G. D. Project, N. Martinelli, D. N. Farlow, M. A. Depristo, R. Roberts et al.,

P. Donnelly, J. E. Rossouw, B. M. Psaty, D. M. Herrington, J. G. Wilson et al.,

D. Sunyaev, S. R. , O. Donnell, C. J. Altshuler, D. Gabriel et al., Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction, Nature, vol.518, issue.7537, pp.102-106, 2015.

E. Mendoza-barberá, J. Julve, S. K. Nilsson, A. Lookene, J. M. Martín-campos et al., Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia, J. Lipid Res, vol.54, issue.3, pp.649-661, 2013.

J. A. Hubacek, W. Wang, Z. Skodová, V. Adámková, M. Vráblík et al.,

P. J. Talmud, APOA5 Ala315>Val, identified in patients with severe hypertriglyceridemia, is a common mutation with no major effects on plasma lipid levels, Clin. Chem. Lab. Med, vol.46, issue.6, pp.773-777, 2008.

S. C. Rall, K. H. Weisgraber, T. L. Innerarity, and R. W. Mahley, Structural basis for receptor binding heterogeneity of apolipoprotein E from type III hyperlipoproteinemic subjects, Proc. Natl. Acad. Sci

U. S. , , vol.79, pp.4696-4700, 1982.

H. Zhang, H. Henderson, S. E. Gagne, S. M. Clee, L. Miao et al., Common sequence variants of lipoprotein lipase: standardized studies of in vitro expression and catalytic function

, Biochim. Biophys. Acta, vol.1302, issue.2, pp.159-166, 1996.

P. J. Talmud, J. Palmen, W. Putt, L. Lins, and S. E. Humphries, Determination of the functionality of common APOA5 polymorphisms, J. Biol. Chem, vol.280, issue.31, pp.28215-28220, 2005.

R. P. Surendran, M. E. Visser, S. Heemelaar, J. Wang, J. Peter et al.,

M. Hosseini, M. Péterfy, J. Kastelein, C. T. Johansen, R. A. Hegele et al., Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia, J. Intern. Med, vol.272, issue.2, pp.185-196, 2012.

Y. Song, L. Zhu, M. Richa, P. Li, Y. Yang et al., Associations of the APOC3 rs5128

, polymorphism with plasma APOC3 and lipid levels: a meta-analysis, Lipids Health Dis, vol.14, issue.1, 2015.

S. C. Rall and R. W. Mahley, The role of apolipoprotein E genetic variants in lipoprotein disorders, J. Intern. Med, vol.231, issue.6, pp.653-659, 1992.

, FH: familial hypercholesterolemia; FHBL: familial hypobetalipoproteinemia

, HTG: hypertriglyceridemia. In bold: total of nucleotides with depth below 30 read per gene. hypercholesterolemic mutations with unexpected low LDL-Cl Levels, Hum Mutat, 2012.

L. F. Soria, E. H. Ludwig, H. R. Clarke, G. L. Vega, S. M. Grundy et al., Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100, Proc Natl Acad Sci, vol.86, issue.2, pp.587-91, 1989.

W. März, M. W. Baumstark, H. Scharnagl, V. Ruzicka, S. Buxbaum et al.,

, Accumulation of "small dense" low density lipoproteins (LDL) in a homozygous patients with familial defective apolipoprotein B-100 results from heterogenous interaction of LDL subfractions with the LDL receptor, J Clin Invest, vol.92, issue.6, pp.2922-2955, 1993.

C. R. Pullinger, D. Gaffney, M. M. Gutierrez, M. J. Malloy, V. N. Schumaker et al., The apolipoprotein B R3531C mutation. Characteristics of 24 subjects from 9 kindreds, J Lipid Res, 1999.

J. P. Rabès, M. Varret, M. Devillers, P. Aegerter, L. Villéger et al., R3531C mutation in the apolipoprotein B gene is not sufficient to cause hypercholesterolemia, Arterioscler Thromb Vasc Biol, vol.20, issue.10, pp.76-82, 2000.

A. Tybjaerg-hansen, R. Steffensen, H. Meinertz, P. Schnohr, and B. G. Nordestgaard, Association of mutations in the apolipoprotein B gene with hypercholesterolemia and the risk of ischemic heart disease, N Engl J Med, vol.338, issue.22, pp.1577-84, 1998.

S. Leigh, M. Futema, R. Whittall, A. Taylor-beadling, M. Williams et al., The UCL low-density lipoprotein receptor gene variant database: pathogenicity update, J Med Genet, 2017.

H. H. Hobbs, M. S. Brown, and J. L. Goldstein, Molecular genetics of the LDL receptor gene in familial hypercholesterolemia, Hum Mutat, vol.1, issue.6, pp.445-66, 1992.

A. S. Thormählen and H. Runz, Systematic Cell-Based Phenotyping of Missense Alleles, Methods Mol Biol Clifton NJ, vol.1601, pp.215-243, 2017.

M. Marduel, A. Carrié, A. Sassolas, M. Devillers, V. Carreau et al., Molecular spectrum of autosomal dominant hypercholesterolemia in France, Hum Mutat, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00573066

S. Bertolini, A. Cantafora, M. Averna, C. Cortese, C. Motti et al., Clinical expression of familial hypercholesterolemia in clusters of mutations of the LDL receptor gene that cause a receptor-defective or receptor-negative phenotype, Arterioscler Thromb Vasc Biol, 2000.

X. M. Sun, D. D. Patel, B. L. Knight, and A. K. Soutar, Comparison of the genetic defect with LDLreceptor activity in cultured cells from patients with a clinical diagnosis of heterozygous familial hypercholesterolemia. The Familial Hypercholesterolaemia Regression Study Group, Arterioscler Thromb Vasc Biol, vol.17, issue.11, pp.3092-101, 1997.

, Annexe 2. « Systematic assay of lipoprotein Lipase activity and mass in a cohort of patient with history of type V hyperlipidemia, vol.29, 2016.

, Prague Annexe 4. Détermination de l'activité LPL sur des VLDL isolées de différents patients MCS La détermination de l'activité de la LPL a été réalisée grâce à un pool de plasma post, Strong heterogeneity in plasma triglycerides lipolysis in multifactorial chylomicronemia, pp.23-26, 2017.

, Le pool de VLDL contrôle à été réalisé comme décrit précédemment (149), et les VLDL de patients ont été isolées de manière identique

, Annexe 6. « Variability of phenotypic expression in patients carriers of APOE gene mutations

C. T. Johansen and R. A. Hegele, Genetic bases of hypertriglyceridemic phenotypes, Curr Opin Lipidol, vol.22, issue.4, pp.247-53, 2011.

M. Kockx, L. Kritharides, . Triglyceride-rich, and . Lipoproteins, Cardiol Clin, 2018.

A. Brahm, R. A. Hegele, and . Hypertriglyceridemia, Nutrients, vol.5, issue.3, pp.981-1001, 2013.

I. J. Goldberg, Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis, J Lipid Res, vol.37, issue.4, pp.693-707, 1996.

R. A. Hegele, H. N. Ginsberg, M. J. Chapman, B. G. Nordestgaard, J. A. Kuivenhoven et al.,

, The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management, Lancet Diabetes Endocrinol, vol.2, issue.8, pp.655-66, 2014.

A. L. Catapano, Z. Reiner, D. Backer, G. , G. I. Taskinen et al., ESC/EAS the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS), Atherosclerosis, vol.217, issue.1, pp.3-46, 2011.

A. J. Brahm and R. A. Hegele, Chylomicronaemia-current diagnosis and future therapies, Nat Rev Endocrinol, vol.11, issue.6, pp.352-62, 2015.

C. T. Johansen, S. Kathiresan, and R. A. Hegele, Genetic determinants of plasma triglycerides

, Lipid Res, vol.52, issue.2, pp.189-206, 2011.

J. Nogueira, M. Maraninchi, S. Béliard, N. Padilla, L. Duvillard et al., Absence of

, Thromb Vasc Biol, vol.32, issue.4, pp.1039-1083, 2012.

D. Gaudet, D. Brisson, K. Tremblay, V. J. Alexander, W. Singleton et al., Targeting APOC3 in the familial chylomicronemia syndrome, N Engl J Med, vol.371, issue.23, pp.2200-2206, 2014.

D. Gaudet, V. J. Alexander, B. F. Baker, D. Brisson, K. Tremblay et al., Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia, N Engl J Med, vol.373, issue.5, pp.438-485, 2015.

J. Julve, J. M. Martín-campos, J. C. Escolà-gil, F. Blanco-vaca, and . Chylomicrons, Advances in biology, pathology, laboratory testing, and therapeutics, vol.455, pp.134-182, 2016.

M. M. Hussain, Intestinal lipid absorption and lipoprotein formation, Curr Opin Lipidol

C. M. Mansbach and S. A. Siddiqi, The Biogenesis of Chylomicrons, Annu Rev Physiol, vol.72, issue.1, pp.315-348, 2010.

J. Iqbal and M. M. Hussain, Intestinal lipid absorption, Am J Physiol Endocrinol Metab, 2009.

S. Anant and N. O. Davidson, Molecular mechanisms of apolipoprotein B mRNA editing

, Opin Lipidol, vol.12, issue.2, pp.159-65, 2001.

S. Dash, C. Xiao, C. Morgantini, and G. F. Lewis, New Insights into the Regulation of Chylomicron Production, Annu Rev Nutr, vol.35, issue.1, pp.265-94, 2015.

R. L. Hamilton, J. S. Wong, C. M. Cham, L. B. Nielsen, and S. G. Young, Chylomicron-sized lipid particles are formed in the setting of apolipoprotein B deficiency, J Lipid Res, vol.39, issue.8, pp.1543-57, 1998.

D. Hesse, A. Jaschke, B. Chung, and A. Schürmann, Trans-Golgi proteins participate in the control of lipid droplet and chylomicron formation, Biosci Rep, vol.33, issue.1, pp.1-9, 2013.

S. H. Choi and H. N. Ginsberg, Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance, Trends Endocrinol Metab, vol.22, issue.9, pp.353-63, 2011.

H. Mu and T. Porsgaard, The metabolism of structured triacylglycerols, Prog Lipid Res, 2005.

M. Alves-bezerra and D. E. Cohen, Triglyceride Metabolism in the Liver

, Comprehensive Physiology

N. J. Hoboken and . Usa, , 2017.

, , pp.1-22

M. Sundaram and Z. Yao, Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion, Nutr Metab, vol.7, p.35, 2010.

S. Rustaeus, K. Lindberg, P. Stillemark, C. Claesson, L. Asp et al., Assembly of very low density lipoprotein: a two-step process of apolipoprotein B core lipidation, J Nutr, vol.129, pp.463-466, 1999.

G. S. Shelness and J. A. Sellers, Very-low-density lipoprotein assembly and secretion, Curr Opin Lipidol, vol.12, issue.2, pp.151-158, 2001.

S. O. Olofsson, L. Asp, and J. Borén, The assembly and secretion of apolipoprotein B-containing lipoproteins, Curr Opin Lipidol, vol.10, issue.4, pp.341-347, 1999.

L. Y. Yang, A. Kuksis, J. J. Myher, and G. Steiner, Contribution of de novo fatty acid synthesis to very low density lipoprotein triacylglycerols: evidence from mass isotopomer distribution analysis of fatty acids synthesized from [2H6]ethanol, J Lipid Res, vol.37, issue.2, pp.262-74, 1996.

S. Tiwari and S. A. Siddiqi, Intracellular trafficking and secretion of VLDL, Arterioscler Thromb Vasc Biol, vol.32, issue.5, pp.1079-86, 2012.

R. A. Borchardt and R. A. Davis, Intrahepatic assembly of very low density lipoproteins. Rate of transport out of the endoplasmic reticulum determines rate of secretion, J Biol Chem, vol.262, issue.34, pp.16394-402, 1987.

V. Gusarova, J. Seo, M. L. Sullivan, S. C. Watkins, J. L. Brodsky et al., Golgi-associated maturation of very low density lipoproteins involves conformational changes in apolipoprotein B, but is not dependent on apolipoprotein E, J Biol Chem, vol.282, issue.27, pp.19453-62, 2007.

M. Takahashi, H. Yagyu, F. Tazoe, S. Nagashima, T. Ohshiro et al., Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity, J Lipid Res, vol.54, issue.4, pp.1124-1158, 2013.

C. Ross, J. Twisk, J. M. Meulenberg, G. Liu, K. Van-den-oever et al., Long-term correction of murine lipoprotein lipase deficiency with AAV1-mediated gene transfer of the naturally occurring LPL(S447X) beneficial mutation. Hum Gene Ther, 47. van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C. Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis, vol.15, pp.4626-4659, 1994.

H. Wang and R. H. Eckel, Lipoprotein lipase: from gene to obesity, Am J Physiol Endocrinol Metab, vol.297, issue.2, pp.271-288, 2009.

Y. Kobayashi, T. Nakajima, and I. Inoue, Molecular modeling of the dimeric structure of human lipoprotein lipase and functional studies of the carboxyl-terminal domain, Eur J Biochem, 2002.

H. Wong, D. Yang, J. S. Hill, R. C. Davis, J. Nikazy et al., A molecular biology-based approach to resolve the subunit orientation of lipoprotein lipase, Proc Natl Acad Sci, 1997.

J. Peterson, W. Y. Fujimoto, and J. D. Brunzell, Human lipoprotein lipase: relationship of activity, heparin affinity, and conformation as studied with monoclonal antibodies, J Lipid Res, 1992.

C. S. Wang, J. Hartsuck, and W. J. Mcconathy, Structure and functional properties of lipoprotein lipase, Biochim Biophys Acta, vol.1123, issue.1, pp.1-17, 1992.

H. Wong, R. C. Davis, T. Thuren, J. W. Goers, J. Nikazy et al., Lipoprotein lipase domain function, J Biol Chem, vol.269, issue.14, pp.10319-10342, 1994.

A. Lookene, N. B. Groot, J. J. Kastelein, G. Olivecrona, and T. Bruin, Mutation of tryptophan residues in lipoprotein lipase. Effects on stability, immunoreactivity, and catalytic properties, J Biol Chem, vol.272, issue.2, pp.766-72, 1997.

T. Keiper, J. G. Schneider, and K. A. Dugi, Novel site in lipoprotein lipase (LPL415;-438) essential for substrate interaction and dimer stability, J Lipid Res, vol.42, issue.8, pp.1180-1186, 2001.

M. M. Hussain, J. C. Obunike, A. Shaheen, M. J. Hussain, G. S. Shelness et al., High affinity binding between lipoprotein lipase and lipoproteins involves multiple ionic and hydrophobic interactions, does not require enzyme activity, and is modulated by glycosaminoglycans, J Biol Chem, vol.275, issue.38, pp.29324-29354, 2000.

S. Y. Choi, P. Sivaram, D. E. Walker, L. K. Curtiss, D. G. Gretch et al., Lipoprotein lipase association with lipoproteins involves protein-protein interaction with apolipoprotein B, J Biol Chem, vol.270, issue.14, pp.8081-8087, 1995.

J. Boren, A. Lookene, E. Makoveichuk, S. Xiang, M. Gustafsson et al., Binding of low density lipoproteins to lipoprotein lipase is dependent on lipids but not on apolipoprotein B, J Biol Chem, vol.276, issue.29, pp.26916-26938, 2001.

Y. Ma, H. E. Henderson, M. S. Liu, H. Zhang, I. J. Forsythe et al., Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase, J Lipid Res, 1994.

T. Olivecrona, G. Liu, M. Hultin, and G. Bengtsson-olivecrona, Regulation of lipoprotein lipase

, Biochem Soc Trans, vol.21, issue.2, pp.509-522, 1993.

T. L. Mcilhargey, Y. Yang, H. Wong, and J. S. Hill, Identification of a lipoprotein lipase cofactorbinding site by chemical cross-linking and transfer of apolipoprotein C-II-responsive lipolysis from lipoprotein lipase to hepatic lipase, J Biol Chem, vol.278, issue.25, pp.23027-23062, 2003.

C. V. Voss, B. Davies, S. Tat, P. Gin, L. G. Fong et al., Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1, Proc Natl Acad Sci, vol.108, pp.7980-7984, 2011.

O. Adeyo, C. N. Goulbourne, A. Bensadoun, A. P. Beigneux, L. G. Fong et al.,

, Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 and the intravascular processing of triglyceride-rich lipoproteins, J Intern Med, vol.272, issue.6, pp.528-568, 2012.

S. G. Young, B. Davies, C. V. Voss, P. Gin, M. M. Weinstein et al., GPIHBP1, an endothelial cell transporter for lipoprotein lipase, J Lipid Res, vol.52, issue.11, pp.1869-84, 2011.

S. Kersten, Physiological regulation of lipoprotein lipase, Biochim Biophys Acta, 2014.

P. He, T. Jiang, X. Ouyang, Y. Liang, J. Zou et al.,

, Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases, Clin Chim Acta Int J Clin Chem, vol.480, pp.126-163, 2018.

M. Merkel, R. H. Eckel, and I. J. Goldberg, Lipoprotein lipase: genetics, lipid uptake, and regulation, J Lipid Res, vol.43, issue.12, pp.1997-2006, 2002.

J. Ahn, H. Lee, C. H. Chung, and T. Ha, High fat diet induced downregulation of microRNA-467b

T. Chen, Z. Li, J. Tu, W. Zhu, J. Ge et al., MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells, FEBS Lett, vol.585, issue.4, pp.657-63, 2011.

P. He, X. Ouyang, Y. Tang, L. Liao, Z. Wang et al., MicroRNA-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting lipoprotein lipase gene in human THP-1 macrophages, Biochimie, vol.106, pp.81-90, 2014.

M. Bouvy-liivrand, M. Heinäniemi, J. E. Schneider, J. G. Sauter, T. Sinkkonen et al.,

, Combinatorial regulation of lipoprotein lipase by microRNAs during mouse adipogenesis, RNA Biol, vol.11, issue.1, pp.76-91, 2014.

M. Ghanbari, O. H. Franco, H. De-looper, A. Hofman, S. J. Erkeland et al., Genetic Variations in MicroRNA-Binding Sites Affect MicroRNA-Mediated Regulation of Several Genes Associated With Cardio-metabolic Phenotypes, Circ Cardiovasc Genet, vol.8, issue.3, pp.473-86, 2015.

C. Caussy, S. Charrière, A. Meirhaeghe, J. Dallongeville, E. Lefai et al., Multiple microRNA regulation of lipoprotein lipase gene abolished by 3'UTR polymorphisms in a triglyceride-lowering haplotype harboring p.Ser474Ter, Atherosclerosis, vol.246, pp.280-286, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01986056

C. Rabacchi, D. 'addato, S. Palmisano, S. Lucchi, T. Bertolini et al., Clinical and genetic features of 3 patients with familial chylomicronemia due to mutations in GPIHBP1 gene

, J Clin Lipidol, vol.10, issue.4, pp.915-921, 2016.

T. Gotoda, K. Shirai, T. Ohta, J. Kobayashi, S. Yokoyama et al., Diagnosis and management of type I and type V hyperlipoproteinemia, J Atheroscler Thromb, vol.19, issue.1, pp.1-12, 2012.

N. Chokshi, S. D. Blumenschein, Z. Ahmad, and A. Garg, Genotype-phenotype relationships in patients with type I hyperlipoproteinemia, J Clin Lipidol, vol.8, issue.3, pp.287-95, 2014.

S. G. Young and R. Zechner, Biochemistry and pathophysiology of intravascular and intracellular lipolysis, Genes Dev, vol.27, issue.5, pp.459-84, 2013.

G. S. Sagoo, I. Tatt, G. Salanti, A. S. Butterworth, N. Sarwar et al., Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis, Am J Epidemiol, vol.168, issue.11, pp.1233-1279, 2008.

H. H. Wittrup, A. Tybjaerg-hansen, and B. G. Nordestgaard, Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation, vol.99, pp.2901-2908, 1999.

R. M. Fisher, S. E. Humphries, and P. J. Talmud, Common variation in the lipoprotein lipase gene: effects on plasma lipids and risk of atherosclerosis, Atherosclerosis, vol.135, issue.2, pp.145-59, 1997.

Y. Hu, W. Liu, R. Huang, and X. Zhang, A systematic review and meta-analysis of the relationship between lipoprotein lipase Asn291Ser variant and diseases, J Lipid Res, vol.47, issue.9, pp.1908-1922, 2006.

H. Zhang, H. Henderson, S. E. Gagne, S. M. Clee, L. Miao et al., Common sequence variants of lipoprotein lipase: standardized studies of in vitro expression and catalytic function

, Biochim Biophys Acta, vol.1302, issue.2, pp.159-66, 1996.

J. Rip, M. C. Nierman, C. J. Ross, J. W. Jukema, M. R. Hayden et al., Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation, Arterioscler Thromb Vasc Biol, 2006.

G. Ranganathan, D. Vu, and P. A. Kern, Translational regulation of lipoprotein lipase by epinephrine involves a trans-acting binding protein interacting with the 3' untranslated region, J Biol Chem, vol.272, issue.4, pp.2515-2524, 1997.

R. Middelberg, M. Ferreira, A. K. Henders, A. C. Heath, P. Madden et al.,

, Genetic variants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits, BMC Med Genet, vol.12, p.123, 2011.

J. S. Kooner, J. C. Chambers, C. A. Aguilar-salinas, D. A. Hinds, C. L. Hyde et al.,

, Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides, Nat Genet, vol.40, issue.2, pp.149-51, 2008.

C. J. Willer, S. Sanna, A. U. Jackson, A. Scuteri, L. L. Bonnycastle et al., Newly identified loci that influence lipid concentrations and risk of coronary artery disease, Nat Genet, 2008.

Y. S. Aulchenko, S. Ripatti, I. Lindqvist, D. Boomsma, I. M. Heid et al., Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts, Nat Genet, vol.41, issue.1, pp.47-55, 2009.

S. Kathiresan, C. J. Willer, G. M. Peloso, S. Demissie, K. Musunuru et al., Common variants at 30 loci contribute to polygenic dyslipidemia, Nat Genet, vol.41, issue.1, pp.56-65, 2009.

C. Caussy, Régulation épigénétique de la lipolyse intravasculaire des triglycérides

M. H. Doolittle, N. Ehrhardt, and M. Péterfy, Lipase maturation factor 1: structure and role in lipase folding and assembly, Curr Opin Lipidol, vol.21, issue.3, pp.198-203, 2010.

M. Péterfy, Lipase maturation factor 1: a lipase chaperone involved in lipid metabolism

, Biochim Biophys Acta, issue.5, pp.790-794, 1821.

M. Péterfy, O. Ben-zeev, H. Z. Mao, D. Weissglas-volkov, B. E. Aouizerat et al.,

, Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia, Nat Genet, vol.39, issue.12, pp.1483-1490, 2007.

H. Sha, S. Sun, A. B. Francisco, N. Ehrhardt, Z. Xue et al., The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism, Cell Metab, vol.20, issue.3, pp.458-70, 2014.

A. B. Cefalù, D. Noto, M. L. Arpi, F. Yin, R. Spina et al., Novel LMF1 nonsense mutation in a patient with severe hypertriglyceridemia, J Clin Endocrinol Metab, vol.94, issue.11, pp.4584-90, 2009.

A. B. Cefalù, R. Spina, D. Noto, V. Ingrassia, V. Valenti et al., Identification of a novel LMF1 nonsense mutation responsible for severe hypertriglyceridemia by targeted nextgeneration sequencing, J Clin Lipidol, vol.11, issue.1, pp.272-281, 2017.

Y. Liu, J. Xu, W. Tao, R. Yu, and X. Zhang, A Compound Heterozygous Mutation of Lipase

, Maturation Factor 1 is Responsible for Hypertriglyceridemia of a Patient, J Atheroscler Thromb, 2018.

C. T. Johansen, J. Wang, A. D. Mcintyre, R. A. Martins, M. R. Ban et al., Excess of rare variants in non-genome-wide association study candidate genes in patients with hypertriglyceridemia, Circ Cardiovasc Genet, vol.5, issue.1, pp.66-72, 2012.

R. P. Surendran, M. E. Visser, S. Heemelaar, J. Wang, J. Peter et al., Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia, J Intern Med, vol.272, issue.2, pp.185-96, 2012.

M. S. Dancer, D. Filippo, M. Marmontel, O. Valéro, R. et al., New rare genetic variants of LMF1 gene identified in severe hypertriglyceridemia, J Clin Lipidol
URL : https://hal.archives-ouvertes.fr/hal-01881223

. Jul, , 2018.

R. X. Ioka, M. Kang, S. Kamiyama, D. Kim, K. Magoori et al., Expression cloning and characterization of a novel glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein, GPI-HBP1, J Biol Chem, vol.278, issue.9, pp.7344-7353, 2003.

L. G. Fong, S. G. Young, A. P. Beigneux, A. Bensadoun, M. Oberer et al., GPIHBP1 and Plasma Triglyceride Metabolism, Trends Endocrinol Metab TEM, vol.27, issue.7, pp.455-69, 2016.

A. P. Beigneux, B. Davies, P. Gin, M. M. Weinstein, E. Farber et al.,

, Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons, Cell Metab, vol.5, issue.4, pp.279-91, 2007.

P. Gin, L. Yin, B. Davies, M. M. Weinstein, R. O. Ryan et al., The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons, J Biol Chem, 2008.

, Oct, vol.24, issue.43, pp.29554-62

A. P. Beigneux, B. Davies, S. Tat, J. Chen, P. Gin et al., Assessing the role of the glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) three-finger domain in binding lipoprotein lipase, J Biol Chem, vol.286, issue.22, pp.19735-19778, 2011.

M. Reimund, M. Larsson, O. Kovrov, S. Kasvandik, G. Olivecrona et al., Evidence for Two Distinct Binding Sites for Lipoprotein Lipase on Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein 1 (GPIHBP1), J Biol Chem, vol.290, issue.22, pp.13919-13953, 2015.

W. K. Sonnenburg, D. Yu, E. Lee, W. Xiong, G. Gololobov et al., GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4, J Lipid Res, vol.50, issue.12, pp.2421-2430, 2009.

S. Mysling, K. K. Kristensen, M. Larsson, A. P. Beigneux, H. Gårdsvoll et al., The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. eLife, vol.5, p.12095, 2016.

B. Davies, A. P. Beigneux, R. H. Barnes, Y. Tu, P. Gin et al., GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries, Cell Metab, vol.12, issue.1, pp.42-52, 2010.

B. Davies, C. N. Goulbourne, R. H. Barnes, K. A. Turlo, P. Gin et al., Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells, J Lipid Res, vol.53, issue.12, pp.2690-2697, 2012.

C. N. Goulbourne, P. Gin, A. Tatar, C. Nobumori, A. Hoenger et al., The GPIHBP1-LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries, Cell Metab, vol.19, issue.5, pp.849-60, 2014.

P. Gin, A. P. Beigneux, C. Voss, B. Davies, J. A. Beckstead et al., Binding preferences for GPIHBP1, a glycosylphosphatidylinositol-anchored protein of capillary endothelial cells

, Arterioscler Thromb Vasc Biol, vol.31, issue.1, pp.176-82, 2011.

M. M. Weinstein, L. Yin, A. P. Beigneux, B. Davies, P. Gin et al., Abnormal patterns of lipoprotein lipase release into the plasma in GPIHBP1-deficient mice, J Biol Chem, vol.283, issue.50, pp.34511-34519, 2008.

R. Franssen, S. G. Young, F. Peelman, J. Hertecant, J. A. Sierts et al.,

, Chylomicronemia with low postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects, Circ Cardiovasc Genet, vol.3, issue.2, pp.169-78, 2010.

W. Plengpanich, S. G. Young, W. Khovidhunkit, A. Bensadoun, H. Karnman et al.,

, Multimerization of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) and familial chylomicronemia from a serine-to-cysteine substitution in GPIHBP1 Ly6 domain, J Biol Chem, vol.289, issue.28, pp.19491-19500, 2014.

S. Charrière, N. Peretti, S. Bernard, D. Filippo, M. Sassolas et al., GPIHBP1 C89F neomutation and hydrophobic C-terminal domain G175R mutation in two pedigrees with severe hyperchylomicronemia, J Clin Endocrinol Metab, vol.96, issue.10, pp.1675-1679, 2011.

J. J. Rios, S. Shastry, J. Jasso, N. Hauser, A. Garg et al., Deletion of GPIHBP1 causing severe chylomicronemia, J Inherit Metab Dis, vol.35, issue.3, pp.531-571, 2012.

A. P. Beigneux, R. Franssen, A. Bensadoun, P. Gin, K. Melford et al., Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase, Arterioscler Thromb Vasc Biol, vol.29, issue.6, pp.956-62, 2009.

G. Olivecrona, E. Ehrenborg, H. Semb, E. Makoveichuk, A. Lindberg et al., Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia, J Lipid Res, vol.51, issue.6, pp.1535-1580, 2010.

I. Coca-prieto, O. Kroupa, P. Gonzalez-santos, J. Magne, G. Olivecrona et al.,

, Childhood-onset chylomicronaemia with reduced plasma lipoprotein lipase activity and mass: identification of a novel GPIHBP1 mutation, J Intern Med, vol.270, issue.3, pp.224-232, 2011.

K. E. Berge, K. Retterstøl, S. Romeo, C. Pirazzi, and T. P. Leren, Type 1 hyperlipoproteinemia due to a novel deletion of exons 3 and 4 in the GPIHBP1 gene, Atherosclerosis, vol.234, issue.1, pp.30-33, 2014.

H. Yamamoto, M. Onishi, N. Miyamoto, R. Oki, H. Ueda et al., Novel combined GPIHBP1 mutations in a patient with hypertriglyceridemia associated with CAD, J Atheroscler Thromb, vol.20, issue.10, pp.777-84, 2013.

M. Paquette, R. A. Hegele, G. Paré, and A. Baass, A novel mutation in GPIHBP1 causes familial chylomicronemia syndrome, J Clin Lipidol, vol.12, issue.2, pp.506-516, 2018.

S. P. Guay, D. Gaudet, and D. Brisson, The g.-469G>A polymorphism in the GPIHBP1 gene promoter is associated with hypertriglyceridemia and has an additive effect on the risk conferred by LPL defective alleles, Nutr Metab Cardiovasc Dis NMCD, vol.23, issue.4, pp.358-65, 2013.

L. A. Pennacchio, M. Olivier, J. A. Hubacek, J. C. Cohen, D. R. Cox et al., An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing, Science, vol.294, issue.5540, pp.169-73, 2001.

O. 'brien, P. J. Alborn, W. E. Sloan, J. H. Ulmer, M. Boodhoo et al., The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins, Clin Chem, 2005.

. Van-der, H. N. Vliet, M. G. Sammels, A. C. Leegwater, J. H. Levels et al.,

A. Apolipoprotein,

, J Biol Chem, vol.276, issue.48, pp.44512-44532, 2001.

X. Shu, L. Nelbach, M. M. Weinstein, B. L. Burgess, J. A. Beckstead et al., Intravenous injection of apolipoprotein A-V reconstituted high-density lipoprotein decreases hypertriglyceridemia in apoav-/-mice and requires glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1, Arterioscler Thromb Vasc Biol, 2010.

A. Lookene, J. A. Beckstead, S. Nilsson, G. Olivecrona, and R. O. Ryan, Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism, J Biol Chem, vol.280, issue.27, pp.25383-25390, 2005.

G. Sun, N. Bi, G. Li, X. Zhu, W. Zeng et al., Identification of lipid binding and lipoprotein lipase activation domains of human apoAV, Chem Phys Lipids, vol.143, issue.1-2, pp.22-30, 2006.

S. K. Nilsson, A. Lookene, J. A. Beckstead, J. Gliemann, R. O. Ryan et al., Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry (Mosc), vol.46, pp.3896-904, 2007.

T. M. Forte and R. O. Ryan, Apolipoprotein A5: Extracellular and Intracellular Roles in Triglyceride Metabolism, Curr Drug Targets, vol.16, issue.12, pp.1274-80, 2015.

J. C. Gonzales, P. Gordts, E. M. Foley, and J. D. Esko, Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans, J Clin Invest, vol.123, issue.6, pp.2742-51, 2013.

S. K. Nilsson, J. Heeren, G. Olivecrona, and M. Merkel, Apolipoprotein A-V; a potent triglyceride reducer, Atherosclerosis, vol.219, issue.1, pp.15-21, 2011.

F. G. Schaap, P. Rensen, P. J. Voshol, C. Vrins, . Van-der et al.,

, ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis, J Biol Chem, vol.279, issue.27, pp.27941-27948, 2004.

X. Gao, T. M. Forte, and R. O. Ryan, Influence of apolipoprotein A-V on hepatocyte lipid droplet formation, Biochem Biophys Res Commun, vol.427, issue.2, pp.361-366, 2012.

I. Grosskopf, N. Baroukh, S. Lee, Y. Kamari, D. Harats et al., Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants, Arterioscler Thromb Vasc Biol, vol.25, issue.12, pp.2573-2582, 2005.

M. Merkel, B. Loeffler, M. Kluger, N. Fabig, G. Geppert et al., Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase, J Biol Chem, vol.280, issue.22, pp.21553-60, 2005.

J. A. Hubacek, Apolipoprotein A5 fifteen years anniversary: Lessons from genetic epidemiology, Gene, vol.592, issue.1, pp.193-202, 2016.

M. Guardiola and J. Ribalta, Update on APOA5 Genetics: Toward a Better Understanding of Its Physiological Impact, Curr Atheroscler Rep, vol.19, issue.7, p.30, 2017.

B. I. Melegh, B. Duga, K. Sümegi, P. Kisfali, A. Maász et al., Mutations of the apolipoprotein A5 gene with inherited hypertriglyceridaemia: review of the current literature

, Curr Med Chem, vol.19, issue.36, pp.6163-70, 2012.

C. Marçais, B. Verges, S. Charrière, V. Pruneta, M. Merlin et al., Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment, J Clin Invest, vol.115, issue.10, pp.2862-2871, 2005.

P. Oliva, C. Carubbi, F. Schaap, F. G. Bertolini, S. et al., Hypertriglyceridaemia and low plasma HDL in a patient with apolipoprotein A-V deficiency due to a novel mutation in the APOA5 gene, J Intern Med, vol.263, issue.4, pp.450-458, 2008.

B. Dorfmeister, W. W. Zeng, A. Dichlberger, S. K. Nilsson, F. G. Schaap et al., Effects of six APOA5 variants, identified in patients with severe hypertriglyceridemia, on in vitro lipoprotein lipase activity and receptor binding, Arterioscler Thromb Vasc Biol, 2008.

S. Charrière, C. Cugnet, M. Guitard, S. Bernard, L. Groisne et al., Modulation of phenotypic expression of APOA5 Q97X and L242P mutations, Atherosclerosis, 2009.

P. Oliva, C. Pisciotta, L. , L. Volti, G. Sambataro et al., Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia, Arterioscler Thromb Vasc Biol, vol.25, issue.2, pp.411-418, 2005.

P. Henneman, F. G. Schaap, P. Rensen, K. W. Van-dijk, and A. Smelt, Estrogen induced hypertriglyceridemia in an apolipoprotein AV deficient patient, J Intern Med, 2008.

P. J. Talmud, Rare APOA5 mutations-clinical consequences, metabolic and functional effects: an ENID review, Atherosclerosis, vol.194, issue.2, pp.287-92, 2007.
DOI : 10.1016/j.atherosclerosis.2006.12.010

D. Filippo, M. Marçais, C. Charrière, S. Marmontel, O. Broyer et al., Post-heparin LPL activity measurement using VLDL as a substrate: a new robust method for routine assessment of plasma triglyceride lipolysis defects, PloS One, vol.9, issue.5, p.96482, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859439

L. A. Pennacchio, M. Olivier, J. A. Hubacek, R. M. Krauss, E. M. Rubin et al., Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels, Hum Mol Genet, 2002.
DOI : 10.1093/hmg/11.24.3031

URL : https://academic.oup.com/hmg/article-pdf/11/24/3031/1844902/ddf302.pdf

, Nov, vol.15, issue.24, pp.3031-3039

P. J. Talmud, J. Palmen, W. Putt, L. Lins, and S. E. Humphries, Determination of the functionality of common APOA5 polymorphisms, J Biol Chem, vol.280, issue.31, pp.28215-28235, 2005.

L. Bertoccini, F. Sentinelli, M. Incani, D. Bailetti, F. A. Cimini et al., The Arg282Ser missense mutation in APOA5 gene determines a reduction of triglyceride and LDL-cholesterol in children, together with low serum levels of apolipoprotein A-V. Lipids Health Dis, vol.16, p.179, 2017.

C. Sidore, F. Busonero, A. Maschio, E. Porcu, S. Naitza et al., Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers, Nat Genet, vol.47, issue.11, pp.1272-81, 2015.

R. Do, N. O. Stitziel, H. Won, A. B. Jørgensen, S. Duga et al., Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction, Nature, vol.518, issue.7537, pp.102-108, 2015.

M. C. Jong, M. H. Hofker, and L. M. Havekes, Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3, Arterioscler Thromb Vasc Biol, 1999.

R. Ekman and P. Nilsson-ehle, Effects of apolipoproteins on lipoprotein lipase activity of human adipose tissue, Clin Chim Acta Int J Clin Chem, vol.63, issue.1, pp.29-35, 1975.

E. Sehayek and S. Eisenberg, Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway, J Biol Chem, vol.266, issue.27, pp.18259-67, 1991.

Y. Cyr, H. Wassef, S. Bissonnette, V. Lamantia, J. Davignon et al., WAT apoC-I secretion: role in delayed chylomicron clearance in vivo and ex vivo in WAT in obese subjects, J Lipid Res, vol.57, issue.6, pp.1074-85, 2016.

M. Larsson, E. Vorrsjö, P. Talmud, A. Lookene, and G. Olivecrona, Apolipoproteins C-I and C-III inhibit lipoprotein lipase activity by displacement of the enzyme from lipid droplets, J Biol Chem, vol.288, issue.47, pp.33997-4008, 2013.

J. Berbée, C. C. Van-der-hoogt, D. Sundararaman, L. M. Havekes, and P. Rensen, Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL, J Lipid Res, vol.46, issue.2, pp.297-306, 2005.

M. Westerterp, W. De-haan, J. Berbée, L. M. Havekes, and P. Rensen, Endogenous apoC-I increases hyperlipidemia in apoE-knockout mice by stimulating VLDL production and inhibiting LPL, J Lipid Res, vol.47, issue.6, pp.1203-1214, 2006.

J. A. Hubácek, J. Pitha, V. Adámková, Z. Skodová, V. Lánská et al., Apolipoprotein E and apolipoprotein CI polymorphisms in the Czech population: almost complete linkage disequilibrium of the less frequent alleles of both polymorphisms, Physiol Res, vol.52, issue.2, pp.195-200, 2003.

J. S. Cohn, M. Tremblay, L. Boulet, H. Jacques, J. Davignon et al., Plasma concentration and lipoprotein distribution of ApoC-I is dependent on ApoE genotype rather than the Hpa I ApoC-I promoter polymorphism, Atherosclerosis, vol.169, issue.1, pp.63-70, 2003.

M. F. Dumon and M. Clerc, Preliminary report on a case of apolipoproteins CI and CII deficiency, Clin Chim Acta Int J Clin Chem, vol.157, issue.3, pp.239-287, 1986.

C. S. Wang, Structure and functional properties of apolipoprotein C-II, Prog Lipid Res

Y. Shen, A. Lookene, S. Nilsson, and G. Olivecrona, Functional analyses of human apolipoprotein CII by site-directed mutagenesis: identification of residues important for activation of lipoprotein lipase, J Biol Chem, vol.277, issue.6, pp.4334-4376, 2002.

N. S. Shachter, T. Hayek, T. Leff, J. D. Smith, D. W. Rosenberg et al., Overexpression of apolipoprotein CII causes hypertriglyceridemia in transgenic mice, J Clin Invest, 1994.

A. Wolska, R. L. Dunbar, L. A. Freeman, M. Ueda, M. J. Amar et al., New findings related to genetics, biochemistry, and role in triglyceride metabolism

, Atherosclerosis, vol.267, pp.49-60, 2017.

A. A. Kei, T. D. Filippatos, V. Tsimihodimos, and M. S. Elisaf, A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease, Metabolism, vol.61, issue.7, pp.906-927, 2012.

T. M. Teslovich, K. Musunuru, A. V. Smith, A. C. Edmondson, I. M. Stylianou et al.,

, Biological, clinical and population relevance of 95 loci for blood lipids, Nature, vol.466, issue.7307, pp.707-720, 2010.

K. Aalto-setälä, E. A. Fisher, X. Chen, T. Chajek-shaul, T. Hayek et al., Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles, J Clin Invest, vol.90, issue.5, pp.1889-900, 1992.

Y. Ito, N. Azrolan, A. O'connell, A. Walsh, and J. L. Breslow, Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice, Science, vol.249, issue.4970, pp.790-793, 1990.

B. Ramms and P. Gordts, Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism

, Curr Opin Lipidol, vol.29, issue.3, pp.171-180, 2018.

W. V. Brown and M. L. Baginsky, Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein, Biochem Biophys Res Commun, vol.46, issue.2, pp.375-82, 1972.

F. M. Sacks, The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia, Curr Opin Lipidol, vol.26, issue.1, pp.56-63, 2015.

M. Larsson, C. M. Allan, R. S. Jung, P. J. Heizer, A. P. Beigneux et al., Apolipoprotein CIII inhibits triglyceride hydrolysis by GPIHBP1-bound LPL, J Lipid Res, vol.58, issue.9, pp.1893-902, 2017.

P. Gordts, R. Nock, N. Son, B. Ramms, I. Lew et al., ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors, J Clin Invest, vol.126, issue.8, pp.2855-66, 2016.

E. D. Breyer, N. A. Le, X. Li, D. Martinson, and W. V. Brown, Apolipoprotein C-III displacement of apolipoprotein E from VLDL: effect of particle size, J Lipid Res, vol.40, issue.10, pp.1875-82, 1999.

M. Sundaram, S. Zhong, M. B. Khalil, P. H. Links, Y. Zhao et al., Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipidrich conditions, J Lipid Res, vol.51, issue.1, pp.150-61, 2010.

M. Sundaram, K. R. Curtis, A. Alipour, M. Leblond, N. D. Margison et al., The apolipoprotein C-III (Gln38Lys) variant associated with human hypertriglyceridemia is a gain-of-function mutation, J Lipid Res, vol.58, issue.11, pp.2188-96, 2017.

W. Qin, M. Sundaram, Y. Wang, H. Zhou, S. Zhong et al., Missense mutation in APOC3 within the C-terminal lipid binding domain of human ApoC-III results in impaired assembly and secretion of triacylglycerol

, ApoC-III plays a major role in the formation of lipid precursors within the microsomal lumen, J Biol Chem, vol.286, issue.31, pp.27769-80, 2011.

A. B. Jørgensen, R. Frikke-schmidt, B. G. Nordestgaard, and A. Tybjaerg-hansen, Loss-of-function mutations in APOC3 and risk of ischemic vascular disease, N Engl J Med, vol.371, issue.1, pp.32-41, 2014.

B. Lung, . Institute, J. Crosby, G. M. Peloso, P. L. Auer et al., Loss-of-function mutations in APOC3, triglycerides, and coronary disease, N Engl J Med, vol.371, issue.1, pp.22-31, 2014.

C. R. Pullinger, M. J. Malloy, A. K. Shahidi, M. Ghassemzadeh, P. Duchateau et al., A novel apolipoprotein C-III variant, apoC-III(Gln38->Lys), associated with moderate hypertriglyceridemia in a large kindred of Mexican origin, J Lipid Res, vol.38, issue.9, pp.1833-1873, 1997.

Y. Song, L. Zhu, M. Richa, P. Li, Y. Yang et al., Associations of the APOC3 rs5128

, polymorphism with plasma APOC3 and lipid levels: a meta-analysis. Lipids Health Dis

. Dec, , 2016.

, Available from, vol.14

,

R. A. Hegele, P. W. Connelly, A. J. Hanley, F. Sun, S. B. Harris et al., Common genomic variation in the APOC3 promoter associated with variation in plasma lipoproteins, Arterioscler Thromb Vasc Biol, vol.17, issue.11, pp.2753-2761, 1997.

M. C. Phillips, Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life, 2014.

A. D. Cooper, Hepatic uptake of chylomicron remnants, J Lipid Res, 1997.

M. Sundaram and Z. Yao, Intrahepatic role of exchangeable apolipoproteins in lipoprotein assembly and secretion, Arterioscler Thromb Vasc Biol, vol.32, issue.5, pp.1073-1081, 2012.

P. C. Rensen and T. J. Van-berkel, Apolipoprotein E effectively inhibits lipoprotein lipasemediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo, J Biol Chem, vol.271, issue.25, pp.14791-14800, 1996.

W. J. Mcconathy and C. S. Wang, Inhibition of lipoprotein lipase by the receptor-binding domain of apolipoprotein E, FEBS Lett, vol.251, issue.1-2, pp.250-252, 1989.

K. H. Weisgraber, T. L. Innerarity, and R. W. Mahley, Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site, J Biol Chem, vol.257, issue.5, pp.2518-2539, 1982.

A. Steinmetz, C. Jakobs, S. Motzny, and H. Kaffarnik, Differential distribution of apolipoprotein E isoforms in human plasma lipoproteins. Arterioscler Dallas Tex, vol.9, pp.405-416, 1989.

K. H. Weisgraber, Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112, J Lipid Res, vol.31, issue.8, pp.1503-1514, 1990.

D. Nguyen, P. Dhanasekaran, M. Nickel, R. Nakatani, H. Saito et al., Molecular basis for the differences in lipid and lipoprotein binding properties of human apolipoproteins E3 and E4. Biochemistry (Mosc), vol.49, pp.10881-10890, 2010.

K. H. Weisgraber, R. W. Mahley, R. C. Kowal, J. Herz, J. L. Goldstein et al., Apolipoprotein CI modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptorrelated protein, J Biol Chem, vol.265, issue.36, pp.22453-22462, 1990.

A. A. Pendse, J. M. Arbones-mainar, L. A. Johnson, M. K. Altenburg, and N. Maeda, Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond, J Lipid Res

A. D. Marais, G. Solomon, .. E. Blom, and D. J. , Dysbetalipoproteinaemia: a mixed hyperlipidaemia of remnant lipoproteins due to mutations in apolipoprotein E, Crit Rev Clin Lab Sci, 2014.

P. De-knijff, A. M. Van-den-maagdenberg, R. R. Frants, and L. M. Havekes, Genetic heterogeneity of apolipoprotein E and its influence on plasma lipid and lipoprotein levels, Hum Mutat, vol.4, issue.3, pp.178-94, 1994.

A. M. Van-den-maagdenberg, W. Weng, I. H. De-bruijn, P. De-knijff, H. Funke et al., Characterization of five new mutants in the carboxyl-terminal domain of human apolipoprotein E: no cosegregation with severe hyperlipidemia, Am J Hum Genet, vol.52, issue.5, pp.937-983, 1993.

Y. Yamanouchi, T. Takano, H. Hamaguchi, and K. Tokunaga, A novel apolipoprotein E5 variant with a 24-bp insertion causing hyperlipidemia, J Hum Genet, vol.46, issue.11, pp.633-642, 2001.

Z. Awan, H. Y. Choi, N. Stitziel, I. Ruel, M. A. Bamimore et al., Leu167del mutation in familial hypercholesterolemia, Atherosclerosis, vol.231, issue.2, pp.218-240, 2013.

A. Matsunaga and T. Saito, Apolipoprotein E mutations: a comparison between lipoprotein glomerulopathy and type III hyperlipoproteinemia, Clin Exp Nephrol, vol.18, issue.2, pp.220-224, 2014.

F. Mattijssen and S. Kersten, Regulation of triglyceride metabolism by Angiopoietin-like proteins, Biochim Biophys Acta, issue.5, pp.782-791, 1821.

L. Lichtenstein and S. Kersten, Modulation of plasma TG lipolysis by Angiopoietin-like proteins and GPIHBP1, Biochim Biophys Acta, issue.4, pp.415-435, 1801.

X. Chi, E. C. Britt, H. W. Shows, A. J. Hjelmaas, S. K. Shetty et al., ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol Metab, vol.6, pp.1137-1186, 2017.

J. F. Haller, I. J. Mintah, L. M. Shihanian, P. Stevis, D. Buckler et al.,

, requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance, J Lipid Res, vol.58, issue.6, pp.1166-73, 2017.

R. Zhang, The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking, Open Biol, vol.6, issue.4, p.150272, 2016.

S. Kersten, Angiopoietin-like 3 in lipoprotein metabolism, Nat Rev Endocrinol, 2017.

V. Sukonina, A. Lookene, T. Olivecrona, and G. Olivecrona, Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue, Proc Natl Acad Sci, vol.103, issue.46, pp.17450-17455, 2006.

M. Yau, Y. Wang, K. Lam, J. Zhang, D. Wu et al., A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization, J Biol Chem, vol.284, issue.18, pp.11942-52, 2009.

L. Shan, X. Yu, Z. Liu, Y. Hu, L. T. Sturgis et al., The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms, J Biol Chem, vol.284, issue.3, pp.1419-1443, 2009.

M. Shimamura, M. Matsuda, H. Yasumo, M. Okazaki, K. Fujimoto et al., Angiopoietinlike protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase

, Arterioscler Thromb Vasc Biol, vol.27, issue.2, pp.366-72, 2007.

Y. Wang, V. Gusarova, S. Banfi, J. Gromada, J. C. Cohen et al., Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion, J Lipid Res, vol.56, issue.7, pp.1296-307, 2015.

M. J. Graham, R. G. Lee, T. A. Brandt, L. Tai, W. Fu et al., Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides, N Engl J Med, 2017.

W. Dijk and S. Kersten, Regulation of lipid metabolism by angiopoietin-like proteins, Curr Opin Lipidol, vol.27, issue.3, pp.249-56, 2016.

W. Dijk, M. Heine, L. Vergnes, M. R. Boon, G. Schaart et al.,

, mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. eLife

M. Catoire, A. S. Paraskevopulos, N. Mattijssen, F. Evers-van-gogh, I. Schaart et al., Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise, Proc Natl Acad Sci, vol.111, issue.11, pp.1043-1052, 2014.

F. Mattijssen, A. S. Swarts, H. J. Groen, A. K. Van-schothorst, E. M. Kersten et al., Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion, Mol Metab, vol.3, issue.2, pp.135-179, 2014.

A. Köster, Y. B. Chao, M. Mosior, A. Ford, P. A. Gonzalez-dewhitt et al., Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism, Endocrinology, vol.146, issue.11, pp.4943-50, 2005.

K. Musunuru, J. P. Pirruccello, R. Do, G. M. Peloso, C. Guiducci et al., Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia, N Engl J Med, vol.363, issue.23, pp.2220-2227, 2010.

P. Tarugi, S. Bertolini, and C. S. , Angiopoietin-like protein 3 (ANGPTL3) deficiency and familial combined hypolipidemia, J Biomed Res, 201812.

M. Arca, I. Minicocci, and M. Maranghi, The angiopoietin-like protein 3: a hepatokine with expanding role in metabolism, Curr Opin Lipidol, vol.24, issue.4, pp.313-333, 2013.

M. R. Robciuc, M. Maranghi, A. Lahikainen, D. Rader, A. Bensadoun et al., Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids, Arterioscler Thromb Vasc Biol, vol.33, issue.7, pp.1706-1719, 2013.

I. Minicocci, A. Tikka, E. Poggiogalle, J. Metso, A. Montali et al., Effects of angiopoietinlike protein 3 deficiency on postprandial lipid and lipoprotein metabolism, J Lipid Res, vol.57, issue.6, pp.1097-107, 2016.

L. Pisciotta, E. Favari, L. Magnolo, S. Simonelli, M. P. Adorni et al., Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3, Circ Cardiovasc Genet, vol.5, issue.1, pp.42-50, 2012.

S. Romeo, W. Yin, J. Kozlitina, L. A. Pennacchio, E. Boerwinkle et al.,

F. E. Dewey, V. Gusarova, R. L. Dunbar, O. 'dushlaine, C. Schurmann et al., Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease, N Engl J Med, 2017.

S. Romeo, L. A. Pennacchio, Y. Fu, E. Boerwinkle, A. Tybjaerg-hansen et al.,

, Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL, Nat Genet, vol.39, issue.4, pp.513-519, 2007.

P. J. Talmud, M. Smart, E. Presswood, J. A. Cooper, V. Nicaud et al., ANGPTL4 E40K and T266M: effects on plasma triglyceride and HDL levels, postprandial responses, and CHD risk

, Arterioscler Thromb Vasc Biol, vol.28, issue.12, pp.2319-2344, 2008.

F. E. Dewey, J. Gromada, and A. R. Shuldiner, Variants in ANGPTL4 and the Risk of Coronary Artery Disease, N Engl J Med, vol.375, issue.23, pp.2305-2311, 201608.

, Variants in ANGPTL4 and the Risk of Coronary Artery Disease, N Engl J Med, vol.375, issue.23, pp.2303-2309, 2016.

V. Gusarova, C. O'dushlaine, T. M. Teslovich, P. N. Benotti, T. Mirshahi et al., Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes, Nat Commun, vol.13, issue.1, p.2252, 2018.

M. Luo and D. Peng, ANGPTL8: An Important Regulator in Metabolic Disorders, Front Endocrinol, vol.9, p.169, 2018.

F. Quagliarini, Y. Wang, J. Kozlitina, N. V. Grishin, R. Hyde et al., Atypical angiopoietin-like protein that regulates ANGPTL3, Proc Natl Acad Sci, vol.109, issue.48, pp.19751-19757, 2012.

Y. Wang, F. Quagliarini, V. Gusarova, J. Gromada, D. M. Valenzuela et al., Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis, Proc Natl Acad Sci, vol.110, issue.40, pp.16109-16123, 2013.

V. Gusarova, C. A. Alexa, N. E. Stevis, P. E. Xin, Y. Bonner-weir et al., ANGPTL8/betatrophin does not control pancreatic beta cell expansion, Cell, vol.159, issue.3, pp.691-697, 2014.

R. Zhang, Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels, Biochem Biophys Res Commun, vol.424, issue.4, pp.786-92, 2012.

R. L. Hanson, F. Leti, D. Tsinajinnie, S. Kobes, S. Puppala et al., The Arg59Trp variant in ANGPTL8 (betatrophin) is associated with total and HDL-cholesterol in American Indians and Mexican Americans and differentially affects cleavage of ANGPTL3, Mol Genet Metab, vol.118, issue.2, pp.128-165, 2016.

G. M. Peloso, P. L. Auer, J. C. Bis, A. Voorman, A. C. Morrison et al., Association of Low-Frequency and Rare Coding-Sequence Variants with Blood Lipids and Coronary Heart Disease in 56,000 Whites and Blacks, Am J Hum Genet, vol.94, issue.2, pp.223-255, 2014.

A. Lee, The role of CREB-H transcription factor in triglyceride metabolism, Curr Opin Lipidol, vol.23, issue.2, pp.141-147, 2012.

Y. Nakagawa and H. Shimano, CREBH Regulates Systemic Glucose and Lipid Metabolism, Int J Mol Sci, vol.19, issue.5, 2018.

J. H. Lee, P. Giannikopoulos, S. A. Duncan, J. Wang, C. T. Johansen et al., The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism, Nat Med, vol.17, issue.7, pp.812-817, 2011.

E. N. Bergman, R. J. Havel, B. M. Wolfe, and T. Bohmer, Quantitative studies of the metabolism of chylomicron triglycerides and cholesterol by liver and extrahepatic tissues of sheep and dogs, J Clin Invest, vol.50, issue.9, pp.1831-1840, 1971.

M. H. Doolittle and M. Péterfy, Mechanisms of lipase maturation, Clin Lipidol, vol.5, issue.1, pp.71-85, 2010.

M. Cupp, A. Bensadoun, and K. Melford, Heparin decreases the degradation rate of lipoprotein lipase in adipocytes, J Biol Chem, vol.262, issue.13, pp.6383-6391, 1987.

L. A. Cisar, A. J. Hoogewerf, M. Cupp, C. A. Rapport, and A. Bensadoun, Secretion and degradation of lipoprotein lipase in cultured adipocytes. Binding of lipoprotein lipase to membrane heparan sulfate proteoglycans is necessary for degradation, J Biol Chem, vol.264, issue.3, pp.1767-74, 1989.

G. M. Dallinga-thie, R. Franssen, H. L. Mooij, M. E. Visser, H. C. Hassing et al., The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight, Atherosclerosis, vol.211, issue.1, pp.1-8, 2010.

K. J. Williams, Some things just have to be done in vivo: GPIHBP1, caloric delivery, and the generation of remnant lipoproteins, Arterioscler Thromb Vasc Biol, vol.29, issue.6, pp.792-797, 2009.

G. Olivecrona, Role of lipoprotein lipase in lipid metabolism, Curr Opin Lipidol, vol.27, issue.3, pp.233-274, 2016.

M. Hultin, R. Savonen, O. Chevreuil, and T. Olivecrona, Chylomicron metabolism in rats: kinetic modeling indicates that the particles remain at endothelial sites for minutes, J Lipid Res, 2013.

S. Enerbäck and J. M. Gimble, Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-transcriptional level, Biochim Biophys Acta, vol.1169, issue.2, pp.107-132, 1993.

P. W. Connelly, G. F. Maguire, C. Vezina, R. A. Hegele, and A. Kuksis, Kinetics of lipolysis of very low density lipoproteins by lipoprotein lipase. Importance of particle number and noncompetitive inhibition by particles with low triglyceride content, J Biol Chem, vol.269, issue.32, pp.20554-60, 1994.

E. Levy, R. J. Deckelbaum, R. L. Thibault, E. Seidman, T. Olivecrona et al., In vitro remodelling of plasma lipoproteins in whole plasma by lipoprotein lipase in primary and secondary hypertriglyceridaemia, Eur J Clin Invest, vol.20, issue.4, pp.422-453, 1990.

S. J. Murdoch and W. C. Breckenridge, Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL, Atherosclerosis, 1995.

A. R. Tall, S. Krumholz, T. Olivecrona, and R. J. Deckelbaum, Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis, J Lipid Res, vol.26, issue.7, pp.842-51, 1985.

C. Zheng, C. Khoo, K. Ikewaki, and F. M. Sacks, Rapid turnover of apolipoprotein C-III-containing triglyceride-rich lipoproteins contributing to the formation of LDL subfractions, J Lipid Res, vol.48, issue.5, pp.1190-203, 2007.

P. E. Fielding, Y. Ishikawa, and C. J. Fielding, Apolipoprotein E mediates binding of normal very low density lipoprotein to heparin but is not required for high affinity receptor binding, J Biol Chem, vol.264, issue.21, pp.12462-12468, 1989.

M. W. Huff, W. C. Breckenridge, W. L. Strong, and B. M. Wolfe, Metabolism of apolipoproteins C-II, CIII, and B in hypertriglyceridemic men. Changes after heparin-induced lipolysis. Arterioscler Dallas Tex, vol.8, pp.471-480, 1988.

R. J. Deckelbaum, S. Eisenberg, Y. Oschry, E. Butbul, I. Sharon et al., Reversible modification of human plasma low density lipoproteins toward triglyceride-rich precursors. A mechanism for losing excess cholesterol esters, J Biol Chem, vol.257, issue.11, pp.6509-6526, 1982.

C. A. Marzetta, D. M. Foster, and J. D. Brunzell, Conversion of plasma VLDL and IDL precursors into various LDL subpopulations using density gradient ultracentrifugation, J Lipid Res, 1990.

P. Zanoni, S. Velagapudi, M. Yalcinkaya, L. Rohrer, and A. Von-eckardstein, Endocytosis of lipoproteins, Atherosclerosis, vol.275, pp.273-95, 2018.

K. J. Williams and K. Chen, Recent insights into factors affecting remnant lipoprotein uptake
DOI : 10.1097/mol.0b013e328338cabc

, Curr Opin Lipidol, vol.21, issue.3, pp.218-246, 2010.

R. W. Mahley and Z. S. Ji, Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E, J Lipid Res, vol.40, issue.1, pp.1-16, 1999.

P. Gordts and J. D. Esko, The heparan sulfate proteoglycan grip on hyperlipidemia and atherosclerosis, Matrix Biol J Int Soc Matrix Biol, 2018.

J. Heeren, W. Weber, and U. Beisiegel, Intracellular processing of endocytosed triglyceride-rich lipoproteins comprises both recycling and degradation, J Cell Sci, vol.112, pp.349-59, 1999.

L. L. Swift, M. H. Farkas, A. S. Major, K. Valyi-nagy, M. F. Linton et al., A recycling pathway for resecretion of internalized apolipoprotein E in liver cells, J Biol Chem, vol.276, issue.25, pp.22965-70, 2001.

A. Zambon, S. S. Deeb, A. Bensadoun, K. E. Foster, and J. D. Brunzell, In vivo evidence of a role for hepatic lipase in human apoB-containing lipoprotein metabolism, independent of its lipolytic activity, J Lipid Res, vol.41, issue.12, pp.2094-2103, 2000.

J. Kobayashi, K. Miyashita, K. Nakajima, and H. Mabuchi, Hepatic Lipase: a Comprehensive View of its Role on Plasma Lipid and Lipoprotein Metabolism, J Atheroscler Thromb, vol.22, issue.10, pp.1001-1012, 2015.

T. M. Forte, X. Shu, and R. O. Ryan, The ins (cell) and outs (plasma) of apolipoprotein A-V, J Lipid Res, vol.50, pp.150-155, 2009.

W. A. Bradley, S. L. Hwang, J. B. Karlin, A. H. Lin, S. C. Prasad et al., Low-density lipoprotein receptor binding determinants switch from apolipoprotein E to apolipoprotein B during conversion of hypertriglyceridemic very-low-density lipoprotein to low-density lipoproteins, J Biol Chem, vol.259, issue.23, pp.14728-14763, 1984.

K. I. Stanford, J. R. Bishop, E. M. Foley, J. C. Gonzales, I. R. Niesman et al., Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice, J Clin Invest, vol.119, issue.11, pp.3236-3281, 2009.

I. V. Fuki, K. M. Kuhn, I. R. Lomazov, V. L. Rothman, G. P. Tuszynski et al., The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro, J Clin Invest, vol.100, issue.6, pp.1611-1633, 1997.

I. V. Fuki, M. E. Meyer, and K. J. Williams, Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts, Biochem J, vol.351, pp.607-619, 2000.

J. M. Macarthur, J. R. Bishop, K. I. Stanford, L. Wang, A. Bensadoun et al., Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members, J Clin Invest, vol.117, issue.1, pp.153-64, 2007.

K. I. Stanford, L. Wang, J. Castagnola, D. Song, J. R. Bishop et al., , vol.2

, O-sulfotransferase is required for triglyceride-rich lipoprotein clearance, J Biol Chem, vol.285, issue.1, pp.286-94, 2010.

H. L. Mooij, B. Moens, S. J. Gordts, P. Stanford, K. I. Foley et al., Ext1 heterozygosity causes a modest effect on postprandial lipid clearance in humans, J Lipid Res, vol.56, issue.3, pp.665-73, 2015.

H. C. Hassing, H. Mooij, S. Guo, B. P. Monia, K. Chen et al., Inhibition of hepatic sulfatase-2 in vivo: a novel strategy to correct diabetic dyslipidemia, 2012.

Y. Deng, E. M. Foley, J. C. Gonzales, P. L. Gordts, Y. Li et al., Shedding of syndecan-1 from human hepatocytes alters very low density lipoprotein clearance. Hepatol Baltim Md, 2012.

K. Chen and K. J. Williams, Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor, J Biol Chem, vol.288, issue.20, pp.13988-99, 2013.

P. Gordts, R. Nock, N. Son, B. Ramms, I. Lew et al., ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors, J Clin Invest, vol.126, issue.8, pp.2855-66, 201601.

S. Ishibashi, S. Perrey, Z. Chen, . Osuga-j-i, M. Shimada et al., Role of the low density lipoprotein (LDL) receptor pathway in the metabolism of chylomicron remnants. A quantitative study in knockout mice lacking the LDL receptor, apolipoprotein E, or both, J Biol Chem, 1996.

, Sep, vol.13, issue.37, pp.22422-22429

B. C. Mortimer, D. J. Beveridge, I. J. Martins, and T. G. Redgrave, Intracellular localization and metabolism of chylomicron remnants in the livers of low density lipoprotein receptor-deficient mice and apoE-deficient mice. Evidence for slow metabolism via an alternative apoE-dependent pathway, J Biol Chem, vol.270, issue.48, pp.28767-76, 1995.

J. Herz, S. Q. Qiu, A. Oesterle, H. V. Desilva, S. Shafi et al., Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor, Proc Natl Acad Sci, vol.92, issue.10, pp.4611-4616, 1995.

E. Windler, J. Greeve, H. Robenek, F. Rinninger, H. Greten et al., Differences in the mechanisms of uptake and endocytosis of small and large chylomicron remnants by rat liver

M. Hepatol-baltim, , vol.24, pp.344-51, 1996.

M. F. Linton, H. Tao, E. F. Linton, and P. G. Yancey, SR-BI: A Multifunctional Receptor in Cholesterol Homeostasis and Atherosclerosis, Trends Endocrinol Metab TEM, vol.28, issue.6, pp.461-72, 2017.

R. Out, J. K. Kruijt, P. Rensen, R. B. Hildebrand, P. De-vos et al., Scavenger receptor BI plays a role in facilitating chylomicron metabolism, J Biol Chem, vol.279, issue.18, pp.18401-18407, 2004.

M. Van-eck, M. Hoekstra, R. Out, I. Bos, J. K. Kruijt et al., Scavenger receptor BI facilitates the metabolism of VLDL lipoproteins in vivo, J Lipid Res, vol.49, issue.1, pp.136-182, 2008.

N. R. Webb, M. C. De-beer, F. C. De-beer, and D. R. Van-der-westhuyzen, ApoB-containing lipoproteins in apoE-deficient mice are not metabolized by the class B scavenger receptor BI, J Lipid Res, vol.45, issue.2, pp.272-80, 2004.

D. T. Au, D. K. Strickland, and S. C. Muratoglu, The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling, J Diabetes Res, p.8356537, 2017.

A. Dato, V. Chiabrando, and G. A. , The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation, Int J Mol Sci, vol.19, issue.6, 2018.

M. M. Hussain, F. R. Maxfield, J. Más-oliva, I. Tabas, Z. S. Ji et al., Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2macroglobulin receptor, J Biol Chem, vol.266, issue.21, pp.13936-13976, 1991.

A. Laatsch, M. Merkel, P. J. Talmud, T. Grewal, U. Beisiegel et al., Insulin stimulates hepatic low density lipoprotein receptor-related protein 1 (LRP1) to increase postprandial lipoprotein clearance, Atherosclerosis, vol.204, issue.1, pp.105-116, 2009.

A. Rohlmann, M. Gotthardt, R. E. Hammer, and J. Herz, Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants, J Clin Invest, vol.101, issue.3, pp.689-95, 1998.

S. Santamarina-fojo, H. González-navarro, L. Freeman, E. Wagner, and Z. Nong, Hepatic lipase, lipoprotein metabolism, and atherogenesis, Arterioscler Thromb Vasc Biol, 2004.

S. E. Karakas, S. Khilnani, C. Divens, R. Almario, and K. L. Jen, Changes in plasma lipoproteins during lipolysis in vivo in the hypertriglyceridemic state, Am J Clin Nutr, vol.59, issue.2, pp.378-83, 1994.

I. Ramasamy, Recent advances in physiological lipoprotein metabolism, Clin Chem Lab Med, vol.52, issue.12, pp.1695-727, 2014.

S. Q. Xiang, K. Cianflone, D. Kalant, and A. D. Sniderman, Differential binding of triglyceride-rich lipoproteins to lipoprotein lipase, J Lipid Res, vol.40, issue.9, pp.1655-63, 1999.

P. Moulin, R. Dufour, M. Averna, M. Arca, A. B. Cefalù et al., Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an "FCS score, Atherosclerosis, vol.275, pp.265-72, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02003567

E. Stroes, P. Moulin, K. G. Parhofer, V. Rebours, J. Löhr et al., Diagnostic algorithm for familial chylomicronemia syndrome, Atheroscler Suppl, vol.23, pp.1-7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01848146

R. A. Hegele, A. J. Berberich, M. R. Ban, J. Wang, A. Digenio et al., Clinical and biochemical features of different molecular etiologies of familial chylomicronemia, J Clin Lipidol

G. Désaméricq, E. Van-ganse, M. Schwalm, A. Bourke, and P. Moulin, Severe hypertriglyceridaemia in patients treated with lipid-modifying agents, Diabetes Metab, 2012.

J. D. Brunzell, Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome. In: In The metabolic and molecular bases of inherited disease, p.8

C. Rabacchi, L. Pisciotta, A. B. Cefalù, D. Noto, R. Fresa et al., Spectrum of mutations of the LPL gene identified in Italy in patients with severe hypertriglyceridemia, Atherosclerosis, issue.1, pp.79-86, 2015.

W. V. Brown, D. Gaudet, I. Goldberg, and R. Hegele, Roundtable on etiology of familial chylomicronemia syndrome, J Clin Lipidol, vol.12, issue.1, pp.5-11, 2018.

A. Chait, S. Subramanian, J. Brunzell, G. Chrousos, K. Dungan et al., Genetic Disorders of Triglyceride Metabolism

J. D. Brunzell and H. G. Schrott, The interaction of familial and secondary causes of hypertriglyceridemia: role in pancreatitis, J Clin Lipidol, vol.6, issue.5, pp.409-421, 2012.

C. T. Johansen and R. A. Hegele, Allelic and phenotypic spectrum of plasma triglycerides

, Biochim Biophys Acta, issue.5, pp.833-875, 1821.

D. Castro-orós, I. Cenarro, A. Tejedor, M. T. Baila-rueda, L. et al.,

I. Moneo, Common genetic variants contribute to primary hypertriglyceridemia without differences between familial combined hyperlipidemia and isolated hypertriglyceridemia, Circ Cardiovasc Genet, vol.7, issue.6, pp.814-835, 2014.

L. Berglund, J. D. Brunzell, A. C. Goldberg, I. J. Goldberg, F. Sacks et al., Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline, J Clin Endocrinol Metab, vol.97, issue.9, pp.2969-89, 2012.

J. D. Brunzell, N. E. Miller, P. Alaupovic, S. Hilaire, R. J. Wang et al., Familial chylomicronemia due to a circulating inhibitor of lipoprotein lipase activity, J Lipid Res, 1983.

A. P. Ashraf, T. Beukelman, V. Pruneta-deloche, D. R. Kelly, and A. Garg, Type 1 hyperlipoproteinemia and recurrent acute pancreatitis due to lipoprotein lipase antibody in a young girl with Sjogren's syndrome, J Clin Endocrinol Metab, vol.96, issue.11, pp.3302-3309, 2011.

C. Rodrigues, E. Bonfá, and J. F. Carvalho, Review on anti-lipoprotein lipase antibodies, Clin Chim Acta, vol.411, pp.1603-1608, 2010.

M. Moret, V. Pruneta-deloche, A. Sassolas, C. Marcais, and P. Moulin, Prevalence and function of anti-lipoprotein lipase auto-antibodies in type V hyperchylomicronemia, Atherosclerosis, 2010.

S. Béliard, D. Filippo, M. Kaplanski, G. Valéro, and R. , Highly efficacious, long-term, triglyceride lowering with rituximab therapy in a patient with autoimmune hypertriglyceridemia, J Clin Lipidol, vol.12, issue.4, pp.883-890, 2018.

H. Yamamoto, M. Tanaka, S. Yoshiga, T. Funahashi, I. Shimomura et al., Autoimmune severe hypertriglyceridemia induced by anti-apolipoprotein C-II antibody, J Clin Endocrinol Metab, vol.99, issue.5, pp.1525-1555, 2014.

A. P. Beigneux, K. Miyashita, M. Ploug, D. J. Blom, A. M. Linton et al., Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia, N Engl J Med, vol.376, issue.17, pp.1647-58, 201727.
URL : https://hal.archives-ouvertes.fr/hal-01608620

X. Hu, G. M. Dallinga-thie, G. K. Hovingh, S. Y. Chang, N. P. Sandoval et al., GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia, J Clin Lipidol, 2017.

J. M. Martín-campos, J. Julve, R. Roig, S. Martínez, T. L. Errico et al.,

, Molecular analysis of chylomicronemia in a clinical laboratory setting: diagnosis of 13 cases of lipoprotein lipase deficiency, Clin Chim Acta Int J Clin Chem, vol.429, pp.61-69, 2014.

M. J. Ariza, J. Rioja, D. Ibarretxe, A. Camacho, J. L. Díaz-díaz et al., Molecular Basis of the Familial Chylomicronemia Syndrome in Patients from the National Dyslipidemia Registry of the Spanish Atherosclerosis Society, J Clin Lipidol, 2018.

J. S. Dron, J. Wang, J. R. Menard, H. Cao, A. D. Mcintyre et al., Genetics of Hypertriglyceridemia: an Assortment of Polygenic Effects, Atheroscler Suppl, vol.32, p.27, 2018.

G. F. Lewis, C. Xiao, and R. A. Hegele, Hypertriglyceridemia in the genomic era: a new paradigm

, Endocr Rev, vol.36, issue.1, pp.131-178, 2015.

J. Wang, H. Cao, M. R. Ban, B. A. Kennedy, S. Zhu et al., Resequencing genomic DNA of patients with severe hypertriglyceridemia (MIM 144650), Arterioscler Thromb Vasc Biol, 2007.

I. Lamiquiz-moneo, C. Blanco-torrecilla, A. M. Bea, R. Mateo-gallego, S. Pérez-calahorra et al., Frequency of rare mutations and common genetic variations in severe hypertriglyceridemia in the general population of Spain, Lipids Health Dis, vol.15, p.82, 2016.

D. Basu, J. Manjur, and J. W. , Determination of lipoprotein lipase activity using a novel fluorescent lipase assay, J Lipid Res, vol.52, issue.4, pp.826-858, 2011.

S. Enerbäck, B. G. Ohlsson, L. Samuelsson, and G. Bjursell, Characterization of the human lipoprotein lipase (LPL) promoter: evidence of two cis-regulatory regions, LP-alpha and LP-beta, of importance for the differentiation-linked induction of the LPL gene during adipogenesis, Mol Cell Biol, vol.12, issue.10, pp.4622-4655, 1992.

J. Boberg, L. A. Carlson, O. Determination, and . Plasma, Clin Chim Acta Int J Clin Chem, vol.10, pp.420-427, 1964.

R. H. Eckel, I. J. Goldberg, L. Steiner, T. J. Yost, and J. R. Paterniti, Plasma lipolytic activity. Relationship to postheparin lipolytic activity and evidence for metabolic regulation, Diabetes, vol.37, issue.5, pp.610-615, 1988.

J. D. Brunzell, A. Chait, E. A. Nikkilä, C. Ehnholm, J. K. Huttunen et al., Heterogeneity of primary lipoprotein lipase deficiency, Metabolism, vol.29, issue.7, pp.624-633, 1980.

D. S. Glaser, T. J. Yost, and R. H. Eckel, Preheparin lipoprotein lipolytic activities: relationship to plasma lipoproteins and postheparin lipolytic activities, J Lipid Res, vol.33, issue.2, pp.209-223, 1992.

V. Pruneta, D. Autran, G. Ponsin, C. Marcais, L. Duvillard et al., Ex vivo measurement of lipoprotein lipase-dependent very low density lipoprotein (VLDL)-triglyceride hydrolysis in human VLDL: an alternative to the postheparin assay of lipoprotein lipase activity?, J Clin Endocrinol Metab, vol.86, issue.2, pp.797-803, 2001.

Y. Biale and E. Shafrir, Lipolytic activity toward tri-and monoglycerides in postheparin plasma, Clin Chim Acta Int J Clin Chem, vol.23, issue.3, pp.413-422, 1969.

P. Nilsson-ehle, H. Tornqvist, and P. Belfrage, Rapid determination of lipoprotein lipase activity in human adipose tissue, Clin Chim Acta, vol.42, issue.2, pp.383-90, 1972.

A. D. Henderson, W. Richmond, and R. S. Elkeles, Hepatic and lipoprotein lipases selectively assayed in postheparin plasma, Clin Chem, vol.39, issue.2, pp.218-241, 1993.

M. Panteghini, R. Bonora, and F. Pagani, Measurement of pancreatic lipase activity in serum by a kinetic colorimetric assay using a new chromogenic substrate, Ann Clin Biochem, 2001.

I. Wicher, W. Sattler, A. Ibovnik, G. M. Kostner, R. Zechner et al., Quantification of lipoprotein lipase (LPL) by dissociation-enhanced lanthanide fluorescence immunoassay. Comparison of immunoreactivity of LPL mass and enzyme activity of LPL, J Immunol Methods, vol.192, issue.1-2, pp.1-11, 1996.

H. S. Hendrickson, Fluorescence-based assays of lipases, phospholipases, and other lipolytic enzymes, Anal Biochem, vol.219, issue.1, pp.1-8, 1994.

I. J. Goldberg, J. J. Kandel, C. B. Blum, and H. N. Ginsberg, Association of plasma lipoproteins with postheparin lipase activities, J Clin Invest, vol.78, issue.6, pp.1523-1531, 1986.

A. Zambon, I. Schmidt, U. Beisiegel, and J. D. Brunzell, Dimeric lipoprotein lipase is bound to triglyceride-rich plasma lipoproteins, J Lipid Res, vol.37, issue.11, pp.2394-404, 1996.

P. Carrero, D. Gómez-coronado, G. Olivecrona, and M. A. Lasunción, Binding of lipoprotein lipase to apolipoprotein B-containing lipoproteins, Biochim Biophys Acta, vol.1299, issue.2, pp.198-206, 1996.

V. Pruneta-deloche, A. Sassolas, G. M. Dallinga-thie, F. Berthezène, G. Ponsin et al., Alteration in lipoprotein lipase activity bound to triglyceride-rich lipoproteins in the postprandial state in type 2 diabetes, J Lipid Res, vol.45, issue.5, pp.859-65, 2004.

J. W. Goers, M. E. Pedersen, P. A. Kern, J. Ong, and M. C. Schotz, An enzyme-linked immunoassay for lipoprotein lipase, Anal Biochem, vol.166, issue.1, pp.27-35, 1987.

I. J. Goldberg, J. R. Paterniti, D. S. France, G. Martinelli, and J. A. Cornicelli, Production and use of an inhibitory monoclonal antibody to human lipoprotein lipase, Biochim Biophys Acta, vol.878, issue.2, pp.168-76, 1986.

S. P. Babirak, P. H. Iverius, W. Y. Fujimoto, and J. D. Brunzell, Detection and characterization of the heterozygote state for lipoprotein lipase deficiency. Arterioscler Dallas Tex, vol.9, pp.326-360, 1989.

Y. Ikeda, A. Takagi, Y. Ohkaru, K. Nogi, T. Iwanaga et al., A sandwich-enzyme immunoassay for the quantification of lipoprotein lipase and hepatic triglyceride lipase in human postheparin plasma using monoclonal antibodies to the corresponding enzymes, J Lipid Res, vol.31, issue.10, pp.1911-1935, 1990.

M. Kawamura, T. Gotoda, N. Mori, H. Shimano, K. Kozaki et al., Establishment of enzyme-linked immunosorbent assays for lipoprotein lipase with newly developed antibodies, J Lipid Res, vol.35, issue.9, pp.1688-97, 1994.

H. Kimura, Y. Ohkaru, K. Katoh, H. Ishii, N. Sunahara et al., Development and evaluation of a direct sandwich enzyme-linked immunosorbent assay for the quantification of lipoprotein lipase mass in human plasma, Clin Biochem, vol.32, issue.1, pp.15-23, 1999.

J. H. Auwerx, S. P. Babirak, W. Y. Fujimoto, P. H. Iverius, and J. D. Brunzell, Defective enzyme protein in lipoprotein lipase deficiency, Eur J Clin Invest, vol.19, issue.5, pp.433-440, 1989.

P. A. Kern, R. A. Martin, J. Carty, I. J. Goldberg, and J. M. Ong, Identification of lipoprotein lipase immunoreactive protein in pre-and postheparin plasma from normal subjects and patients with type I hyperlipoproteinemia, J Lipid Res, vol.31, issue.1, pp.17-26, 1990.

V. Pruneta-deloche, C. Marçais, L. Perrot, A. Sassolas, M. Delay et al., Combination of circulating antilipoprotein lipase (Anti-LPL) antibody and heterozygous S172 fsX179 mutation of LPL gene leading to chronic hyperchylomicronemia, J Clin Endocrinol Metab, 2005.

P. Tilly, C. Sass, M. Vincent-viry, D. Aguillon, G. Siest et al., Biological and genetic determinants of serum apoC-III concentration: reference limits from the Stanislas Cohort, J Lipid Res, vol.44, issue.2, pp.430-436, 2003.

A. Nicolay, E. Lombard, E. Arlotto, V. Saunier, L. Lairon et al., Evaluation of new apolipoprotein C-II and apolipoprotein C-III automatized immunoturbidimetric kits, Clin Biochem, vol.39, issue.9, pp.935-976, 2006.

L. A. Carlson and D. Ballantyne, Changing relative proportions of apolipoproteins CII and CIII of very low density lipoproteins in hypertriglyceridaemia, Atherosclerosis, vol.23, issue.3, pp.563-571, 1976.

N. A. Le, J. C. Gibson, and H. N. Ginsberg, Independent regulation of plasma apolipoprotein C-II and C-III concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins, J Lipid Res, vol.29, issue.5, pp.669-77, 1988.

F. Yin, M. H. Doolittle, and M. Péterfy, A quantitative assay measuring the function of lipase maturation factor 1, J Lipid Res, vol.50, issue.11, pp.2265-2274, 2009.

K. Miyashita, I. Fukamachi, M. Nagao, T. Ishida, J. Kobayashi et al., An enzymelinked immunosorbent assay for measuring GPIHBP1 levels in human plasma or serum, J Clin Lipidol, vol.12, issue.1, pp.203-210, 2018.

N. Mehta, A. Qamar, L. Qu, A. N. Qasim, N. N. Mehta et al., Differential association of plasma angiopoietin-like proteins 3 and 4 with lipid and metabolic traits, Arterioscler Thromb Vasc Biol, vol.34, issue.5, pp.1057-63, 2014.

M. Ishihara, T. Kujiraoka, T. Iwasaki, M. Nagano, M. Takano et al., A sandwich enzyme-linked immunosorbent assay for human plasma apolipoprotein A-V concentration, J Lipid Res, vol.46, issue.9, pp.2015-2037, 2005.

A. J. Berberich and R. A. Hegele, The complex molecular genetics of familial hypercholesterolaemia, Nat Rev Cardiol, 2018.

J. C. Defesche, S. S. Gidding, M. Harada-shiba, R. A. Hegele, R. D. Santos et al., Familial hypercholesterolaemia. Nat Rev Dis Primer, vol.3, p.17093, 2017.

M. A. Umans-eckenhausen, J. C. Defesche, E. J. Sijbrands, R. L. Scheerder, and J. J. Kastelein, Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands, Lancet Lond Engl, vol.357, issue.9251, pp.165-173, 2001.

, Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group, BMJ, vol.303, issue.6807, pp.893-899, 1991.

M. Farnier, E. Bruckert, C. Boileau, and M. Krempf, Nouvelle société française d'athérosclérose. [Diagnostic and treatment of familial hypercholesterolemia (FH) in adult: guidelines from the New French

, Presse Med, vol.42, issue.6, pp.930-50, 2013.

B. G. Nordestgaard and M. Benn, Genetic testing for familial hypercholesterolaemia is essential in individuals with high LDL cholesterol: who does it in the world?, Eur Heart J, vol.38, issue.20, pp.1580-1583, 2017.

M. Benn, G. F. Watts, A. Tybjaerg-hansen, and B. G. Nordestgaard, Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication, J Clin Endocrinol Metab, vol.97, issue.11, pp.3956-64, 2012.

G. F. Watts, J. E. Shaw, J. Pang, D. J. Magliano, G. Jennings et al., Prevalence and treatment of familial hypercholesterolaemia in Australian communities, Int J Cardiol, vol.185, pp.69-71, 2015.

Z. Shi, B. Yuan, D. Zhao, A. W. Taylor, J. Lin et al., Familial hypercholesterolemia in China: prevalence and evidence of underdetection and undertreatment in a community population, Int J Cardiol, vol.174, issue.3, pp.834-840, 2014.

S. Leigh, M. Futema, R. Whittall, A. Taylor-beadling, M. Williams et al., The UCL low-density lipoprotein receptor gene variant database: pathogenicity update, J Med Genet, vol.54, issue.4, pp.217-240, 2017.

J. Wang, J. S. Dron, M. R. Ban, J. F. Robinson, A. D. Mcintyre et al., Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained Clinically, Arterioscler Thromb Vasc Biol, vol.36, issue.12, pp.2439-2484, 2016.

M. Marduel, A. Carrié, A. Sassolas, M. Devillers, V. Carreau et al., Molecular spectrum of autosomal dominant hypercholesterolemia in France, Hum Mutat, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00573066

M. Abifadel, M. Varret, J. Rabès, D. Allard, K. Ouguerram et al., Mutations in PCSK9 cause autosomal dominant hypercholesterolemia, Nat Genet, vol.34, issue.2, pp.154-160, 2003.

M. Marduel, K. Ouguerram, V. Serre, D. Bonnefont-rousselot, A. Marques-pinheiro et al.,

K. Berge, Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation, Hum Mutat, vol.34, issue.1, pp.83-90, 2013.

S. W. Fouchier, G. M. Dallinga-thie, J. Meijers, N. Zelcer, J. Kastelein et al., Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia, Circ Res

, Aug, vol.29, issue.6, pp.552-557

R. Fellin, M. Arca, G. Zuliani, S. Calandra, and S. Bertolini, The history of Autosomal Recessive Hypercholesterolemia (ARH), Gene, vol.555, issue.1, pp.23-32, 2015.

J. Rios, E. Stein, J. Shendure, H. H. Hobbs, and J. C. Cohen, Identification by whole-genome resequencing of gene defect responsible for severe hypercholesterolemia, Hum Mol Genet, 2010.

, Nov, vol.15, issue.22, pp.4313-4321

N. O. Stitziel, S. W. Fouchier, B. Sjouke, G. M. Peloso, A. M. Moscoso et al., Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia, Arterioscler Thromb Vasc Biol, 2013.

P. Tarugi, M. Averna, D. Leo, E. Cefalù, A. B. Noto et al., Molecular diagnosis of hypobetalipoproteinemia: an ENID review, Atherosclerosis, vol.195, issue.2, pp.19-27, 2007.

A. J. Whitfield, P. Barrett, F. M. Van-bockxmeer, and J. R. Burnett, Lipid disorders and mutations in the APOB gene, Clin Chem, vol.50, issue.10, pp.1725-1757, 2004.

A. J. Hooper, F. M. Van-bockxmeer, and J. R. Burnett, Monogenic hypocholesterolaemic lipid disorders and apolipoprotein B metabolism, Crit Rev Clin Lab Sci, vol.42, issue.5-6, pp.515-560, 2005.

P. Tarugi and M. Averna, Hypobetalipoproteinemia: genetics, biochemistry, and clinical spectrum, Adv Clin Chem, vol.54, pp.81-107, 2011.

N. Elias, B. W. Patterson, and G. Schonfeld, Decreased production rates of VLDL triglycerides and ApoB-100 in subjects heterozygous for familial hypobetalipoproteinemia, Arterioscler Thromb Vasc Biol, vol.19, issue.11, pp.2714-2735, 1999.

A. J. Hooper and J. R. Burnett, Update on Primary Hypobetalipoproteinemia, Curr Atheroscler Rep

. Jul, , vol.16, 2018.

D. Bonnefont-rousselot, B. Condat, A. Sassolas, S. Chebel, R. Bittar et al.,

, Cryptogenic cirrhosis in a patient with familial hypocholesterolemia due to a new truncated form of apolipoprotein B, Eur J Gastroenterol Hepatol, vol.21, issue.1, pp.104-112, 2009.

G. Schonfeld, B. W. Patterson, D. A. Yablonskiy, T. Tanoli, M. Averna et al., Fatty liver in familial hypobetalipoproteinemia: triglyceride assembly into VLDL particles is affected by the extent of hepatic steatosis, J Lipid Res, vol.44, issue.3, pp.470-478, 2003.

D. Filippo, M. Moulin, P. Roy, P. Samson-bouma, M. E. Collardeau-frachon et al., Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia, J Hepatol, vol.61, issue.4, pp.891-902, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859387

I. Minicocci, S. Santini, V. Cantisani, N. Stitziel, S. Kathiresan et al., Clinical characteristics and plasma lipids in subjects with familial combined hypolipidemia: a pooled analysis, J Lipid Res, vol.54, issue.12, pp.3481-90, 2013.

J. Cohen, A. Pertsemlidis, I. K. Kotowski, R. Graham, C. K. Garcia et al., Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9, Nat Genet, vol.37, issue.2, pp.161-166, 2005.

J. C. Cohen, E. Boerwinkle, T. H. Mosley, and H. H. Hobbs, Sequence variations in PCSK9, low LDL, and protection against coronary heart disease, N Engl J Med, vol.354, issue.12, pp.1264-72, 2006.

Z. Zhao, Y. Tuakli-wosornu, T. A. Lagace, L. Kinch, N. V. Grishin et al., Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote, Am J Hum Genet, vol.79, issue.3, pp.514-537, 2006.

F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proc Natl Acad Sci, vol.74, issue.12, pp.5463-5470, 1977.

L. M. Smith, J. Z. Sanders, R. J. Kaiser, P. Hughes, C. Dodd et al., Fluorescence detection in automated DNA sequence analysis, Nature, vol.321, issue.6071, pp.674-683, 1986.

M. Okubo, A. Horinishi, M. Saito, T. Ebara, Y. Endo et al., A novel complex deletioninsertion mutation mediated by Alu repetitive elements leads to lipoprotein lipase deficiency

, Mol Genet Metab, vol.92, issue.3, pp.229-262, 2007.

C. L. Holcomb, B. Höglund, M. W. Anderson, L. A. Blake, I. Böhme et al., A multi-site study using high-resolution HLA genotyping by next generation sequencing, Tissue Antigens, vol.77, issue.3, pp.206-223, 2011.

M. L. Metzker, Sequencing technologies-the next generation, Nat Rev Genet, 2010.

H. Buermans and J. T. Den-dunnen, Next generation sequencing technology: Advances and applications, Biochim Biophys Acta, issue.10, pp.1932-1973, 1842.

E. L. Van-dijk, H. Auger, Y. Jaszczyszyn, and C. Thermes, Ten years of next-generation sequencing technology, Trends Genet TIG, vol.30, issue.9, pp.418-444, 2014.

M. Nakano, J. Komatsu, S. Matsuura, K. Takashima, S. Katsura et al., Single-molecule PCR using water-in-oil emulsion, J Biotechnol, vol.102, issue.2, pp.117-141, 2003.

B. Merriman, I. Torrent, . Team, and J. M. Rothberg, Progress in ion torrent semiconductor chip based sequencing, Electrophoresis, vol.33, issue.23, pp.3397-417, 2012.

D. R. Bentley, S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton et al.,

, Accurate whole human genome sequencing using reversible terminator chemistry, Nature, 2008.

, Nov, vol.6, issue.7218, pp.53-62

J. Guo, N. Xu, Z. Li, S. Zhang, J. Wu et al., Four-color DNA sequencing with 3'-Omodified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides, Proc Natl Acad Sci, vol.105, issue.27, pp.9145-50, 2008.

A. Vetro, D. Godin, I. Lesende, I. Limongelli, G. N. Ranzani et al., Diagnostic application of a capture based NGS test for the concurrent detection of variants in sequence and copy number as well as LOH, Clin Genet, 2017.

J. M. Ellingford, C. Campbell, S. Barton, S. Bhaskar, S. Gupta et al., Validation of copy number variation analysis for next-generation sequencing diagnostics, Eur J Hum Genet EJHG, vol.25, issue.6, pp.719-743, 2017.

M. A. Iacocca, J. Wang, J. S. Dron, J. F. Robinson, A. D. Mcintyre et al., Use of nextgeneration sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia, J Lipid Res, 2017.

J. S. Dron, J. Wang, H. Cao, and R. A. Hegele, Copy-number variation (CNVs) in

, Hypertriglyceridemia Patients. Atheroscler Suppl, vol.32, p.50, 2018.

K. Albers, C. Schlein, K. Wenner, P. Lohse, A. Bartelt et al., Homozygosity for a partial deletion of apoprotein A-V signal peptide results in intracellular missorting of the protein and chylomicronemia in a breast-fed infant, Atherosclerosis, vol.233, issue.1, pp.97-103, 2014.

M. Okubo, M. Ishihara, T. Iwasaki, T. Ebara, Y. Aoyama et al., A novel APOA5 splicing mutation IVS2+1g>a in a Japanese chylomicronemia patient, Atherosclerosis, 2009.

W. S. Yang, D. N. Nevin, L. Iwasaki, R. Peng, B. G. Brown et al., Regulatory mutations in the human lipoprotein lipase gene in patients with familial combined hyperlipidemia and coronary artery disease, J Lipid Res, vol.37, issue.12, pp.2627-2664, 1996.

H. Watanabe, Y. Miyashita, T. Murano, Y. Hiroh, Y. Itoh et al., Preheparin serum lipoprotein lipase mass level: the effects of age, gender, and types of hyperlipidemias

, Atherosclerosis, vol.145, issue.1, pp.45-50, 1999.

I. Coca-prieto, P. Valdivielso, G. Olivecrona, M. J. Ariza, J. Rioja et al.,

, Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis, BMC Gastroenterol, vol.9, p.46, 2009.

J. Kobayashi, T. Maruyama, H. Watanabe, A. Kudoh, S. Tateishi et al., Gender differences in the effect of type 2 diabetes on serum lipids, pre-heparin plasma lipoprotein lipase mass and other metabolic parameters in Japanese population, Diabetes Res Clin Pract, 2003.

J. Kobayashi, A. Nohara, M. Kawashiri, A. Inazu, J. Koizumi et al., Serum lipoprotein lipase mass: clinical significance of its measurement, Clin Chim Acta Int J Clin Chem, vol.378, issue.1-2, pp.7-12, 2007.

Y. Miyashita, K. Shirai, Y. Itoh, H. Sasaki, M. Totsuka et al., Low lipoprotein lipase mass in preheparin serum of type 2 diabetes mellitus patients and its recovery with insulin therapy, Diabetes Res Clin Pract, vol.56, issue.3, pp.181-188, 2002.

A. Saiki, T. Oyama, K. Endo, M. Ebisuno, M. Ohira et al., Preheparin serum lipoprotein lipase mass might be a biomarker of metabolic syndrome, Diabetes Res Clin Pract

T. Hirano, F. Nishioka, and T. Murakami, Measurement of the serum lipoprotein lipase concentration is useful for studying triglyceride metabolism: Comparison with postheparin plasma, Metabolism, vol.53, issue.4, pp.526-557, 2004.

J. Kobayashi, H. Hashimoto, I. Fukamachi, J. Tashiro, K. Shirai et al., Lipoprotein lipase mass and activity in severe hypertriglyceridemia, Clin Chim Acta, vol.216, issue.12, pp.113-136, 1993.

J. D. Brunzell, D. Porte, and E. L. Bierman, Reversible abnormalities in postheparin lipolytic activity during the late phase of release in diabetes mellitus (postheparin lipolytic activity in diabetes), Metabolism, vol.24, issue.10, pp.1123-1160, 1975.

W. Dijk and S. Kersten, Regulation of lipoprotein lipase by Angptl4, Trends Endocrinol Metab TEM, vol.25, issue.3, pp.146-55, 2014.

B. Näsström, G. Olivecrona, T. Olivecrona, and B. G. Stegmayr, Lipoprotein lipase during continuous heparin infusion: tissue stores become partially depleted, J Lab Clin Med, 2001.

J. K. Huttunen, C. Ehnholm, P. K. Kinnunen, and E. A. Nikkilä, An immunochemical method for the selective measurement of two triglyceride lipases in human postheparin plasma, Clin Chim Acta Int J Clin Chem, vol.63, issue.3, pp.335-382, 1975.

P. Nilsson-ehle and R. Eckman, Rapid, simple and specific assays for lipoprotein lipase and hepatic lipase, Artery, vol.3, pp.194-209, 1977.

H. Greten, R. Degrella, G. Klose, W. Rascher, J. L. De-gennes et al., Measurement of two plasma triglyceride lipases by an immunochemical method: studies in patients with hypertriglyceridemia, J Lipid Res, vol.17, issue.3, pp.203-213, 1976.

M. F. Reardon, H. Sakai, and G. Steiner, Roles of lipoprotein lipase and hepatic triglyceride lipase in the catabolism in vivo of triglyceride-rich lipoproteins, 1982.

J. St-amand, S. Moorjanit, P. J. Lupien, D. Prud'homme, and J. P. Després, The relation of plasma triglyceride, apolipoprotein B, and high-density lipoprotein cholesterol to postheparin lipoprotein lipase activity is dependent on apolipoprotien E polymorphism, 1996.

R. M. Fisher, S. W. Coppack, S. M. Humphreys, G. F. Gibbons, and K. N. Frayn, Human triacylglycerolrich lipoprotein subfractions as substrates for lipoprotein lipase, Clin Chim Acta Int J Clin Chem

, Apr, vol.30, issue.1, pp.7-17

H. H. Van-barlingen, L. A. Kock, F. H. De-man, D. W. Erkelens, and T. W. De-bruin, In vitro lipolysis of human VLDL: effect of different VLDL compositions in normolipidemia, familial combined hyperlipidemia and familial hypertriglyceridemia, Atherosclerosis, vol.121, issue.1, pp.75-84, 1996.

H. Li, P. Dhanasekaran, E. T. Alexander, D. J. Rader, M. C. Phillips et al., Molecular mechanisms responsible for the differential effects of apoE3 and apoE4 on plasma lipoproteincholesterol levels, Arterioscler Thromb Vasc Biol, vol.33, issue.4, pp.687-93, 2013.

S. Farhan, J. Wang, J. F. Robinson, A. N. Prasad, C. A. Rupar et al., Old gene, new phenotype: mutations in heparan sulfate synthesis enzyme, EXT2 leads to seizure and developmental disorder, no exostoses, J Med Genet, vol.52, issue.10, pp.666-75, 2015.

W. Wuyts and W. Van-hul, Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes, Hum Mutat, vol.15, issue.3, pp.220-227, 2000.

U. Saxena, M. G. Klein, and I. J. Goldberg, Transport of lipoprotein lipase across endothelial cells

, Proc Natl Acad Sci U S A, vol.88, issue.6, pp.2254-2262, 1991.

O. Chevreuil, M. Hultin, P. Ostergaard, and T. Olivecrona, Depletion of lipoprotein lipase after heparin administration, Arterioscler Thromb J Vasc Biol Am Heart Assoc, 1993.

O. Chevreuil, M. Hultin, P. Olivecrona, and T. , Heparin-decasaccharides impair the catabolism of chylomicrons, Biochem J, vol.320, issue.2, pp.437-481, 1996.

E. Persson, J. Nordenström, and E. Vinnars, Plasma clearance of fat emulsion during continuous heparin infusion, Acta Anaesthesiol Scand, vol.31, issue.3, pp.189-92, 1987.

A. Tikka, J. Metso, and M. Jauhiainen, ANGPTL3 serum concentration and rare genetic variants in Finnish population, Scand J Clin Lab Invest, vol.77, issue.8, pp.601-610, 2017.

D. Evans, F. U. Beil, and J. Aberle, Resequencing the untranslated regions of the lipoprotein

M. O. Goodarzi, H. Wong, M. J. Quiñones, K. D. Taylor, X. Guo et al., The 3' untranslated region of the lipoprotein lipase gene: haplotype structure and association with post-heparin plasma lipase activity, J Clin Endocrinol Metab, vol.90, issue.8, pp.4816-4839, 2005.

T. Chajek-shaul, G. Bengtsson-olivecrona, J. Peterson, and T. Olivecrona, Metabolic fate of rat heart endothelial lipoprotein lipase, Am J Physiol, vol.255, issue.3, pp.247-254, 1988.

G. J. Bagby, Heparin-independent release of lipoprotein lipase activity from perfused rat hearts, Biochim Biophys Acta, vol.753, issue.1, pp.47-52, 1983.
DOI : 10.1016/0005-2760(83)90096-6

T. Chajek-shaul, G. Friedman, E. Ziv, H. Bar-on, and G. Bengtsson-olivecrona, Fate of lipoprotein lipase taken up by the rat liver. Evidence for a conformational change with loss of catalytic activity, Biochim Biophys Acta, vol.963, issue.2, pp.183-91, 1988.

S. Vilaró, M. Llobera, G. Bengtsson-olivecrona, and T. Olivecrona, Lipoprotein lipase uptake by the liver: localization, turnover, and metabolic role, Am J Physiol, vol.254, issue.5, pp.711-722, 1988.

L. Neuger, S. Vilaró, C. Lopez-iglesias, J. Gupta, T. Olivecrona et al., Effects of heparin on the uptake of lipoprotein lipase in rat liver, BMC Physiol, vol.4, issue.1, p.13, 2004.

S. Bertolini, L. Pisciotta, T. Fasano, C. Rabacchi, and C. S. , The study of familial hypercholesterolemia in Italy: A narrative review, Atheroscler Suppl, vol.29, pp.1-10, 2017.

C. E. Jannes, R. D. Santos, . De-souza, P. R. Silva, L. Turolla et al.,

, Familial hypercholesterolemia in Brazil: cascade screening program, clinical and genetic aspects

, Atherosclerosis, vol.238, issue.1, pp.101-108, 2015.

A. Taylor, B. Martin, D. Wang, K. Patel, S. E. Humphries et al., Multiplex ligationdependent probe amplification analysis to screen for deletions and duplications of the LDLR gene in patients with familial hypercholesterolaemia, Clin Genet, vol.76, issue.1, pp.69-75, 2009.

A. J. Hooper, L. T. Nguyen, J. R. Burnett, T. R. Bates, D. A. Bell et al., Genetic analysis of familial hypercholesterolaemia in Western Australia, Atherosclerosis, vol.224, issue.2, pp.430-434, 2012.

M. A. Iacocca and R. A. Hegele, Role of DNA copy number variation in dyslipidemias, Curr Opin Lipidol, vol.29, issue.2, pp.125-157, 2018.

N. Patni, J. Brothers, C. Xing, and A. Garg, Type 1 hyperlipoproteinemia in a child with large homozygous deletion encompassing GPIHBP1, J Clin Lipidol, vol.10, issue.4, pp.1035-1039, 2016.
DOI : 10.1016/j.jacl.2016.04.001

J. Kerkhof, L. C. Schenkel, J. Reilly, S. Mcrobbie, E. Aref-eshghi et al., Clinical Validation of Copy Number Variant Detection from Targeted Next-Generation Sequencing Panels, J Mol Diagn, vol.19, issue.6, pp.905-925, 2017.
DOI : 10.1016/j.jmoldx.2017.07.004

M. Emi, L. L. Wu, M. A. Robertson, R. L. Myers, R. A. Hegele et al., Genotyping and sequence analysis of apolipoprotein E isoforms, Genomics, vol.3, issue.4, pp.373-382, 1988.

H. J. Smeets, J. Poddighe, P. M. Stuyt, A. F. Stalenhoef, H. H. Ropers et al., Identification of apolipoprotein E polymorphism by using synthetic oligonucleotides, J Lipid Res, 1988.

F. K. Welty and . Hypobetalipoproteinemia, Curr Opin Lipidol, 2014.

M. D. Shapiro, L. J. De-groot, G. Chrousos, K. Dungan, K. R. Feingold et al., Rare Genetic Disorders Altering Lipoproteins, 2000.

D. J. Blom, Screening for Dysbetalipoproteinemia by Plasma Cholesterol and Apolipoprotein B Concentrations, Clin Chem, vol.51, issue.5, pp.904-911, 2005.
DOI : 10.1373/clinchem.2004.047001

URL : http://clinchem.aaccjnls.org/content/51/5/904.full.pdf

T. Murase, M. Okubo, and I. Takeuchi, Non-HDL-cholesterol/apolipoprotein B ratio: a useful distinguishing feature in the screening for type III hyperlipoproteinemia, J Clin Lipidol, 2010.

A. Sniderman, A. Tremblay, J. Bergeron, C. Gagné, and P. Couture, Diagnosis of type III hyperlipoproteinemia from plasma total cholesterol, triglyceride, and apolipoprotein B, J Clin Lipidol, vol.1, issue.4, pp.256-63, 2007.
DOI : 10.1016/j.jacl.2007.07.006

N. Peretti, A. Sassolas, C. C. Roy, C. Deslandres, M. Charcosset et al., Guidelines for the diagnosis and management of chylomicron retention disease based on a review of the literature and the experience of two centers, Orphanet J Rare Dis, vol.5, p.24, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00654377

V. Chanavat, A. Janin, and G. Millat, A fast and cost-effective molecular diagnostic tool for genetic diseases involved in sudden cardiac death, Clin Chim Acta Int J Clin Chem, vol.453, pp.80-85, 2016.

F. Ramond, A. Janin, D. Filippo, S. Chanavat, V. Chalabreysse et al.,

, Homozygous PKP2 deletion associated with neonatal left ventricle noncompaction, Clin Genet

J. Rabès, S. Béliard, and A. Carrié, Familial hypercholesterolemia: experience from France

, Curr Opin Lipidol, vol.29, issue.2, pp.65-71, 2018.

S. W. Fouchier, R. R. Sankatsing, J. Peter, S. Castillo, M. Pocovi et al., High frequency of APOB gene mutations causing familial hypobetalipoproteinaemia in patients of Dutch and Spanish descent, J Med Genet, vol.42, issue.4, p.23, 2005.

M. Reddy, I. Iatan, D. Weissglas-volkov, E. Nikkola, B. E. Haas et al., Exome sequencing identifies 2 rare variants for low high-density lipoprotein cholesterol in an extended family, Circ Cardiovasc Genet, vol.5, issue.5, pp.538-584, 2012.

A. B. Cefalù, J. P. Pirruccello, D. Noto, S. Gabriel, V. Valenti et al., A novel APOB mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypocholesterolemia, Arterioscler Thromb Vasc Biol, vol.33, issue.8, pp.2021-2026, 2013.

S. Elbitar, D. Susan-resiga, Y. Ghaleb, E. Khoury, P. Peloso et al., New Sequencing technologies help revealing unexpected mutations in Autosomal Dominant Hypercholesterolemia. Sci Rep, vol.8, p.1943, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01708773

R. Yao, C. Zhang, T. Yu, N. Li, X. Hu et al., Evaluation of three read-depth based CNV detection tools using whole-exome sequencing data, Mol Cytogenet, vol.10, p.30, 2017.

C. T. Johansen, J. B. Dubé, M. N. Loyzer, A. Macdonald, D. E. Carter et al., LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias, J Lipid Res, 2014.

R. C. Green, J. S. Berg, W. W. Grody, S. S. Kalia, B. R. Korf et al., ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing, Genet Med Off J Am Coll Med Genet, vol.15, issue.7, pp.565-74, 2013.

G. Rauh, H. Schuster, J. Fischer, C. Keller, G. Wolfram et al., Identification of a heterozygous compound individual with familial hypercholesterolemia and familial defective apolipoprotein B-100, Klin Wochenschr, vol.69, issue.7, pp.320-324, 1991.

P. Benlian, J. L. De-gennes, F. Dairou, B. Hermelin, I. Ginon et al.,

A. Decampo, K. Schallmoser, H. Schmidt, H. Toplak, and G. M. Kostner, A novel splice-site mutation in intron 7 causes more severe hypercholesterolemia than a combined FH-FDB defect

, Atherosclerosis, vol.157, issue.2, pp.524-529, 2001.

D. C. Rubinsztein, F. J. Raal, H. C. Seftel, G. Pilcher, G. A. Coetzee et al., Characterization of six patients who are double heterozygotes for familial hypercholesterolemia and familial defective apo B-100, Arterioscler Thromb J Vasc Biol, vol.13, issue.7, pp.1076-81, 1993.

E. S. Tai, E. S. Koay, C. E. Seng, T. J. Loh, L. M. Sethi et al., Compound heterozygous familial hypercholesterolemia and familial defective apolipoprotein B-100 produce exaggerated hypercholesterolemia, Clin Chem, vol.47, issue.3, pp.438-481, 2001.

A. Taylor, D. Wang, K. Patel, R. Whittall, G. Wood et al., Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project, Clin Genet, vol.77, issue.6, pp.572-80, 2010.

L. Pisciotta, P. Oliva, C. Cefalù, A. B. Noto, D. Bellocchio et al., Additive effect of mutations in LDLR and PCSK9 genes on the phenotype of familial hypercholesterolemia

, Atherosclerosis, vol.186, issue.2, pp.433-473, 2006.

S. Bertolini, L. Pisciotta, C. Rabacchi, A. B. Cefalù, D. Noto et al., Spectrum of mutations and phenotypic expression in patients with autosomal dominant hypercholesterolemia identified in Italy, Atherosclerosis, vol.227, issue.2, pp.342-350, 2013.

M. Emi, R. M. Hegele, P. N. Hopkins, L. L. Wu, R. Plaetke et al., Effects of three genetic loci in a pedigree with multiple lipoprotein phenotypes, Arterioscler Thromb J Vasc Biol, vol.11, issue.5, pp.1349-55, 1991.

C. Sass, L. M. Giroux, Y. Ma, M. Roy, J. Lavigne et al., Evidence for a cholesterol-lowering gene in a French-Canadian kindred with familial hypercholesterolemia

, Hum Genet, vol.96, issue.1, pp.21-27, 1995.

A. Van-der-graaf, S. W. Fouchier, M. N. Vissers, J. C. Defesche, A. Wiegman et al.,

, Familial defective apolipoprotein B and familial hypobetalipoproteinemia in one family: two neutralizing mutations, Ann Intern Med, vol.148, issue.9, pp.712-716, 2008.

R. Huijgen, B. Sjouke, K. Vis, J. De-randamie, J. C. Defesche et al., Genetic variation in APOB, PCSK9, and ANGPTL3 in carriers of pathogenic autosomal dominant hypercholesterolemic mutations with unexpected low LDL-Cl Levels, Hum Mutat, 2012.

R. A. Hegele, M. R. Ban, H. Cao, A. D. Mcintyre, J. F. Robinson et al., Targeted next-generation sequencing in monogenic dyslipidemias, Curr Opin Lipidol, vol.26, issue.2, pp.103-116, 2015.

Y. Ghaleb, S. Elbitar, E. Khoury, P. Bruckert, E. Carreau et al., Usefulness of the genetic risk score to identify phenocopies in families with familial hypercholesterolemia?, Eur J Hum Genet EJHG, vol.26, issue.4, pp.570-578, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847496

M. Futema, S. Shah, J. A. Cooper, K. Li, R. A. Whittall et al., Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries, Clin Chem

P. J. Talmud, S. Shah, R. Whittall, M. Futema, P. Howard et al., Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study, Lancet Lond Engl, vol.381, issue.9874, pp.1293-301, 2013.

B. Sjouke, M. Tanck, S. W. Fouchier, J. C. Defesche, B. A. Hutten et al., Children with hypercholesterolemia of unknown cause: Value of genetic risk scores, J Clin Lipidol, vol.10, issue.4, pp.851-860, 2016.

K. Tanisawa, T. Ito, X. Sun, Z. Cao, S. Sakamoto et al., Polygenic risk for hypertriglyceridemia is attenuated in Japanese men with high fitness levels, Physiol Genomics, vol.46, issue.6, pp.207-222, 2014.

M. Paquette, M. Chong, S. Thériault, R. Dufour, G. Paré et al., Polygenic risk score predicts prevalence of cardiovascular disease in patients with familial hypercholesterolemia, J Clin Lipidol, vol.11, issue.3, pp.725-732, 2017.

S. Richards, N. Aziz, S. Bale, D. Bick, S. Das et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, Genet Med Off J Am Coll Med Genet, vol.17, issue.5, pp.405-429, 2015.

N. T. Strande, S. E. Brnich, T. S. Roman, and J. S. Berg, Navigating the nuances of clinical sequence variant interpretation in Mendelian disease, Genet Med Off J Am Coll Med Genet, 2018.

J. R. Chora, A. M. Medeiros, A. C. Alves, and M. Bourbon, Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis, Genet Med, 2018.

. Exome-aggregation-consortium, M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha et al., Analysis of protein-coding genetic variation in 60,706 humans, Nature, 2016.

R. A. Gibbs, E. Boerwinkle, H. Doddapaneni, Y. Han, and V. Korchina, A global reference for human genetic variation, The 1000 Genomes Project Consortium, 2015.

M. J. Landrum, J. M. Lee, M. Benson, G. Brown, C. Chao et al., ClinVar: public archive of interpretations of clinically relevant variants, Nucleic Acids Res, vol.44, issue.D1, pp.862-868, 2016.

D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox et al.,

, Metabolome Database in 2013, Nucleic Acids Res, vol.41, pp.801-807, 2013.

M. Bourbon, A. C. Alves, A. M. Medeiros, S. Silva, and A. K. Soutar, Investigators of Portuguese FH Study. Familial hypercholesterolaemia in Portugal, Atherosclerosis, vol.196, issue.2, pp.633-675, 2008.

S. W. Fouchier, J. Kastelein, and J. C. Defesche, Update of the molecular basis of familial hypercholesterolemia in The Netherlands, Hum Mutat, vol.26, issue.6, pp.550-556, 2005.

A. Benito-vicente, A. C. Alves, A. Etxebarria, A. M. Medeiros, C. Martin et al., The importance of an integrated analysis of clinical, molecular, and functional data for the genetic diagnosis of familial hypercholesterolemia, Genet Med Off J Am Coll Med Genet, 2015.

M. Bourbon, M. A. Duarte, A. C. Alves, A. M. Medeiros, L. Marques et al., Genetic diagnosis of familial hypercholesterolaemia: the importance of functional analysis of potential splice-site mutations, J Med Genet, vol.46, issue.5, pp.352-359, 2009.

D. Filippo, M. Créhalet, H. Samson-bouma, M. E. Bonnet, V. Aggerbeck et al., Molecular and functional analysis of two new MTTP gene mutations in an atypical case of abetalipoproteinemia, J Lipid Res, vol.53, issue.3, pp.548-55, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00813163