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Titre : Suivi long terme de personnes pour les systèmes de vidéo monitoring 

 
Résumé  
Le suivi d'objets multiples (Multiple Object Tracking (MOT)) est une tâche importante dans le 
domaine de la vision par ordinateur. Plusieurs facteurs tels que les occlusions, l'éclairage et 
les densités d'objets restent des problèmes ouverts pour le MOT. Par conséquent, cette thèse 
propose trois approches MOT qui se distinguent à travers deux propriétés: leur généralité et 
leur efficacité. 
La première approche sélectionne automatiquement les primitives visions les plus fiables pour 
caractériser chaque tracklet dans une scène vidéo. Aucun processus d’apprentissage n'est 
nécessaire, ce qui rend cet algorithme générique et déployable pour une grande variété de 
systèmes de suivi. 
La seconde méthode règle les paramètres de suivi en ligne pour chaque tracklet, en fonction 
de la variation du contexte qui l’entoure. Il n'y a pas de constraintes sur le nombre de 
paramètres de suivi et sur leur dépendance mutuelle. Cependant, on a besoin de données 
d'apprentissage suffisamment représentatives pour rendre cet algorithme générique. 
La troisième approche tire pleinement avantage des primitives visions (définies manuellement 
ou apprises), et des métriques définies sur les tracklets, proposées pour la ré-identification et 
leur adaptation au MOT. L’approche peut fonctionner avec ou sans étape d'apprentissage en 
fonction de la métrique utilisée. 
Les expériences sur trois ensembles de vidéos, MOT2015, MOT2017 et ParkingLot montrent 
que la troisième approche est la plus efficace. L'algorithme MOT le plus approprié peut être 
sélectionné, en fonction de l'application choisie et de la disponibilité de l’ensemble des 
données d'apprentissage. 
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Title: Long term people trackers for video monitoring systems 

 
Abstract 
Multiple Object Tracking (MOT) is an important computer vision task and many MOT issues 
are still unsolved. Factors such as occlusions, illumination, object densities are big challenges 
for MOT. Therefore, this thesis proposes three MOT approaches to handle these challenges. 
The proposed approaches can be distinguished through two properties: their generality and 
their effectiveness. 
The first approach selects automatically the most reliable features to characterize each tracklet 
in a video scene. No training process is needed which makes this algorithm generic and 
deployable within a large variety of tracking frameworks. The second method tunes online 
tracking parameters for each tracklet according to the variation of the tracklet's surrounding 
context. There is no requirement on the number of tunable tracking parameters as well as their 
mutual dependence in the learning process. However, there is a need of training data which 
should be representative enough to make this algorithm generic. The third approach takes full 
advantage of features (hand-crafted and learned features) and tracklet affinity measurements 
proposed for the Re-id task and adapting them to MOT. Framework can work with or without 
training step depending on the tracklet affinity measurement. 
The experiments over three datasets, MOT2015, MOT2017 and ParkingLot show that the third 
approach is the most effective. The first and the third (without training) approaches are the 
most generic while the third approach (with training) necessitates the most supervision. 
Therefore, depending on the application as well as the availability of a training dataset, the 
most appropriate MOT algorithm could be selected. 
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1

INTRODUCTION

A huge amount of data is recorded by video surveillance systems in many different locations

such as airports, hospitals, banks, railway stations, stadiums, streets, supermarkets and even

at domestic environment (see figure 1.1). These evidences shows a worldwide use of these

videos for different applications. The duty of a supervisor of a video surveillance system is to

observe these videos and to quickly focus on abnormal activities taking place in the surveillance

region (see figure 1.2). However, the simultaneous observation and analysis of these videos is

a challenge for the supervisor while ensuring the minimum rate of missing abnormal activities

in real time. Moreover, the observation of many screens for a long period of time reduces

the supervisor’s interest and attention to analyze these videos. Therefore, an automatic video

monitoring system can mitigate these barriers.

A video monitoring system is the automatic and logical analysis of information extracted

from a surveillance video data. Examples of such monitoring systems can be a counter in

each area at supermarkets which could help efficiently managing customer services as well

as promote marketing strategies or a follow-on of patient’s trajectories and hobbies to detect

abnormal activities.

In order to understand the typical building blocks of a video monitoring system, let us

consider the work-flow of an activity recognition system described in figure 1.3. The aim of an

activity recognition system is to automatically label objects, persons and activities in a given

video. As shown in the work-flow, a video monitoring system includes generally different tasks:

object detection, object tracking, object recognition and activity recognition. This thesis studies

a narrow branch of the object tracking task: multi-object tracking (MOT) in a single camera

view.
1



2 Introduction

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Figure 1.1: Illustration of some areas monitored by surveillance cameras. (a) stadium, (b) supermarket,
(c) airport, (d) railway station, (e) street, (f) zoo, (g) ATM corner, (h) home, (i) highway.

1.1 Multi-object tracking (MOT)

Multiple Object Tracking (MOT) plays a crucial role in computer vision applications. The

objective of MOT is to locate multiple objects, maintaining their identities and completing their

individual trajectories in an input video. Targeted tracking objects can be pedestrians or vehicles

on the street, sport players in the court, or a flock of animals in the zoo, patients in heathcare

room, etc. Although different kinds of approaches have been proposed to tackle this problem,

many issues are still unsolved and hence it is an open research area. In the following part, we

list and discuss five main MOT challenges which directly affect to tracking performance and

motivates our researches on this domain.

� Changes in scene illumination: Changes in the scene illumination directly affect the

appearance of an object. They are not only in lighting intensity but also the lighting

direction disturbs can also affect the object’s appearance . For example, the light casting
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different shadows depending on its direction ca a possible scenario. These challenges

due to illumination changes are not only a problem for the detection but also affect the

tracking quality. The detector may fail to segment objects from shadows or may detect

the shadow instead of the object. Further, the object maybe also mis-detected due to low

illumination or low contrast. In these cases, an object trajectory may be segmented into

short trajectories (tracklets). Moreover, the object appearance changes prevent trackers

to find out the invariant information of objects throughout time.

� Changes in object shape and appearance: Objects having linear movement (e.g. cars

on highway, people crossing the street ...) are usually easier to track because of their

consistent appearance. However when the object rotates around itself or the object disap-

peared and comes back to the scene can also considerably change the appearance in the

2D image. In addition, deformable objects, like humans, can greatly vary in shape and

appearance depending on their movements. Shape can be difficult to model with such

variations. In these cases, models based on colour distributions are more reliable and

they can help to localize the object.

� Short-time full or partial occlusions: Short time full occlusions or partial occlusions

occur frequently in real world videos with a high density of moving objects. They can be

caused either by the object itself (hand movements in front of a face), by the surrounding

obstacles (static occlusions) or by neighbouring objects (dynamic occlusions). It is a

difficult task to handle such occlusions because they alter the online learned object model

and they prevent from obtaining a continuous trajectory and may cause the tracker to

drift.

� Background: Complex background, or textured background may have similar patterns

or colours to the object. Due to these factors, the tracker can fail or drift.

� Camera motion: In real-life videos, the moving camera tends to follow the main target

object. However, when the videos are taken by a small consumer camera (like a mobile

phone), we can observe a lot of trembling, and jitters causing and motion blur in the

images or abrupt zooming. Rapid movements of the object can also have similar effects

on the quality of the video.

1.2 Motivations

Tracking approaches from the state-of-the-art have been proposed to improve the tracking

quality by handling above challenges. However, these approaches can face either theoretical or
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Figure 1.2: A video surveillance system control room.

experimental issues. For example, the trackers may have issues to represent an object appear-

ance adapting to the variation of video scenes, the tracker may require an important training

stage which is time-consuming and their setting may depend on many parameters to be tuned.

Furthermore, our researches mainly focus on human tracking because of these three fol-

lowing reasons. Firstly, compared to other conventional objects in computer vision, humans

are challenging objects due to their diversity and non-articulated motion. Secondly, the huge

number of videos of humans illustrate the huge number of practical applications which have a

strong commercial potential. Thirdly, according to our knowledge, humans are objects which

at least 70% of current MOT research efforts are devoted to.

Therefore, the objectives of this thesis is to proposed novel methods which improve multi-

person tracking performance by addressing the mentioned issues.

1.3 Contributions

This thesis brings three contributions, three algorithms to improve tracking performance

by addressing above challenges. All algorithms are categorized as long-term tracking which

try to link short person trajectories (tracklets) which have been wrongly segmented due to full

occlusion or bad quality detection.

Here are described the three proposed long-term multi-person tracking algorithms:

� A robust tracker named Reliable Feature Estimation (RFE) based on an online estima-

tion of tracklet feature reliability. The variation of video scenes can induce changes of

the person’s appearance. These changes often cause the tracking models to drift because
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Object detection Object tracking Object recognition Activity recognition

MOT in a fixed camera view

Single-Object  tracking (VOT) Multi-Object tracking (MOT)

MOT in a moving camera view MOT in a camera network view

Figure 1.3: Illustration of some tasks of video understanding. The first row shows the workflow of a
video monitoring system. The object tracking task is divided into two sub-types: Single-object tracking
and multi-object tracking. The second row shows scenes where the multi-object tracking (MOT) is
performed, including tracking objects from a fixed camera, from a moving camera and from a camera
network, respectively.

their update cannot be able to quickly adapt to these changes. Therefore, we propose a

tracking algorithm which selects automatically reliable tracklet features which discrimi-

nate trackets from each others. The reliable tracklet feature must discriminate a tracklet

with its neighbourhood and pull this tracklet with its corresponding tracklet closer. There

are some advantages of our approach over the state-of-the-art: (1) No training process is

needed which makes this algorithm generic and employable to a large variety of tracking

frameworks. (2) No prior knowledge information is required (e.g. no calibration and no

scene models are needed).

� A new mechanism named Context-based Parameter Tuning (CPT) for tuning online

tracking parameters to adapt the tracker to the variation of neighborhood of each

tracklet. Two video scenes may have the same person density, occlusion level or illumina-

tion, but appearance of persons in the scene may not be the same. Therefore, utilizing the

same tracking settings for all persons in the video can be inefficient to discriminate per-

sons. In order to solve this issue, we proposed a new method to tune tracking parameters

for each tracklet independently instead of globally share parameters for all tracklets. The

offline learning step consists of building a database of tracklet representations together

with their best tracking parameter set. In the online phase, the tracking parameters of

each tracklet are obtained by retrieving the representation of the current tracklet with its

closest learned tracklet representation from the database. In the offline phase, there is no
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restriction on the number of tracking parameters as well as their mutual independence

within the process of learning the optimal tracking parameters for each tracklet. However,

there is a requirement on the training data which should be diverse enough to make this

algorithm generic.

� A tracking algorithm named Re-id Based Tracker (RBT) adapting features and meth-

ods is proposed for person Re-identification in multi-person tracking. The algorithm

takes full advantages of features (including hand-crafted and learned features) and meth-

ods proposed for re-identification and adapt them to online MOT. In order to represent a

tracklet with hand-crafted features, each tracklet is represented by a set of multi-modal

feature distributions modeled by GMMs to identify the invariant person appearance fea-

tures across different video scenes. We also learn effective features using Deep learning

(CNN) algorithm. Taking advantage of a learned Mahalanobis metric between tracklet

representations, occlusions and mis-detections are handled by a tracklet bipartite associa-

tion method. This algorithm contributes to two scientific points: (1) tracklet features pro-

posed for Re-identification (LOMO, MCSH, CNN) are reliably adapted to MOT, (2) offline

Re-identification metric learning methods are extended to online multi-person tracking.

The metric learning process can be implemented fully offline or as a batch mode. How-

ever, learning the Mahalanobis metric in the offline training step requires the training and

testing data should be similar. In order to make this algorithm become generic, instead

of using hand-crafted features, we represent a tracklet by CNN feature extracted from a

pre-trained CNN model. Then, we associate the CNN feature-person representation with

Euclidean distance into a comprehensive framework which works fully online.

1.4 Thesis structure

This manuscript is organized as follows:

� Chapter 2 presents the literature review of Multi-object tracking (MOT). It focuses on

categorizing the state-of-the-art MOT algorithms and MOT models as well as MOT trends.

� Chapter 3 presents definitions, pre-post processing functions and MOT evaluation method

which are used by the proposed approaches described in upcoming chapters.

� Chapter 4 details a new multi-person tracking approach named RFE which keeps per-

son IDs by selecting automatically reliable features to discriminate tracklets (defined as

short person trajectories in chapter 3) in a particular video scene. No training process is

required in this approach.
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� Chapter 5 presents a framework named CPT which online tunes tracking parameters to

adapt a tracker to the change of video segments. Instead of tuning parameters for all

tracklets in a video, the proposed method tunes tracking parameters for each tracklet.

The best satisfactory tracking parameters are selected for each tracklet based on a learned

offline database.

� Chapter 6 presents a framework named RBT which extends the features (han-crafted or

CNN features) and tracklet affinity computation methods designed for the people Re-id

task (working in an offline mode) to online multi-person tracking.

� Chapter 7 is dedicated to the experimentation which evaluates and compares the pro-

posed approaches to each other as well as to the state-of-the-art trackers. The results not

only highlight the robustness of the proposed approaches on several benchmark datasets

but also figure out elements affecting the tracking performance.

� Chapter 8 presents the concluding remarks and limitations of the thesis contributions.

Thanks to this, future work is given out to address these limitations and to improve the

performance of proposed approaches.
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2

MULTI-OBJECT TRACKING, A
LITERATURE OVERVIEW

Multiple Object Tracking (MOT) is an important task in the pipeline of video monitoring

system. Different kinds of approaches have been proposed to tackle the MOT challenges such as

abrupt object appearance changes, occlusions or illumination variations, however, these issues

have been unsolved yet. With the purpose of deeply understanding this topic as well as clearly

presenting our proposed approaches, in this chapter, we endeavor to review challenges, trends

and researches related to this topic in the last decades.

A part of this review first focuses on MOT algorithm categorization and MOT models based

on the overview in [66]. Then, we discuss in detail about drawbacks of MOT models, trends

of the state-of-the-art trackers to address MOT problems. Based on this analysis, we propose

methods to enhance tracking performance. The structure of this chapter is organized as follows:

Section 2.1 categorizes the MOT algorithms from the state-of-the-art based on their processing

modes. Section 2.2 examines a list of MOT models categorized into two parts: observation

model and association model where observation models focus on the object representation

and their affinity; and association models dynamically investigate the matching mechanisms of

objects across frames. Trends of MOT tracking algorithms from the state-of-the-art as well as

their limitations is revealed in section 2.3. Finally, section 2.4 briefly describes our proposals

beyond the limitations of the state-of-the-art trackers to enhance MOT performance.
9
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Figure 2.1: Illustration of online and offline tracking. Video is segmented into N video chunks.

2.1 MOT categorization

According to the way of processing data, MOT algorithms could be categorized into online

or offline tracking. The difference is how the object detections are utilized when handling the

tracking in the current frame. Online tracking utilizes detections up to the current frame or

current video chunk to conduct the estimation, while offline tracking employs object detections

in the whole video. In this part, we will analyze and compare online and offline tracking in

some aspects such as required input, methodology, advantages as well as disadvantages of each

method.

2.1.1 Online tracking

Online tracking methods associate object detections in the current frame [84, 95] or be-

tween tracklets in a short video chunk [8, 79]. If online tracking utilizes object detection up

to the current frame, we categorize it as short-term tracking. Otherwise, we categorize it as

long-term tracking. Online tracking algorithms commonly use bipartite matching methods for

data association where Hungarian algorithm is the most popular method. These methods are

capable of online processing based on frame-to-frame association or with a acceptable latency

if detections in a short time-window are achieved in advance. Therefore, they could be applied

in online processing applications. Although these methods are less computationally expensive,

identifying objects could fail due to inaccurate detections (false positives) and online tracking

algorithms can only deal with short-term occlusions.

2.1.2 Offline tracking

Offline tracking consists of algorithms where object observations (detection or tracklet - a

short object trajectory) in video or image sequence are obtained in advance. These algorithms
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Items Online Tracking Offline Tracking

Required input up-to-current detections all detections of the whole video

Methodology
- gradually extends existing trajectories

with current detections

- bipartite graph optimization

- links detections in the whole video

into object trajectories

- global optimization

Advantages
- suitable for online tasks

- less expensive computation cost
- can recover long-term occlusions

Disadvantages - recovers only short-term occlusions

- delays in outputting final results

- huge computation cost

- pre-requirement for all object

detections in the whole video

- huge search space for global

optimization

Table 2.1: The comparison of online and offline tracking.

can overcome the shortcomings of online trackers by extension of a bipartite matching into a

network flow. The direct acrylic graph in [127] is formed with vertices corresponding to ob-

ject detection or to tracklets and edges corresponding to the similarity links between vertices.

In [90], a track of a person forms a clique and MOT is formulated as a constraint maximum

weight clique graph. The data association solutions for these offline tracker are found through

minimum-cost flow algorithm. However, offline tracking methods also have their obvious draw-

backs, such as: their huge computational cost due to iterative association process to generate

globally optimized tracks and their pre-requirement for entire object detection in a given video.

Figure 2.1 illustrates the difference between online and offline tracking algorithms. To be

clearer, we compare them in Table 2.1.

2.2 MOT models

MOT is composed of two primary components: observation model and association model.

Observation models represent object observations (detection, tracklet) and measures the sim-

ilarity between two object observations (detection - detection, tracklet - detection, tracklet -

tracklet). Association models dynamically investigate the matching mechanisms of object ob-

servations across frames. In this section, we present and discuss both models in details.
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2.2.1 Observation model

An observation models are categorized into appearance, motion, exclusion and occlusion

handling models. Types of observation models are discussed in details in this part but this

manuscript focuses more on the appearance model which presents the most important infor-

mation for object affinity computation in MOT.

2.2.1.1 Appearance model

Almost of the recent trackers pay their attention to represent the object appearance for

affinity measurement in MOT. Different from visual object tracking (VOT) which focuses on

constructing an object representation to discriminate the target from background, MOT need to

discriminate targets from each other. Therefore, beside building representations for objects, the

appearance model for MOT measures the affinity or the discrimination power between objects.

Appearance model includes two components, visual representation and statistical measurement.
Visual representation describes the visual characteristics of the target based on features while

statistic measurement computes the affinity or the discrimination power between two object

representations. In the following, we first discuss about features, then describe the appearance

model categories.

2.2.1.1.1 Features

Figure 2.2 shows seven types of object features which have been deployed in MOT. In this

section, we describe these features as well as the purposes of using these features in MOT as

following.

� Point-based features are features extracted from points-of-interest which bring meaning-

ful object information. Point-based features are not only efficiently utilized for VOT [94]

but also are helpful for MOT. For instance, KLT tracker is employed to track feature points

and generates a set of trajectories or short tracklets [99, 51]. KLT features [103] are uti-

lized by [12] to estimate object motion. Similarly, point-based features are also employed

by [17] for motion clustering.

� Color-based features: These are the most visual and popular features which are utilized

for MOT. Based on kinds of color-based features, color intensities of object are extracted

and presented under different ways. Color histogram is used by [90, 7, 28, 98, 38].

The simple raw pixel template is employed by [114] to compute the appearance affinity.

The color-based features along with a measurement are usually employed to calculate the

affinity between two object observations (detection-detection, detection-tracklet, tracklet-

tracklet).
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(g)

Input layer

output layer

Figure 2.2: Different kinds of features have been designed in MOT. (a) Optical flow, (b) Covariance
matrix, (c) Point features, (d) Gradient based features, (e) Depth features, (f) Color histogram, (g) Deep
features.

� Optical flow is composed by trajectories of object’s point-of-interest. The optical flow

feature can be employed to conduct short-term VOT. Thus many solutions proposed for

MOT utilize optical flow to link detections from consecutive frames into tracklets for fur-

ther data association processing [89] in long-term tracking. Optical flow is also employed

to complement HOG for observation model [2]. Additionally, optical flow is popular in

extremely crowded scenarios for discovering crowd motion patterns, object movement

thanks to flow clustering [67, 88].

� Gradient-based features: An image gradient is a directional change in the intensity or

color in an image. There are some features based on gradient proposed to characterize

objects in MOT. For example, authors in [76] utilize a variation of the level-set formula,

which integrates three terms: penalizing the deviation between foreground and back-

ground, an embedding function from a signed distance function and the length of the

contour to track objects in frames. Besides the success in object detection, HOG [26]

plays a vital role in the multiple object tracking problem as well. For instance, HOG is

employed in [38, 53, 24] to detect objects and/or to compute similarity between human

detections for data association.

� Region covariance matrix features: Region covariance matrix features [104] are robust

to issues such as illumination changes, scale variations, etc. Therefore, it is also employed

for the MOT problem. In [5, 40], the region covariance matrix based similarity is used

to compare appearance for data association. In different ways, covariance matrices along

with other features constitute the feature pool for appearance learning in [53, 42] to
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represent object for both single and multiple object tracking.

� Depth features: Depth information is employed for various computer vision tasks. These

features are directly extracted from 3D-camera data or indirectly via a projection on dif-

ferent 2D-camera views. With regard to MOT, authors in [76] utilize depth information

to correct bounding box of object detection and re-initialize the bounding box for track-

ing. Authors in [30] employ depth information to obtain more accurate object detections

in a mobile vision system and then use the detection result for multiple object tracking.

Besides that, method in [35] integrates depth to generate detections and consequently

verify their consistency for multiple object tracking from a moving car.

� Deep features With the success of deep learning in solving classification problems, more

and more trackers such as [109, 125, 92] extract deep appearance features to describe

objects and obtain significantly higher performance in both online and offline setting.

The extracted deep appearance features are feature vectors obtained from convolution

layers in deep networks. Different layers encode different types of features. Higher lay-

ers capture semantic concepts on object categories, whereas lower layers encode more

discriminative features to capture intra class variation.

To sum up, above mentioned features work efficiently in particular cases. However, beside

their advantages, there still exist shortcomings. For example, color-based histogram enables to

compute effectively the similarity of two object observations, but it ignores the spatial layout

of object regions. Gradient-based features like HOG can describe the shape of object and are

robust to illumination changes but they are less effective in handling occlusion and deforma-

tion. Region covariance matrix features obtain useful information on object, but they bear a

high computation cost. Depth features add extra information on objects to get more accurate

measures in affinity computation, but they require depth information (captured by 3D cameras)

or multiple views of the same scene and additional matching algorithm. Deep features give a

diverse information of objects depending on the results of convolution layers. However, choos-

ing effective information from which layers is depended on videos and deep features require

high training costs. Therefore, single feature selection and combination for MOT depends on

the requirement of the applications and are still a challenge.

2.2.1.1.2 Appearance model categories

We categorize appearance models based on how the state-of-the-art trackers use these fea-

tures to represent object appearance into two types: Single feature based appearance model and

multiple feature based appearance model.
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a. Single feature based appearance model

Utilizing a single feature is a popular option of appearance model in MOT because of its

simplicity and efficiency. In the following, we present four ways to build a single feature based

appearance model.

� Raw pixel template representation: The raw pixel template representation collects the

raw pixel intensity or color of a region. Beside that, it can encode the spatial informa-

tion. Because of its simplicity and usefulness, some methods use this appearance model

when matching two templates. In particular, Yamaguchi et al.[114] employ the Normal-

ized Cross Correlation (NCC) to evaluate the predicted position of objects. The method

proposed in [1] computes the appearance affinity as the NCC between the object tem-

plate and a candidate bounding box. Wu et al.[112] build a network-flow approach to

handle multiple target tracking at each time instant. In this approach, MOT is presented

as a network with flows as transitional costs between object observations. These costs are

computed by NCC between upper one-fourth bounding-box of object observation pairs.

Despite of discussed efficiency, this kind of representation easily suffers from the change

of illumination, occlusion or some other issues.

� Color histogram representation: Color histogram is the most popular representation

for appearance modeling in MOT approaches. Authors in [51] design a color histogram

model [82] to calculate the matching likelihood in terms of appearance, and they use an

exponential function to transform the histogram distance into probability. In addition,

to capture the similarity, authors in [99] use the Bhattacharyya distance between hue-

saturation color histograms when constructing a graph. Appearance model is defined as

the RGB color histogram of a trajectory by Leibe et al.[60]. It is initialized as the first

detection’s color histogram and evolves as a weighted mean of all the detections which

belong to this trajectory. The likelihood considering appearance is proportional to the

Bhattacharyya coefficient of two histograms. Affinity regarding appearance is obtained

by calculating the Bhattacharyya distance between the average HSV color histograms

of the concerned tracklets [85]. Though color histogram representation is powerful in

capturing the statistical information of target region, it has the drawback of losing spatial

information.

� Covariance matrix representation: Covariance matrix is robust to illumination change,

rotation, etc. The covariance matrix descriptor is employed to represent the appearance

of an object by Henriques et al.[40]. Then, the likelihood of appearance to link two object

regions is modeled as a Gaussian distribution. In [42], an object region is divided into

blocks. Within each block, the covariance matrix is extracted as the region descriptor to

characterize the block. At the same time, likelihood of each block of this object region is
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computed with regard to the corresponding block of the counterpart, and likelihood of

the whole region is the product of the likelihood of all blocks.

� Bag of words representation: Clusters of local image features are treated as words. In

computer vision, a bag of words is a vector of occurrence vocabularies of clusters of local

image features. Fast dense SIFT-like features ([65]) are computed by Yang et al.[119]

and encoded based on the bag-of-word model. In this model, each image is represented

as a collection of vectors of the same dimension and the order of different vectors is of

no importance. Therefore, if spatial information is needed, the spatial pyramid matching

(SPM) method proposed in [56] is applied. This is used as an observation model for

appearance modeling.

b. Multiple feature based appearance model Although a single feature based appearance

model is simple and efficient, this model is not effective enough to characterize object in com-

plex videos. Therefore, gathering different kinds of features would make appearance model

robust. However, how to combine the information from multiple features could be an issue. We

present four types of mechanisms to build multiple feature based appearance models:

� Boosting: The strategy of Boosting usually selects a subset of features from a feature pool

sequentially via a Boosting based algorithm (e.g. Adaboost by Kuo et al.[50] and Real-

Boost by Yang and Nevatia [118]). Features are selected according to their discrimination

power. A discriminative appearance model proposed by [50] assigns high similarity to

tracklets which are of the same target, but low affinity to tracklets of different targets.

This model is composed of color histogram in RGB space, HOG and covariance matrix de-

scriptor as features, applied in 15 regions, so that they have 45 cues in total in the feature

pool. Collecting positive and negative training pairs according to the spatial-temporal

constraints, they employ Adaboost to choose the most representative features to discrim-

inate pairs of tracklets belonging to the same object from those belonging to different

objects. A HybridBoost algorithm is proposed by Li et al. [61] to automatically select

features with maximum discrimination. This algorithm employs a hybrid loss function

composed of a classification term and a ranking term. Correct tracklet associations are

set to the higher ranks and wrong associations are dismissed by the classification.

� Concatenating: Brendel et al.[16] trains a SVM model classifier to distinguish a specific

target from targets in its temporal window. To describe a target, features including color,

HOG and optical flow are concatenated and further processed with Principal Component

Analysis (PCA) projection for dimension reduction. The similarity S between two object

observations is computed by Mahalanobis distance as follow:

S = exp(−( f − f ′)T M ( f − f ′)) (2.1)
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where M is the Mahalanobis distance metric matrix which is learned online. f and f ′ are

concatenated features of two object observations.

� Summation: More than one features are gathered to represented the object appearance

model. If each single feature is used to compute a matching by a probability, some state-

of-the-art trackers [13, 64] present the appearance model of an object Oi as a matching

probability which is the weighted summation of single-feature probability Pk
i as follows:

Pi =

∑N
k wk × Pk

i∑N
k wk

(2.2)

where k is feature index, N is the number of features and wk is the weight to balance

single features.

� Product: In a similar way, the short-term tracker in [119] integrates multiple features

including color, shapes and local features to calculate the likelihood linking a new de-

tection with an existing trajectory. The approach in [98] multiples the color histogram

likelihood and depth likelihood as the final likelihood to compose the appearance model.

These methods share the following similar formula:

P( f 1, f 2.. f k |s) =
N∏
k=1

P( f k |s) (2.3)

where N is the number of features, P( f 1, f 2.. f k |s) is the likelihood linking a detection

with a trajectory s and f k is feature k.

In general, each combination method has its own limitations. The limitations of boost-

ing strategies are time consuming, hardly implementable in real-time platform and increasing

the complexity of the classification. The concatenating method requires an important pre-

processing step to normalize the dimension of features. Computing the weight in the summa-

tion method is a challenge when the video condition changes affect directly to single-feature

reliability. The product method treats single-features with equal roles which is limited the dis-

criminative power of single-features. Therefore, selecting which combination method to gather

single-features to represent object depends on the requirement of MOT applications.

2.2.1.2 Motion model

The second popular model that the state-of-the-art trackers use to represent objects is the

motion model. Object motion model describes the movement of an object. It is important for

MOT since it can reduce search space by predicting the potential position of objects in the future
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Figure 2.3: Illustration of linear motion model presented in [113] where T standing for Target, p stand-
ing for Position, v standing for Velocity of the target.

frames. Motion models employed in MOT are generally divided into the following two classes:

Linear and non-linear motion models.

Linear motion models: These models are designed for targets assumed to move with con-

stant velocity. This is the most popular model of pedestrian or vehicle movements which are

smooth in video scenes (abrupt motions are a special case). The velocity of object in the next

frame is the same as the current velocity and is drawn by some types of distribution.

A constant velocity models, including forward velocity and backward velocity is computed

simultaneously by [113] to calculate the motion affinity of two tracklets. The illustration of this

linear motion model is shown in figure 2.3. Each velocity model is represented by a Gaussian

distribution. Assuming that the last position of target Ti appears earlier than the first position

of target Tj . The forward velocity distribution is centered on pheadj - the head position of target

T˙j: G(phead
j , ΣBj ). It estimates the probability of the position of ptail

i to reach phead
j with a

forward displacement of tracklet Ti presented by vFi ∆t. The backward velocity distribution is

centered on ptail
i - the tail position of tracklet Ti: G(ptail

i , ΣFi ). It calculates the probability of

position phead
j backward to ptail

i with the backward replacement of Tj presented by vBj ∆t.

Pm(Ti,Tj ) = N (ptail
i + vFi ∆t; phead

j , ΣBj ) ∗ N (phead
j + vBj ∆t; ptail

i , ΣFi ) (2.4)

the motion model in [3, 73] is also a constant velocity model. In loss function for matching

objects, the optimization term which considers differences between the velocities of one object

in different time instants, is formulated as follows:

Om =

N∑
t=1

M∑
i=1

‖vti − vt+1
i ‖2 (2.5)

where vti is the velocity of object i at time t. It is computed as the displacement between

object positions in two consecutive frames. The first summation takes all the N frames into

account and the second summation counts all the M trajectories/objects. Intuitively, this term

penalizes the difference between velocities and forces object trajectories to be smooth.
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Non-linear motion models: Commonly, the movement of objects, especially pedestrian,

can be modeled by linear motion models. However, as shown in figure 2.4, there are often

non-linear motion patterns in a scene. Therefore, non-linear motion models are proposed to

represent more accurately a tracklet motion. The figure 2.5 illustrates the linear as well as non-

linear motion models in the same scenario. The red and orange lines represent linear motion

estimation while the blue line describes the non-linear motion model proposed by [116]. The

authors online learn a non-linear motion map M which is defined as a set of tracklets that

include confident non-linear motion patterns. As shown in figure 2.5, the tracklet T0 is a support

tracklet , T0 ∈ M, to explain the motion link between T1 and T2 because there exist elements

{(pi, si, vi)} in T0 which are matched with the last position of T1 and the first position of T2. p, s

and v are position, size and velocity of each pattern in map M, respectively. Then the real path

to link T1 and T2 is estimated based on T0. In order to compute the motion affinity between

two tracklets, the authors also use the method formulated by equation 2.4, but based on the

non-linear motion positions.

Non-linear motion models can accurately represent non-lear motions of a target. However,

targets can share the same motion pattern or a target can fit into more than one motion pattern.

These cases confuse MOT algorithms to discriminate targets. Therefore, almost the state-of-the-

art trackers [3, 73, 116, 113] use motion models as the additional information to characterize

objects in a video scene.

2.2.1.3 Exclusion model

Exclusion is a constraint when solving MOT problem due to physical collisions. There are

generally two constraints to be applied on multiple detections and trajectories. The first one is

the so-called detection-level exclusion (i.e., two different detections in the same frame cannot

be assigned to an identical trajectory). The second one is the so-called trajectory-level exclusion

( i.e., two trajectories cannot share an identical detection). The detail of both constraints is

presented as follows.

Detection-level exclusion

The detection-level exclusion is modeled as a constraint to penalize physical collisions

among detections. The approach in [74] forces that two objects appearing in the same frame

have to keep different identities. Similarly, authors in [52] employ label propagation for multi-

ple object tracking. To model exclusion, a special exclusion graph is constructed to capture the

constraint that detections with the same time stamp (occurring at the same time) should have

different labels.

In different ways, exclusion is modeled as an extra constraint in the objective function of

network flow in [18]. Let the detections at frame k be Ok = {ok1, ..., o
k
Mk
} . Given detections in

two consecutive frames as Ok and Ok+1 , one detection from Ok and another detection from
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Figure 2.4: Illustration of non-linear movements

Figure 2.5: Illustration of non-linear motion model in [116]

Ok+1 can form a match. Based on all matches between these two frames, a graph is constructed

as G = (V, E), where each node in G is a pair of detections and each edge belonging to E

represents flow in the graph, where flow 1 means linkable and 0 means not. Conflict edges are

represented as Econf lict . Recalling the constraint that one detection should only be occupied by

no more than one trajectory, the flow through edge in Econf lict is constrained to be at most 1.

Trajectory-level exclusion

Trajectory-level exclusion is defined as a constraint applied on tracklets or trajectories. In

approach [7], authors define two constraints named ”must-link” and ”cannot-link” between

two tracklets to create exceptions in the clustering algorithm and guarantee the integrity of the

proposed algorithm. With ”must-link” constraint, two tracklets that were merged at time t − 1

stay merged at time t. The cannot-link constraint provides spatio-temporal constraints based

on the camera network. For a single camera, two tracklets appearing on the same frame cannot

belong to the same object. The object cannot appear on two non-overlaping cameras at the
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same time.

In approach [74], the authors also penalize the case when two close trajectories Tri and

Trj have different labels. The penalty is proportional to the spatial-temporal overlap between

Tri and Trj . The closer the two trajectories, the higher penalty it is. Similarly, authors in [3]

model the exclusion as an additional cost term to penalize the case when two trajectories are

very close to each other. The cost is reversely proportional to the minimum distance between the

trajectories in their temporal overlap. By doing so, one of the trajectory would be abandoned

to avoid the collision.

2.2.1.4 Occlusion handling model

Occlusion is a big challenge to MOT algorithms. It could lead to ID switch or fragmentation

of trajectories. In the literature, various kinds of strategies have been proposed in order to

handle occlusion. These strategies are categorized into three following types.

Part-to-whole

This strategy is the most popular one for occlusion handling. It assumes that, part of the

object is still visible when occlusion happens, even the complete occlusion still begins with

partial occlusion. This assumption allows trackers to utilize the visible part to infer state of the

whole object. In [42], an object region is divided into multiple non-overlapped blocks. For each

block, an appearance model based on subspace learning is constructed. Likelihood is computed

according to reconstruction error in the subspace corresponding to each block. In order to

deal with occlusion along with the task of recovering occlusion relationship among objects,

the occlusion handing model solves the occlusion problem in tracking in two aspects. Firstly,

spatial information is considered as the likelihood of an object region which is the product of

likelihood of all its blocks. Secondly, an occlusion map is obtained according to reconstruction

errors of all blocks. Then, this occlusion map is utilized to reason on the occlusion relationship

among objects.

Part based model is also applied in [38] as a multi-person multi-part tracker. Human body is

divided into individual body parts. In the next step, the whole human body and individual body

parts are tracked in parallel. The final trajectory estimation is obtained by jointly association

between the whole human body and the individual human body parts. Figure 2.6 shows how

the part based model handles occlusion. The pedestrian is occluded from frame 47 to frame

134. During this period, the whole-body human detector would be confused. However, thanks

to the detected visible parts, trajectories of visible parts are estimated. Furthermore, along with

the trajectory of the whole body, the complete trajectory is recovered.

Tracking based on appearance information may fail when occlusion happens. In a differ-

ent way shown in [99] motion of feature points in visible parts is also applicable to address

occlusion.
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Figure 2.6: An illustration of occlusion handling by the part based model.

Hypothesize-and-test

This strategy solves occlusion challenges by hypothesizing proposals and testing the propos-

als according to observations achieved after occlusions.

The long-term tracker proposed in [127] builds a cost-flow framework for each time-window.

In order to handle long-term occlusion, increasing the size of time-window is needed. How-

ever, it also increases the search space of global optimization. In order to reduce the number of

ambiguous objects which are occludable, an Explicit Occlusion Model (EOM) is proposed and

integrated into the cost-flow framework. Occlusion hypotheses are generated based on the oc-

clusion constraints that two object observations are occludable if and only if their distance and

scale difference are small enough. Assuming oi is occluded by oj , a corresponding occlusion

hypothesis is Oji = (pj, si, f i, tj ), where pj and tj are the position and the time stamp of oj , and si
and f i are the size and appearance features of oi. Along with the original observations (track-

lets), all the observations are given as input to the cost-flow framework and MAP is conducted

to obtain the optimal solution.

Buffer-and-recover

This model allows trackers to overcome full occlusion problem. In this strategy, states of

object before occlusion are remembered and buffered. When occlusion ends, object states are

recovered based on the buffered information.

The approach proposed in [75] combines a level-set tracker based on image segmentation

and a high-level tracker based on detection for MOT. In their approach, the high-level tracker

is employed to initialize new tracks from detection and the level-set tracker is used to tackle

the frame-to-frame data association. When occlusion occurs, the level-set tracker would fail.

To tackle this, the high-level tracker keeps a trajectory alive for up to 15 frames when occlusion

happens. In case the object reappears, thanks to buffered object information, the object identity

is maintained and object trajectory is recovered by an extrapolation mechanism.

Similarly, in order to handle occlusion, approaches [80, 79] keep tracklet information in a
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buffer of two time-windows. Every full occlusions appearing in this two time-windows may be

recovered when the distance of buffered tracklets before occlusion and tracklets reappearing

after occlusion is close enough.

Occlusion is the biggest challenge of MOT because of two reasons. Firstly, occlusion makes

the object appearance changes or invisible to trackers. Secondly, trackers becomes hard to de-

fine whether object trajectory is end. These discussed occlusion handling models prove their ef-

fectiveness in MOT, however, they still exist some limitations. For example, part-to-whole mod-

els face to alignment problems, the performance of hypothesis-and-test and buffer-and-recover
models directly depends on the object representation. Therefore, by extending object features

proposed for Re-identification such as LOMO, MCSH in [77, 63, 126] to MOT, the MOT algo-

rithms could make a stable object representation against object appearance changes caused by

occlusion.

2.2.2 Association model

Association model dynamically investigates state transition of objects across frames. Based

on the method to obtain the states of objects, it can be classified into probabilistic inference and

deterministic optimization methods.

2.2.2.1 Probabilistic inference

Object tracking can be viewed as the probabilistic estimation or prediction of the future state

of an object (size, position and velocity). MOT approaches based on probabilistic inference

model typically investigate the states of objects with a probabilistic distribution. Based on the

existing observations of objects, this method estimates the probabilistic distribution of objects’

states to identity objects in each frame. The two most common probabilistic methods used for

tracking: the Kalman filter and the Particle Filter.

Probabilistic inference based methods estimate the new state of objects relying on only ex-

isting observations, thus they are especially appropriate for online tracking. However, efficient,

probabilistic methods can face to issues such as a high computation cost, especially in models

with a large number of parameters, and in selecting a prior to avoid misleading results. In

the next section, we mainly focus on presenting deterministic optimization model which can

overcome those limitations of probabilistic inference models.

2.2.2.2 Deterministic optimization

Different to the probabilistic inference models which estimate or predict the future states of

an object, the task of deterministic optimization model in MOT is to define the best matches of

obtained object observations via their similarity. The MOT problem is cast as a data association
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optimization problem. If object observations are available at the current time instant (detec-

tions) or video chunk (detections and tracklets), the data association is processed in every frame

or video chunk. We define this type of data association as local data association which is mostly

employed in online tracking. Inversely. if object observations from all frames are obtained, the

data association is applied for all object observations in the video. We categorize this type of

data association as global data association which is suitable for offline tracking.

2.2.2.2.1 Local data association

Online tracking associates detections at the current frame with the most matching tracked

objects [84, 95] or between tracklets in a video chunk [8, 79]. In order to match object ob-

servations, a local data association - Bipartite Graph Matching technique is the most popular

method - is employed.

Bipartite Graph Matching: By modeling the MOT problem as Bipartite Graph Matching, two

disjoint sets of graph nodes are defined, such as existing trajectories and new detections or two

sets of tracklets in a video chunk. Weights among nodes are modeled as affinities among object

observations. Then, greedy bipartite assignment algorithm [96, 15] or Hungarian algorithm

[86, 87, 84, 95, 8, 79] are employed to derive the optimal matches between nodes in both sets.

2.2.2.2.2 Global data association

The global data association compute all matching abilities among obtained object observa-

tions in the video. To seek the optimal association, MOT problem is often defined as a flow or

a graph where detections or tracklets are vertexes of the graph and the edges illustrate the link

ability between two vertexes. The global data association method is popularly applied to the

task of offline tracking. Some well-studied global data association approaches are detailed in

the following.

Min-cost Max-flow Network Flow. The data association in the MOT problem is represented

by a network flow where nodes in the graph for network flow are detections or tracklets. The

flow is usually modeled as an indicator to link two nodes (flow is 1) or not (flow is 0). To

meet the flow balance requirement, a source node and a sink node corresponding to the start

and the end of a trajectory, respectively, are added to the original graph (see Figure 2.7). One

trajectory corresponds to one flow path in the graph from the source node to the sink node.

The cost to transit the flow from the source node to the sink node is the neg-likelihood of all

the associations belonging to this flow. This model is adopted by several tracking approaches

[24, 112, 18] to solve the MOT problem.

Conditional Random Field. Approaches including [118, 117, 74, 39] solve MOT problem

by using a Conditional Random Field model. In this model, MOT task is represented by a graph
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Figure 2.7: A cost-flow network with 3 timesteps and 9 observations [127]

G = (V, E) where V is the set of vertices and E is the set of edges between vertices. The input of

the graph is the tracklets. Each node in the graph is defined as a pair of tracklets, and a label is

predicted to indicate the link ability of this pair of tracklets (flow is 1) or not (flow is 0). A label

map is built up by these labels. Optimizing the label map can achive the optimal association of

the tracklets for the MOT problem.

To sum up, with the help of global information, the deterministic optimization model could

address occlusion and recover mis-detection better than the probability inference model. How-

ever, approaches based on deterministic optimization face problems such as more time process-

ing and the optimization space. Additionally, with global data association, the requirement of

access to all frames in advance prevents online applications.

2.3 Trends in MOT

The previous section discusses advantages and limitations of MOT models. Beyond this

analysis, we turn our attention to the main trends in the MOT literature that trackers follow to

trade-off the limitations of each MOT model. From the state-of-the-art, we can see that recent
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trackers address MOT problems with only one or a combination of three following trends.

2.3.1 Data association

Before 2015, the MOT community mainly paid attention on finding strong, preferably glob-

ally optimal methods to handle the data association problem. The MOT problem was often

cast as a graphical model and solved with k-shortest paths in [83], as a Linear program solved

with the simplex algorithm in [59], as a Conditional Random Field in [71, 39] or as a Bayesian

model as in [10]. The pairwise costs for matching two object observations (detection-detection,

detection-tracklet, tracklet-tracklet) were based on either simple distances or matching proba-

bilities.

2.3.2 Affinity and appearance

Recently, the attention shifted towards finding strong appearance cues to characterize ob-

jects. The impact of this trend is an increase in tracking performance and the ability for track-

ers to handle more complex scenarios. The top performance methods use sparse appearance

models in [32] and integral channel feature appearance models in [46] to enhance object ob-

servation affinity. Deep learning base trackers which use deep networks as feature extractors

or model data association as CNN classification also have an impact on tracking performance.

Because of the power as well as the current strong interest, we spend the next subsection to

discuss about some recent deep learning based trackers.

2.3.3 Deep learning

A deep neural network usually works in a standalone mode for most of computer vision

tasks, such as image classification, object recognition and detection. The input and output of

the deep neural network in this mode are a sample and a predicted label respectively. However,

for object tracking, the objective is to estimate the similarity between a target and its candidates

(i.e new detections) to decide whether they belong to the same object. The end-to-end training

mode (”sample → label”) used by deep neural network is not applicable to object tracking.

Therefore, deep-learning based object tracking algorithms switch the traditional deep neural

network to work in the another training mechanism, called ”sample pair→ similarity”.

Recently, deep neural networks have been widely employed to deal with the Visual Ob-

ject Tracking (VOT) problem. Authors in [102] proposed a deep architecture containing three

networks, a Feature Net, a Temporal Net and a Spatial Net. The Feature Net extracts gen-

eral feature representation of the target from three convolution layers borrowed from VGGNet.

Based on the feature representation, the Temporal Net builds a historical sample tuple by col-

lecting key samples of target trajectory by L1-induced dictionary learning and sparse coding.
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This tuple is updated incrementally. The input of the fully connected layer of Temporal Net is

the learned tuple and the candidate regions in the current frames. Then, this network outputs

the similarity between the current candidate regions and this historical sample tuple. Finally,

the Spatial Net learns a spatial response via three convolutional layer combination to refine the

estimated position. In another way, the proposed framework in [108] tracks a target via two

layer deep network. The top layer encodes more semantic features and serves as a category

detector. The lower layer carries more discriminative information and can better separates the

target from distracters with similar appearance. The output of each layer is foreground heat

map which is initialized in the first frame and updated online via a regression strategy. Finally,

the target localization is first performed on the heat map produced by the top layer. If distractor

is detected, the heat map of lower layer is utilized.

From state of the art, deep learning methods are also effectively applicable to multi-object

tracking (MOT). Authors in [107] propose a novel and efficient way to obtain discriminative

appearance-based tracklet affinity models. In this framework, each sample pair is passed to

a Siamese CNN including two sub-CNNs to extract the feature vectors. Then, based on the

feature vectors obtained from the last layer of both sub-CNNs in each video segment, temporally

constrained metrics are learned online to update the appearance-based tracklet affinity model.

Finally, MOT problem is formulated as a Generalized Linear Assignment (GLA) problem which

is solved by the soft-assignment algorithm. Recently, another robust RNN-based multi-object

tracker [92] has been proposed which outperforms previous works on most recent datasets

including the challenging MOT benchmark. This method builds multiple-RNN models that

learns to encode long-term temporal dependencies across multiple cue (appearance (A), motion

(M) and interaction (I)). The output of each RNN model (represents the object in each cue) is

a feature vector concatenated by 2 sub-feature vectors (same dimension). One sub-feature

vector is extracted from a LSTM network which encodes long-term dependencies of object

observations belonging to target trajectory. The other one is the result of RNN fully connected

layer when passing directly the detection they wish to compare to the network. Finally, the final

RNN is jointly trained end-to-end with the RNNs according to A, M and I cues by concatenating

single feature vectors and outputting the score of whether a detection corresponds to a target

using Soft-max classifier and cross-entropy loss.

2.4 Proposals

Based on the literature review, in this manuscript, we proposed three MOT approaches

which handle discussed problems to improve MOT quality. The object of MOT task in our ap-

proaches is human. These approaches are categorized as long-term (tracklet-based) human

tracking which processes their inputs with a time latency. We use a diverse feature pool in-
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cluding features proposed for MOT (appearance features and motion) and features proposed

for Re-identification (LOMO [63], CNN, MCSH [126]) to represent a person. All proposed ap-

proaches use Buffer-and-recover model as well as build strong person representations to handle

partial or full occlusions.

The proposed approaches are presented in details in the upcoming chapters. These ap-

proaches can be distinguished through two properties: their generality and their effectiveness.

The performances, advantages as well as disadvantages of each approach compared to state-

of-the-art methods also also discussed. Depending on the requirement of applications as well

as the availability of training data, we can choose which proposed MOT algorithm is the most

appropriated.



3

GENERAL DEFINITIONS, FUNCTIONS AND

MOT EVALUATION

The proposed algorithms presented in upcoming chapters of the manuscript use some com-

mon definitions, object features, pre-or-post processing functions and MOT evaluation meth-

ods. Therefore, in order to help the readers easily understanding this manuscript, we spend

this chapter on presenting this information.

3.1 Definitions

The content of manuscript focus on the long-term tracking category which tracks objects in

a video chunk instead of a frame. Besides that, all approaches use exclusive model (can-match

and cannot-match) to add constraints on tracklet during tracking process. Therefore, in this

section, the definitions of a tracklet (object’s short trajectory), a candidate (can-match tracklet)

as well as a neighbour (cannot-match tracklet) of a tracklet are presented.

3.1.1 Tracklet

We define a tracklet Tri spanning over consecutive frames < m, n > as a chain of tracked

objects called nodes Ot
i s (m < t < n) where i represents the ID of the object and O represents

the object bounding-box as follow:

Tri = {Om
i ,O

m+1
i , ...,On−1

i ,On
i } (3.1)

A tracklet is generated by a short-term tracker.
29
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3.1.2 Candidates and Neighbours

For each tracklet Tri, we define two sets of related tracklets to Tri, including Candidate and

Neighbour sets.

Reli = {Cani, Neibi } (3.2)

Candidate Tracklet Trc is determined as a ”candidate” of Tri if Trc satisfies spatial-temporal

constraints with Tri.

Suppose that Tri appears earlier than Trc. The temporal constraint ensures that the last

node of Tri must appear earlier than the first node of Trc.

Spatial constraint ensures that the last node of Tri can reach the first node of Trc after a

number of frames of potential mis-detection with the current frame rate.

Candidate set Cani is the set of all candidates of Tri:

Cani = {Trc } (3.3)

Neighbour Tracklet Trn is a neighbour of Tri if Trn also satisfies spatial-temporal constraint

with Tri.

Temporal constraint: Trn shares at least one frame with Tri.

Spatial constraint: The 2D distance of both tracklets is below a predefined threshold. This

threshold is determined by a radius of circle covering the last position of Tri and computed

based on the width of Tri ’s last node: widthi. In upcoming proposed algorithms in the manuscript,

the threshold θ is constantly defined by:

θ = 3 × widthi (3.4)

Neighbour set Neibi is the set of all neighbours of Tri:

Neibi = {Trn} (3.5)

3.2 Features

In MOT, object features characterize an object and is extracted from one object region or

accumulated from object regions in a period of time. Features can be color, gradient, 2D or 3D

information, CNN or a combination of them.

Relying on the way to compute features, we categorize MOT features into two types: node

and tracklet features. Node features are extracted from a detection bounding-box where tracklet
features are obtained via accumulated node features within tracklet time-span.
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(h)
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(k)

Figure 3.1: Individual feature set (a) 2D information, (b) HOG, (c) Constant velocity, (d) MCSH, (e)
LOMO, (f) Color histogram, (g) Dominant Color, (h) Color Covariance, (k) Deep feature.

3.2.1 Node features

A node feature f ti is defined as the information characterizing an object at time t: Ot
i . The

feature pool gathering features f ti s to describe object Ot
i is presented by Ft

i and divided into

2 categories Ft
i = {F

Ot

i , FOE t

i } where FOt

i is the individual features which represent the indi-

vidual information of an object and FOE t

i is the surrounding features which characterize the

surrounding context around each object. The list of node features selected by the proposed ap-

proaches in the manuscript is described in detail. Beside that, their advantages and limitations

are discussed as well.
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Figure 3.2: Illustration of the object surrounding background.

3.2.1.1 Individual features

Individual feature set FOt

i consist of features that are computed using only the data ex-

tracted from node Ot
i . These features characterize the individual information of a node. Figure

3.1 illustrates the individual features we use in our proposed approaches which are presented

in upcoming chapters.

� 2D information (shown in figure 3.1(a)): Let W and H be the width and height of the

2D bounding box of a node. The 2D shape ratio, 2D area of this node are respectively

defined as W/H and W × H. The limitation of this feature is that its reliability depends

on the detection quality. Once no occlusion occurs and a node is well detected, the shape

ratio and area information of a node within a temporal window is independent from the

lighting and contrast conditions.

� HOG - Histogram of Oriented Gradient [26] (shown in figure 3.1(b)). The essential

thought behind the HOG feature is that local object appearance and shape within an

image can be described by the distribution of intensity gradients and edge directions. The

image is divided into small connected regions called cells, and for the pixels within each

cell, a histogram of gradient directions is compiled. The feature is the concatenation of

these histograms. For improved accuracy, the local histograms can be contrast-normalized

by calculating a measure of the intensity across a larger region of the image, called a block,

and then using this value to normalize all cells within the block. This normalization results

in better invariance to changes in illumination and shadowing.
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Figure 3.3: Surrounding feature set including occlusion, mobile object density and contrast. The de-
tection of object Ot

i is colored by red, outer bounding-box (OBB) is color by black and neighbours are
colored by light-green.

� Constant velocity (shown in figure 3.1(c)). The objects can move with or without stable

velocity and direction. The constant velocity model describes a movement with stable

velocity and direction while Brownian motion describes a movement characterizing with

random direction and velocity. Depending on the video context and object movement

property, either constant velocity model or Brownian model is applied to describe an object

movement. Our proposed approaches track only people and we suppose that people walk

with nearly constant velocity in a small time interval. Therefore, we used the constant
velocity model in [25] to characterize the object motion. Motion model of an object at

time t, Ot
i , is computed based on the position and displacement of node Ot

i and localized

object’s positions in previous frames Ok
i s(k < t). This feature is useful for discriminating

objects that have similar appearances but discriminative motions.

� MCSH - Multi-Channel Spatio-Histogram [126] (shown in figure 3.1(d)). The spatio

histograms are first accumulated on multiple image regions among multiple colour chan-

nels (Y, Cb, Cr, H, S, nR, nG, nB) from YCrCb, HSB and normalized RGB color spaces. As

revealed in figure 3.1(d), the spatial information of y axis exhibits much better intra-class

invariance than x axis due to viewpoint or pose variations. Then the devised feature de-

composes the spatio-histogram into three vectorized parts, including multi-channel colour

histograms, the first and the second order spatial information (i.e. the mean the standard

deviation vector) of y axis.

Therefore, the spatiogram for an image region R with B color bins is defined as follow:
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SR (b) =< n̂b, µby, Σby >, b = 1, 2, ...B (3.6)

SR = {h = {n̂b}; µy = {µby }; Σy = {Σby }, b = 1, 2, ...B}(3.7)

µby =
1
nb

N∑
k=1

ykδkb, Σby =

√√√
1
nb

N∑
k=1

(yk − µby)2δkb (3.8)

where n̂b is a normalized histogram of bin b, µby is a spatial mean vector and Σby is a

spatial covariance matrix of y axis, N is the total pixel number of region R, nb is the count

of pixels whose value belonging to b − th bin.

� LOMO - Local Maximal Occurrence Representation [63] (shown in figure 3.1(e)). The

LOMO feature analyzes the horizontal occurrence of local features including features HSV

and SILTP (Scale Invariant Local Ternary Pattern) [62] - SILTP is an extension of LBP for

handling illumination variations. In particular, sliding windows with a sub-window size

10×10 sliding with an overlapping step of 5 pixel is located in each person region. Within

each sub-window, two scales of SILTP histogram and an 8×8×8-bin joint HSV histogram

are extracted. Each histogram bin represents the occurrence probability of one pattern

in a sub-window. Then, the maximum values of local occurrence of each pattern(i.e

the same histogram bin) among these sub-windows at the same horizontal location is

achieved to generate a stable representation against viewpoint changes. Besides, this

feature applies the Retinex transform [55] which aims at producing a color image that is

consistent to human observation of the scene. The restored image usually contains vivid

color information, especially enhanced details in shadowed regions. Therefore, LOMO

feature also deals with illumination variation issues.

� Color histogram (shown in figure 3.1(f)) Due to its rapid calculation, efficiency and

effectiveness in characterizing objects when the scene lighting condition is good or the

image has high resolution, a RGB color histogram of moving pixels is one of the most

important appearance features used in object tracking.

First for each node Ot
i , we compute a normalized histogram of b bins in each channel C ∈

{R,G, B}, denoted HC
Ot

i

(k)(k = 1..b), represents the percentage of occurrence of moving

pixels whose color belongs to bin k:

b∑
k=1

HC
Ot

i
(k) = 1 (3.9)
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� Dominant color (DC) (shown in figure 3.1(g)): Dominant color is a compact and efficient

feature which employs representative colors to characterize the color information in the

interesting region of an image. Dominant color feature is suitable for representing local

features of images and can be used for quick retrieval in large image databases. This

feature has been proposed by MPEG-7 [120]. This feature takes into account only the

main colors of the considered node. DC feature of one node is defined as F = {{ci, pi }, i =

1..C} where C is the total number of dominant color bins in the considered node’s image

region, ci is a 3-dimensional RGB color vector, pi is its relative occurrence percentage,

with
∑C

i=1 pi = 1. If dominant color feature which uses a few representative colors to

characterize the color information of an image is adopted, the image feature databases

size and the time of features matching process will be reduced.

� Color covariance (shown in figure 3.1(h)) is a very useful feature to characterize the ap-

pearance of a node. In particular, the color covariance matrix enables to compare regions

of different sizes and is invariant to identical shifting of color values. This becomes an

advantageous property when objects are tracked under varying illumination conditions.

In [104], for a pixel i in a given image region R, the authors define a vector ~f i including

11 sub-features :

~f i = {x, y, Rxy,Gxy, Bxy, MR
xy,O

R
xy, MG

xy,O
G
xy, MB

xy,O
B
xy } (3.10)

where x,y are pixel locations, Rxy , Gxy , and Bxy are RGB channel values at position (x, y)

; M and O correspond to gradient magnitude and orientation in each channel at position

(x, y). The covariance of region R is characterized by a matrix CR(11x11) ∈ R:

CR =
1

n − 1

n∑
i=1

(~f i − ~µR)(~f i − ~µR)T (3.11)

where n is the number of pixels in region R ; ~µR is a vector of 11 dimensions representing

the mean values of the 11 sub-features of all points in the region R; ~f i is the sub-feature

vector of point i, defined in formula 3.10.

� Deep feature is extracted from the feature map in convulational layer 4 of modified-

VGG16 model. How to extract deep feature is presented in details in chapter 6.

3.2.1.2 Surrounding features

Surrounding feature set FOE t

i includes features that are computed based on the interaction

of a tracklet with its surrounding background. Let At
i = {C

t
i ,W

t
i , H t

i } be the 2D bounding-box of

node Ot
i (tracklet Tri at time t) where Ct

i ,W
t
i , H t

i are its 2D center, width and height, respectively.

We define an outer bounding-box (OBB) of node Ot
i : A+i = {Ci,Wi + αWi, Hi + αHi } where α
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is a predefined value in interval [0,1]. The surrounding background illustrated in figure 3.2

is defined as Asur
i = A+i /Ai. The surrounding features of object Ot

i are described via figure 3.3

where the given object is marked by red bounding-box and the OBB is marked by the black one,

three images are extracted from moments t1, t2, t3, respectively.

The surrounding object set Surr ti of a node Ot
i at time t are defined as objects appearing in

OBB of Ot
i .

� Mobile object density: Mobile object density is computed by the number of surrounding

objects inside the OBB of the given node Ot
i .

SdOt
i
= |Surr ti | (3.12)

where |Surr ti | corresponds to the size of Surr ti set.

� Occlusion: The occlusion level of a node Ot
i is computed by the mean of the Ot

i ś area

covered by other surrounding objects.

SoOt
i
= min(

∑Surr ti
k=1 ok

Ot
i

|Surr ti |
, 1) (3.13)

ok
Ot

i

is the occlusion level of Ot
i and its surrounding object Ot

k
and is computed as follow:

ok
Ot

i
=

Ai,k

Ot
i

(3.14)

where Ai,k is the overlapped area of Ot
i and Ot

k
. The value of occlusion level SoOt

i
is in the

range < 0, 1 >, 0 is non-occluded and 1 is full-occluded.

� Contrast:The contrast of a node Ot
i is defined as the color intensity difference between

the image region of Ot
i and its surrounding background localized by OBB.

ScOt
i
= 1 −

∑C
c simil (Hc

Ot
i

, Hc
OBB

)

3
(3.15)

where simil (Hc
Ot

i

, Hc
OBB

) is the color intensity similarity between node Ot
i and its OBB in

chanel c and defined by:

simil (Hc
Ot

i
, Hc

OBB) =
b∑

k=1

min(Hc
Ot

i
(k), Hc

OBB (k)) (3.16)
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3.2.2 Tracklet features

A tracklet feature is the accumulation of the node features within the tracklet time-span.

Therefore, based on the node feature categories, we also define the tracklet feature pool by

Fi which includes Fi = {FO
i , F

OE
i } where FO

i and FOE
i are the individual and the surrounding

tracklet feature sets, respectively.

The tracklet features of tracklet Tri are extracted and accumulated from features of nodes

Ot
i where t ∈< m, n > and are presented in detail in each upcoming chapters.

3.3 Tracklet functions

This section lists two functions, which initialize and generate the reliable tracklets as well

as interpolate object trajectories, applied in all proposed algorithms in the manuscript. Thank

to such pre-or-post processing functions, the tracking performance is improved.

3.3.1 Tracklet filtering

The performance of a short-term tracker is affected by the quality of detection while the

performance of a long-term tracker is affected by the quality of input tracklets. Therefore,

tracklet filtering is an incremental step for MOT by refining the unreliable tracklets for a long-

term tracker’s input to improve tracking performance. A tracklet is considered as reliable if

it has a smooth trajectory as well as consistent representation, has a size long enough and is

not ambiguous with other tracklets. Based on this hypothesis, the proposed tracklet filtering

method refines unreliable tracklets based on four following processes.

� Node anomaly filtering consists in detecting a node belonging to a tracklet whose fea-

tures are not consistent compared to other nodes. In all approaches in the manuscript,

we use the 2D and color information to determine the node anomalies. In particular, the

distance between 2 node positions in two consecutive frames is larger than threshold or

the object color changes remarkably in 2 consecutive frames. If any anomaly is detected,

this node is removed from the tracklet.

� Noise filtering: If a tracklet is too short, it is considered as a noise and is removed. In all

our proposed approaches, this value is set to three frames.

� Node ambiguity filtering: A tracklet is defined as ambiguous with other tracklets if any

node belonging to this tracklet is strongly occluded by other objects. The occlusion level

is described by occlusion feature in node’s surrounding feature set. If the occlusion level

of a node is higher than the threshold, this node is removed from tracklet.
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� Tracklet segmentation: After two processes including node anomaly filtering and node

ambiguity filtering, some nodes belonging to a tracklet are removed. If these nodes are

consecutive and the number of these consecutive nodes is higher than a threshold, the

tracklet will be segmented at before and after removed nodes. In all our proposed ap-

proaches, this threshold is set to five frames.

3.3.2 Interpolation

An object trajectory may miss some nodes. It happens if an object is mis-detected in some

frames and the tracking algorithm finds a correct matching when the object reappears. Missed-

nodes lead to miss object information to represent tracklets. In order to enhance the tracklet

reliability, data interpolation is a necessary step to fill the missed information.

If a tracklet has more than five consecutive missing nodes, the tracklet is considered as

unreliable and is segmented by the tracklet filtering step. Otherwise, in order to fill the missing

nodes, linear interpolation is performed using the feature pools of the two nodes located just

before and just after the missing nodes.

∃t ∈< a, b >: f ti = f ai + (t − a)
f bi − f ai
b − a

(3.17)

Due to the assumption that a new tracklet is created if more than five consecutive nodes

are missing, there is no need to use a more elaborated and time consuming method to fill the

missing nodes. Considering this assumption and the fact that the interpolation module is used

at every frame, each tracklet contains no empty nodes.

3.4 MOT Evaluation

Metrics and datasets play a significant role to evaluate the performance of any MOT al-

gorithm. In this section, we list metrics and publicly available datasets used to compare our

proposed approaches with the state-of-the-art MOT algorithms to verify their robustness. More-

over, some issues which may result in unfair comparison are discussed here.

3.4.1 Metrics

Metrics of MOT approaches provide a standard evaluation for fair quantitative comparison.

In this section, we present a brief review on a variety of MOT evaluation metrics including

CLEARMOT metrics and completeness metrics which are summarized in Table 3.1.

� CLEARMOT metrics consisting of multiple metrics and follow publicly provided toolkit

on MOTchallenge website for fair comparison with other approaches. The multiple ob-

ject tracking precision (MOTP↑) evaluates the intersection area over the union area of
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Metric Description Note

MOTA
Multiple Object Tracking Accuracy[1]. This measure combines

three error sources: false positives, missed targets and identity switches
↑

MOTP
Multiple Object Tracking Precision [1]. The misalignment between

the annotated and the predicted bounding boxes
↑

MT
Mostly tracked targets. The ratio of a ground-truth trajectory that is

covered by a track hypothesis for at least 80% of their respective life span
↑

ML
Mostly lost targets. The ratio of a ground-truth trajectory that are covered

by a track hypothesis for at most 20% of their respective life span
↓

FP The total number of false positives ↓

FN The total number of false negatives (missed targets) ↓

ID Sw
The total number of identity switches. Please note that we follow

the stricter definition of identity switches as described in [2]
↓

Frag
The total number of times a trajectory is fragmented

(i.e. interrupted during tracking)
↓

Table 3.1: The evaluation metrics for MOT algorithm. ↑ represents that higher scores indicate better
results, and ↓ denotes that lower scores indicate better results.

detection bounding boxes. The multiple object tracking accuracy (MOTA↑) calculates the

accuracy composed of false negatives (FN↓), false positives (FP ↓), and identity switching

(IDS↓).

� Completeness metrics: Metrics for completeness indicate how well the ground truth

trajectories are tracked. These metrics include (MT↑) - the ratio of mostly tracked tra-

jectories (if a ground-truth trajectory is covered by a tracking output for at least 80% of

their life-span), (ML ↓) - the ratio of mostly lost trajectories (if a ground-truth trajectory

is covered by a tracking output for at most 20% of their life-span) and (FG↓) - the number

of track fragments.

3.4.2 Datasets

In MOT evaluation, publicly available datasets are employed to evaluate and compare MOT

performances. There are many such datasets experimented by the state-of-the-art trackers.

However, we here summarize the most popular and benchmark datasets with which we eval-

uate and compare our proposed approaches with some state-of-the-art trackers in upcoming

chapters.

� PETs2009-S2 L11 sequence has 794 frames containing 21 people with many occlusions
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and people moving with different directions.

� PETs2015 with W1 ARENA Tg TRK RGB 1 sequence has 240 frames. There are only few

people but their size and pose variant throughout time.

� TUD dataset includes TUD Stadtmitte and TUD Crossing sequences. Both sequences are

quite short, with more or less 200 frames, but they contain challenges for trackers such as

low light intensity, crowded environment, frequent occlusions and similar object appear-

ances.

� ParkingLot: The main challenge of this dataset is occlusion and confusion caused by

targets walking together with similar appearance. We choose Parkinglot1 sequence in-

cluding 14 people in 998 frames for testing because of the availability of detection and

Groundtruth bounding-boxes on UCF website 1.

� MOT2015 consists of 22 sequences, divided into training and testing sets (shown in

Figure 3.4 and Figure 3.5). The testing data includes 11 sequences, 5783 frames with

721 people. This dataset shows the diversity of outdoor scenarios with strong and fre-

quent person-person occlusions, people moving with random directions captured by fixed

or moving narrow angle cameras, crowded environment (two sequences have 197 and

226 people, respectively). Among the 22 sequences, there are seven new challenging

high-resolution videos (ADL-Rundle-6, ADL-Rundle-8, Venice-2, AVG-TownCentre, ADL-

Rundle-1, ADL-Rundle-3 and Venice-1), four captured from a static and two from a mov-

ing camera held at pedestrian’s height. Three of them are particularly difficult: a night

sequence from a moving camera (ADL-Rundle-8) and two outdoor sequences with a high

density of pedestrians (PETS09-S2L2, ADL-Rundle-1). The moving camera together with

the low illumination create a lot of motion blur, making this sequence extremely challeng-

ing.

� MOT17 contains 14 challenging video sequences (7 sequences for training, 7 remaining

ones for testing) in unconstrained environments captured with both static and moving

cameras (shown in Figure 3.6 and Figure 3.7). This benchmark provides the detections

for all sequences produced by three well-known detectors: DPM, SDP and FRCNN. There-

fore, in total, the number of training and testing sequences triples: 21 sequences for

training and 21 sequences for testing. All sequences have been annotated with high ac-

curacy, strictly following a well-defined protocol. Compared to MOT15, this dataset has

higher difficulty and more challenges, e.g. by having scenarios with a 3-folds higher mean

density of pedestrians (MOT17-04, MOT17-03, MOT17-07). Aside from pedestrians, the

1http://crcv.ucf.edu/data/ParkingLOT/
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objects also include other classes like vehicles, bicycles etc. (MOT17-01, MOT17-02,

MOT17-03, MOT17-04, MOT17-05, MOT17-06, MOT17-10, MOT17-13 and MOT17-14)

in order to provide contextual information for methods to explore.

The video sequences and the public detection of benchmarks MOT15, MOT17 are avail-

able on MOTChallenge website. 2

The MOT evaluation metrics as well as datasets are public to compare new approaches.

However, there are some issues which may result in unfairness in case of direct comparison

among different approaches on the same dataset. In the last section of this chapter, we list such

issues that we face in the experiments. These issues are also discussed in [66].

3.4.3 Some evaluation issues

� Different methodologies. For example, some publications belong to offline methods while

others belong to online ones. Due to the difference between online and offline tracking

described previous chapter, it is unfair to directly compare them.

� Different detection hypotheses. Some approaches adopt different detectors to obtain de-

tection hypotheses as input. One approach based on different detection hypotheses would

output different results, comparing approaches with different inputs is also unfair.

� Some approaches utilize detections from multiple views while some approaches adopt

information from a single view. This makes the comparison between them difficult.

� Prior information, such as scenario structure and the number of pedestrians, are employed

by some approaches. Direct comparison between these approaches and others is not so

convincing.

2https://motchallenge.net/
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KITTI-17

ADL-Rundle-6

ADL-Rundle-8

KITTI-13

PETS09-S2L1

ETH-Sunnyday

ETH-Bahnhof

ETH-Pedcross2

TUD-Campus

TUD-Stadtmitte

Venice-2

Figure 3.4: Training video sequences of MOT15 dataset.
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ADL-Rundle-1

ADL-Rundle-3

AVG-TownCentre

ETH-Crossing

ETH-Jelmoli

ETH-Linthescher

KITTI-16

KITTI-19

PETS09-S2L2

TUD-Crossing

Venice-1

Figure 3.5: Testing video sequences of MOT15 dataset.
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MOT17-02

MOT17-04

MOT17-05

MOT17-09

MOT17-10

MOT17-11

MOT17-13

Figure 3.6: Training video sequences of MOT17 dataset.
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MOT17-01

MOT17-03

MOT17-06

MOT17-07

MOT17-08

MOT17-12

MOT17-14

Figure 3.7: Testing video sequences of MOT17 dataset.
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4

MULTI-PERSON TRACKING BASED ON AN

ONLINE ESTIMATION OF TRACKLET

FEATURE RELIABILITY [80]

4.1 Introduction

Multi-object tracking (MOT) has been one of the fundamental problems in computer vision,

essential for lots of applications (e.g home-care, house-care, security systems, etc.). The main

objective of MOT is to estimate the states of multiple objects while identifying these objects

under appearance and motion variations throughout the time. This problem becomes more

challenging to multi-person tracking due to frequent occlusion by background or other people,

person pose as well as illumination variation, etc. These challenges make person’s part or full

invisible as well as person appearance change remarkably. Besides that, person mis-detection

caused by a detector also remarkably affects to tracking quality. Therefore, finding the discrimi-

native features to characterize a person under scenes (person pose and illumination variations)

challenges state-of-the-art trackers.

The first group of approaches [20, 123] proposed to use a pool of powerful features to

characterize objects in different video scenes. In order to automatically adapt the tracker to

a video scene, these approaches have a controller to select powerful features to discriminate

objects overtime. However, these trackers select these features extracted from object detections

in every frame (node features) which are sensitive to noise. The second group of approaches

[90, 111, 39, 106] formalize the MOT problem as a graph and focus on the optimization prob-
47
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lem in the data association process on this graph to achieve a high tracking performance. These

trackers work in the offline mode which needs a huge beforehand detection requirement. Fur-

thermore, the computation cost of global optimization may increase exponentially depending

on the number of objects in the scene.

In this chapter, we propose a long-term multi-person tracker named reliable feature esti-
mation (RFE) which extracts the features representing a person over its short trajectory called

tracklet features. Then, RFE − Tracker links tracklets before and after mis-detection based on

the most reliable tracklet features to characterize people in a given video scene. The proposed

approach belongs to the first group but using tracklet features instead of node features. In

order to select tracklet features, each tracklet feature is set a weight which represents for the

reliability of a feature to discriminate the tracklet in a particular video scene. The proposed

approach brings two following contributions:

� A simple but effective method which links tracklets based on reliable tracklet features.

These features are selected by automatically tuning the corresponding weights to adapt

the tracker to the change of video scene. No training process is needed which makes the

algorithm generic and deployable to a variety of MOT frameworks.

� A flexible combination of appearance features and motion model to improve tracking

quality.

The rest of this chapter is organized as follows: Section 4.2 presents some related works

from the state-of-the-art which are proposed to handle the MOT problems such as occlusion,

person information variation caused by changes of video conditions, and recover person tra-

jectory from a limited number of mis-detections. Section 4.3 presents the proposed long-term

tracking algorithm. Section 4.4 shows brief evaluation results as well as analysis about the

performance of the proposed approach. Finally, conclusions are summed up in section 4.5.

4.2 Related work

In this section, we will discuss some online MOT methods from the state-of-the-art proposed

to achieve strong object features to discriminate an object in a particular video scene. The

discussed methods are categorized into two following groups.

Short-term trackers learn online the discriminative appearance model of an object corre-

sponding to the video scene in every frame. Authors in [20] select discriminative object fea-

tures via automatically tuning tracker parameters where each parameter controls one features.

The more the feature can discriminate objects to each other, the higher value of according pa-

rameter is set. Otherwise, the parameter is set to a low value. The approach in [8] tracks



4.3 The proposed approach 49

multi-objects by using the tracklet confidence with an automatic discriminative object appear-

ance model which is learned based on an incremental linear discriminant analysis (ILDA). This

allows the proposed tracker to distinguish each object to others thanks to the learned object

appearance model. Then, the learned object appearance model is also incrementally updated

with frame-to-frame tracking results.

However, object features computed by a short-term tracker are unreliable if the detected

objects on each frame are noise. In this case, the short-term trackers can fail.

Recently, some researches focus on the second tracking group - long-term tracking whose

objective is to link short trajectories (tracklets) to create more completed object trajectories.

Because tracklet features computed based on tracklet timespan represent objects more com-

pleted than node features computed in each frame, the long-term trackers can overcome the

above mentioned disadvantages of the short-term tracking. The approach in [6] proposes an

algorithm that recovers object trajectory before and after mis-detection by linking segmented

tracklets using enhanced covariance-based signatures and an online threshold learning. To

gain the object signature of each tracklet, reliable nodes of this tracklet called key-frames are

extracted, then the signature based on Mean Riemannian Covariance Grid(MRCG) descriptor

[91] on these extracted key-frames are generated. The authors in [111] propose a tracking

algorithm using the structure of a hierarchical relation hyper-graph. Then the proposed tracker

formulates MOT task as a hierarchical dense neighborhoods search problem. In each layer,

tracklets are grouped into a dense neighborhoods whose members have high mutual affinity,

then these tracklets are linked to form the longer ones. The grouping process finishes when

no dense neighborhoods is found out. These long-term tracking algorithms using the object

information extracted from a tracklet timespan which are more reliable than extracted from a

frame. So, the long-term trackers can gain a better tracking performance than short-term track-

ers. However, the mentioned long-term trackers more focus on solving MOT task by proposing

an optimization algorithm of object information affinity than automatically generating an ob-

ject representation which can be changed according to the change of video scene. If the video

scene is complex and frequently changes, these long-term trackers can fail.

Therefore, we propose a new long-term tracking algorithm which both extracts object fea-

tures on tracklet timespan and selects the robust features to adapt tracker to the change of

video scene. In next section, we will present in detail this proposed approach.

4.3 The proposed approach

Person appearance could change and be mixed with other people after occlusion, mis-

detection or people leave and come back in the video scene. Therefore, the objective of the

proposed approach is to recover mis-detection and to overcome the occlusion by correctly link-
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Figure 4.1: The overview of the proposed algorithm.

ing tracklets into a complete person trajectory. To achieve this objective, a robust tracker is

proposed to link tracklets based on automatically selecting discriminative features which dis-

tinguish ambiguous tracklets to each other.

4.3.1 The framework

The overview of the proposed approach is shown in figure 4.1. It highlights all online steps

done in a comprehensive tracking framework. The framework includes two main steps where

the short-term tracking is responsible for generating tracklets and the long-term tracking is re-

sponsible for extracting the tracklet features to represent a person and selecting discriminative

features for correctly tracklet linking. The short-term tracker extracts tracklets in two consec-

utive time-windows, including the current time-window ∆t and the previous one ∆t−1 (block

1). The purpose of this step is to enable the long-term tracker to later link tracklets appearing

in two consecutive time-windows. These tracklets then are smoothed by the filter as well as

interpolation methods presented in chapter 3 to achieve reliable tracklets for the input of the

long-term tracker.

The proposed long-term tracker processes in each time window ∆t . We first determine the

relationship for each tracklet including ”Candidates” and ”Neighbours” defined in chapter 3.

We extract tracklet representations (block 2) (presented in section 4.3.2) and then select the

reliable features to link a given tracklet with its candidate. These features must discriminate

this tracklet to its neighbours but still make its distance with its candidate close. The discrim-

inative power of a feature is represented by a weight. This weight is automatically computed

(section 4.3.4) based on the feature distance (presented in section 4.3.3) between the given

tracklet with its relationship (including candidates and neighbours) (block 3). Based on these

weighted features, the tracklet similarities between tracklets are computed (block 4). A similar-
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ity matrix is created where each cell is the similarity between a pair of tracklet representations

according to two tracklets. Finally, tracklets are linked with their best candidates after optimiz-

ing the similarity matrix using Hungarian algorithm (section 4.3.5) (block 5). Each part of the

proposed framework is described in detail as follows.

4.3.2 Tracklet representation

Through the whole manuscript, we use the same definition of tracklet presented in Chapter

3:

Tri = {Om
i ,O

m+1
i , ...,On−1

i ,On
i } (4.1)

Each tracklet is described by its representation defined as a set of reliable tracklet features.

Tracklet Tri is represented by reliable tracklet features {(W k
i , F

k
i )} which is defined as follow:

∇Tri = {(Fk
i ,W

k
i )} (4.2)

where Fk
i is the tracklet feature k used to present tracklet Tri and W k

i is the weight present-

ing the feature’s reliability which is estimated online based on the discriminative power of the

tracklet feature. Given a chain of nodes Ot
i where t ∈< m, n > belonging to tracklet Tri, each

tracklet feature Fk
i ∈ ∇Tri is computed based on the according nodes feature Fk

i (t).

The diversity of object features plays a crucial role in characterizing people in different

video scenes. In this approach, we propose to select the following features Fk
i s from the track-

let feature pool Fi discussed in chapter 3 to describe a tracklet Tri. These features include

2D information features (2D shape ratio and 2D area), color based features (color histogram,

dominant color and color covariance) and motion feature (constant velocity model).

The definition, the advantages as well as disadvantages of each feature are discussed and

presented in chapter 3. In the following, we present the tracklet feature similarities which are

utilized later to estimate tracklet feature reliability in a particular video scene.

4.3.3 Tracklet feature similarities

The tracklet representation is defined as a set of weighted tracklet features. Therefore,

the similarity of two tracklet representation is the combination of weighted tracklet feature

similarities. Firstly, these tracklet feature similarities are computed as follows.

2D shape ratio, 2D area and Motion model similarities

Features including 2D shape ratio, 2D area and Constant velocity of each tracklet are repre-

sented by Normal Gaussian distribution Fk
i ' G(µki , σ

k
i ) whose µki is the weighted mean and σk

i

the weighted standard deviation of tracklet feature Fk
i over time t. These values are computed

as follows:
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µki =

∑n
t=m w(t) ∗ Fk

i (t)∑n
t=m w(t)

(4.3)

σk
i =

√∑n
t=m w(t) ∗ (Fk

i (t) − µki )2∑n
t=m w(t)

(4.4)

where w(t) is the weight function which is used to decrease the impact of ”interpolated

features” while relying on the directly extracted features from node. ”Interpolated feature”

is defined as the feature extracted at the interpolated nodes which are estimated by linear

interpolation function presented in Chapter 3. The weight function is defined by:

w(t) =



wI if Fk
i (t) is interpolated

wR if Fk
i (t) is directly extracted

wR and wI satisfy:



NbR ∗ wR + NbI ∗ wI = 1

wI = α ∗ wR

and Fk
i (t) stands for feature Fk

i of node Ot
i , α is a coefficient which determines the reliability

of interpolated features compared to directly extracted features. Given that NbI and NbR are

numbers of interpolated nodes and real tracked nodes, correspondingly, α is determined by

α = NbI
NbI+NbR

. It means that the importance of interpolated features is directly proportional to

the ratio of interpolated nodes over the tracklet’s length.

Upon that, we propose to use Kulback-Leibler divergence [105], a measure of the difference

between two probability distributions to compute the distance of these tracklet features:

d(Fk
i , F

k
j ) = log(

σk
j

σk
i

) +
σk
i

2
+ (µki − µ

k
j )2

2 × σk
j

2
− 0.5 (4.5)

where (µki , σ
k
i ) and (µkj , σ

k
j ) are normal Gaussian distributions for each mentioned feature

k of tracklet Tri and Trj , respectively.

The similarity score between two tracklet features Fk
i and Fk

j are computed by:

Simil (Fk
i , F

k
j ) = exp(−d(Fk

i , F
k
j )) (4.6)

Color Histogram similarity

There are plenty of distance measures between two histograms categorized in [70] includ-

ing Hellinger distance, Euclidean distance, Chibyshev distance, Histogram intersection, Bhat-

tacharyya distance, Quadratic distance and so on. In this work, we use a metric based on

histogram intersection [100] due to its low time consuming computation. The similarity score
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Figure 4.2: Illustration of a histogram intersection. The intersection between left histogram and right
histogram is marked by red color in the middle histogram.

Simil (Hc
i , Hc

j ) between two histograms Hc
i ,Hc

j of tracklet Tri and Trj for channel c is illustrated

in figure 4.2 and defined as follows:

Simil (Hc
i , Hc

j ) =

∑B
b=1 min(Hc

i (b), Hc
j (b))

max(
∑B

b=1 Hc
i (b),

∑B
b=1 Hc

j (b))
(4.7)

where B is bins of channel c, Hc
i (b) is the mean of bin b histogram values of nodes Ot

i s (m <

t < n) belonging to Tri:

Hc
i (b) =

∑m
t=n hc(t)

i (b)
m − n

(4.8)

The color histogram similarity score between two tracklets Tri and Trj is defined as the

mean of three histogram similarity scores corresponding to the three channels: red, green and

blue:

Simil (Fk
i , F

k
j ) =

∑C
c Simil (Hc

i , Hc
j )

|C |
(4.9)

where C is the color channel set of RGB image, including red, green and blue.

Color covariance similarity

We use the distance defined by [33] to compare two covariance matrices Ci and Cj:
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ρ(Ci,Cj ) =

√√√√√ ~f∑
f=1

ln2λf (Ci,Cj ) (4.10)

~f i = {x, y, Rxy,Gxy, Bxy, MR
xy,O

R
xy, MG

xy,O
G
xy, MB

xy,O
B
xy } (4.11)

where ~f is the number of considered point sub-features (| ~f |= 11 where x and y are pixel loca-

tion, Rxy,Gxy, Bxy are RGB channel values and M and O corresponds to gradient magnitude and

orientation in each channel, respectively), λf (Ci,Cj ) is the generalized eigenvalue of covariance

matrix Ci and Cj , determined by:

|λf Ci − Cj |= 0 (4.12)

In order to take into account the person spatial coherence and also to manage occlusion

cases, we propose to use the spatial pyramid match kernel defined in [37]. The main idea is

to divide the image region of the considered people into a set of sub-regions. At each level

l (l ≥ 0), each of the considered people is divided into a set of 2l × 2l sub-regions. Then

we compute the color covariance distance for each pair of corresponding sub-regions using

equation 4.10 (see figure 4.3). The computation of each sub-region pair helps to evaluate the

spatial structure coherence between two considered people. In the case of occlusions, the color

covariance distance between two regions corresponding to occluded parts can be very high.

Therefore, we take only the lowest color covariance distances (i.e. highest similarities) at each

level to compute the final color covariance distance. Let M l
z = {ρ

l
1, ρ

l
2, ..., ρ

l
z } be the set of the z

largest distances between corresponding covariance matrices at level l. The covariance distance

between two people at level l is defined as follows :

Dl =

∑2l×2l

r=1 ρ(Cr
i ,C

r
j ) −

∑ |M l
z |

m ρlm

2l × 2l − |M l
z |

(4.13)

where Cr
i and Cr

j are respectively the covariance matrices of Tri and Trj at sub region r,

ρ(Ci
r,C

j
r ) is the covariance distance between Ci

r ,C
j
r defined in equation 4.10.

Then, the number of distances that are computed at each level are combined using a weigh-

ted sum. Distances computed at finer resolutions are weighted more highly than distances

computed at coarser resolutions. So the distance of color covariance d(Fk
i , F

k
j ) between the two

trackets Tri,Trj is defined as follows :

d(Fk
i , F

k
j ) = DL +

L−1∑
l=0

(
1

2L − 1
Dl − Dl+1) =

1
2L

D0 +

L∑
l=1

1
2L − l + 1

Dl (4.14)

where L is a parameter representing the maximal considered level (L ≥ 0). We define the

similarity score for color covariance feature between two tracklets Tr i and Tr j as follows:

Simil (Fk
i , F

k
j ) = max(0, 1 −

d(Fk
i , F

k
j )

Dcov max
) (4.15)
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Figure 4.3: Illustration of different levels in the spatial pyramid match kernel.

where Dcov max is the maximal distance for two color covariance matrices to be considered as

similar. In experiment, we set Dcov max to 1.5.

Dominant Color similarity

Similar to the color covariance feature, in order to take into account the spatial coherence

and also occlusion cases, we propose to use the spatial pyramid match kernel for comparing the

Dominant Color Feature(DCF) between two people. We divide the person into sub-regions and

compute the dominant color distance between corresponding region pairs. A distance value is

computed at each level l thanks to equation 4.13. Finally, the distance d(Fk
i , F

k
j ) between two

tracklets Tri,Trj for DCF is computed similarly as equation 4.14. The DCF similarity score is

defined as follows :

Simil (Fk
i , F

k
j ) = 1 − d(Fk

i , F
k
j ) (4.16)

where d(Fk
i , F

k
j ) is the spatial pyramid distance of dominant colors between two considered

tracklets.

After achieving tracklet feature similarities, the proposed approach automatically estimate

tracklet feature similarity by computing the corresponding reliable feature weights.
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4.3.4 Feature weight computation

In this approach, the feature pool Fi of tracklet Tri is temporarily divided into 2 types:

appearance feature pool Fapp
i and motion model Fmo

i :

Fi = {F
app
i , Fmo

i } (4.17)

Although people are supposed to move with a constant velocity but they can abruptly change

the movement direction. Tracking by estimating the person movement direction can fail in this

case. Therefore, the proposed approach firstly tracks people based on person appearance in

prior. Then, the motion feature weight is computed based on the reliability of tracket appear-

ance features. If the appearance features are powerful to discriminate people, the appearance

weights are set with higher values than the motion weight. Otherwise, the motion weight is set

with a higher value ( the maximum value is 0.5).

The feature weight of one tracklet must be directly proportional to the feature similarity

between this tracklet and its candidate and inversely proportional to the feature similarity of

this tracklet with its neighbours. Given a tracklet Tri and its relationship including candidate

Trc and neighbours Trns, we define a feature weight of Fk
i ∈ Fapp

i for this pair of tracklets

(Tri,Trc) as follows:

ωk
i,c = λ

Simil(Fk
i ,F

k
c )−M̃ (Simil(Fk

i ,F
k
n s))−1 (4.18)

M̃ () is the median of the similarities of feature Fk between tracklet Tri and its neighbours. The

advantage of the median is that its value is not affected by a few of extremely anomaly values.

Therefore, the median is meaningful in coding the similarity of Tri with its neighbours even

if these similarity values are not distributed uniformly. Furthermore, the function λX where

X = DS(Fk
i , F

k
c ) − M̃ (DS(Fk

i , F
k
n s)) − 1 returning value into [0,1] is proposed to normalize the

appearance feature weight. We select λ = 10 in the experiment.

Then, the motion feature weight is computed as follow.

A combination of appearance and motion model features

Depending on how well the appearance feature weights can characterize people in the video

scene, the approach proposes a new way to compute the motion model weight based on other

appearance features:

ωm
i,c = 0.5 − 0.5 max (ωk

i,c) k ∈ Fapp
i (4.19)

By an inverse transformation in equation (4.19), we can flexibly select appearance features

or motion model to track people adapting to a variation of video scenes. If appearance fea-

tures are reliable enough to discriminate people, the proposed approach takes into account

the appearance features more importantly than the motion model. Inversely, when people

have similar appearance but different motions, the proposed tracker relies more on the motion
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Figure 4.4: Tracklet linking is processed in each time-window ∆t .

model than appearance features. However, the motion model is not too reliable as the person

can change its direction frequently or motion measurement errors can be caused by detection

errors or calibration. Therefore, in order to use motion model effectively, in equation (4.19),

the value of the motion model weight is fixed with a maximum value of 0.5.

4.3.5 Tracklet linking

Tracklet linking is the last task in the pineline of the proposed approach. Tracklet linking

includes two subtasks. In the first subtask, the global similarity between two tracklet represen-

tations is computed based on the weighted tracklet feature similarities (shown by block 4 in

Figure 4.1). In the second subtask, based on the global similarities of tracklets, bipartite graph

optimization such as Hungarian algorithm is applied to optimally link tracklets (shown by block

5).

Figure 4.4 illustrates the tracklet linking process. In each video segment ∆t , the tracker

determines reliable features by computing and updating overtime feature weights. The global

representation similarity GS of tracklet Tri with each its candidate (represented by Trc) is

summed up by feature similarities with the corresponding weights as follows:
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GS(∇Tri,∇Trc ) =

∑Fapp

k=1 (ωk
i,c + ω

k
c,i) × Simil (Fk

i , F
k
c ) +

∑Fmo

m=1 (ωm
i,c + ω

m
c,i) × Simil (Fm

i , F
m
c )∑Fi

f=1 (ω f
i,c + ω

f
c,i)

(4.20)

After computing these global linking scores, we construct an association matrix M = {mi j}
with i=1..n, j=1..n, where n is the number of tracklets stacked in two current time consecutive

time-windows ∆t−1 and ∆t . mi j = GS(∇Tri,∇Trj ) computed by equation (4.20) if tracklet Trj
is a candidate of Tri; Otherwise, mi j = 0. Then, Hungarian algorithm is used to optimize the

tracklet linking process. However, the Hungarian algorithm only finds out the best link between

2 tracklets corresponding to one person per time. In order to link all tracklets corresponding

a person, the proposed approach applies Hungarian algorithm until there is no more possible

linkes. Particularly, as shown in figure 4.4, tracklet Tr1 is firstly linked with tracklet Tr4 then is

continuously linked with Tr6 after applying the Hungarian algorithm in the second time.

4.4 Evaluation

We test the proposed approach named RFE −Tracker on four sequences of public datasets:

PETS2015, PETS2009 and TUD. The proposed framework can apply any short-term tracker as

a first step to extract the tracklets. However, in this chapter, we propose to use the tracker in

[20] named PMT because its code is available and it also uses a pool of person appearance

features to track people. The performance of RFE−Tracker is compared with the tracker PMT

[20], some other short-term tracking and long-term tracking methods from the state-of-the-art.

4.4.1 Performance evaluation

PETS dataset

We choose the sequence PETS2015-W1 ARENA Tg TRK RGB 1 in dataset PETS2015 and

sequence PETS2009-S2/L1-View1 in dataset PETS2009 to test our approach because people

have pose variation and abrupted movement change in scenes.

Figure 4.5 (six top images belong to PETS2009-S2/L1-View1 while three bottom images

belong to PETS2015-W1 ARENA Tg TRK RGB 1) illustrates the tracking performance related

to the online computation of feature weights depending on each video scene. With the situation

on three top images, tracklet ID3 (shown by yellow bounding box) and tracklet ID14 (shown by

red bounding box) are mis-detected because they cross each other at frame 140. The overlapped

tracklets are located inside the black eclipses. Almost all appearance features of tracklets are

similar but both people move with opposite directions to each other. In this case, the proposed

tracker recovers the broken links thanks to the tracklet motion model with a weight value of

nearly 0.4.
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Sequence Method MT(%)↑ PT (%) ML(%)↓ MOTA(%)↑ MOTP (%)↑ GT Frag (#)↓

PETS2015-W1 ARENA Tg TRK RGB 1 Chau et al. [21] 0.0 100.0 0.0 56.3 60.1 2 2
Ours ( [21] + Proposed approach ) 100.0 0.0 0.0 89.4 87.5 2 1

PETS2009-S2/L1-View1 Chau et al. [21] 61.9 23.8 14.3 62.3 63.7 21 8
Bae et al.with all [8] 100 0 0.0 83.0 69.6 23 4
Zamir et al. [90] – – – 90.3 69.0 21 –

Bae et al.-global association [8] 100 0 0.0 77.4 69.0 23 12
Badie et al. [7] – – – 90.0 74.0 21 –

Badie et al. [7] + [21] 66.6 23.9 9.5 85.3 70.8 21 6
Ours ( [21] + Proposed approach ) 76.2 14.3 9.5 85.7 71.8 21 4

TUD-Stadtmitte Chau et al. [21] 60.0 40.0 0.0 45.3 61.9 10 13
Milan et al. [73] 78.0 22.0 0.0 71.1 65.5 9 –
Yan et al. [115] 70.0 30.0 0.0 – – 10 –

Ours ( [21] + Proposed approach) 70.0 30.0 0.0 46.8 64.8 10 7
TUD-Crossing Chau et al. [21] 46.2 53.8 0.0 69.1 65.4 11 14

Tang et al. [101] 53.8 38.4 7.8 – – 11 –
Ours ( [21] + Proposed approach) 53.8 46.2 0.0 72.3 67.1 11 8

Table 4.1: Tracking performance. The best values are printed in red.

The three middle images show a different chunk of the PETS2009-S2/L1-View1sequence.

Tracklet ID31 (described by yellow bounding box) and tracklet ID32 (described by light blue

bounding box) move with similar trajectories but their appearance colors are quite discrimina-

tive (by the color of hair and coat). The highest weight equals to 0.6 for dominant color and

color histogram while the motion model weight is only 0.1. Therefore, the proposed tracker

focuses mainly on dominant color and color histogram features and is able to track people

correctly (see in frame 565).

Two people in sequence PETS2015-W1 ARENA Tg TRK RGB 1 also have the similar ap-

pearance while having the different movement direction. In this case, the proposed approach

relies mainly on person motion model to recover the trajectory fragmentation in frame 109.

Moreover, figure 4.6 shows our tracker’s performance for the re-acquisition challenge when

person (shown by red arrows) leaves and re-enters the scene. Instead of considering the mov-

ing people in the frame they have just re-entered, our approach tracks these people after a

sufficient number of frames. Thanks to selected features (color histogram with weight value

0.5, dominant color with weight value 0.6) which are updated cumulatively, person IDs are

correctly retrieved.

TUD dataset

We also use TUD datasets (including TUD Stadtmitte and TUD crossing) sequences to eval-

uate the performance of our approach compared to other recent trackers. Both of these se-

quences are quite short, with more or less than 200 frames, but they contain challenges for

trackers such as low light intensity, crowded environment, frequent occlusions, similar person

appearances.

Figure 4.7 illustrates clearly our approach performance when recovering broken links in

scenes that have low light intensity and people moving in different directions. In these scenes,

person appearances are not discriminative with each other. Appearance features have similar
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reliable weights around of 0.2 while the motion model weight is 0.4. Therefore, based on the

motion model of people, our approach tracks person ID26 (represented by a purple bounding

box) correctly after several mis-detection frames.

4.4.2 Tracking performance comparison

The quantity comparison of tracking performances is shown in table 4.1. The proposed

tracker outperforms the tracker PMT [20] over all metrics on sequence PETS2015-W1 ARENA

Tg TRK RGB 1. With sequence PETS2009-S2/L1-View1, our performance is better than the

tracker [8] on both modes: short-term and long-term tracking combination (Bae etal with all)

and long-term tracking (Bae etal global association) in MOTA and MOTP metrics. However,

our results are not compared this tracker on metric MT and ML. This negative point can be

explained that the proposed tracker and tracker [8] use different ground-truth and 2 people

are not detected by the detector applied in the proposed framework. There is a significant

tracking quality improvement when comparing our tracker with our input [21]. In particular,

MOTA from 0.62 to 0.86 and 0.63 to 0.72 from MOTP, MT increases from 61.9% to 76.2%, ML

reduces from 14.3% to 9.5% and the track fragmentation (Frag) reduces by half. Compared

with other tracklet merging algorithms (marked in bold), our approach has a slightly lower

results of MOTA and MOTP than trackers [90, 7]. However, the tracker in [90] works offline

while our algorithm chooses flexibly object features overtime which is suitable for real-time

applications. The tracker in [7] has a better performance than ours when it used its own input.

When being tested with the same input (the output of tracker in [21]) with ours, our approach

has higher results.

On both sequences TUD-Stadtmitte and TUD-Crossing in the TUD dataset, our approach

does not lose any person. The obtained ML values are also the best ones compared to other

state-of-the-art trackers in both sequences. Our tracker performance measured by metric MT

increases from 60% to 70% with TUD Stadtmitte and from 46.2% to 53.8% with TUD Crossing

dataset compared to the short-term tracker [21].

The quantitative results on Table 4.1 show that RFE − Tracker improve the tracking per-

formance of the short-term tracker MPT on most of tested datasets by linking tracklets into

completed person trajectories. In particular, person trajectories are more completed (Mostly

Track (MT), MOTA and MOTP and Frag values increase) while lost person trajectories are re-

duced (Mostly Lost (MT) values decrease). Tracker RFE−Tracker also have better performance

than other state-of-the-art trackers if evaluated trackers use the same ground-truth. Further-

more, the metric Frag plays an important role in evaluating tracklet linking methods. The less

the number of fragments are, the better tracklet linking method works.The results on the met-

ric Frag show that the proposed approach always has the least number of track fragmentation

compared to other state-of-the-art trackers.
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4.5 Conclusions

This chapter presents in detail a new long-term tracker named reliable feature estimation
tracker (RFE). In order to enhance tracking performance, RFE − Tracker automatically se-

lects the most reliable tracklet features for each tracklet which are specific to a tracked person

in a video scene. An adaptive combination of motion model and appearance features is pro-

posed to handle the case that people’ appearance information is not discriminative enough

but their motions are different. The experimental results over four experimented benchmark

sequences show the significant performance improvement of our approach compared to the

input as well as the state-of-the-art trackers in the case that all trackers use the same detection

and groundtruth. In this approach, no training process is needed which makes this algorithm

generic and deployable to a large variety of tracking frameworks.

Drawback and future work The tracking performance of RFE −Tracker is affected by the

quality of detection as well as input tracklets. If the detector fails to detect a person, multi-

person tracking algorithm cannot track this person at all. If there is any ID-switch caused by

the short-term tracker, the proposed approach cannot backtrack and correct it. Although the

proposed tracklet filter step can make a person trajectory smoother, in the future we still need

a backtrack mechanism to correct input tracklets to improve the long-term tracking quality.
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Figure 4.5: PETS2009-S2/L1-View1 and PETS2015-W1 ARENA Tg TRK RGB 1 sequences: The online
computation of feature weights depending on each video scene.
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Figure 4.6: PETS2009-S2/L1-View1 sequence: Tracklet linking with the re-acquisition challenge.

Figure 4.7: TUD-stadtmitte sequence: The proposed approach performance in low light intensity condi-
tion, density of occlusion: person ID26 (presented by purple bounding box) keeps its ID correctly after
11 frames of mis-detection.
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5

MULTI-PERSON TRACKING DRIVEN BY

TRACKLET SURROUNDING CONTEXT

[79]

5.1 Introduction

Many trackers have been proposed in the past which would expect the multi-person track-

ing task as solved. It is true for scenes containing a fixed background with a low number of

people and few interactions. Besides that, almost of these approaches (including the tracker

RFE Tracker presented in the previous chapter) track people based on the affinities of people

without considering person’s surrounding information. Therefore, complex video conditions

such as the variations of person occlusion, illumination, high person densities still represent big

challenges for these state-of-the-art trackers.

In this chapter, we propose a new long-term tracking framework named context-based pa-
rameter tuning (CPT) which combines a short-term data association and an online parameter

tuning method for each tracklet based on both individual and person surrounding information.

This framework has three main contributions as follow:

� We introduce a new long-term tracking framework which combines short-term data as-

sociation and the online parameter tuning for each tracklet. The proposed framework

contrasts to the method [22] that uses the same parameter setting for all tracklets in the

video (section 5.3).
65
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� We show that a large number of parameters can be efficiently tuned via the approximate

optimization process - multiple simulated annealing. Whereas method [22] could tune

only a limited number of parameters and fix the rest to be able to do an exhaustive search

to find the best parameter value (section 5.3.4.2).

� We define the surrounding context around each tracklet (section 5.3.3) and the similarity

metric among tracklet representations. This metric allows us to match tracklets in an

unseen video segment with tracklets in a learned video context (section 5.3.4.3).

The remaining part of this chapter is organized as follows. Section 5.2 discusses some

related methods which also try to solve the mentioned MOT problems. The study of video con-

text and the proposed approach are described in detail in section 5.3. Section 5.4 evaluates and

compares the tracking performance of the proposed approach with other state-of-the-art track-

ers. Finally, section 5.5 sums up all the content of this chapter, emphasizes the contributions,

tracking performance, the drawbacks of the proposed approach and the future works.

5.2 Related work

Some state-of-the-art trackers [124, 19] track people by automatically tuning the tracking

parameters based on the video context information. These methods typically use a pool of

object features which are weighted for the new frame based on the most recent context infor-

mation. The approach in [124] runs multiple trackers at the same time. Each single tracker is

responsible for one feature. To fuse these independent trackers, the authors propose two con-

figurations, tracker selection and interaction. The tracker selection extracts one tracking result

from among multiple tracker outputs by choosing the tracker that has the highest reliability.

The tracker interaction is conducted based on a transition probability matrix (TPM) which is

updated by estimating each tracker’s reliability. Then, the selected tracker estimates the new

state of object. Using only the selected tracker to keep tracking objects, this method has a

strong limitation on self-adaptability to the change of video scene characterized by more than

one feature (appearance versus motion). Moreover, running multiple trackers also introduces

high computational load and restricts the usage of the method in real time. The tracker in

[19] firstly learns offline tracking parameters for the video context and saves this information

to a database. In the online phase, the tracking parameters of the current video context are

retrieved based on a reference to the corresponding learned tracking parameters of the clos-

est context from the database. However, they ignore the individual information of the objects

and use the same set of tracking parameters for all objects. This requires a hypothesis of the

discrimination of appearances and trajectories among targets, which is not always in the real

cases. Moreover, the number of tracking parameters that these trackers can tune is limited to a
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Figure 5.1: Our proposed framework is composed of an offline parameter learning and an online pa-
rameter tuning process. Tri is the given tracklet, and Troi is the surrounding tracklet set of tracklet
Tri.

few. Therefore, in this chapter, we propose a long-term multi-person tracking method to tune

tracking parameters based on both person’s individual and surrounding information. In this

method, tracking parameters are tuned for each tracklet instead of all tracklets appearing in

the video context. No requirement on the number as well as the mutual dependence of tunable

tracking parameters makes this algorithm generic and be applied to tune tracking parameter

sets of different trackers.

5.3 The proposed framework

Figure 5.1 illustrates the proposed MOT framework. It highlights all steps done in the of-

fline and online phases. The objectives of the offline phase are to segment videos based on the

”video context”, then to learn a database of tracklet representations with according best track-
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ing parameters. In the online phase, each tracklet with its ”surrounding context” is retrieved to

the closest learned tracklet representation in the database to obtain the best tracking param-

eters. The definitions of ”video context” and ”surrounding context” are presented in the next

subsections.

The framework flow: The framework is composed of 8 steps, including 5 steps in the

offline phase and 3 steps in the online phase. Both offline and online phases share a person

detector and a short-term tracker to extract the tracklets as well as their features.

In the offline phase, the video firstly is segmented into video segments with stable context.

In particular, the video is split into video chunks of a fixed size. Each chunk is processed with

the short-term tracker [20] to extract the ”context features” (flow 1). Then, a code-book model

of ”context features” presents for each chunk (flow 2). The distance between two codebook

models of two consecutive chunks is computed. If two or more consecutive chunks have same

context (the codebook model distance is small), they are merged to form a video segment.

Next step is the best tracking parameter learning. The video segment (video chunks with same

context) and its tracklets are passed to the simulated annealing optimization process (flow 3).

In this step, the tracklet representation (including tracket individual and surrounding features)

is generated (flow 4). The best tracking parameters P∗i for each tracklet are learned based on

the evaluation of tracker performance against the ground truth information (flow 4). Finally,

a tracklet representation accompany with its best tracking parameter set is stored in database

(flow 5). The learned data is formalized as follow: (∇Tri, P
∗
i ). More details on the optimization

of parameters P∗i are provided in section 5.3.4.2.

In the online phase, the proposed tracking algorithm processes in each fixed-size video

chunk defined by a time-window (in our case is 20 frames). The same short-term tracker with

the offline phase are applied on each video chunk ∆t to extract tracklets as well as tracklet

representations (flow 6). Then, each extracted tracklet representation is matched against the

closest learned tracklet representation in database to retrieve the according best tracking pa-

rameters (flow 7). The distance of two tracklet representations is provided in section 5.3.4.3.

Finally, in order to extend the person trajectory, tracklets with tuned parameters in the current

video chunk ∆t and tracklets are retrieved in previous video chunk ∆t−1 are linked to each

other by computing their tracklet representation distance and performing a local data associa-

tion process using Hungarian optimization algorithm (flow 8).

5.3.1 Video context

We follow the definition of the video context and how to segment the videos into video

segments with stable contexts from the paper [22]. Particularly, a video context is defined

by elements in the videos which influence the tracking quality. We called these elements as

contextual features. For each training video, we extract contextual features from tracked people
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and then use them to segment the training video in a set of consecutive segments. In the

following, we present a set of six contextual features which define a video context: density of

people, their occlusion level, their contrast with regard to the surrounding background, their

contrast variance, their 2D area and their 2D area variance.

� People density: The density of people influences significantly the tracking quality. A high

density of people may lead to a decrease of person detection and tracking performance.

The person density at time t is defined by the number of all people |Nbdet (t) | on the 2D

camera view:

Dent = |Nbdet (t) | (5.1)

� Occlusion level: Occlusion occurs when person is partially or completely hidden by other

people (dynamic occlusion) or background (static occlusion). Occlusion level decreases

both person detection and tracking performances. In this method, we focus on only the

dynamic occlusion. Given two people Oi
t and O j

t at time t, the occlusion level between

both people is computed as follow:

otk =
at
i j

min(at
i, a

t
j )

(5.2)

where k denotes the occlusion index in the set of occlusions occurring at time t, at
i j is the

overlap area, at
i , at

j are bounding-box areas of two people Ot
i and Ot

j , respectively. Let N t

be the number of person overlap areas at time t, the occlusion level of the video scene at

time t is defined the mean of occlusion levels of all people in the scene:

Oct = min(

∑N t

k=1 ot
k
× 2

Dent
, 1) (5.3)

� Contrast: The contrast of a person is defined as the color intensity difference between this

person and its surrounding background. Let Ai = {Ci,Wi, Hi } be the 2D bounding box of

person Ot
i where Ci,Wi, Hi are its 2D center, width and height, respectively. We determine

an outer bounding box of person Ot
i : A+i = {Ci,Wi+αWi, Hi+αHi } where α is a predefined

value in interval [0,1]. In the experiment, we set α to 0.3. The surrounding background

is defined as Asur
i = A+i /Ai.

The contrast of a person Ot
i is computed by:

Cotr ti = 1 − Simil (HAi, HAsur
i ) (5.4)

where Simil (HAi, HSsur
i ) is the color histogram similarity of two regions: detection region

of Ot
i and its surrounding background. The color histogram similarity is presented in

equation 2.8 in Chapter 4.
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Figure 5.2: Illustration of the contrast difference among people at a time instant.

a person with low contrast reduces first the person detection quality. So the quality of

tracking algorithms indirectly decreases in this case. The contrast feature of a video

context at time t, Cotr t , is defined as the mean value of the contrasts of all people at time

t as follow:

Cotr t =
∑Dent

k=1 Cotr ti
Dent

(5.5)

� Contrast variance: As shown in figure 5.2, the contrasts of people have different values.

Therefore, the contrast feature of a video context at time t computed as the mean as

equation 5.5 cannot represent correctly the contrast of all people in the video. We define

the variance of person contrasts at time t as their standard deviation value by:

Ĉt =

√√
1

Dent

n∑
i=1

(Ct
i − C̄t )2 (5.6)

� 2D area: 2D area of a person is defined as the number of pixels within its 2D bounding

box. Therefore, this feature also characterizes reliability of the person appearance for the

tracking process. The larger person area is, the higher the person appearance reliability
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is. The 2D area feature of a video context at time t Areat is defined as the mean value of

the 2D areas of people at
i s in the video scene at time t.

Areat =

∑Dent

k=1 at
i

Dent
(5.7)

� 2D Area variance: Similar to the contrast feature, people in the video are able to have

different 2D areas. people close to the camera have larger 2D areas tha people far to the

camera. Therefore, we also define the 2D area variance feature of a video context at time

t as the standard deviation value.

5.3.1.1 Codebook modeling of a video context

During the tracking process, we decide to use a codebook model [47] to represent a com-

pressed form of contextual feature values in a video segment without making parametric as-

sumption. In our approach, a video context is represented by a set of 6 feature codebooks,

called context codebook model and denoted CB, CB = {cbk , k = 1..6}. Each contextual feature

is represented by a codebook, called feature codebook and denoted cbk . A feature codebook

includes a set of codewords which describe the values of this feature. The number of codewords

presents for the diversity of feature values.

Definition of codeword

A code-word represents the values and their frequencies of a contextual feature. A feature

codebook can have many codewords. A codeword i of codebook k (k = 1..6), denoted cwk
i , is

defined as follows :

cwk
i = { µ̄

k
i ,m

k
i , Mk

i , f rki } (5.8)

where

- µ̄ki is the mean of the feature values belonging to this codeword.

- mk
i , Mk

i are the minimal and maximal feature values belonging to this word.

- f rki is the number of frames in which the feature values belong to this word.

Algorithm for updating codeword

The training phase for updating a codeword works as follows :

- At the beginning, the codebook cbk of a contextual feature k is empty.

- For each µkt defined as a contextual feature k computed at time t, whether µkt activates any

codeword in cbk is verified. µkt activates codeword cwk
i if both conditions are satisfied :

+ µkt is in range [0.7 × mk
i , 1.3 × Mk

i ].

+ The distance between µki and cwk
i is smaller than a threshold θ3. This distance is

defined as follows :
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dist(µkt , cw
k
i ) = 1 −

min(µkt , µ̄
k
i )

max(µkt , µ̄
k
i )

(5.9)

where µ̄ki is the mean value of codeword cwk
i (presented in equation 5.14).

- If cbk is empty or if there is no codeword activated, create a new codeword and insert it

into cbkby updating the values of this new codeword as follows :

µ̄ki = µ
k
t (5.10)

mk
i = µ

k
t (5.11)

Mk
i = µ

k
t (5.12)

f rki = 1 (5.13)

- If µkt activates cwk
i , this codeword is updated with the value of µkt :

µ̄ki =
µ̄ki × f i + µkt

f i + 1
(5.14)

mk
i = min(mk

i , µ
k
t ) (5.15)

Mk
i = max(Mk

i , µ
k
t ) (5.16)

f rki = f rki + 1 (5.17)

The codewords whose value f rki is lower than a threshold, are eliminated because they are

corresponding to very low frequent feature values.

5.3.1.2 Context Distance

The context distance is defined to compute the distance between a context C and a context

codebook model CB = {cbk, k = 1..6}. The context C of a video segment (∆ frames) is repre-

sented by a set of six values : the density, the occlusion level of people, the contrast with regard

to the surrounding background, their contrast variance, the 2D areas and the 2D area variance.

For each contextual feature k (k = 1..6), the contextual feature value at time t is denoted µkt

. For each such value, we consider whether it matches any codeword of the corresponding

feature code- book cbk . The pseudo-code of Algorithm 1 shows how to compute the distance
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between a context C and a context codebook model CB. The distance between context C and

codebook cbk is expressed by the number of times of matching a µkt and a codeword cwk
i are

found. The distance dist(µkt , cw
k
i ) is defined as in equation 5.9 and is normalized in the interval

[0, 1].

Algorithm 1 Compute Context Distance
1: procedure CONTEXTDISTANCE(C,CB,L)

2: Input: context codebook model CB, context C, L(number of frames of context C)

3: Output: context distance between CB and C

4: totalCount = 0;

5: for each codebook cbk in CB (k = 1..6) do

6: count = 0;

7: for each value µkt of context C do

8: for each codeword cwk
i in codebook cbk do

9: if dist(µkt ,cwk
i ) < θ1 then

10: count ++;

11: break;

12: if count/L < θ2 then return 1;

13: totalCount+=count;

14: return 1 - totalCount/(L ∗ 6);

5.3.2 Tracklet features

The proposed long-term tracker people to tune tracking parameters for tracklets which are

generated by a short-term tracker. In order to characterize tracklet Tri, we use the tracklet

feature pool Fi which includes features accumulated by node features within the tracklet time-

span. The definition as well as how to compute nodes features are presented in detail in chapter

3. In this chapter, the tracklet feature pool Fi is also divided into 2 feature pools Fi = {FO
i , F

OE
i }:

� FO
i (individual features) represents the pool of features that are computed using only the

data of the tracklet. FO
i includes 6 features: 2D Shape ratio, 2D Area, Color histogram,

Dominant color, Color Covariance and motion model.

� FOE
i (surrounding features) represents the pool of features that are computed based on

the interaction of a tracklet to its surrounding background which is defined in section

5.3.1. Any tracklet intersecting in the surrounding background of tracklet Tri is consid-

ered to interact with tracklet Tri. FOE
i consists of 3 features: occlusion, person density

and contrast.
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A tracklet feature is accumulated by the according feature of nodes belonging to the tracklet.

However, the feature reliability is different between nodes. Therefore, each tracklet feature

Fk
i ∈ Fi is represented by (µki , σ

k
i ) where µki and σk

i are the weighted mean and standard

deviation of nodes’ feature Fk
i (t), respectively. The values of µki and σk

i are computed by:

µki =

∑n
t=m w(t) ∗ Fk

i (t)∑n
t=m w(t)

(5.18)

σk
i =

√∑n
t=m w(t) ∗ (Fk

i (t) − µki )2∑n
t=m w(t)

(5.19)

where w(t) is the weight function which is defined in section 2.3.1.1 in chapter 4.

5.3.3 Tracklet representation

The proposed approach objects to obtain the best tracking parameters for each tracklet in

the testing video scenes by retrieving its closest tracklet in the learned database. Because the

datasets for training are different with those for testing, in stead of comparing the individual

features between two tracklets, this approach compare their surrounding context as well as the

discrimination to their neighbourhood. We define the neighbourhood of a tracklet TrSurri s as a

set of tracklets TrSurri which intersects inside the surrounding background of tracklet Tri.

Therefore, the tracklet representation is defined as follow:

∇Tri = {F
OE
i , {FO

i , F
O(Surr )
i s}} (5.20)

where FO(Surr )
i is individual feature pool of each surrounding tracklet TrSurri ∈ TrSurri s and

Fi = {FO
i , F

OE
i }.

In the following section, the list of tracklet features (consists of surrounding features and

individual features) are presented in detail.

5.3.4 Tracking parameter tuning

5.3.4.1 Hypothesis

In order to select the best tracking parameters for each tracklet, the proposed approach

relies on a hypothesis that if representations of two tracklets are close enough, the learned best

tracking parameter values of one tracklet could be applied effectively for the other one. The

hypothesis is formalized as follow:

(5.21)
If (‖∇Trj − ∇Tri ‖< ε1) and (Q(=(∇Tri, P

∗
i ),GT ) > θ)

⇒ Q(=(∇Trj , P
∗
i ),GT ) > θ + ε2
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where ‖∇Trj − ∇Tri ‖ is the tracklet representation distance (provided in section 5.3.4.3)

of two tracklets Tri and Trj , Q is the tracking performance of tracking algorithm =, GT stands

for tracking ground-truth and P∗i is the best tracking parameter set of tracklet Tri. In this work,

we use the Mostly-Track (MT) metric (detailed in the experiment part) and the tracking time

metric in [78] to evaluate the tracking performance Q.

The hypothesis is proposed with two main purposes. The first purpose is to justify the

tuning online tracking parameters for an extracted tracklet. If the representation ∇Trj of the

new tracklet Trj In the online phase is matched against any record in the database ∇Tri , the

tracker could gain the optimal performance for the new tracklet when applying the according

learned parameter set P∗i . The second purpose is to avoid redundant records in database. In

training phase, if tracklet Trj ’s representation is closed enough to existed tracklet Tri in the

database, they could use the same best tracking parameters and we store only tracklet Tri. The

correctness of the hypothesis will be discussed in the experiment part.

5.3.4.2 Offline Tracking Parameter learning

We have a training video segmented by video context and now we want to learn the best

tracking parameters for each tracklet in a video context and store it in database. For exploring

a large search space to find an optimum, we are using simulated annealing (SA) method which

helps in cases where exhaustive search is impossible. SA is meta-heuristic and approximates the

global optimum in a large searching space. For problems where finding an approximate global

optimum is more important than finding a precise local optimum in a fixed amount of time,

simulated annealing may be preferable to alter such as gradient descent that can get stuck in

local optimization.

Simulated annealing based optimization: The tracking parameters are learned to opti-

mize the tracker performance which is evaluated against the ground truth information. There-

fore, the objective function of tracking parameter optimization is defined by finding the best

tracking parameter set P∗i to maximize the tracking performance Q(=(∇Tri, Pi). Then, the ob-

jective function is determined:

P∗i = arg max
Pi

Q(=(∇Tri, Pi),GT ) (5.22)

We apply the multiple-SA method to find the best tracking parameter setting. In particular,

multiple optimizers run in parallel to increase the searching speed. The starting points SA

optimizers are initialized by dividing the searching space into subsets and selecting the middle

point of each subset. Therefore, the best performance of optimizers will approximate more

accurately the global optimized values. Learned parameter values according to the optimizer

getting the highest performance are considered as the best tracking parameter set.
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5.3.4.3 Online Tracking Parameter tuning

In the testing phase, the online tracking parameter tuning is applied for each video chunk

(∆t). Firstly, the representation of each tracklet in this video chunk is extracted. Then, based on

the tracklet representation distance computation, the given tracklet obtains the best tracking

parameter set by retrieving its closest one in the learned database.

Tracklet representation distance

To compare two tracklets, we focus on two aspects. The first aspect is the difference between

these tracklets’ appearance discrimination level with their own surrounding tracklets. The sec-

ond is the difference between their surrounding context. Therefore, the tracklet representation

distance ‖∇Trj − ∇Tri ‖ shown in Equation 5.21 is formalized as follow:

‖∇Trj −∇Tri ‖ ' β×‖Disc(FO
j , F

O(Surr )
j s)−Disc(FO

i , F
O(Surr )
i s)‖+ (1− β)×‖FOE

j −FOE
i ‖ (5.23)

where Disc(FO
i , F

O(Surr )
i s) and Disc(FO

j , F
O(Surr )
j s are the appearance discrimination levels of

tracklets Tri and Trj with their surrounding tracklets, respectively. ‖FOE
j − FOE

i ‖ is the sur-

rounding context distance of Tri and Trj . The weight β adapts the importance of appearance

discrimination level between two tracklets over the distance of their surrounding context. We

set β values to 0.7 in experiment.

We define p ∈ {i, j} and N is the size of FO
p , [N+1, N+3] are indexes of surrounding features

FOE
p . Disc(FO

p , F
O(Surr )
p s) and ‖FOE

j − FOE
i ‖ in equation 5.23 are computed as follows:

(5.24)Disc(FO
p , F

O(Surr )
p s) =

∑N
k=1ω

k
p × Disc(Fk

p , F
k (Surr )
p s)∑N

k=1ω
k
p

(5.25)‖FOE
j − FOE

i ‖= 1 −

∑N+3
k=N+1 γ

k × Simi(Fk
j , F

k
i )∑N+3

k=N+1 γ
k
i

Disc(Fk
p , F

k (Surr )
p s) = 1 − M̃ (Simi(Fk

p , (Fk (Surr )
p )) (5.26)

With equation 5.24, the appearance discrimination level Disc(FO
p , F

O(Surr )
p s) is computed

by the weighted average of all tracklet individual features’ discrimination Disc(Fk
p , F

k (Surr )
p s) of

tracklet Trp (k = 1..N) wrt its neighbourhood TrSurri s. Disck (Trp,Trcp s) on tracklet individual

feature k, shown in equation 5.3.4.3, is computed based on the median M̃ of this feature

similarities between Trp and Trcp s. The surrounding context distance ‖FOE
j − FOE

i ‖ between
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two tracklet Tri and Trj , shown in equation 5.25 is computed by the weighted average of their

surrounding features’ similarity. The way to compute tracklet feature similarities is provided in

section 5.3.2.

If the tracklet surrounding context changes, the reliability of tracklet features may change

and their individual feature weights ω as well as the surrounding feature weights γ need to

be set and tuned along the change onf scene. Therefore, the best tracking parameter set P∗i
defined in section 5.3.4.1, which is learned. In the offline phase and tuned In the online phase,

is a set of individual feature weights ω and surrounding feature weights γ in equation 5.24 and

5.25, respectively.

5.3.4.4 Tracklet linking

Beside using the tracklet representation distance to retrieve the closest tracklet in the

learned database to a tracklet in online parameter tuning, this distance is also used to compare

a tracklet with its candidates in two consecutive video chunks (∆t−1 and ∆t) in tracklet linking

step.

We construct an association matrix M = {mi j} with i=1..n, j=1..n, where n is the number

of tracklets based on their tracklet representation distance. mi j = ‖∇Trj − ∇Tri ‖ computed by

equation 5.23 if tracklet Trj is a candidate of Tri; Otherwise, mi j = 0. Finally, Hungarian

algorithm is used to optimize the tracklet linking process.

5.4 Evaluation

In this section, the performance of the proposed tracker named CPT −Tracker is evaluated.

The short-term tracker using different person appearance features [20] is selected to experi-

ment in our framework. We compare the tracking results of CPT −Tracker with methods from

the state-of-the-art in three cases: with the short-term tracker (with fixed parameter), with

the tracker which tunes tracking parameters for the whole video context and with six other

state-of-the-art trackers.

5.4.1 Datasets

Training phase

CPT − Tracker is trained on nine video sequences: four videos from CAVIAR dataset1 and

three from ETISEO dataset2. The videos are selected because they represent a variety of track-

ing contextual information (e.g..low/high density of person in the scene, strong/weak person

1homepages.inf.ef.ac.uk/rbf/CAVIAR/
2www-sop.inria.fr/orion/ETISEO/
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contrast). The offline training phase requires the ground-truth of person tracking as input.

From the hypothesis shown in equation 5.21, some tracklets are close to each others then we

keep only one tracklet as the representative. Therefore, after training 780 tracklet samples,

tracking parameters for only 284 tracklet representations are learned. Tracklet representations

together with their own best tracking parameter sets are storaged in the database. Then, this

database is used as a reference to automatically retrieve tracking parameters for tracklets in the

testing phase.

Testing phase

CPT − Tracker is evaluated on 3 video sequences from 2 public datasets (PETs2009 and

TUD). For all these videos, the video scenes are different from the ones of training videos. The

proposed tracking algorithm processes on each video chunks of 20 frames. Tracking parameters

are tuned for each tracklet in the current video chunk by best tracking parameters which are

obtained from its closest tracklet in the learned database. The tuned tracking parameters of

each tracklet adapts the tracker CPT − Tracker to the change of this tracklet’s surrounding

context.

5.4.2 System parameters

All system parameters have been found experimentally, and is kept unchanged for all bench-

mark datasets. The same threshold θ = 0.3 is used for the data association process. The size of

a video chunk in the offline phase is fixed to 50 frames. The size of a video chunk in the online

phase is 20 frames. The minimum size of a tracklet is set to 3 frames.

5.4.3 Performance evaluation

5.4.3.1 PETs 2009 dataset

The sequence S2L1 View1, is selected for testing because this sequence is used for the evalu-

ation in several state-of-the-art trackers. It consists of 794 frames with 21 people with different

degrees of inter-person occlusion.

The visualization in figure 5.3 shows the surrounding contexts of a testing tracklet from se-

quence S2L1 View1 and its two closest learned tracklet representations from CAVIAR dataset.

The testing tracklet and two learned tracklets have the similarity of surrounding context. How-

ever, the discrimination level of these tracklets with their own surrounding tracklets are dif-

ferent. In particular, the learned tracklet in (b) and testing tracklet (represented by ”red”

bounding-boxes) move in the opposite direction with their own surrounding tracklets (repre-

sented by ”blue” bounding-boxes) while people move in the same direction in (a). Therefore,

based on the tracklet representation distance, the tracklet In the online phase is closer to learned
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Figure 5.3: Tracklet representation ∇Tri and tracklet representation matching. Tracklet Tri is identified
with ”red” bounding-box and fully surrounded by the surrounding background marked by the ”black”
bounding-box. The other colors (blue, green) identify for the surrounding tracklets.

tracklet in (b) than in (a). The tracker CPT −Tracker uses the best tracking parameters learned

for the tracklet in (b) to tune tracklet feature weights for the tracklet in the online phase.

5.4.3.2 TUD dataset

The second test is conducted with the TUD dataset (including TUD-Stadtmitte and TUD-

Crossing sequences). Both of these sequences are quite short, with more or less 200 frames,

but they contain challenges for trackers due to heavy and frequent person occlusions. Figure

5.4 shows a snapshot of the tracking performance of the proposed algorithm. The testing

tracklet (represented by ”green” bounding-box) has a low low-contrast and high person density

context. The target appearance is not discriminative enough wrt surrounding tracklets but it

moves in different direction compared to others. The closest tracklet to the testing tracklet in

the learned database is represented by the ”red” bounding-box. The best tracking parameters

of this learned tracklet (consisting of 0.512 for motion feature, 0.215 for color histogram and

0.193 for color covariance) are tuned for testing tracklet. Thanks to tuned parameters, the

tracker CPT − Tracker can correctly link tracklets before and after mis-detections and recover

the person trajectory.
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Figure 5.4: TUD-Stadtmitte dataset: The tracklet ID8 represented by color ”green” with the best tracking
parameters retrieved by a reference to the closest tracklet in database recovers the person trajectory from
misdetection caused by occlusion.

5.4.3.3 Tracking performance comparison

The tracking performance comparison of the proposed tracker CPT − Tracker with state-

of-the-art trackers is shown in table 5.1 over three testing video sequences. The detection and

evaluation method are shared by trackers ICDP˙Phu,IMAVIS˙Phu and the proposed approach.

MT and ML metrics

Metrics MT and ML evaluate which percentage of ground-truth people are matched by track-

ing output (at least 80% for MT and less than 20% for ML).

On PETs2009/S2L1/View-1, three trackers [8, 39] and CPT − Tracker are tested. Tracker

[8] includes several steps: online local association or global association based on tracklet confi-

dence and person appearance learning. In this evaluation section, we compare CPT − Tracker

with tracker [8] in case of global association method because both methods are online long-

term tracking. The performance of method [8]- global association can reach 100% mostly-

tracked (ML) which are much higher than CPT − Tracker ’s performance (76.2%). However,

the incomparable performance of CPT − Tracker is reasonable when the person detector pro-

viding the input for this tracker misses detecting three ground-truth people. Beside that, two

methods use different ground-truth. In particular, the tracker [8] is evaluated on 23 ground-

truth people while the tracker CPT−Tracker is evaluated on only 21 ones. In this dataset, in the

case that people leave the scene and come back, the ground-truth with 21 people labels these

people as the same but the another with 23 people considers these people as different. There-

fore, even a tracker cannot track people in this case, the evaluation on 23 person ground-truth

has higher performance than the evaluation on 21 person ground-truth. The tracker [39] mod-
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Dataset Method MT(%)↑ PT ML(%)↓ MOTA(%)↑ MOTP(%)↑ GT

PETS2009 - S2L1 View1 Shitrit et al. [11] – – – 81.0 58.0 21
Bae et al.-global association [8] 100 0 0.0 77.4 69.0 23

Chau et al. [20] – – – 62.3 63.7 21
Chau [22]( [20] + parameter tuning for whole video context) – – – 85.0 71.0 21
Heili et al.[39](parameter tuning based on detection context) 70.0 25.0 5.0 – – 20
Ours ( [20] + Parameter tuning based on tracklet context ) 76.2 14.3 9.5 86.8 73.2 21

TUD-Stadtmitte Milan et al. [73] 70.0 20.0 0.0 71.1 65.5 9
Chau et al. [20] 60.0 40.0 0.0 45.3 61.9 10

Chau [22]( [20] + parameter tuning for whole video context) 70.0 10.0 20.0 – – 10
Heili et al.[39](parameter tuning based on detection context) 70.0 30.0 0.0 – – 10
Ours ( [20] + Parameter tuning based on tracklet context ) 70.0 30.0 0.0 47.3 65.6 10

TUD-Crossing Tang et al. [101] 53.8 38.4 7.8 – – 11
Chau et al. [20] 46.2 53.8 0.0 69.1 65.4 11

Heili et al.[39](parameter tuning based on detection context) – – – 79.0 78.0 13
Ours ( [20] + Parameter tuning based on tracklet context) 53.8 46.2 0.0 72.1 67.3 11

Table 5.1: Tracking performance. The best values are printed in red.

els multi-person tracking task by Conditional Random Field (CRF) which considers long-term

connectivity between pairs of detection. Tracking parameters are learned in an unsupervised

way from detections and tracklets. Method [39] also uses a different ground-truth with our

method, particularly, 20 ground-truth people are annotated. On the ML metric, we outperform

the tracker [39], 76.2% comparing to 70.0%, even we use the ground-truth which counts more

people in the video. Tracker [39] mostly loses only one person while our approach mostly loses

two. However, both trackers uses different ground-truth, the comparison on ML metric is not

convinced enough in the case that the proposed approach loses the person who is not counted

by the tracker [39] ground-truth.

On TUD dataset including TUD-Stadtmitte and TUD-Crossing, our approach does not lose

any person and has highest performance measured by MT metric. Compared to other methods

[22], tracker CPT − Tracker can track more people, then reduces the ML value from 20% to

0% on sequence TUD-Stadtmitte. Tracker CPT − Tracker improves the performance of [20]

measured by metric MT on both sequences (an increase of 10% on sequence TUD-Stadtmitte

and 7% on sequence TUD-Crossing.

MOTA, MOTP metrics

In almost cases, our proposed approach has better MOTA and MOTP values compared to

others, the short-term tracker [20] as well as the parameter tuning method for whole video

context from [22].

On PETS2009/S2L1/View-1 sequence, the proposed approach performance has higher re-

sult than state-of-the-art trackers [11, 8] and parameter tuning method for whole context [22]

which uses the same short-term tracker [20]. Especially, thanks to the proposed parameter tun-

ing method, the short-term tracker [20] is improved significantly, from 62.3 to 86.8 for MOTA

value and from 63.7 to 73.2 for MOTP value.
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On TUD dataset, the tracker CPT−Tracker slightly improves tracking performance of short-

term tracker [20] in both metrics. We have lower performance compared to tracker [73] on

the sequence TUD-Stadmitte in MOTA metric and tracker [39] on the sequence TUD-Crossing

in MOTA, MOTP metrics. However, we evaluate our method using the same ground-truth

and detection compared to tracker [20] while using the different ones compared to trackers

[73, 39]. Therefore, in order to have more confident comparison, trackers from state-of-the-art

need sharing the detection and evaluation method.

5.5 Conclusions and future work

This approach proposes a new framework which online tunes tracking parameters to adapt

the tracker to the variation of tracklet surrounding context. It tunes the tracking parameters

for each tracklet instead of globally setting up for all tracklets to ensure that tuned parame-

ters can characterize each tracklet in its surrounding context. Moreover, this framework uses

the approximate optimization method (SA) which has no restriction on the independence as

well as the number of tracking parameters. Therefore, this framework can be also applied to

other trackers with different tracking parameter set. A new way to represent a tracklet in its

surrounding context is also proposed to highlight its discrimination level of tracklet to other in

its context. The experimental results show the remarkable performance improvement of our

approach compared to: (1) trackers using static parameter values, (2) a parameter tuner for all

people in a video, (3) state-of-the-art trackers over three public benchmark datasets.

However, some limitations exist in the proposed approach. Firstly, the storage of more and

more learned tracklets in database makes the database becomes huger and huger. Finding to the

best learned tracklet to obtain best tracking parameters for a testing tracklet is time-consuming.

Secondly, there is a requirement on the training data which should be diverse enough to make

the algorithm generic. Third, the proposed approach cannot refine a tracklet extracted from a

short-term tracker’s output which is composed of more than one ground-truth person. Forth,

the performance of the proposed tracker remarkably affected by the detection and short-term

tracking performances.

Therefore, in future work, we will propose some methods to overcome above limitations

of the proposed tracker: (1) a method to index learned tracklets to reduce the time to find

the closest tracklet to retrieve the best tracking parameters in a large learned database. (2) a

back-track mechanism to correct the errors of the detector and the short-term tracker.
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RE-ID BASED MULTI-PERSON TRACKING

[81]

6.1 Introduction

Multi-person tracking in a crowded environment faces to many challenging problems, such

as long or frequent person occlusions caused by other people or background, pose variation or

illumination changing which makes person appearance change overtime.

Multi-person tracking in a single camera can be considered a special case of Multiple shot

Re-id applied for one camera view in cases person appearance variation caused by occlusion,

illumination changes. Whereas, the recent person Re-id approaches propose effective object

features which are invariant to person appearance change as well as metrics to improve their

ability in matching people. However, the Re-id works in offline mode which requires person

information for the whole video. Therefore, in order to address multi-person tracking problems

with Re-id manner, it is necessary to propose a method which performs two tasks: (1) generat-

ing reliable person representations which are invariant with person appearance variation and

(2) correctly linking person trajectories based on person representation affinities.

In this chapter, we propose a robust multi-person tracking method which takes full advan-

tage of features (including hand-crafted and learned features) and tracklet affinity computa-

tion methods proposed for multiple-shot person Re-id and adapts them to MOT. The proposed

method not only addresses problems in MOT but also ensures online processing. This method

integrates a short-term and a long-term tracker in a comprehensive framework where the short-

term tracker generates tracklets and the long-term tracker links generated tracklets together
83
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after a time buffering. In order to represent a tracklet with hand-crafted features, these fea-

tures are computed for full body and body parts, then, each tracklet is represented by a set

of multi-modal feature distribution modeled by Gaussian Mixture Models (GMMs). Thanks to

learning a Mahalanobis metric between tracklet representations, the long-term tracker handles

occlusion and mis-detection by a tracklet bipartite association method. In order to learn this

metric, KISSME [49] algorithm is adopted to learn feature transformations of a person before

and after occlusion or mis-detection. The drawback of this metric learning algorithm is the

requirement of the similarity between training and testing data. With the objective of making

this framework become generic, instead of using hand-crafted features, we represent a tracklet

by CNN feature extracted from a pre-trained CNN model. Then, we associate the CNN feature-

person representation with Euclidean distance into a comprehensive framework which works

fully online.

The rest of the chapter is organized as follow: Section 6.2 discusses about some works from

the state-of-the-art which try to solve the same MOT problems as the proposed approach. Sec-

tion 6.3 presents the details about the structure and flows of the mentioned two-step compre-

hensive hand-crafted Re-id features based tracking framework. Tracklet representation using

learned features (CNN) is presented in section 6.4. The data association method is presented

in section 6.5. Section 6.6 evaluates the robustness of the Re-id hand-crafted feature based

method by comparing its performance with other state-of-the-art trackers. Finally, section 6.7

concludes the chapter.

6.2 Related work

In order to address problems related to person appearance changing, multiple-shot person

Re-id methods [63, 126, 77] have gained high performances in matching people from different

camera views. In order to match a query person to the closest person in a gallery, these Re-id

methods use efficient features and person representations. These methods are adopted to solve

problems that involve pose and camera view setting variation.

From the state-of-the-art, there are some approaches try to apply the Re-id features to track-

ing. The authors in [9] used Mean Riemannian Covariance Grid (MRCG) descriptor proposed

for Re-id for linking tracklets into longer ones to form the final person trajectories. The affinity

of two tracklets are computed based on the distance between two tracklet representation in

each time-window. Tracket representation based on MRCG descriptor is generated by forming

a dense grid structure with spatially overlapping square regions described using mean covari-

ance matrix. Tracklet representation computed by the mean of corresponding cell covariances

of all nodes in tracklet can not completely represent for a tracklet if person information changes

much in tracklet timespan. To address this problem, authors in [7] select key-frames represent-
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ing the most ”reliable nodes” of each tracklet. The ”reliable nodes” are the ones which contain

the most significant information concerning the appearance of the person with the least noise

coming from interaction with the background or other people (occlusion, pose variance, illu-

mination changing and so on). This method can generate the reliable tracklet appearance sig-

nature. However, key-frame selection depends on the ratio between noise and non-noise nodes

in tracklet. If noise nodes occupies a large ratio, for example long-term occlusion, selected

key-frames are occluded nodes. Therefore, to efficiently link tracklets in the scenario variation,

the consistent information of tracklet including noise as well as non-noise nodes needs to be

covered and represented.

On the other hand, deep learning methods are also effectively applicable to multi-object

tracking (MOT). Authors in [107] propose a novel and efficient way to obtain discriminative

appearance-based tracklet affinity models. In this framework, each sample pair is passed to

a Siamese CNN including two sub-CNNs to extract the feature vectors. Then, based on the

feature vectors obtained from the last layer of both sub-CNNs in each video segment, temporally

constrained metrics are learned online to update the appearance-based tracklet affinity model.

Finally, MOT problem is formulated as a Generalized Linear Assignment (GLA) problem which

is solved by the soft-assignment algorithm. Recently, another robust RNN-based multi-object

tracker [92] has been proposed which outperforms previous works on most recent datasets

including the challenging MOT benchmark. This method builds multiple-RNN models that

learns to encode long-term temporal dependencies across multiple cue (appearance (A), motion

(M) and interaction (I)). The output of each RNN model (represents the object in each cue) is

a feature vector concatenated by 2 sub-feature vectors (same dimension). One sub-feature

vector is extracted from a LSTM network which encodes long-term dependencies of object

observations belonging to target trajectory. The other one is the result of RNN fully connected

layer when passing directly the detection they wish to compare to the network. Finally, the final

RNN is jointly trained end-to-end with the RNNs according to A, M and I cues by concatenating

single feature vectors and outputting the score of whether a detection corresponds to a target

using Soft-max classifier and cross-entropy loss. Although the effectiveness of these methods

are presented, they bear a high computation cost of online tracklet appearance model learning.

In this chapter, we proposed a method which extends the features (hand-crafted and learned

features proposed for Re-id) to represent tracklets in MOT. To compute the affinity between

tracklets in online MOT, learned Mahalanobis distance are learned to compute the affinity of

hand-crafted tracklet representation while we use the Euclidean distance to compare learned

tracklet representation. The experimental results show that the performance of both frame-

works are comparable with the state-of-the-art trackers.
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Figure 6.1: The proposed hand-crafed feature based MOT framework.

6.3 Hand-crafted feature based MOT framework

Figure 6.1 illustrates the proposed hand-crafted feature based MOT framework consisting

of two blocks: online tracking and offline learning. In the offline block, the framework gener-

ates the tracklet representations of input tracklets and learns the similarity metric between the

tracklets using data in the training set. Once the similarity metric has been learned, the two-

step online block, describes the interaction between short-term (frame-to-frame) and long-term

trackers, are processed in every time-window ∆t. The short-term tracker’s objective is to extract

tracklets by linking together potential person detections in consecutive frames. For a reliable

tracklet, in the scenario where people are occluded by background or other people, tracklet fil-

tering presented in chapter 3 is applied by splitting spatially disconnected or occluded tracklets,

too short tracklets are also filtered out. The long-term tracker generates tracklet representations

of extracted tracklets stacked in two consecutive time-windows [∆t−1,∆t] instead of the whole

video as the Re-id method. The purpose of tracklet stack is to recover all further segmented

tracklets from previous time-window in the case of long occlusion. The long-term tracker per-

forms linking generated tracklets (tracklets and their corresponding candidates) based on their

Mahalanobis distance and carries out data association using a bipartite graph optimization,
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typically Hungarian algorithm.

6.3.1 Tracklet representation

We define tracklet Tri spanning over consecutive frames < m, n > as following:

Tri = {Om
i ,O

m+1
i , ...,On−1

i ,On
i } (6.1)

Since person Re-id usually deals with identifying a person from different camera views, it is

expected that the appearance model from Re-id representation becomes even more effective in

single-view multi-person tracking.

Inspired by person Re-id approach in [77], we represent the tracklet appearance as a multi-

modal probability distribution of the selected features. To deal with occlusion, the appearance

models are created independently for each part of person (full, upper and lower part of the

bounding-box). By this method, each channel in tracklet representation could correspond to a

particular object feature for each part.

Appearance models help to overcome occlusion, pose variation and illumination problems.

Unlike feature pruning methods that make problem specific, we create models with different

features without pruning. Although this can cause a redundancy in feature representation

but the features are computed efficiently to be shared between the parts (upper and lower

body regions are defined as 60% of the person detection bounding-box). To describe a person,

we use appearance features that are locally computed on the person detection bounding-box,

including: HOG[26], LOMO[63], MCSH[126] and Color histogram (CH) features where LOMO

and MCSH features have never been applied in MOT domain. While the framework exploits

HOG feature as a shape-based feature to overcome difficulties of pose variation, it benefits from

other features to cope with appearance changes happening in long occlusions.

Given a set of nodes (detection bounding-boxes) belonging to tracklet Tri, the tracklet rep-

resentation ∇Tri (illustrated in figure 6.2) is defined as a multi-channel appearance mixture

where each channel is a appearance model Mp, f
i :

∇Tri = {M
p, f
i | p ∈ { f ull, upper, lower }, f ∈ {HOG, LOMO, MCSH,CH }} (6.2)

Each appearance model in the set is a multivariate Gaussian Mixture Model (GMM) distribution

of low-level features of part p and feature f .

Mp, f
i (GM M) = {(µp, f

i,k
, σ

p, f
i,k

)} (6.3)

k = 1..K and K is GMM components. The values of each Gaussian distribution (µp, f
i,k
, σ

p, f
i,k

) is

updated in the whole tracklet timespan as follow:
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Figure 6.2: Tracklet representation.
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where α is a weight to balance the feature reliability achieved in previous time-window ∆t−1

and current time-window ∆t .

6.3.2 Learning mixture parameters

For each body part p and feature f of each person with ID i, the parameters of the appear-

ance model Mp, f
i are learned independently. There is no a priori knowledge about the number

of modes of a person appearance, therefore, both finding the number of modes and description

of them using low-level features need to be addressed.

People appearing in a video have different appearance and produce GMMs with variable

number of components. Therefore, the number of components are not a priori determined

and need to be retrieved. In order to infer the number of GMM components (K) for each

appearance model automatically, Akaike Information Criterion (AIC) model selection is used.

After knowing the fixed number of components, the parameters of a GMM could be learned

conveniently using Expectation-Maximization method.

6.3.3 Similarity metric for tracklet representations

6.3.3.1 Metric learning

Recently, metric learning has gained considerable scientific interest in the field of person Re-

id, as it provides a very elegant fusion of the descriptive and discriminative techniques typically

encountered in the community. The main idea is to build on an existing feature representation,
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which is usually designed to generate a descriptive signature of the whole person appearance,

and then to learn a suitable metric that reflects the visual camera-to-camera transition. Hence,

in contrast to methods that match features directly in the feature space using some standard

distance measure, metric learning has the advantage that even less distinctive features, which

need not capture the visual invariance between different camera views, are sufficient for achiev-

ing high matching performance. Moreover, since the learned metric inherently emphasizes or

attenuates directions in the feature space based on their importance for the given task, it can

also be seen as a discriminative feature selector. Just like in the case of discriminative methods,

to estimate such a metric, a training stage is necessary. However, once learned, metric learning

approaches are very efficient during evaluation, since additionally to the feature extraction and

the matching, only linear projections have to be computed.

The goal of metric learning is to adapt some pairwise real-valued metric function, say the

Mahalanobis distance: dM (x, x ′) =
√

(x − x ′)T M (x − x ′) to the problem of interest using the

information brought by training examples. Most methods learn the metric (here, the positive

semi-definite matrix M in d˙M) in a weakly-supervised way from pair or triplet based con-

straints of the following form:

� Must-link / cannot-link constraints (sometimes called positive / negative pairs):

X+ = (xi, xj ) : xi and xj should be similar

X− = (xi, xl): xi and xl should be dissimilar

� Relative constraints (sometimes called training triplets):

R = (xi, xj, xl) : xi should be more similar to xj than to xl

A metric learning algorithm basically aims at finding the parameters of the metric such

that it best agrees with these constraints (see Figure 6.3 for an illustration), in an effort to

approximate the underlying semantic metric. This is typically formulated as an optimization

problem that has the following general form:

min
M

l (M, X+, X−, R) + λR(M) (6.6)

where l (M, X+, X−, R) is a loss function that incurs a penalty when training constraints are

violated, R(M) is some regularizer on the parameters M of the learned metric and λ ≥ 0 is

the regularization parameter. State-of-the-art metric learning formulations essentially differ by

their choice of metric, constraints, loss function and regularizer.

Some of popular algorithms to learn matrix M from a set of vector pair X = {xi j |i = 1 :

m, j = 1 : n} are LMNN [110],ITML [27] and KISSME [49]. However, for our experiments, we

2http://www.vision.caltech.edu/html-files/archive.html
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Figure 6.3: Illustration of metric learning applied to a face recognition task. For simplicity, images are
represented as points in 2 dimensions. Pair wise constraints, shown in the left pane, are composed of
images representing the same person( must-link, shown in green) or different people(cannot-link, shown
in red). We wish to adapt the metric so that there are fewer constraint violations (right pane). Images
are taken from the Caltech Face dataset. 2

use KISSME [49] for its simplicity, low computation cost and effectiveness under challenging

conditions.

Metric learning sampling method is illustrated in 6.4. In order to learn the metric M, we

select positive samples (xi, xj ) and negative samples (xi, xl) as follow:

� Tracklet segments: The training trajectories are divided into fixed size tracklet segments.

� A positive sample is a pair of GMM component means of two segmented tracklets belong-

ing to the same GroundTruth people.

� A negative samples is a pair of GMM component means of two segmented tracklets be-

longing to the different GroundTruth people.

KISSME algorithm assumes independent Gaussian generation processes with parameters

θ+ = (0, Σ+) and θ− = (0, Σ−) for positive and negative pairs (xi, xj ) and (xi, xl), respectively. We

estimate parameter of matrix M using KISSME by:

M = (Σ+
−1
− Σ−

−1
) (6.7)

where Σ+ and Σ− are feature difference covariance metrics of positive and negative classes, re-

spectively. Given pair associations, the covariance matrices Σ+ and Σ− are computed as follows:

Σ
+ =

∑
(xi,xj )∈X+

(xi − xj )(xi − xj )T (6.8)

Σ
− =

∑
(xi,xl )∈X−

(xi − xl)(xi − xl)T (6.9)
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(xi,xj)

(xi,xl)

Figure 6.4: Metric learning sampling.

6.3.3.2 Tracklet representation similarity

Similarity metric plays an essential role in comparing two candidate tracklets’ representa-

tions. Similarity of two tracklet representations is defined as the sum of similarities between

the corresponding appearance models. Given the distance between two appearance models

d(Mp, f
i , Mp, f

j ) of tracklet representations ∇Tri and ∇Trj , we can convert this distance into simi-

larity using Gaussian similarity kernel as follow:

Sim(∇Tri,∇Trj ) =
∑

p∈P, f ∈F

exp
(
−

d(Mp, f
i , Mp, f

j ) − γp, fj

(βp, fj − γ
p, f
j )

)
(6.10)

where P = { f ull, upper, lower } and F = {HOG, LOMO, MCSH,CH }, β
p, f
j and γ

p, f
j are the

maximum and minimum normalized distance between tracklet representation ∇Trj and repre-

sentations of its candidates Canj , respectively. The definitions of Canj is presented in chapter

3.

d(Mp, f
i , Mp, f

j ) is a maximum normalized distance between two appearance model ( part p

and feature f ) corresponding to tracklet representations ∇Tri and ∇Trj :
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LEARNED FEATURE BASED TRACKING

Tr1
Tr2

Tr3
Tr4

Tr1

Tr2

Tr3

Tr4

Tr2 Tr4
Tr3Tr1

Association

Short-term tracking Long-term tracking
Tracklet representation

Euclidean 
Distance 

Computation
Object 

detections

Tracklet extraction Completed 
object 

trajectories

VGG16 
based 
feature 

extraction

Feature vector

Figure 6.5: The proposed learned feature based MOT framework.

d(Mp, f
i , Mp, f

j ) =
d(Mp, f

i , Mp, f
j )

max ĵ∈Cani
d(Mp, f

i , Mp, f

ĵ
)

(6.11)

The distance between two appearance models is defined as sum of distance between GMM

components weighted by their prior probabilities:

d(Mp, f
i , Mp, f

j ) =
∑

k1=1:K p, f
i ,k2=1:K p, f

j

πk1πk2 d(Gp, f
i,k1
,Gp, f

j,k2
) (6.12)

where Gp, f
i,k

is the component k of Mp, f
i with corresponding prior πk and K p, f

i and K p, f
j are

numbers of components of Mp, f
i and Mp, f

j , respectively. For a pair of GMM component means

(xi, xj ), squared Mahalanobis distance of two GMM components is defined as:

d2(xi, xj ) = (xi − xj )T M (xi − xj ) (6.13)

where M is a learned metric from the offline learning phase.

6.4 Learned feature based framework

The learned feature based MOT framework is illustrated in figure 6.5. The framework de-

scribes the interaction between short-term and long-term trackers in every time-window ∆t.

The objectives of both trackers are similar to those in the hand-crafted feature based MOT

framework. However, in the long-term tracking algorithm, CNN features extracted by the

modified-VGG16 based feature extractor (illustrated in figure 6.6) are used to represent a per-

son. All tracklet representations in two consecutive time-windows [∆t−1,∆t] are stacked for the
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Figure 6.6: The modified-VGG16 feature extractor.

later tracklet association step. In order to compute the tracklet affinity, the Euclidean distance is

applied to compare two corresponding tracklet representations. Finally, the tracklet association

process is performed by a bipartite graph optimization, typically Hungarian algorithm.

6.4.1 Modified-VGG16 based feature extractor

For MOT task, we retain the structure of VGG16 from the first to the forth convolution

layer group except the first max-pooling layer as described in figure 6.6. The size of kernels

for all layers is fixed to 3 × 3. In particular, the first convolution layer group - conv1 - has

two convolutional layers with 64 filters per each. Local response normalization is used for the

output of conv1, which is then passed to second convolutional layer group - conv2. Conv2 has

two convolutional layers (128 filters per each) followed by a max-pooling layer - pool2. The

third - conv3 - and the forth - conv4 - convolutional groups have similar architecture which has

three convolutional layers (256 and 512 filters per each), followed by max-pooling layers - pool3
and pool4, respectively. The output of max-pooling layer - pool2 - of the second convolutional

layer group conv2 is passed to the third convolutional layer group 3 - conv3. Then the output of

max-pooling layer of the third group - pool3 - is passed to the forth group - conv4. The extracted

feature vector FV t
i from node Ot

i is the output of max-pooling layer pool4.

6.4.2 Tracklet representation

The representation of tracklet Tri = {Om
i ,O

m+1
i , ....On−1

i ,On
i } using learned features extracted

by the modified-VGG16 based feature extractor is defined as follow:

∇Tri = mean(FV t
i ) t ∈< min(m, n − ∆), n > (6.14)
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where FV t
i is the CNN feature vector extracted from nodes Ot

i . The tracklet representation is

computed by the mean of feature vectors extracted from a recent defined number of nodes

belonging to tracklet Tri. We set this number to ∆ in experiment.

6.5 Data association

In the online phase, we use the learned metric for hand-crafted features or the Euclidean

distance for learned features to compute tracklet representation similarity. Then, the framework

tries to calculate the global linking scores of a tracklet using candidates from relationship set

of the tracklets. Similarity matrix S={mi j} is constructed with similarity scores between all of

the candidates, where i=1..n, j=1..n, and n is the number of tracklets in current time interval:

[∆t−1,∆t]. If tracklet Trj is in a candidate of tracklet Tri, the similarity of the pair (Tri,Trj)

is calculated based on the distance between two corresponding tracklet representations ∇Tri
and ∇Trj . In particular, Mahalanobis distance mi j = Sim(∇Tri,∇Trj ) is applied for hand-crafted

features while the Euclidean distance mi j = 1 − ‖∇Tri − ∇Trj ‖2 is applied for CNN features.

Otherwise, it is set to zero in the similarity matrix. Once the cost matrix is computed, the

optimal association pairs, which minimize the global association cost in S, are determined

using Hungarian algorithm.

6.6 Experiments

In this section, the performances of both proposed tracking features and tracking algorithm

are measured. In the first part, the effects of recent hand-crafted features proposed for Re-

id (LOMO and MCSH), the typical tracking features (HOG and CH(RGB)), the hand-crafted

feature combination (LOMO + MCSH + HOG + CH) and learned features (CNN) on tracking

performance are compared. Then, in the second part, the evaluation of the proposed hand-

crafted feature based tracker and some state-of-the-art methods are shown. The performance

of CNN feature evaluated in newest MOT dataset MOT17 is discussed in the experiment chapter.

6.6.1 Tracking feature comparison

We evaluate the effects of proposed features on tracking performance by testing the pro-

posed tracking framework using these features on sequence PETS2009-S2L1-View1. The track-

ing performance is measured by popular metrics MT, ML, MOTA and MOTP and the quantitative

comparison is shown in table 6.1. The features MCSH and LOMO are proposed for Re-id issue

but are really efficient in tracking. The efficiency is shown by the improvements of tracking per-

formance (an increase of around 25% in MT, a decrease by nearly a half measured by ML, an

increase by a double in MOTA and 5% in MOTP) when applying these features compared to the
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Feature MT(%)↑ ML(%)↓ MOTA(%)↑ MOTP(%)↑

HOG - KISSME 47.6 38.0 37.3 67.7
CH(RGB) - KISSME 61.9 19.0 48.1 69.5
MCSH - KISSME 76.2 14.3 79.1 72.2
LOMO - KISSME 76.2 14.3 78.5 74.9
HOG+CH+LOMO+MCSH - KISSME 81.0 9.5 82.2 75.3
CNN - Euclidean distance 81.0 9.5 80.4 72.7

Table 6.1: Quantitative analysis of performance of tracking features on PETS2009-S2/L1-View1. The
best values are marked in red.

typical tracking features HOG and CH(RGB). The feature HOG is the least reliable compared

to others to characterize people in this sequence because the texture of people are similar. The

features MCSH and LOMO show their effectiveness in finding out the invariant information of

people over changes of viewpoint and person pose. Therefore, they are useful for the tracker

to identify people when they leave and come back to the scene as well as change the motion

abruptly. Moreover, features proposed for Re-id (LOMO, MCSH) not only based on color but

also consider additionally about the spatio information to distingwuish people. Therefore, these

features are more efficient than color based feature (CH(RGB)) (the improvements of 15% in

MT, nearly 5% in ML and MOTP and especially 30% in MOTA). Finally, the proposed tracker

when combining all features achieve the best performance with 81%, 9.5%, 82.2% and 75.3%

measured by metrics MT, ML, MOTA and MOTP, respectively. It slightly improves the tracking

performance (nearly 5% metric MT, ML and MOTA)compared to use only features MCSH or

LOMO.

Even metric learning methods are powerful than the Euclidean distance in computing the

affinity between objects, applying the Euclidean distance is independent to the training data.

This advantage of the Euclidean distance makes the tracker be applicable to the real-world

applications. In this experiment, we combine CNN features with the Euclidean distance to

build a MOT framework. The results in table 6.1 show that the performance of learned feature

based framework is equal or better than other referenced frameworks which use hand-crafted

features plus metric learning on MT and ML metrics. Its performances measured by MOTA

and MOTP metrics are less than the combination of selected hand-crafted features. However,

no training step required makes the proposed CNN feature based framework more generic.

Therefore, depending on the requirement of applications as well as the availability of training

data, we could choose the most appropriate MOT algorithm to each other.
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Method MOTA(%)↑ MOTP(%)↑ GroundTruth MT(%)↑ PT ML(%)↓

Shitrit et al. [11] 0.81 0.58 21 – – –
Bae et al.-global association [8] 0.73 0.69 23 100 0 0.0

Chau et al. [20] 62.3 63.7 21 76.2 9.5 14.3
Ours ( [20] + Proposed approach ) 88.4 75.2 21 81.0 9.5 9.5

Table 6.2: Quantitative analysis of our method, the short-term tracker [20] and other trackers on
PETS2009-S2/L1-View1. The best values are printed in red.

6.6.2 Tracking performance comparison

In this section, we evaluate our MOT framework with other state-of-the-art tracker on some

sequences in public datasets including PETS2009-S2/L1-View1 and ParkingLot1. All compared

trackers use hand-crafted features to represent a person. A short-term tracker using differ-

ent person appearance descriptors [20] is selected to experiment in our framework. We use

the public detection and evaluation method to get the fairly comparisons with other state-of-

the-art trackers. We spend our discussion of the performance of our CNN-feature-based-MOT-

framework on the newest benchmark dataset - MOT17 in the experiment chapter.

On sequence PETS2009-S2/L1-View1, the short-term tracker [20] and the proposed tracker

share the detection public on website 3 and MOT evaluation toolkit [78] developed by STARS

team, INRIA Sophia Antipolis while other trackers use their own detection and MOT evalua-

tion code. From the quantitative results in table 6.2, the proposed tracker does not have as

good results as tracker [8] on metric MT and ML. However, these compared trackers use the

different ground-truth and detection. The detector applied by tracker [8] localizes completely

all people in the video while the detection used by the proposed tracker totally loses two peo-

ple. Furthermore, when people leave and come back to the scene, Groundtruth used by the

proposed trackers set the same identity to these people while the Groundtruth used by tracker

[8] sets different identities to them.In this part, in order to have a fair comparison, we focus on

comparing the tracking performance of the short-term tracker [20] and the proposed tracker.

The proposed method significantly improves the short-term tracker [20] tracking performance

measured by almost of metrics. In particular, 26% on metric MOTA, 12% on metric MOTP, 5.8

% on metric MT and 4.8% on metric ML.

On sequence Parkinglot1, we use the detection and MOT evaluation toolkit public in web-

site 4 to compare our tracking performance with publicly annotated data. The results of our

tracker, the short-term tracker [20] and others trackers are shown in table 6.3. Compared

to the short-term tracker [20], the proposed approach improve the tracking performance of

3http://www.milanton.de/data/
4http://crcv.ucf.edu/data/ParkingLOT/
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Trackers MOTA(%)↑ MOTP(%)↑ MT(%)↑ ML(%)↓ FP(#)↓ FN(#)↓ ID Sw(#)↓ Frag(#)↓

PMPT[95] 79.3 74.1 - - - - - -
H2T [111] 88.4 81.9 78.57 0 - - 21 -
GMCP [90] 90.43 74.1 - - - - - -
PMT[20] 78.1 69.3 57.14 28.57 472 1056 10 114
RBT-Tracker(Hand-crafted features) - (Ours) 84.5 74.4 78.57 0 325 925 7 99

Table 6.3: Quantitative analysis of our method, the short-term tracker [20] and other trackers on Park-
ingLot1. The tracking results of these methods are public on UCF website. The best values are printed
in red.

the short-term tracker [20] on most metrics. Dominantly, on metric ML, the proposed tracker

keeps track all people and improves 28.57 % while fully tracking more 2 people occupied by

13.29% on metric ML. There are remarkable decreases on other metric including FP, FN, ID

Sw and Frag. With other trackers, only tracker [111] and ours are evaluated by MT, ML and

IDSw. Both methods have the same performances on MT, ML. While [111] has higher results

than ours on metrics MOTA and MOTP, our method reduces two-third of IDSw errors. [90] is

evaluated only using MOTA and MOTP metrics. The performance of this method is better than

ours on MOTA but it performs worse when using MOTP. With [95], on both metrics MOTA and

MOTP, our method has better performances in comparison.

6.7 Conclusions

We have proposed a robust multi-person tracking method which integrates short-term and

long-term trackers into a two-step comprehensive framework. The proposed method works in

online mode and can track person in unknown videos. It also effectively addresses some of

the highly challenging problems in MOT such as mis-detection, person appearance changes by

occlusion, pose or illumination variations, etc.. by the extension of person appearance features

(hand-crafted and CNN features) and metric learning methods proposed for Re-id domain to

MOT. The effectiveness and robustness of our method are verified by extensive experiments

compared with state-of-the-art trackers. The evaluation part prove that the features which are

powerful in Re-id are obviously effective to MOT.

Future work We are trying to apply the current object features such as fine-tuned deep

features, Gaussian of Gaussian (GOG) [68] (proposed for Re-id) to enhance the tracking per-

formance.
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7

EXPERIMENT AND COMPARISON

7.1 Introduction

In this chapter, we evaluate the performance of our proposed approaches compared to

the state-of-the-art trackers on two most popular benchmark datasets MOT15 and MOT17.

However, evaluating all proposed approaches on these datasets implies numerous experiments.

To reduce the training cost but still keep a fair comparison with the state-of-the-art trackers,

we conduct the experiments in two steps. First, we select the best of the three proposed ap-

proaches by comparing their performances on three public sequences: PETS2009-S2/L1-View1

in PETS2009 dataset, TUD-stadmitte in TUD dataset and ParkingLot1 in ParkingLot dataset with

a unique system parameter setting, detection, groundtruth and evaluation toolkit. We choose

these sequences from three above datasets because these sequences ensure a large diversity of

video scenes: Objects have chaotic movements, are occluded by other objects or background,

leave and come back to the scene in PETS2009-S2/L1-View1. In TUD-stadtmitte, the video

scene has low illumination conditions, is captured with narrow viewing camera angle and has

frequent and strong object occlusions. In ParkingLot1, objects have similar appearance and

move together in groups. In the second step, as a representative of our three approaches, the

best tracker is compared with other trackers from the the state-of-the-art over the most pop-

ular benchmark datasets MOT15 and MOT17. These datasets are much more complex with

larger diversity of video scenes. These two benchmark datasets also provide a public evalua-

tion method as well as detection and ground-truth to have a fair comparison between trackers.

Experiments show that our tracker performs well when compared to state-of-the-art tracking

algorithms. For the more convinced evaluation, all compared trackers share the detection,
99
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ground-truth and evaluation method.

7.2 The best tracker selection

The selection is performed based on the performance comparison of the proposed trackers

over three public sequences PETS2009-S2/L1-View1, TUD-stadmitte and ParkingLot1 with the

same sytem parameter setting, detection, groundtruth and evaluation method. The method

having the highest performance is selected as the best tracker.

System Parameter setting Parameters controlling the discriminative feature selection adapt-

ing to the variation of video scenarios are automatically tuned. Otherwise, parameters have

been found experimentally, and remains unchanged for all proposed trackers over the three

selected image sequences. The same threshold θ = 0.3 is used for all of the data association

process. The size of a video chunk is fixed to 20 frames. The minimum size of a tracklet is set

to 5 frames.

Detection, Groundtruth We use the public detection and ground-truth from the website
1 for the sequences PETS2009-S2/L1-View1, TUD-stadtmitte and from the website 2 for the

sequence ParkingLot1.

Evaluation tool We use the ViSEVal toolkit [4] which is developed by STARS team, Sophia

Antipolis to evaluate all proposed approaches on PETS2009-S2/L1-View1 and the public toolkit

in website 3 for sequence ParkingLot1.

Baseline tracker All proposed approaches are long-term trackers which use tracklets gen-

erated by any short-term tracker as the input. In this experiments, we propose to use the

short-term tracker PMT [20] as a baseline because this tracker is available, fast and uses a pool

of object appearance features to track objects.

7.2.1 Comparison

The comparison among the proposed trackers and the baseline PMT on three public se-

quences (RFE-Tracker, CPT-Tracker and RBT-Tracker (hand-crafted features) are presented in

hapter 4, chapter 5 and chapter 6, respectively) is shown in table 7.1.

In general, all proposed trackers have better performance than the baseline tracker. With

sequence PETS2009-S2/L1-View 1, the tracking performance increases around 25% on MOTA

metric, around 10% on MOTP metric and reduces 5% on ML metric. TUD-Stadtmitte sequence

challenges trackers by a low illumination, strong as well as frequent occlusions and narrow

captured angle. Even tracking performances of the proposed approaches are better than of

1http://www.milanton.de/data/
2http://crcv.ucf.edu/data/ParkingLOT/
3http://crcv.ucf.edu/data/ParkingLOT/
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Sequences Trackers MOTA(%)↑ MOTP(%)↑ GT MT(%)↑ PT(%) ML(%) ↓

PETS2009-S2/L1-View1 PMT [20] 62.3 63.7 21 76.2 9.5 14.3
RFE-Tracker [80] + [20] 85.7 71.8 21 76.2 14.3 9.5
CPT-Tracker [79] + [20] 86.8 73.2 21 76.2 14.3 9.5
RBT-Tracker (hand-crafted features) [81] + [20] 88.4 75.2 21 81.0 9.5 9.5

TUD-Stadtmitte PMT [20] 45.3 61.9 10 60.0 40.0 0.0
RFE-Tracker [80] + [20] 46.8 64.7 10 70.0 30.0 0.0
CPT-Tracker [79]+ [20] 47.3 65.6 10 70.0 30.0 0.0
RBT-Tracker (hand-crafted features) [81] + [20] 51.4 67.1 10 70.0 30.0 0.0

ParkingLot1 PMT [20] 78.2 69.3 14 57.14 14.29 28.57
RFE-Tracker [80] + [20] 80.1 70.7 14 71.43 14.29 14.28
CPT-Tracker [79] + [20] 80.8 71.5 14 64.29 28.57 7.14
RBT-Tracker (hand-crafted features) [81] + [20] 84.5 74.4 14 78.57 21.43 0.0

Table 7.1: Quantitative analysis of the proposed trackers and the baseline. The best values are marked
in red.

the baseline, however, the improvements are still modest. There are increases of tracking

performance on MOTA (around 3%), MOTP (around 4%) and MT (10%), particularly. The

experiment on ParkingLot1 sequence also shows the improvement of propose trackers over

the baseline on most of metrics. Specially, the RBT-Tracker (hand-crafted features) [81] out-

performs the baseline on MOTA from 78% to 85%, on MOTP from 69% to 75%, on MT from

57.14% to 78.57% and reduces the ratio of mostly lost objects (metric ML) from 28.57% to 0%.

It proves that the tracking quality is improved when we extend the detection-based-tracking

to the tracklet-based-tracking. Object representation accumulated from a tracklet corresponds

to more reliable object information by consistent feature cues while object features achieved

from an object detection is sensitive to noise. Therefore, object information based on tracklet

features is more efficient and reliable than the one based on still object detection features.

Moreover, the experiments on all sequences show that RBT-Tracker (hand-crafted features)

[81] is the best over proposed approaches. While RFE-Tracker [80] and CPT-Tracker [79] have

the same performance measured by almost all metrics, RBT-Tracker (hand-crafted features)

[81] is dominant over these two trackers. Precisely, there are increases of 4% on MOTA, around

3% on MOTP over all sequences, around 5% and 10% measured by MT metric on PETS2009-

S2/L1-View1 and ParkingLot1, respectively. With ML metric, RBT-Tracker (hand-crafted fea-

tures) [81] can keep track all objects on ParkingLot1 and TUD-Stadmitte and increases average

10% over two remaining trackers on ParkingLot1. However, the detector totally loses 2 ob-

jects over 21 ground-truth objects in sequence PETS2009-S2/L1-View1, therefore the proposed

tracking algorithms cannot improve tracking quality measured by ML metric. The tracking

performance remains unchanged over the three proposed approaches on ML metric (9.5%).

In conclusion, when we apply the same configuration in all experiments, the quantitative

analysis shows that the proposed trackers improve the baseline’s performance on all sequences.

Furthermore, the RBT-Tracker (hand-crafted features) [81] is dominant to others. Therefore, in

the upcoming part of experiment, we choose RBT-Tracker (hand-crafted features) [81] as the



102 Chapter 7: Experiment and Comparison

representative of proposed approaches to compare with other trackers from the state-of-the-art.

7.3 The state-of-the-art tracker comparison

In this section, the performance of selected tracker RBT − Tracker (hand-crafted features)

and RBT − Tracker (CNN features) are evaluated and compared with other trackers from the

state-of-the-art on two benchmark datasets MOT15 and MOT17, respectively.

7.3.1 MOT15 dataset

The dataset MOT15 includes 22 sequences, half for training and half for testing. The dataset

challenges the the state-of-the-art detectors and trackers by its complicated scenes such as low

illumination and contrast, strong and frequent occlusion, objects’ abrupt motion, crowed en-

vironment. First, the performance of our representative tracker RBT − Tracker (hand-crafted

features) with each sequence over all metrics is presented. The results show the impact of

video scene to tracking performance. Second, we compare the performance of our represen-

tative tracker with the others from the state-of-the-art. Both offline and online methods are

presented. Based on all experimental results on this dataset, the comparison of our tracker

with the best offline tracker on the least and the most challenging sequences are analyzed.

7.3.1.1 System parameter setting

We set the system parameter values based on experiment and keep unchanged for all se-

quences in MOT15 dataset. In particular, the data association thresholds θ1 = 0.3 and θ2 = 0.2

are set for short-term and long-term trackers, respectively. The size of a video chunk is 20

frames while the minimum size of a tracklet is 5 frames.

7.3.1.2 The proposed tracking performance

Table 7.2 shows the performances of RBT−Tracker (hand-crafted features) on 11 sequences

belonging to MOT15 dataset. The tracking performances are sorted in the descend order mea-

sured by MT metric. The performances are really different among sequences, in particular, 61%

objects on TUD-Crossing is mostly tracked while 0% object is tracked on both KITTI-16 and

Venice-1.

7.3.1.3 The state-of-the-art comparison

A quantitative comparison between our approach and thirteen state-of-the-art tracking meth-

ods on challenging MOT15 dataset is shown in table 7.3. The tracking performances are com-

puted over 11 sequences by the mean of each metric (MT, ML, MOTA, MOTP) and by the sum
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Sequences MT(%)↑ ML(%) ↓ MOTA(%)↑ MOTP(%)↑ FP(#) ↓ FN(#)↓ IDSw(#)↓ Frag(#)↓

TUD-Crossing 61.5 7.7 72.1 73.0 55 230 22 43
ETH-Jelmoli 20.0 33.3 28.9 72.7 648 1,110 45 66
ADL-Rundle-1 18.8 25.0 2.4 71.1 4,200 4,749 138 241
PETS09-S2L2 11.9 7.1 37.1 68.7 1,881 3,744 435 599
ADL-Rundle-3 9.1 20.5 24.7 71.6 2,400 5,062 197 219
AVG-TownCentre 8.8 27.4 21.8 68.8 1,717 3,671 203 396
KITTI-19 6.5 27.4 6.6 65.8 1,856 2,986 147 379
ETH-Linthescher 4.4 66.0 22.0 73.1 424 6,463 80 176
ETH-Crossing 3.8 46.2 24.8 73.4 86 662 6 12
KITTI-16 0.0 23.5 28.4 71.6 272 888 58 103
Venice-1 0.0 23.5 5.2 70.8 1,622 2,647 56 123

Table 7.2: Quantitative analysis of the proposed tracker’s performance on dataset MOT15. The perfor-
mance of the proposed tracker RBT − Tracker (hand-crafted features) on 11 sequences is decreasingly
sorted by MT metric.

of each indicator FP, FN, IDSw, Frags. In the evaluation part, we also categorize the state-

of-the-art trackers into two groups: Offline and online tracking. Reasonably, offline trackers

could have better performance than online trackers because of their beforehand objects’ and

scenario’s information which is invisible to online trackers. In order to emphasis the robust-

ness of the proposed approach which satisfies both requirements of online processing and high

tracking performance, we show that our method not only outperforms online methods, but also

has comparable performances compared to offline ones.

Looking at the table 7.3, we can see that trackers have best results on some metrics but

not on all of the metrics. According to the analysis in [97], trajectory-based metrics, including

MT and ML metrics, show the ratios of ground-truth trajectory’s life span are covered by a

output track (at least 80% for MT and at most 20% for ML, respectively). MT and ML are not

influenced by the number of Frag or IDSw. As a result, these metrics give more information

about the coverage of the trajectories rather than the ability of the tracker to reproduce them.

On the other hand, results on metrics (MOTA, MOTP) and indicators (FP, FN) are too sensitive

to detector errors. Particularly, FP and FN indicators are computed based on detector precision

and recall, while MOTA and MOTP metrics show how much a tracker is able to find target

positions and reject false alarms proposed by the detector. Therefore, in terms of tracking

performance evaluation, trajectory-based metrics (MT and ML) are proved to be closer to end-

user expectations than the others.

The performance of all selected trackers are sorted in descend order by the MT metric. Our

approach outperforms both online and offline methods when ML metric and FN indicator are

used. In details, our approach misses the least number of persons shown by ML metric and

keeps track of the highest number of persons, shown by the lowest number of false negatives in

FN. The results on these two metrics illustrate the remarkable improvement of our method com-
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Methods Trackers MT↑ ML↓ MOTA↑ MOTP↑ FP↓ FN↓ IDSw↓ Frag↓
Offline CNNTCM [107] 11.2±13.0 44.0 29.6± 13.9 71.8 7,786 34,733 712 943

CEM [73] 8.5±20.3 46.5 19.3 ±17.5 70.7 14,180 34,591 813 1,023
SiameseCNN [58] 8.5 ± 8.08 48.4 29.0 ±15.1 71.2 5,160 37,798 639 1,316
ELP [69] 7.5 ± 6.3 43.8 25.0 ±10.8 71.2 7,345 37,344 1,369 1,804
TBD [36] 6.4±13.4 47.9 15.9 ±17.6 70.9 14,943 34,777 1,939 1,963
MotiCon [57] 4.7±8.6 52.0 23.1 ±16.4 70.9 10,404 35,844 1,018 1,061

Online RBT-Tracker (hand-crafted features) - (Ours)[81] 9.0±17.4 36.9 20.6 ±18.7 70.3 15,161 32,212 1,387 2,357
SCEA [121] 8.9 ± 6.6 47.3 29.1 ±12.2 71.1 6,060 36,912 604 1,182
OMT DFH [43] 7.1±11.3 46.5 21.2 ±17.2 69.9 13,218 34,657 563 1,255
RNN LSTM [72] 5.5±9.9 45.6 19.0 ±15.2 71.0 11,578 36,706 1,490 2,081
EAMTTpub [93] 5.4 ±7.5 52.7 22.3 ±14.2 70.8 7 ,924 38,982 833 1,485
RMOT [122] 5.3±9.8 53.3 18.6 ±17.5 69.6 12,473 36,835 684 1,282
TC ODAL [8] 3.2±7.9 55.8 15.1 ±15.0 70.5 12,970 38,538 637 1,716
GSCR [31] 1.8±2.14 61.0 15.8 ±10.5 69.4 7,597 43,633 514 1,010

Table 7.3: Quantitative analysis of our method on MOT15 challenging dataset with state-of-the-art
methods. The tracking results of these methods are public on MOTchallenge website. Our proposed
method is named ”MTS” on the website. The best values in both online and offline methods are marked
in red.

pared to others. We reduce nearly one-forth the number of lost persons compared to methods

[58, 57, 36, 122, 8] and nearly a half compared to [31] with ML metric. With FN, the number

of false negatives in our method is reduced at least by 2,379 compared to [73] and at most by

11,421 compared to [31]. According to MT metric, our tracker performs remarkably better than

trackers [57, 36, 93, 43, 72, 122, 31, 8] and in total has the second best performance. How-

ever, the best tracker [107] evaluated by this metric works only in offline mode.The proposed

method achieves comparable results on MOTP metric but is not impressive for MOTA metric

and indicators (FP, IDWs and Frag) compared to the other methods from the state-of-the-art.

On the other hand, the performances shown in table 7.2 shows that Venice-1 is the most

challenging sequence while TUD-Crossing is the least one. In order to have a more detailed

comparison, two methods having best performances measured by MT metric from table 7.3:

CN NTCM (working in offline mode) and the proposed tracker RBT − Tracker(hand-crafted

features) (working in online mode) are evaluated on these sequences. The results are shown

in table 7.4.

With the sequence TUD-Crossing, the proposed tracker RBT − Tracker (hand-crafted fea-

tures) outperforms the tracker CN NTCM on almost all important metrics. Particular, there are

increases of nearly 17% (from 46.2% to 61.5%) measured by MT, 12% by MOTA (from 60.5%

to 72.1%) while the performance evaluated by MOTP is nearly equal. RBT − Tracker (hand-

crafted features) can track more objects than CN NTCM which is shown by 16% decrease of

ML (from 23.1% to 7.7%), a remarkable decrease of FN (from 352 to 230). In the opposite

side, the tracker CN NTCM has a better results on IDSw and Frag, including a reduction of 7

ID-switches (IDSw) and nearly 30 trajectory fragments (Frag).

The tracking performance of both compared trackers is illustrated on Figure 7.1. The left
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Sequences Trackers Methods MT↑ ML↓ MOTA↑ MOTP↑ FP↓ FN↓ IDSw↓ Frag↓
TUD-Crossing CNNTCM(CVPR-2016)[107] Offline 46.2 23.1 60.5 73.7 66 352 17 14

RBT-Tracker (Hand-crafted features) - (Ours)[81] Online 61.5 7.7 72.1 73.0 55 230 22 43
Venice-1 CNNTCM(CVPR-2016)[107] Offline 0.0 41.2 19.2 74.1 582 3,091 12 13

RBT-Tracker (Hand-crafted features) - (Ours)[81] Online 0.0 23.5 5.2 70.8 1,622 2,647 56 123

Table 7.4: Comparison of the performance of proposed tracker [81] with the best offline method
CN NTCM [107]. The best values are marked in red.

column is the public detection used by both trackers. The middle and the right column are

the performance of CN NTCM and RBT − Tracker (hand-crafted features), respectively. This

sequence challenges trackers due to strong and frequent occlusions. As illustrated in Figure

7.1, where frames 33 and 55, frames 46 and 58, 86 and 92 show the scenes before and after

of occlusions, tracking performance of both selected trackers are different. In particular, in

order to solve the same occlusion case, the tracker CN NTCM filters out the input detected

objects (pointed by white arrows) and track only selected objects (pointed by red arrows).

Thus, this is the pre-processing step ( and not the tracking process) which manages to reduce

the people detection errors. Meanwhile, RBT − Tracker (hand-crafted features) still tries to

track all occluded objects detected by the detector. The illustration completely explains why

the CN NTCM has worse performance than RBT − Tracker (hand-crafted features) measured

by MT, ML and FN.

Venice-1 is a difficult videos for trackers because of the low illumination and contrast and

objects move in group, so the detection is not so good. From the quantitative results evaluated

on this sequence shown in table 7.4, both trackers completely fail to track any object (0% of

MT). On almost all remaining metrics, tracker CN NTCM outperforms tracker RBT − Tracker

(hand-crafted features) except FN. These results are explained by illustrations on the Figure 7.2

and Figure 7.3. The Figure 7.2 shows tracking performance of these trackers for the occlusion

case. The first, second and the last rows are the scene before, during, and after occlusion. The

tracker RBT − Tracker (hand-crafted features) tracks correctly the occluded objects (pointed

by red arrows, marked by cyan and pink bounding-boxes). However, instead of tracking all

occluded objects, tracker CN NTCM filters the occluded object (pointed by the white arrow)

and track only the object (marked by the yellow bounding-box). The Figure 7.3 shows how

many detection are filtered and tracked by both trackers. The left column is the detection

performance, the middle and right columns show tracking performance of CN NTCM and RBT−

Tracker (hand-crafted features), respectively. RBT − Tracker (hand-crafted features) tries to

track almost all detected objects in the scene while CN NTCM filters much more objects than

RBT − Tracker (hand-crafted features) and manages to track these filtered objects in order

to achieve better tracking performance. In particular, CN NTCM can reduce more than 18%

lost objects (measured by ML metric), increases 14% of MOTA and modestly 3% of MOTP. The
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more detections are filtered, the more false negatives (FN) increase. Therefore, CN NTCM has

more false negatives than RBT − Tracker (hand-crafted features) (3,091 compared to 2,647,

respectively). On the other side, the illustration shows that the people detection results include

a huge number of noise. Because of keeping more fake detected objects to track, tracking

performance of RBT−Tracker (hand-crafted features) has more false positives than CN NTCM,

1,622 compared to 582 (measured by FP).

7.3.2 MOT17 dataset

The dataset MOT17 has 14 sequences including 7 sequences for training and 7 sequences

for testing. On each sequence, trackers are provided 3 detections run by detectors DPM, F-

RCNN and SDP. This dataset is a combination of challenges for both detectors and trackers,

including high people density, strong and frequent occlusion, low illumination and contrast,

abrupt person motion change caused by fast camera moving. As the experiment on MOT15, we

first show the performance of our approach RBT − Tracker (CNN features) on each sequence

over all metrics. The results present the impact of video scene as well as quality of detection to

tracking performance. Then, we compare the proposed approach with both offline and online

state-of-the-art trackers and figure out factors which challenge trackers to address multi-person

tracking problem.

7.3.2.1 System parameter setting

System parameter values have been found experimentally, remain unchanged for all 21

sequences. The thresholds θ1 = 0.55 and θ2 = 0.2 are set for all data associations in the short-

term and long term trackers, respectively. The size of video chunk is set to 16 frames. The

miminum tracklet size is set to 5 frames.

7.3.2.2 The proposed tracking performance

The performances of our proposed tracker named RBT −Tracker(CNN features) on dataset

MOT17 are shown in table 7.5. The tracking performances vary on sequences and detection

qualities. Comparisons based on the detection quality depict that the tracking performances

on MT, ML metrics are correlated. In particular, the tracker using SDP detector has the best

performances while the performance of tracker using DPM detector is the least. On the other

hand, experimental results show that the tracking performances using the same detector are

different among sequences. While the performances on sequences MOT17-03 is the best, the

performance on sequences MOT17-08 and MOT17-14 are the worst.

For the explanation, two factors, including the detection quality and the video condition,

are analyzed. Figure 7.4 illustrates the detection quality on MOT17 sequences. Mis-detection
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Sequences MT(%)↑ ML(%) ↓ MOTA(%)↑ MOTP(%)↑ FP(#) ↓ FN(#)↓ IDSw(#)↓ Frag(#)↓

MOT17-01-DPM 12.5 45.8 27.0 70.7 522 4144 41 129
MOT17-03-DPM 14.2 20.3 42.4 74.5 8933 50234 1076 1174
MOT17-06-DPM 14.0 44.6 42.6 72.3 865 5771 128 264
MOT17-07-DPM 10.0 40.0 35.1 73.1 1327 9457 177 331
MOT17-08-DPM 5.3 47.4 22.8 77.3 960 15205 136 233
MOT17-12-DPM 13.2 46.2 35.8 75.9 780 4749 31 87
MOT17-14-DPM 3.7 57.3 19.8 73.7 1423 13261 146 279
MOT17-01-FRCNN 12.5 37.5 26.2 76.1 1282 3436 42 71
MOT17-03-FRCNN 23.6 18.2 56.7 77.8 1858 43201 295 486
MOT17-06-FRCNN 26.1 28.8 49.8 78.2 995 4818 106 205
MOT17-07-FRCNN 6.7 26.7 33.3 74.9 1294 9807 166 332
MOT17-08-FRCNN 9.2 52.6 22.4 80.3 680 15649 70 111
MOT17-12-FRCNN 12.1 51.6 35.4 79.1 416 5159 24 41
MOT17-14-FRCNN 5.5 47.0 20.3 71.8 2446 12029 255 508
MOT17-01-SDP 33.3 25.0 39.6 73.2 972 2837 87 147
MOT17-03-SDP 43.9 12.8 69.5 76.2 3484 27934 520 1104
MOT17-06-SDP 34.2 31.5 53.9 75.6 1162 4160 116 184
MOT17-07-SDP 21.7 25.8 44.9 75.0 1119 8058 137 263
MOT17-08-SDP 13.2 44.7 28.8 77.5 863 14021 161 239
MOT17-12-SDP 18.7 45.1 39.8 78.0 607 4587 26 55
MOT17-14-SDP 4.9 40.9 29.4 73.0 1786 10976 293 400

Table 7.5: Quantitative analysis of the performance of the proposed tracker RBT − Tracker (CNN fea-
tures) on MOT17 dataset.

zones are marked by the red circles. While almost people on MOT17-03 sequence are well local-

ized, the detector fails to detect people in some video conditions on MOT17-08 and MOT17-14

sequences. In particular, the red circle on MOT17-14 sequence figures out that the detector

cannot detect a large group of people on the bus stop. This video condition challenges the

detector because the people have small-size, stand stably and are strongly occluded. Mean-

while, MOT17-08 sequence contains some scenarios that challenge the detector, for examples,

people concretely go together, are full occluded by others or are strongly partially occluded by

background. Once the people are not detected, the tracker fails to identify them in the video

scene.

Video conditions also affect to tracking performance. The statistic information in table 7.5

shows that the tracking performances on sequences are still modest where the highest MT

value is 43.9% on MOT17-03 sequences and more than a half of sequences have performance

measured by ML metric lower than 22% (MOT17-07, MOT17-08, MOT17-12 and MOT17-

14 sequences). Figures 7.5, 7.6 and 7.7 show the failures (shown by big colored arrows) of

the proposed tracker RBT − Tracker(CNN features) on MOT17-01, MOT17-08 and MOT17-14

sequences, respectively. Even all people are well detected in these cases, but the tracker cannot

identify people throughout time. The information extracted from small bounding-boxes are not

discriminative enough to characterize people shown in figures 7.5 and 7.7. The video condition
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Methods Trackers MT↑ ML↓ MOTA↑ MOTP↑ FP↓ FN↓ IDSw↓ Frag↓
Offline EDMT17 [23] 21.6 36.3 50.0 ± 13.9 77.3 32,279 247,297 2,264 3.260

FWT [41] 21.4 35.2 51.3 ± 13.1 77.0 24,101 247,921 2,648 4,279
JCC [44] 20.9 37.0 51.2 ± 14.5 75.9 25,937 247,822 1,802 2,984
MHT DAM [48] 20.8 36.9 50.7 ± 13.7 77.5 22,875 252,889 2,314 2,865
IOU17 [14] 15.7 40.5 45.5 ±13.6 76.9 19,993 281,643 5,988 7,404

Online RBT-Tracker (CNN features) - (Ours) 17.2 37.0 45.5 ± 12.7 75.9 33,774 269,493 4,033 6,643
PHD DCM [34] 16.9 37.2 46.5 ±13.8 77.2 23,859 272,430 5,649 9,298
EAMTT [93] 12.7 42.7 42.6 ±13.3 76.0 30,711 288,474 4,488 5,720
GMPHD KCF [54] 8.8 43.3 39.6 ± 13.6 74.5 50,903 284,228 5,811 7,414
GM PHD [29] 4.1 57.3 36.4 ± 14.1 76.2 23.723 330,767 4,607 11,317

Table 7.6: Quantitative analysis of our MOT framework RBT − Tracker (CNN features) on MOT17
challenging dataset with state-of-the-art methods. The tracking results of these methods are public on
MOTchallenge website. Our proposed method is named ”MTS˙CNN” on the website. The best values in
both online and offline methods are marked in red.

on MOT17-08 sequence illustrated in figure 7.6 challenges the tracker by frequent and full

occlusions and the illumination changes.

To sum up, the quantitative results in table 7.5 show the challenges for the proposed tracker

are not only the video conditions but also the detection quality.

7.3.2.3 The state-of-the-art comparison

The table 7.6 show the quantitative comparison between our approach RBT−Tracker (CNN

features) and nine state-of-the-art trackers on benchmark dataset MOT17. These compared

methods are categorized into offline and online tracking. The tracking performances are com-

puted over 7 sequences with 3 different detectors: DPM, F-RCNN and SDP. The values shown in

table 7.6 are computed by the mean of each metric (ML, ML, MOTA, MOTP) and by the sum of

each indicator (FP, NP, IDSw, Frags). As the discussion in the experiments on MOT15 dataset,

metrics MT and ML are proved to be closer to user expectations than the others. Therefore,

the performance of all compared trackers are sorted in descent order by the MT metric. Gen-

erally, offline trackers with their beforehand information of objects and scenarios have better

performance than online trackers. Comparing two trackers including EDMT17 - the best of-

fline tracker and our approach RBT − Tracker (CNN-features) - the best online tracker, we can

see the modest increases of around 4.5% of metrics MT and MOTA, 1.7% of metric MOTP and

a slight decrease of 0.7% of metric ML.

Our RBT − Tracker (CNN features) is also compared with four other online tracking meth-

ods. The results show that RBT−Tracker has the best performances on the metrics (MT, ML, FN

and IDSw) and the second best performances on the metrics (MOTA, Frags). On MOTP metric,

there is a slight decrease of 1.3% (from 77.2 % to 75.9%) when comparing our RBT −Tracker

and the best performance belonging to tracker PHD DCM.
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It is shown in the table 7.6 that the performance of state-of-the-art trackers are modest on

this challenging benchmark dataset. The best results (only 21.6% and 50% measured by ML and

MOTA metrics, respectively) belong to tracker EDMT17 which works in the offline mode. In

order to analyze factors affecting to tracking, we illustrate the performances of EDMT17 - the

best offline tracker, our proposed approach RBT − Tracker(CNN features) and PHD DCM are

the best and the second best online trackers, respectively on some challenging video conditions

in figures 7.5, 7.6, 7.7.

Figure 7.5 illustrates some cases on MOT17-01 sequence where all selected trackers fail to

keep the identity of people even they are well detected. The visualization shows that people

closing to the camera are correctly tracked while people being far from the camera are lost. The

yellow arrows point lost people at the time instants that before and after occlusions, including

frame pairs (69,165), (181,247), (209,311), respectively. It is proved that if a person is far from

the camera( the detection bounding-box is small), the information extracted on this bounding-

box is not discriminative enough to characterize this person to neighbourhood. Therefore,

tracking small people over occlusion becomes a hard MOT task.

As the visualization on figure 7.6, the selected trackers also fail to recover the person ID after

strong partial or full occlusions (pointed by red arrows) on MOT17-08 sequence. Different to

the challenge shown in figure 7.5, people appearance extracted from detection bounding-boxes

are discriminative. However, people are strongly and frequently occluded by others (illustrated

in frame pairs (126,219) and (219,274)) or background (shown in frame pairs (10,82) and

(226,322)). This challenge prevents trackers from building a reliable representation to keep

invariant person information over time.

The illustration on figure 7.7 focuses on the challenges of fast camera moving and the high
people density, for examples, in frame 409 or 623 on MOT17-14 sequence. The fast camera

moving can cause the abrupt change of person motion. High people density obstacles not

only detection but also tracking task. In this sequence, trackers are required to clarify the

ambiguity of people standing (shown in frames 409 and 421) or walking (visualized in frames

161, 588 and 623 ) in a concrete group. The failures of selected trackers in identifying people

are marked by orange arrows. The illustrations in frame pair (161, 199) show the affect of fast

camera moving challenge to the performance of trackers. Meanwhile, frame pairs (409,421)

and (588,623) figure out the tracking drifts caused by both of camera moving and high people

density.

7.4 Conclusions

This chapter shows quantitative analyses of experiments of proposed trackers and the state-

of the-art methods on two most common benchmark datasets: MOT15 and MOT17. These
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analyses focus on two main issues: Evaluating the tracking performances of the proposed ap-

proaches with the state-of-the-art trackers, proving experimentally factors impacting to MOT

quality.

Firstly, the proposed approaches are compared to each other to select the representative to

compare with the state-of-the-art trackers. The representative is evaluated with both online and

offline trackers. Reasonably, the offline trackers have better performances than the online track-

ers thanks to their beforehand information of objects as well as scenarios which are invisible

to online trackers. However, on both datasets, the proposed tracker has the best performance

compared to online methods on metrics ML and ML which are proved to be closer to end-user

expectations than the others.

Secondly, the experimental results show that the proposed trackers as well as trackers from

the state-of-the-art trend to have good or bad performances in the same sequences. In additions,

the performances of the proposed tracker on sequences are correlated to the detection quality.

Therefore, based on the experimental results, we can conclude that video conditions as well as

detection quality are the factors which impact to MOT performance.
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Figure 7.1: The tracking performance of CN NTCM and RBT − Tracker (hand-crafted features) with
occlusion challenge on sequence TUD-Crossing. The left to right columns are the detection, the tracking
performance of CN NTCM and RBT − Tracker (hand-crafted features), respectively. The top to bottom
rows are the scenes at frame 33, 55, 46, 58, 86 and 92. In particular, in order to solve the same
occlusion case, the tracker CN NTCM filters out the input detected objects (pointed by white arrows)
and track only selected objects (pointed by red arrows). Thus, this is the pre-processing step ( and
not the tracking process) which manages to reduce the people detection errors. Meanwhile, RBT −
Tracker (hand-crafted features) still tries to track all occluded objects detected by the detector. The
illustration completely explains why the CN NTCM has worse performance than RBT − Tracker (hand-
crafted features) measured by MT, ML and FN.
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Figure 7.2: The illustration of the tracking performance of CN NTCM and RBT −Tracker (hand-crafted
features) on sequence Venice-1 for the occlusion case. The left to right columns are the detection, the
tracking performance of CN NTCM and RBT − Tracker (hand-crafted features) in order. The top to
bottom rows are the scenes at frame 68, 81 and 85 which illustrate the scene before, during, and after
occlusion, respectively. The tracker RBT −Tracker (hand-crafted features) tracks correctly the occluded
objects (pointed by red arrows, marked by cyan and pink bounding-boxes). However, instead of tracking
all occluded objects, tracker CN NTCM filters the occluded object (pointed by the white arrow) and track
only the object (marked by the yellow bounding-box).



7.4 Conclusions 113

Frames

67

166

173

209

239

Detection CNNTCM
RBT-Tracker

(Hand-crafted features)

Figure 7.3: The noise filtering step of CN NTCM and RBT −Tracker (hand-crafted features) on Venice-
1 sequence. The left to right columns are the detection, the tracking performance of CN NTCM and
RBT −Tracker (hand-crafted features), respectively. The top to bottom rows are the scenes at frame 67,
166, 173, 209 and 239. RBT − Tracker (hand-crafted features) tries to track almost all detected objects
in the scene while CN NTCM filters much more objects than RBT − Tracker (hand-crafted features)
and manages to track these filtered objects in order to achieve better tracking performance. The more
detections are filtered, the more false negatives (FN) increase. Therefore, CN NTCM has more false
negatives than RBT −Tracker (hand-crafted features). On the other side, the illustration shows that the
people detection results include a huge number of noise. Because of keeping more fake detected objects
to track, tracking performance of RBT − Tracker (hand-crafted features) has more false positives than
CN NTCM.
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MOT17-14-SDP-det

MOT17-08-SDP-detMOT17-07-SDP-det

MOT17-06-SDP-det

MOT17-12-SDP-det

MOT17-01-SDP-det

MOT17-03-SDP-det

Figure 7.4: The illustration of the detection of sequences on MOT17 dataset. We use the results of the
best detector SDP to visualize the detection performance. The red circles point out groups of people are
not detected. Therefore, the tracking performance is remarkably reduced.
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Frames

69
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(CNN features)
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311

Figure 7.5: The illustration of the failures of state-of-the-art trackers on MOT17-01-SDP sequence.
Frame pairs (69,165), (181,247) and (209,311) are the time instants at before and after occlusion,
respectively. The yellow arrows show that selected trackers lose people after occlusion in the case that
people are far from the camera and the information extracted from their detection bounding-boxes are
not discriminative enough to characterize them with the neighbourhood.
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Frames
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Figure 7.6: The illustration of the failures of state-of-the-art trackers on MOT17-08 sequence. All se-
lected trackers fail to keep person ID over strongly and frequent occlusions. These occlusions are caused
by other people (shown in frame pairs (126,219) and (219,274)) or background (shown in frame pairs
(10,82) and (266,322)).
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Figure 7.7: The illustration of the failures of state-of-the-art trackers on MOT17-14 sequence. The
challenges of fast camera moving or high people density affect directly to the performance of se-
lected trackers. Tracking drifts marked by orange arrows are caused by fast camera moving (shown
in frame pair (161,199)) or by both high people density and camera moving (shown in frame pairs
(409,421),(588,623)).
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8

CONCLUSIONS

This chapter summarizes the content of the thesis, the chapter organized into 2 sections.

The first section concludes about the contributions, including advantages as well as limitations

of the proposed approaches. In the second section, the future work scope of research is high-

lighted.

8.1 Conclusion

In this thesis, different online tracking algorithms to tackle the task of multi-person track-

ing using a single camera view is researched. These approaches categorized into long-term

(tracklet-based) tracking because they obtain the outputs from a short-term (detection-based)

tracker which act as their inputs and they process these inputs with a time latency. These ap-

proaches link tracklets by building robust pairwise similarity between them, mostly based on

their strong appearance. The experimental result proves these approaches by showing an in-

crease in tracking performance and the ability of the trackers to handle more complex video

scenarios. Each approach is summarized as follows.

� The first approach is termed as Reliable Feature Estimation tracker (RFE), which proposes

a mechanism to automatically select reliable features that can discriminate tracklets in

the current video scene. In particular, a tracklet is represented by a pool of six features,

including their 2D area, 2D shape ratio, color histogram, dominant color, color covari-

ance and constant velocity. Two sets are defined for each given tracklet: the candidate set

is composed of ”can-match” tracklets while the neighbour set consists of ”cannot-match”

tracklets to the given tracklet. In order to compute the affinity between a tracklet and

its candidate, the proposed approach selects reliable features which cannot only discrim-
119
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inate this tracklet from its neighbours but also enhance its similarity to the candidate. In

particular, the reliability of each feature is established by a feature weight. The feature

weight value is computed proportionally to the similarity between one tracklet with its

candidate and inversely proportional to its distance from its neighbours. The reliable fea-

ture weights are computed overtime depending on the variation of video conditions. This

method do not need any training step and works online with a short time buffering.

� The second approach is termed as Context-based Parameter Tuning (CPT). This method

proposes a technique that tunes tracking parameters to adapt the tracker to the variety

of video conditions. Instead of using only tracklet’s individual features as in the first

approach to characterize a tracklet, surrounding features including occlusion level, person

density level and the contrast defining the surrounding context of this tracklet are added

in this technique. The approach consists of two phases: offline parameter learning and

online parameter tuning. In the offline phase, the optimal tracking parameters are learned

for each tracklet by the simulated-annealing optimization method. In the online phase,

each tracklet is used to retrieve the closest tracklet in the learned database to obtain the

optimal tracking parameters. This approach outperforms the first approach because of the

following reasons: it uses additionally tracklet surrounding information which has been

experimentally proved to improve the tracking performance; it tunes tracking parameters

such as tracking thresholds or feature parameters which are fixed by the first approach.

This approach can be run online once the database of tracklets and their corresponding

tracking parameters are learned. However, this approach requires an offline training

step which necessitates the diverse collect of annotated videos to produce this algorithm

generic.

� The third approach named Re-id based Tracker (RBT) takes full advantage of features

(including hand-crafted and learned features) and matching methods proposed for Re-

identification and adapting them to MOT. In order to represent a tracklet with hand-

crafted features, a tracklet is represented by a multi-channel appearance model where

each channel includes both spatial and appearance information. The offline metric learn-

ing method proposed for Re-id is applied for computing the tracklet affinity (Mahalanobis

distance). In order to extend the features and methods proposed for Re-identification

(working in an offline mode) to online tracking, the proposed approach processes the de-

tection with a latency by using a sliding time-window. However, the similarity of training

and testing data is required which limits the generality of the algorithm. In order to make

this framework become generic, instead of using hand-crafted features, we represent a

tracklet by CNN feature extracted from a pre-trained CNN model. Then, we associate the

CNN feature-person representation with Euclidean distance into a comprehensive frame-
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work which works fully online.

The comparison in chapter 7 shows that the third approach is the most robust among

our proposed trackers on three benchmark datasets (MOT15, MOT17 and ParkingLot)

and outperforms almost of selected state-of-the-art trackers according to standard MOT

metrics.

8.1.1 Contributions

This thesis brings three following contributions to the state-of-the-art.

� The first approach contributes a simple and effective method which can automatically se-

lect reliable features to represent a person which helps the tracker discriminating tracklets

to the variation of video conditions with no prior training step. Therefore, this method

is generic and can be embedded into other tracking frameworks and does not incur any

training cost.

� The second approach contributes a new method to tune tracking parameters for each

tracklet independently instead of setting up globally for all tracklets in the video. This

method ensures that tracking parameters are tuned to adapt the tracker to the variation of

each tracklet’s surrounding context which can be also different even if detection scenario

is in the same video condition. This method can also tune a large number of tracking

parameters by using an approximate optimization algorithm which does neither require

the parameter independence nor a limitation on the number of variables. Therefore, this

method can be applied to tune different tracking parameter sets of other trackers.

� The third approach is an extension of the features and methods proposed for the person

Re-id process (working on offline mode) to online multi-person tracking. The experi-

mental results prove that powerful features and methods proposed for Re-id task are also

efficient in MOT.

8.1.2 Limitations

The limitations in the proposed approaches are summarized in this section. We divide these

limitations into two groups: Theoretical and experimental ones.

8.1.2.1 Theoretical limitations

� The features used to characterize the tracklets can be redundant. For example, there

are several color-based features in the tracklet feature pool utilized to characterize a

tracklet. Tuning tracking parameters shared by redundant features may end-up in a non-

converging loop.
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� The surrounding features are not accurate enough to retrieve a learned tracklet from the

database given by a testing tracklet as query.

� The performance of the proposed approaches is dependent on the quality of person de-

tection and the short-term tracker. The low quality of person detection reduces the per-

formance of short-term tracker. Therefore, the input of proposed long-term trackers gen-

erated by short-term tracker becomes less reliable.

� There is no back-track mechanism to correct the output of the short-term tracker which

provides the input to proposed long-term trackers. The long-term approaches have a pre-

processing step to filter unreliable tracklets with a heuristic manner. However, tracking

errors, for example, a tracklet covering two groundtruth-persons or a tracklet generated

by a tracking drift cannot be refined. A back-track mechanism is necessary to improve

such limitations.

� The proposed tracker CPT may require a high processing time when looking for the

best matched tracklet to retrieve the optimal tracking parameters in the huge learned

database. Therefore, besides the requirement of the diversity of the learned database, the

size of the learned database is also important.

8.1.2.2 Experimental limitations

� Experiments and comparisons between the proposed approaches and the state of the

art are not performed entirely. Firstly, we only evaluate each approach on few video

sequences and compare the performances of this tracker with state-of-the-art trackers at

a given time of publication. Secondly, in order to reduce the training cost, instead of

evaluate all proposed approaches, we select the best one to compare with current state

of the art trackers. The selection is done by comparing the tracking performances of the

proposed approaches together. However, this comparison is not completely validated due

to the small number of video sequences.

� The detection and ground-truth of evaluated video sequences (PETs2009-S2/L1-View1,

TUD-stadtmitte and TUD-crossing) are not shared between trackers from state-of-the-art.

Therefore, the comparisons on these sequences are not fair enough, especially for the

comparisons of the proposed approaches with other trackers.

8.2 Proposed tracker comparison

The presented approaches as well as their experimental performances show that these ap-

proaches can be distinguished through two properties: their generality and their effectiveness.
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Trackers The generality The effectiveness

RFE XXX X

CPT XX XX

RBT (handcrated features - Mahalanobis distance) X XXX

RBT (CNN features - Euclidean distance) XXX XX

Table 8.1: The proposed trackers can be distinguished through two properties: their generality and
their effectiveness. The number of symbol X stands for the generality or effectiveness levels of proposed
trackers. The more number of symbols X in a property is shown, the higher level of this property a
tracker has.

Their comparison is shown in table 8.1. Depending on the application as well as the availability

of training data, the most appropriate multi-person tracking algorithm is selected.

8.3 Future work

� A first interesting work to conduct is to learn recent powerful features such as deep fea-

tures, which can better characterize person appearance. Some features can be added to

better describe the tracklet surrounding context such as the color variance of tracklets or

the complexity of person trajectories.

� A second work is to limit the redundancy of object features. This work can reduce the

complexity of proposed approaches and enhance the effectiveness of feature based pa-

rameter tuning. We can limit the redundancy by proposing a mechanism to evaluate the

contribution of each features to the tracking or by using dimension reduction algorithm

to compact the person representation.

� A third task is to propose a method to index learned tracklets in a large learned database.

The indexation can help to reduce the processing-time consumption for retrieving the

closest learned tracklet to obtain the optimal tracking parameters. In order to index

tracklets in the database, we can use the PH-tree indexing technique whose effectiveness

is presented in [45].

� A back-track mechanism is needed to correct the errors of detector and short-term tracker

which we use to generate the input for our proposed trackers. For each tracklet generated

by a short-term tracker, we firstly can set the matching confidence between detections.

The lower confidence matches could be temporary defined as ambiguities. In a second

step, an evaluation mechanism could be provided to select the best matches between

ambiguous nodes. Thank to this method, the short-term tracker errors could be corrected.
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