J. Duc-phu-chau, F. Badie, and . Bremond, Online tracking parameter adaptation based on evaluation, 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp.189-194, 2013.

D. Chau, F. Bremond, and M. Thonnat, A multi-feature tracking algorithm enabling adaptation to context variations, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00632245

D. Chau, F. Bremond, and M. Thonnat, A multi-feature tracking algorithm enabling adaptation to context variations, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00632245

M. Duc-phu-chau, F. Thonnat, E. Bremond, and . Corvee, Online parameter tuning for object tracking algorithms, Image and Vision Computing, vol.32, issue.4, pp.287-302, 2014.

J. Chen, H. Sheng, Y. Zhang, and Z. Xiong, Enhancing detection model for multiple hypothesis tracking, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.2143-2152, 2017.

W. Choi and S. Savarese, A unified framework for multi-target tracking and collective activity recognition, Proceedings of the 12th European Conference on Computer Vision-Volume Part IV, ECCV'12, pp.215-230, 2012.

C. Garcia-cifuentes, M. Sturzel, F. Jurie, and G. J. Brostow, Motion models that only work sometimes, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00806098

N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol.1, pp.886-893, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00548512

J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, Informationtheoretic metric learning, Proceedings of the 24th International Conference on Machine Learning, ICML '07, pp.209-216, 2007.

A. Dehghan, S. M. Assari, and M. Shah, Gmmcp tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.4091-4099, 2015.

V. Eiselein, D. Arp, M. P-?-atzold, and T. Sikora, Real-time multi-human tracking using a probability hypothesis density filter and multiple detectors, 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, pp.325-330, 2012.

A. Ess, B. Leibe, K. Schindler, and L. Van-gool, A mobile vision system for robust multiperson tracking, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.

L. Fagot-bouquet, R. Audigier, Y. Dhome, and F. Lerasle, Online multi-person tracking based on global sparse collaborative representations, 2015 IEEE International Conference on Image Processing (ICIP), pp.2414-2418, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01763151

L. Fagot-bouquet, R. Audigier, Y. Dhome, and F. Lerasle, Improving multi-frame data association with sparse representations for robust near-online multiobject tracking, Computer Vision-ECCV 2016-14th European Conference, pp.774-790, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01763166

W. Forstner and B. Moonen, A metric for covariance matrices, 1999.

Z. Fu, F. Angelini, S. Naqvi, and J. Chambers, Gm-phd filter based online multiple human tracking using deep discriminative correlation matching, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.

D. M. Gavrila and S. Munder, Multi-cue pedestrian detection and tracking from a moving vehicle, Int. J. Comput. Vision, vol.73, issue.1, pp.41-59, 2007.

A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, 3d traffic scene understanding from movable platforms, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.5, pp.1012-1025, 2014.

K. Grauman and T. Darrell, The pyramid match kernel: Discriminative classification with sets of image features, ICCV, pp.1458-1465, 2005.

H. Izadinia, I. Sallmi, W. Li, and M. Shah,

A. Heili, A. Lopex-mendez, and J. Odobez, Exploiting long-term connectivity and visual motion in crf-based multi-person tracking, 2014.

J. F. Henriques, R. Caseiro, and J. Batista, Globally optimal solution to multi-object tracking with merged measurements, 2011.

R. Henschel, L. Leal-taixé, D. Cremers, and B. Rosenhahn, Improvements to frank-wolfe optimization for multi-detector multi-object tracking, 2017.

W. Hu, X. Li, W. Luo, X. Zhang, S. Maybank et al., Single and multiple object tracking using log-euclidean riemannian subspace and block-division appearance model

, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.12, pp.2420-2440, 2012.

J. Ju, D. Kim, B. Ku, D. K. Han, and H. Ko, Online multiobject tracking with efficient track drift and fragmentation handling, J. Opt. Soc. Am. A, vol.34, issue.2, p.131, 2017.

M. Keuper, S. Tang, Z. Yu, B. Andres, T. Brox et al., A multi-cut formulation for joint segmentation and tracking of multiple objects, 2016.

A. Khatibi, F. Porto, J. G. Rittmeyer, E. Ogasawara, P. Valduriez et al., Pre-processing and Indexing techniques for Constellation Queries in Big Data, DaWaK 2017: 19th International Conference on Big Data Analytics and Knowledge Discovery, number 10253 in Big Data Analytics and Knowledge Discovery, pp.74-87, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01620398

H. Kieritz, S. Becker, and W. , Online multi-person tracking using integral channel features, 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp.122-130, 2016.

T. Chalidabhongse, D. Harwood, L. Davis, and K. Kim, Background modeling and subtraction by codebook construction, The International Conference on Image Processing (ICIP), 2004.

C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, Multiple hypothesis tracking revisited, Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV '15, pp.4696-4704, 2015.

M. Kostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof, Large scale metric learning from equivalence constraints, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.2288-2295, 2012.

. Huang, C. Kou, and . R. Nevatia, Multi-target tracking by online learned discriminative appearance models, 2010.

L. Kratz and K. Nishino, Tracking with local spatio-temporal motion patterns in extremely crowded scenes, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.693-700, 2010.

K. C. Kumar and C. D. Vleeschouwer, Discriminative label propagation for multi-object tracking with sporadic appearance features, 2013 IEEE International Conference on Computer Vision, 2000.

C. H. Kuo, C. Huang, and R. Nevatia, Multi-target tracking by online learned dis-criminative appearance models, 2010.

T. Kutschbach, E. Bochinski, V. Eiselein, and T. Sikora, Sequential sensor fusion combining probability hypothesis density and kernelized correlation filters for multi-object tracking in video data, 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp.1-5, 2017.

H. Edwin, J. J. Land, and . Mccann, Lightness and retinex theory, J. Opt. Soc. Am, vol.61, issue.1, pp.1-11, 1971.

S. Lazebnik, C. Schmid, and J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), vol.2, pp.2169-2178, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00548585

L. Leal-taixe, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese, Learning an image-based motion context for multiple people tracking, 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp.3542-3549, 2014.

L. Leal-taixe, C. Canton-ferrer, and K. Schindler, Learning by tracking: Siamese CNN for robust target association, 2016.

L. Leal-taix?ataix?-taix?a-c, G. Pons-moll, and B. Rosenhahn, Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker, 2011.

, IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp.120-127, 2011.

B. Leibe, K. Schindler, N. Cornelis, and L. Van-gool, Coupled object detection and tracking from static cameras and moving vehicles, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.10, pp.1683-1698, 2008.

Y. Li, C. Huang, and R. Nevatia, Learning to associate: Hybridboosted multi-target tracker for crowded scene, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.2953-2960, 2009.

S. Liao, G. Zhao, V. Kellokumpu, M. Pietik?ainenpietik?-pietik?ainen, and S. Z. Li, Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1301-1306, 2010.

S. Liao, Y. Hu, and S. Z. Li, Joint dimension reduction and metric learning for person re-identification. CoRR, abs/1406, vol.4216, 2014.

Y. Liu, H. Li, and Y. Chen, Automatic tracking of a large number of moving targets in 3d, Proceedings of the 12th European Conference on Computer Vision-Volume Part IV, ECCV'12, pp.730-742, 2012.

D. G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision, vol.60, issue.2, pp.91-110, 2004.

W. Luo, J. Xing, X. Zhang, X. Zhao, and T. Kim, Multiple object tracking: A literature review, 2014.

A. E. Maadi and M. S. Djouadi, Suspicious motion patterns detection and tracking in crowded scenes, 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp.1-6, 2013.

T. Matsukawa, T. Okabe, E. Suzuki, and Y. Sato, Hierarchical gaussian descriptor for person re-identification, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1363-1372, 2016.

N. Mclaughlin, J. M. Rincon, and P. Miller, Enhancing linear programming with motion modeling for multi-target tracking, 2015 IEEE Winter Conference on Applications of Computer Vision, pp.71-77, 2015.

K. Meshgi and S. Ishii, Expanding histogram of colors with gridding to improve tracking accuracy, 14th IAPR International Conference on Machine Vision Applications (MVA), pp.475-479, 2015.

A. Milan, L. Leal-taix?ataix?-taix?a-c, K. Schindler, and I. Reid, Joint tracking and segmentation of multiple targets, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.5397-5406, 2015.

A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, Online multi-target tracking using recurrent neural networks, In AAAI, 2017.

A. Milan, S. Roth, and K. Schindler, Continuous energy minimization for multitarget tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.1, pp.58-72, 2014.

A. Milan, K. Schindler, and S. Roth, Detection-and trajectory-level exclusion in multiple object tracking, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.3682-3689, 2013.

D. Mitzel and B. Leibe, Real-time multi-person tracking with detector assisted structure propagation, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp.974-981, 2011.

D. Mitzel, E. Horbert, A. Ess, and B. Leibe, Multi-person Tracking with Sparse Detection and Continuous Segmentation, pp.397-410, 2010.

M. Furqan, F. Khan, and . Bremond, Multi-shot person re-identification using part appearance mixture

A. Nghiem, F. Bremond, and M. Valentin, Etiseo, performance evaluation for video surveillance system, 2007.

T. L. Nguyen, F. Bremond, and J. Trojanova, Multi-object tracking of pedestrian driven by context, 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp.23-29, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01383186

T. L. Nguyen, D. P. Chau, and F. Bremond, Robust global tracker based on an online estimation of tracklet descriptor reliability, 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp.1-6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01185874

T. L. Nguyen, F. M. Khan, F. Negin, and F. Bremond, Multi-object tracking using multichannel part appearance representation, 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp.1-6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01651938

P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, Color-based probabilistic tracking, Proceedings of the 7th European Conference on Computer Vision-Part I, ECCV '02, pp.661-675, 2002.

H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, Globally-optimal greedy algorithms for tracking a variable number of objects, CVPR 2011, pp.1201-1208, 2011.

F. Poiesi, R. Mazzon, and A. Cavallaro, Multi-target tracking on confidence maps: An application to people tracking, Computer Vision and Image Understanding, vol.117, issue.10, pp.1257-1272, 2013.

Z. Qin, Improving multi-target tracking via social grouping, Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR '12, pp.1972-1978, 2012.

Z. Qin and C. R. Shelton, Improving multi-target tracking via social grouping, IEEE Conference on Computer Vision and Pattern Recognition, pp.1972-1978, 2012.

V. Reilly, H. Idrees, and M. Shah, Detection and tracking of large number of targets in wide area surveillance, Proceedings of the 11th European Conference BIBLIOGRAPHY 135 on Computer Vision Conference on Computer Vision: Part III, ECCV'10, pp.186-199, 2010.

M. Rodriguez, J. Sivic, I. Laptev, and J. Y. Audibert, Data-driven crowd analysis in videos, 2011 International Conference on Computer Vision, pp.1235-1242, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00654256

M. Rodriguez, S. Ali, and T. Kanade, Tracking in unstructured crowded scenes, ICCV, pp.1389-1396, 2009.

A. Zamir, A. Dehghan, and M. Shah, Gmcp-tracker: Global multi-object tracking using generalized minimum clique graphs, Proceedings of the European Conference on Computer Vision (ECCV), 2012.

F. S. Bremond, E. Bak, M. Corvee, and . Thonnat, Multiple-shot human re-identification by mean riemannian covariance grid, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00620496

A. Sadeghian, A. Alahi, and S. Savarese, Tracking the untrackable: Learning to track multiple cues with long-term dependencies, 2017.

R. Sanchez-matilla, F. Poiesi, and A. Cavallaro, Online Multi-target Tracking with Strong and Weak Detections, pp.84-99, 2016.

J. Shi and C. Tomasi, Good features to track, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.593-600, 1994.

G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, Part-based multiple-person tracking with partial occlusion handling, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1815-1821, 2012.

G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, Part-based multiple-person tracking with partial occlusion handling, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1815-1821, 2012.

. Xu-yan, A. Ioannis, S. K. Kakadiaris, and . Shah, What do i see? modeling human visual perception for multi-person tracking, 2014.

B. Yang and R. Nevatia, An online learned crf model for multi-target tracking, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.2034-2041, 2012.

B. Yang, C. Huang, and R. Nevatia, Learning affinities and dependencies for multi-target tracking using a crf model, 2011.

B. Yang and R. Nevatia, Online learned discriminative part-based appearance models for multi-human tracking, Proceedings of the 12th European Conference on Computer Vision-Volume Part I, ECCV'12, pp.484-498, 2012.

M. Yang, F. Lv, W. Xu, and Y. Gong, Detection driven adaptive multi-cue integration for multiple human tracking, IEEE 12th International Conference on Computer Vision, pp.1554-1561, 2009.

C. Nai, W. H. Yang, C. M. Chang, T. Kuo, and . Li, A fast mpeg7dominant color extraction with new similarity measure for image retrieval, 2008.

J. H. Yoon, C. R. Lee, M. H. Yang, and K. J. Yoon, Online multi-object tracking via structural constraint event aggregation, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1392-1400, 2016.

J. H. Yoon, M. H. Yang, J. Lim, and K. J. Yoon, Bayesian multi-object tracking using motion context from multiple objects, 2015 IEEE Winter Conference on Applications of Computer Vision, pp.33-40, 2015.

J. Hong-yoon, D. Y. Kim, and K. Yoon, Visual tracking via adaptive tracker selection with multiple features, Proceedings of the 12th European Conference on Computer Vision-Volume Part IV, ECCV'12, pp.28-41, 2012.

D. Kim, J. Yoon, and K. J. Yoon, Visual tracking via adaptive tracker selection with multiple features, 2012.

F. Yu, W. Li, Q. Li, Y. Liu, X. Shi et al., POI: Multiple Object Tracking with High Performance Detection and Appearance Feature, pp.36-42

M. Zeng, Z. Wu, C. Tian, L. Zhang, and L. Hu, Efficient person re-identification by hybrid spatiogram and covariance descriptor, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.48-56, 2015.

L. Zhang, Y. Li, and R. Nevatia, Global data association for multi-object tracking using network flows, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.