Identification rapide des propriétés diffuso-mécaniques de matériaux polymères et composites pour applications aéronautiques

Abstract : The use of organic matrix composite materials (OMC) for the realization of "warm" aeronautical structures, may expose these materials to aggressive environments: wet or gaseous environments,high temperatures, which may promote severe aging and degradation phenomena related to species diffusion within the macromolecular network of the polymer matrices. The complexity of the OMC microstructure used for these applications can complicate the understanding of degradation phenomena : for example, species diffusion can be isotropic, orthotropic or anisotropic, depending on the texture of the fibrous reinforcement. Humid aging of OMC is of particular concern for the aeronautical industry ; the diffusion of water in the polymer matrix of the composite may promote hygroscopic swelling, changes in mechanical properties (stiffness, strength). Experimental methods exist for the characterization of these phenomena and for the identification of the associated parameters : these methods often recommend the use of moisture saturated specimens, which require long conditioning times, sometimes often a relevant number of samples (1 sample for each saturated state), high costs. The aim of this work is to establish protocols for fast identification of the diffusomechanical properties of polymers and polymer based OMC materials for aeronautical applications. The approach implemented in this thesis is organized in four chapters. The first chapter presents a bibliographic study on coupled diffuso-mechanics modeling tools and on methods of characterization/identification of diffuso-mechanical properties, more particularly for OMC for aeronautical applications. The bibliographic study allows specifying the framework of the present research, which foresees the employment of a weakly coupled diffuso-mechanical model, where water diffusion follows the Fick’s law and the mechanical behavior is linear hygroelastic, depending on water content. The second chap-ter presents the setting up and the development of a method for fast identification of anisotropic diffusion properties, suitable for OMC with complex architecture, such as for instance, 2D or 3Dwoven OMC. The method relies on mass-gain measures of OMC samples, the diffusion anisotropy ofthese materials is obtained by rotating the axes of orthotropy. The proposed method represents an extension of the "slope method" introduced by Shen and Springer in the 1970s for the identification of the diffusion properties of orthotropic materials (such as laminated composites), and is based onthe exploitation of gravimetric curves at short times. Through this method, the principal coefficients and the principal axes of orthotropy can be identified. A discussion about the transition from 3Dto 1D diffusion as a function of the sample geometry is also presented at the end of this chapter. The third chapter explores through a numerical study the possibility of identifying in a fast way the mechanical properties affected by moisture of polymeric materials by the use of mechanical tests on thin plates with water concentration gradients. Traction and bending tests are taken into account.For isotropic materials, in a hygroelastic setting, it is showed that this method allows identifyng the water concentration dependent Young’s modulus and the Poisson’s ratio with a remarkable time gain compared to tests on moisture saturated samples. Finally, the last chapter proposes through a numerical study a method for fast identification of the diffuso-mechanical properties of isotropic materials based on the use of plates loaded by an asymmetric water concentration field. The identification is thus carried out from the monitoring deflections generated by the concentration fields. The moisturedependent hygroscopic expansion coefficient and Young’s modulus can be identified during the test,by exploiting the transient state of conditioning, with a remarkable time gain compared with moisture saturated samples.
Document type :
Liste complète des métadonnées
Contributor : Abes Star <>
Submitted on : Monday, February 4, 2019 - 3:34:57 PM
Last modification on : Thursday, February 14, 2019 - 11:32:06 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02006359, version 1



Anani Djato. Identification rapide des propriétés diffuso-mécaniques de matériaux polymères et composites pour applications aéronautiques. Autre. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique - Poitiers, 2018. Français. ⟨NNT : 2018ESMA0010⟩. ⟨tel-02006359⟩



Record views


Files downloads