H. R. Smith, Clonal distribution of resistance plasmid-carrying Salmonella typhimurium, mainly in the Middle East, J. Hyg, vol.79, pp.425-448, 1977.

E. &. Kelterborn and D. V. , Salmonella species. First isolations, names and occurrence

, Salmonella Species First Isol. Names Occur, 1967.

, European Food Safety Authority & European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015, EFSA J, vol.14, 2016.

L. Hello and S. , Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiological study, Lancet Infect. Dis, vol.13, pp.672-679, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01109890

A. E. Mather, Distinguishable epidemics of multidrug-resistant Salmonella

, Typhimurium DT104 in different hosts, Science, vol.341, pp.1514-1517, 2013.

L. Petrovska, Microevolution of Monophasic Salmonella Typhimurium during Epidemic, Emerg. Infect. Dis, vol.22, pp.617-624, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01602815

S. R. Partridge and R. M. Hall, Evolution of transposons containing blaTEM genes

, Antimicrob. Agents Chemother, vol.49, pp.1267-1268, 2005.

R. A. Kingsley, Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype, Genome Res, vol.19, pp.2279-2287, 2009.

C. K. Marston, Effects of long-term storage on plasmid stability in Bacillus anthracis, Appl. Environ. Microbiol, vol.71, pp.7778-7780, 2005.

H. Gounelle and A. Szakvary, Antibiotics and food. IV. Use of antibiotics outside medical prescriptions

, Bull. Acad. Natl. Med, vol.150, pp.149-156, 1966.

K. E. Webb and J. P. Fontenot, Medicinal drug residues in broiler litter and tissues from cattle fed litter, J. Anim. Sci, vol.41, pp.1212-1217, 1975.

E. J. Threlfall, Epidemic salmonella typhimurium DT 104-a truly international multiresistant clone, J. Antimicrob. Chemother, vol.46, pp.7-10, 2000.

C. Franco-paredes, Enteric Fever: A Slow Response to an Old Plague, PLoS Negl. Trop. Dis, vol.10, 2016.

S. Uzzau, Host adapted serotypes of Salmonella enterica, Epidemiol. Infect, vol.125, pp.229-255, 2000.

L. A. Hirschfeld, . New, and . Of-paratyphoid, The Lancet, vol.193, pp.296-297, 1919.

U. Methner, M. Heller, and H. Bocklisch, Salmonella enterica subspecies enterica serovar Choleraesuis in a wild boar population in Germany, Eur. J. Wildl. Res, vol.56, pp.493-502, 2010.

D. Li, C. Liu, R. Luo, K. Sadakane, and T. Lam, MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph, Bioinforma. Oxf. Engl, vol.31, pp.1674-1676, 2015.

J. Alneberg, Binning metagenomic contigs by coverage and composition, Nat. Methods, vol.11, pp.1144-1146, 2014.

D. Hyatt, Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics, vol.11, p.119, 2010.

R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V. Koonin, The COG database: a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Res, vol.28, pp.33-36, 2000.

K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res, vol.30, pp.3059-3066, 2002.

P. Vachaspati and T. Warnow, ASTRID: Accurate Species TRees from Internode Distances, BMC Genomics, vol.16, issue.S3, 2015.

D. E. Wood and S. L. Salzberg, Kraken: ultrafast metagenomic sequence classification using exact alignments, Genome Biol, vol.15, p.46, 2014.
DOI : 10.1186/gb-2014-15-3-r46

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2014-15-3-r46

. Bbtools and . Doe-joint-genome-institute, LAST: genome-scale sequence comparison, vol.223, p.11, 2018.

R. C. Edgar, PILER-CR: Fast and accurate identification of CRISPR repeats, BMC Bioinformatics, vol.8, p.18, 2007.

, Annexe 2 b. Distribution phylogénétique des CMI pour l'ampicilline et la penicilline G, sur une sélection de 67 isolats de S. enterica sérotype Typhimurium

, Le premier cercle indique les souches productrices de ?-lactamase, avec quatre gènes différents en bleu, vert, violet et rose représentant blaTEM-1B, blaTEM-1A, blaOXA-1 et blaOXA-2 repectivement. Le second cercle indique les isolats testés pour la CMI pour l

, Annexe 2 c. Fréquence de transfert des différents plasmides de S. enterica sérotype Typhimurium. Les statistiques ont été obtenues en faisant l

, Characterisation of the ampicillin-resistant isolates The 11 ampicillin-resistant S. enterica serotype Typhimurium isolates detected by the disk diffusion method and shown in Table 2 had penicillin MICs (for ampicillin or penicillin G) ? 256 mg/L (table S1, figure 2). The genomic analysis identified a ?-lactamase gene, either blaTEM (n = 9) or blaOXA (n = 2) in all these isolates. In a selection of 56 S. enterica serotype Typhimurium isolates devoid of ?-lactamase genes and belonging to the different genomic clades of the collection (see below and Appendix, total, 123 CRISPOL types were observed, with CT117 the most frequently represented (4.9%, 11/225)

, The most frequent ?-lactamase gene, blaTEM-1B, carried by transposon Tn2, 26 was found in eight (72.7%) ampicillin-resistant S. enterica serotype Typhimurium isolates, The Tn2 transposon was located on plasmids from incompatibility groups IncF (n = 5) and IncX1

, In two ST313 isolates, STM 232-68 and STM 266-68, collected in France and Tunisia in 1968, the Tn2 integration site was identical to that of pSLT-BT, a multidrug resistance plasmid found in lineage II of the ST313 clone, a serotype Typhimurium population associated with invasive infections in Africa. 25 Furthermore, as observed in pSLT-BT, a Tn21like element was also found integrated into the Tn2 of the STM 232-68 and STM 266-68 IncF plasmids. However, these two plasmids differed slightly from pSLT-BT in having a 6.8 kb IS1mediated deletion (corresponding to region 41,666-48,543 of GenBank accession number FN432031) encompassing the integron (In2) region of the Tn21-like element. The IncF plasmid of the fifth isolate, An analysis of Tn2 transposon junctions revealed that, in four isolates, Tn2 was located on pSLT, a 93 kb IncF plasmid known as the S. enterica serotype Typhimurium type strain LT2 virulence plasmid

, These plasmids had only 45-77% of their DNA sequences (98-99% nucleotide identity) in common with pExPB5-59-1. Interestingly, the oldest of these isolates was collected during a foodborne outbreak of disease in Newcastle, United Kingdom in 1911. The three S. enterica serotype Typhimurium isolates collected in France and Tunisia before the release of ampicillin contained the Tn2 transposon, in the IncX1 (n = 1) and pSLT-derived IncF (n = 2) plasmids. Tn2 was found inserted at two different sites within IncF. AUTHOR CONTRIBUTIONS Conceived and designed the experiments: FXW. Performed the experiments: ATD. Contributed reagents/materials/analysis tools: SLH, CB. Analysed the data: ATD and FXW. Wrote the paper: ATD and FXW. Reviewed, critiqued and, The 45 kb Tn2-containing IncX1 plasmid pExPB5-59-1 was also sequenced with the PacBio platform. This plasmid was present in a clonal bacterial population (ST19-CT160) isolated in France over a 10-year period, 1959.

R. Bud, Penicillin: Triumph and Tragedy, 2007.

A. Fleming, On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae, Br J Exp Pathol, vol.10, pp.226-236, 1929.

F. R. Batchelor, F. P. Doyle, J. H. Nayler, and G. N. Rolinson, Synthesis of penicillin: 6aminopenicillanic acid in penicillin fermentations, Nature, vol.183, pp.257-265, 1959.

R. Knox, A survey of new penicillins, Nature, vol.192, pp.492-498, 1961.

N. Datta and P. Kontomichalou, Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae, Nature, vol.208, pp.239-280, 1965.

A. A. Medeiros, Br Med Bull, vol.40, pp.18-27, 1984.

R. W. Hedges, N. Datta, P. Kontomichalou, and J. T. Smith, Molecular specificities of R factordetermined ?-lactamases: correlation with plasmid compatibility, J Bacteriol, vol.117, pp.56-62, 1974.

K. Cox and J. F. Schildbach, Sequence of the R1 plasmid and comparison to F and R100, Plasmid, vol.91, pp.53-60, 2017.

E. S. Anderson and N. Datta, Resistance to penicillins and its transfer in Enterobacteriaceae, Lancet, vol.1, pp.407-416, 1965.

Y. A. Chabbert and J. G. Baudens, Transmissible resistance to six groups of antibiotics in Salmonella infections, Antimicrob Agents Chemother (Bethesda), vol.5, pp.380-383, 1965.

E. S. Anderson, Drug resistance in Salmonella Typhimurium and its implications, Br Med J, vol.3, pp.333-342, 1968.

E. S. Anderson, E. J. Threlfall, J. M. Carr, M. M. Mcconnell, and H. R. Smith, Clonal distribution of resistance plasmid-carrying Salmonella Typhimurium, mainly in the Middle East, J Hyg (Lond), vol.79, pp.425-473, 1977.

J. N. Grindley and D. Nakada, The nucleotide sequence of the replication origin of plasmid NTP1, Nucleic Acids Res, vol.9, pp.4355-66, 1981.

E. Kelterborn, Salmonella-species. First isolations, names and occurrence, 1967.

, The European Union summary report on trends and sources of zoonoses, 2017.

, EFSA Journal, vol.14, p.4634, 2016.

L. Hello, S. Harrois, D. Bouchrif, and B. , Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiological study, Lancet Infect Dis, vol.13, pp.672-681, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01109890

B. M. Ahmer, M. Tran, and F. Heffron, The virulence plasmid of Salmonella typhimurium is self-transmissible, J Bacteriol, vol.181, pp.1364-1372, 1999.

L. Fabre, J. Zhang, and G. Guigon, CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections, PLoS One, vol.7, p.36995, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00762219

A. E. Mather, S. W. Reid, and D. J. Maskell, Distinguishable epidemics of multidrugresistant Salmonella Typhimurium DT104 in different hosts, Science, vol.341, pp.1514-1521, 2013.

L. Petrovska, A. E. Mather, and M. Abuoun, Microevolution of Monophasic Salmonella Typhimurium during Epidemic, Emerg Infect Dis, vol.22, pp.617-641, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01602815

L. M. Kuijpers, L. Hello, S. Fawal, and N. , Genomic analysis of Salmonella enterica serotype Paratyphi A during an outbreak in Cambodia, J Comput Biol, vol.2, pp.455-77, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01523637

S. R. Partridge and R. M. Hall, Evolution of transposons containing blaTEM genes, Antimicrob Agents Chemother, vol.49, pp.1267-1275, 2005.

R. A. Kingsley, C. L. Msefula, and N. R. Thomson, Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype, Genome Res, vol.19, pp.2279-87, 2009.

C. K. Marston, A. R. Hoffmaster, and K. E. Wilson, Effects of long-term storage on plasmid stability in Bacillus anthracis, Appl Environ Microbiol, vol.71, pp.7778-80, 2005.

H. Gounelle and A. Szakvary, Antibiotics and food. IV. Use of antibiotics outside medical

, Bull Acad Natl Med, vol.150, pp.149-56, 1966.

K. E. Webb and J. P. Fontenot, Medicinal drug residues in broiler litter and tissues from cattle fed litter, J Anim Sci, vol.41, pp.1212-1219, 1975.

E. J. Threlfall, Epidemic Salmonella Typhimurium DT 104-a truly international multiresistant clone, J Antimicrob Chemother, vol.46, pp.7-10, 2000.

K. L. Hopkins, M. Kirchner, and D. J. Mevius, Multiresistant Salmonella enterica serovar 4, Euro Surveill, vol.15, 2010.

, Title: Millennia of genomic stability within the invasive Para C Lineage of Salmonella enterica

, Unité des Bactéries Pathogènes Entériques, Institut Pasteur

, Wellcome Trust, p.5020

M. T. ,

Z. Z. , zhemin.zhou@warwick.ac.uk ?Present addresses: Molecular Microbiology

, Gastrointestinal Bacteria Reference Unit

, Here we compare a draft Paratyphi C genome from the 800-year-old skeleton of a young woman in Trondheim, Norway, against a new database of related modern genomes. We demonstrate that Paratyphi C is descended from the ancestors of swine pathogens, serovars Choleraesuis and Typhisuis, and may have evolved after zoonotic transfer from swine during the Neolithic synteny of the pan genome was reconstructed as described in Supplementary Materials of Zhou et al. 13 and can be examined in detail in a publicly accessible, interactive local version of Anvi'o server Pan-genome, Salmonella enterica serovar Paratyphi C is the causative agent in Africa and Asia of enteric (paratyphoid) fever 1,2 , a potentially lethal infection of humans