O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler et al., Continuously Polarization Agile Antenna by Using Liquid Crystal-Based Tunable Variable Delay Lines, IEEE Trans. Antennas Propag, vol.61, issue.1, pp.70-76, 2013.

T. Aboufoul, A. Alomainy, and C. Parini, Reconfiguring UWB Monopole Antenna for Cognitive Radio Applications Using GaAs FET Switches, IEEE Antennas Wirel. Propag. Lett, vol.11, pp.392-394, 2012.

, Bibliographie du chapitre, vol.1, p.67

A. Grau-besoli and F. De-flaviis, A Multifunctional Reconfigurable Pixeled Antenna Using MEMS Technology on Printed Circuit Board, IEEE Trans. Antennas Propag, vol.59, issue.12, pp.4413-4424, 2011.

J. Papapolymerou, C. Lugo, Z. Zhao, X. Wang, and A. Hunt, A Miniature Low-Loss SlowWave Tunable Ferroelectric BandPass Filter From 11-14 GHz, 2006 IEEE MTT-S International Microwave Symposium Digest, pp.556-559, 2006.

S. Courreges, A. Hunt, and J. Papapolymerou, A Low Loss X-Band Quasi-Elliptic Ferroelectric Tunable Filter, IEEE Microw. Wirel. Components Lett, vol.19, issue.4, pp.203-205, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00437249

S. Courreges, A. Hunt, S. Horst, J. D. Cressler, and J. Papapolymerou, A Ka-Band Electronically Tunable Ferroelectric Filter, IEEE Microw. Wirel. Components Lett, vol.19, issue.6, pp.356-358, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00437926

M. Didomenico and R. H. Pantell, An X-Band Ferroelectric Phase Shifter, IEEE Trans. Microw. Theory Tech, vol.10, issue.3, pp.179-185, 1962.

M. Sazegar, Y. Zheng, H. Maune, C. Damm, X. Zhou et al., Low-Cost Phased-Array Antenna Using Compact Tunable Phase Shifters Based on Ferroelectric Ceramics, IEEE Trans. Microw. Theory Tech, vol.59, issue.5, pp.1265-1273, 2011.

E. Salahun, G. Tanne, P. Queffelec, P. Gelin, A. Adenot et al., Ferromagnetic composite-based and magnetically-tunable microwave devices, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), vol.2, pp.1185-1188, 2002.

M. Sterns, M. Hrobak, S. Martius, and L. Schmidt, Magnetically Tunable Filter from 72 GHz to 95 GHz, Microwave Conference, pp.82-85, 2010.

J. Krupka, A. Abramowicz, and K. Derzakowski, Magnetically tunable filters for cellular communication terminals, IEEE Trans. Microw. Theory Tech, vol.54, issue.6, pp.2329-2335, 2006.

M. Yazdanpanahi and D. Mirshekar-syahkal, Millimeter-wave liquid-crystal-based tunable bandpass filter, 2012 IEEE Radio and Wireless Symposium, pp.139-142, 2012.

C. Weil, G. Luessem, and R. Jakoby, Tunable inverted-microstrip phase shifter device using nematic liquid crystals, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278), vol.1, pp.367-371, 2002.

L. Liu and R. J. Langley, Liquid crystal tunable microstrip patch antenna, Electron. Lett, vol.44, issue.20, p.1179, 2008.

J. Arnould, A. Vilcot, and G. Meunier, Toward a simulation of an optically controlled microwave microstrip line at 10 GHz, IEEE Trans. Magn, vol.38, issue.2, pp.681-684, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02084230

J. Haidar, M. Bouthinon, and A. Vilcot, Optoelectronic tuning of microwave stub line, Electron. Lett, vol.32, issue.3, p.225, 1996.

M. S. Islam, P. Cheung, C. Y. Chang, D. P. Neikirk, and T. Itoh, Optically-controlled tunable CPW resonators, IEEE International Digest on Microwave Symposium, pp.949-950, 1990.

D. Zhao, Y. Han, L. Lan, F. Liang, Q. Zhang et al., Optically controlled microstrip patch antenna with reconfigurable null beams, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp.1260-1261, 2014.

, Solid State RF / Microwave Switch Technology

. Avagotechnologies, HSMP-389x series, HSMP-489x series

B. Doherty, PIN Diode Fundamentals-134814-micronote-701-pin-diode-fundamentals

Z. Brito-brito, I. Llamas-garro, L. Pradell-cara, and A. Corona-chavez, Microstrip Switchable Bandstop Filter using PIN Diodes with Precise Frequency and Bandwidth Control, 38th European Microwave Conference, pp.1707-1710, 2008.
DOI : 10.1109/eumc.2008.4751804

M. F. Karim, Y. Guo, Z. N. Chen, and L. C. Ong, Miniaturized reconfigurable and switchable filter from UWB to 2.4 GHz WLAN using PIN diodes, IEEE MTT-S International Microwave Symposium Digest, pp.509-512, 2009.
DOI : 10.1109/mwsym.2009.5165745

S. Sirci, J. D. Martinez, and V. E. Boria, Low-loss 3-bit tunable SIW filter with PIN diodes and integrated bias network, pp.1211-1214, 2013.

M. Armendariz, V. Sekar, and K. Entesari, Tunable SIW bandpass filters with PIN diodes, pp.830-833, 2010.

P. Sun, A. Mikul, R. Bonebright, and G. A. Kromholtz, Highly Linear Ku-Band SiGe PIN Diode Phase Shifter in Standard SiGe BiCMOS Process, IEEE Microw. Wirel. Components Lett, vol.20, issue.1, pp.37-39, 2010.

J. G. Yang and K. Yang, Ka-Band 5-Bit MMIC Phase Shifter Using InGaAs PIN Switching Diodes, IEEE Microw. Wirel. Components Lett, vol.21, issue.3, pp.151-153, 2011.
DOI : 10.1109/lmwc.2010.2104314

M. Teshiba, R. Van-leeuwen, G. Sakamoto, and T. Cisco, A SiGe MMIC 6-bit PIN diode phase shifter, IEEE Microw. Wirel. Components Lett, vol.12, issue.12, pp.500-501, 2002.
DOI : 10.1109/lmwc.2002.805534

M. Jusoh, T. Sabapathy, M. F. Jamlos, and M. R. Kamarudin, Reconfigurable Four-ParasiticElements Patch Antenna for High-Gain Beam Switching Application, IEEE Antennas Wirel. Propag. Lett, vol.13, pp.79-82, 2014.

A. Sheta and S. F. Mahmoud, A Widely Tunable Compact Patch Antenna, IEEE Antennas Wirel. Propag. Lett, vol.7, pp.40-42, 2008.
DOI : 10.1109/lawp.2008.915796

, Bibliographie du chapitre, vol.1, p.69

Y. J. Sung, T. U. Jang, and Y. Kim, A reconfigurable microstrip antenna for switchable polarization, IEEE Microw. Wirel. Components Lett, vol.14, issue.11, pp.534-536, 2004.
DOI : 10.1109/lmwc.2004.837061

C. G. Christodoulou, Y. Tawk, S. A. Lane, and S. R. Erwin, Reconfigurable Antennas for Wireless and Space Applications, Proc. IEEE, vol.100, pp.2250-2261, 2012.
DOI : 10.1109/jproc.2012.2188249

S. Akiyama, M. Imai, T. Baba, T. Akagawa, N. Hirayama et al., Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide, IEEE J. Sel. Top. Quantum Electron, vol.19, issue.6, pp.74-84, 2013.
DOI : 10.1109/jstqe.2013.2278438

URL : https://doi.org/10.1109/jstqe.2013.2278438

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi et al., Efficient 50-Gb/s silicon microring modulator based on forward-biased pin diodes, 10th International Conference on Group IV Photonics, pp.69-70, 2013.
DOI : 10.1109/group4.2013.6644430

H. Packard, HPND_4050.pdf

. Avagotechnologies, HPND-4005

N. X. Semiconductors, BAP55LX BAP55LX, 2013.

M. Metelics,

P. Sun, P. Upadhyaya, D. Jeong, D. Heo, and G. S. La-rue, A Novel SiGe PIN Diode SPST Switch for Broadband T/R Module, IEEE Microw. Wirel. Components Lett, vol.17, issue.5, pp.352-354, 2007.
DOI : 10.1109/lmwc.2007.895706

G. Torregrosa-penalva, G. Lopez-risueno, and J. I. Alonso, A simple method to design wide-band electronically tunable combline filters, IEEE Trans. Microw. Theory Tech, vol.50, issue.1, pp.172-177, 2002.
DOI : 10.1109/22.981262

J. Kim, W. Ko, S. Kim, J. Jeong, and Y. Kwon, A highperformance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure, IEEE Microw. Wirel. Components Lett, vol.13, issue.12, pp.505-507, 2003.

. Skyworks, SKY13298-360LF

N. and &. Ne71000,

C. Tinella, J. M. Fournier, D. Belot, and V. Knopik, A high-performance CMOS-SOI antenna switch for the 2.5-5 GHz band, IEEE J. Solid-State Circuits, vol.38, issue.7, pp.1279-1283, 2003.

A. Tombak, M. S. Carroll, D. C. Kerr, J. Pierres, and E. Spears, Design of High-Order Switches for Multimode Applications on a Silicon-on-Insulator Technology, IEEE Trans. Microw. Theory Tech, vol.61, issue.10, pp.3639-3649, 2013.

J. C. Bohorquez, N. Pena, A. Vaisman, C. Shafai, D. D. Chrusch et al., Implementation of ground plane membranes to realize a bandwidth and frequency tunable filter, 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference, pp.1-4, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00776160

E. Fourn, C. Quendo, E. Rius, A. Pothier, P. Blondy et al., Bandwidth and central frequency control on tunable bandpass filter by using MEMS cantilevers, IEEE MTT-S International Microwave Symposium Digest, vol.1, pp.523-526, 2003.

D. Peroulis, S. Pacheco, K. Sarabandi, and L. P. Katehi, Tunable lumped components with applications to reconfigurable MEMS filters, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), vol.1, pp.341-344, 2001.

A. Abbaspour-tamijani, L. Dussopt, and G. M. Rebeiz, Miniature and tunable filters using mems capacitors, IEEE Trans. Microw. Theory Tech, vol.51, issue.7, pp.1878-1885, 2003.

K. Entesari and G. M. Rebeiz, A 12-18-GHz three-pole RF MEMS tunable filter, IEEE Trans. Microw. Theory Tech, vol.53, issue.8, pp.2566-2571, 2005.

Z. Brito-brito, I. Llamas-garro, G. Navarro-munoz, J. Perruisseau-carrier, and L. Pradell, UMTS-WiFi switchable bandpass filter, pp.125-128, 2009.

K. Van-caekenberghe and K. Sarabandi, A 2-Bit Ka-Band RF MEMS Frequency Tunable Slot Antenna, IEEE Antennas Wirel. Propag. Lett, vol.7, pp.179-182, 2008.

B. A. Cetiner, G. R. Crusats, L. Jofre, and N. Biyikli, RF MEMS Integrated Frequency Reconfigurable Annular Slot Antenna, IEEE Trans. Antennas Propag, vol.58, issue.3, pp.626-632, 2010.

N. Kingsley, D. E. Anagnostou, M. Tentzeris, and J. Papapolymerou, RF MEMS Sequentially Reconfigurable Sierpinski Antenna on a Flexible Organic Substrate With Novel DC-Biasing Technique, J. Microelectromechanical Syst, vol.16, issue.5, pp.1185-1192, 2007.

E. Erdil, K. Topalli, M. Unlu, O. A. Civi, and T. Akin, Frequency Tunable Microstrip Patch Antenna Using RF MEMS Technology, IEEE Trans. Antennas Propag, vol.55, issue.4, pp.1193-1196, 2007.

E. Erdil, Tunable frequency microstrip antennas by RF-MEMS technology, 2005.

J. Designor and J. Venkataraman, Reconfigurable dual frequency microstrip patch antenna using RF MEMS switches, Proc. ACES, 2008.

A. E. Fathy, S. M. El-ghazaly, and V. K. Nair, Novel reconfigurable multi-band antennas for multi-radio platforms, 2008 IEEE Radio and Wireless Symposium, pp.723-726, 2008.

A. R. Weily, Y. J. Guo, and T. S. Bird, Frequency Reconfigurable Quasi-Yagi Folded Dipole Antenna, IEEE Trans. Antennas Propag, vol.58, issue.8, pp.2742-2747, 2010.

, Bibliographie du chapitre, vol.1, p.73

A. C. Mak, C. R. Rowell, R. D. Murch, and C. Mak, Reconfigurable Multiband Antenna Designs for Wireless Communication Devices, IEEE Trans. Antennas Propag, vol.55, issue.7, pp.1919-1928, 2007.

A. Bhattacharya and R. Jyoti, Frequency reconfigurable patch antenna using PIN diode at X-band, 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS), pp.81-86, 2015.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 2006.

H. Mathieu, Physique des semiconducteurs et des composants électroniques

W. E. Courtney, Complex Permittivity of GaAs and CdTe at Microwave Frequencies, IEEE Trans. Microw. Theory Tech, vol.25, issue.8, pp.697-701, 1977.

G. E. Ponchak, RF Transmission Lines on Silicon Substrates, 29th European Microwave Conference, vol.1, pp.158-161, 1999.

J. and W. D. Callister, Materials Science and Engineering: An Introduction, 7ème éditi, 2007.

, Physique des semi-conducteurs : Fondamentaux-Jonction abrupte à l'équilibre thermodynamique

R. Castello, P. Erratico, S. Manzini, and F. Sveito, A ±30% tuning range varactor compatible with future scaled technologies, 1998 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.98CH36215, pp.34-35, 1998.

F. Svelto, P. Erratico, S. Manzini, and R. Castello, A metal-oxide-semiconductor varactor, IEEE Electron Device Lett, vol.20, issue.4, pp.164-166, 1999.

P. Andreani and S. Mattisson, On the use of MOS varactors in RF VCOs, IEEE J. Solid-State Circuits, vol.35, issue.6, pp.905-910, 2000.

C. Schollhorn, W. Zhao, and E. Kasper, 38GHz Aluminum Coplanar Waveguides on Silicon, pp.1-4, 2000.

P. Andreani, A comparison between two 1.8GHz CMOS VCOs tuned by different varactors, pp.380-383, 1998.

P. Combes, Micro-ondes-Tome 1, Lignes, guides et cavités, 2007.

E. O. Hammerstad, Equations for Microstrip Circuit Design, 1975 5th European Microwave Conference, pp.268-272, 1975.

W. Zulehner, Czochralski growth of silicon, J. Cryst. Growth, vol.65, issue.1-3, pp.189-213, 1983.

T. F. Ciszek and T. H. Wang, Silicon Float-Zone Crystal Growth as a Tool for the Study of Defects and Impurities: Preprint, p.16, 2000.

, Chapitre 1 Etat de l'art-Vers des dispositifs accordables totalement intégrés 74

, Introduction à la Micro-Optique-Techniques et procédés de fabrication

M. T. Stickel, P. C. Kremer, and G. V. Eleftheriades, High-Q silicon micromachined cavity resonators at 30 GHz using the split-block technique, IEE Proc.-Microwaves, vol.151, p.450, 2004.

M. Cariou, Contribution à la conception de filtres coupe-bande SIW et étude de solutions accordables, 2013.

J. Favennec, Synthèse et réalisation de filtres hyperfréquences à bande très étroite et corrigés en temps de propagation de groupe, 1990.

W. R. Mcgrath, C. Walker, M. Yap, and Y. Tai, Silicon micromachined waveguides for millimeter-wave and submillimeter-wave frequencies, IEEE Microw. Guid. Wave Lett, vol.3, issue.3, pp.61-63, 1993.

S. Gamble, B. M. Armstrong, V. F. Fusco, and J. A. Stewart, SiO2 interface layer effects on microwave loss of high-resistivity CPW line, IEEE Microw. Guid. Wave Lett, vol.9, issue.1, pp.10-12, 1999.

D. Lederer and J. Raskin, Substrate loss mechanisms for microstrip and CPW transmission lines on lossy silicon wafers, Solid. State. Electron, vol.47, issue.11, pp.1927-1936, 2003.

B. K. Esfeh, K. B. Ali, and J. Raskin, RF non-linearities from Si-based substrates, 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), pp.1-3, 2014.

H. S. Gamble, B. M. Armstrong, S. J. Mitchell, Y. Wu, V. F. Fusco et al., Low-loss CPW lines on surface stabilized high-resistivity silicon, IEEE Microw. Guid. Wave Lett, vol.9, issue.10, pp.395-397, 1999.

W. Zhao, C. Schöllhorn, and E. Kasper, Bias Dependent Attenuation of Coplanar Transmission Lines on Silicon

C. Nam and Y. Kwon, Coplanar waveguides on silicon substrate with thick oxidized porous silicon (OPS) layer, IEEE Microw. Guid. Wave Lett, vol.8, issue.11, pp.369-371, 1998.

G. E. Ponchak, I. K. Itotia, and R. F. Drayton, Propagation Characteristics of Finite Ground Coplanar Waveguide on Si Substrates With Porous Si and Polyimide Interface Layers, 33rd European Microwave Conference, pp.45-48, 2003.

R. L. Peterson and R. F. Drayton, Dielectric properties of oxidized porous silicon in a low resistivity substrate, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), vol.2, pp.767-770, 2001.

C. Hung and M. Weng, Investigation of the Silicon Substrate With Different Substrate Resistivities for Integrated Filters With Excellent Performance, IEEE Trans. Electron Devices, vol.59, issue.4, pp.1164-1171, 2012.

, Bibliographie du chapitre, vol.1, p.75

G. Prigent, E. Rius, F. Lepennec, S. Lemaguer, C. Quendo et al., Design of Narrow-Band DBR Planar Filters in Si-BCB Technology for Millimeter-Wave Applications, IEEE Trans. Microw. Theory Tech, vol.52, issue.3, pp.1045-1051, 2004.

R. Islam and R. Henderson, Millimeter-wave coplanar waveguide series stubs on BCB and low resistivity silicon, Microw. Opt. Technol. Lett, vol.56, issue.2, pp.375-380, 2014.

L. L. Leung, K. J. Chen, X. Huo, and P. C. Chan, Low-loss microwave filters on CMOSgrade standard silicon substrate with low-k BCB dielectric, Microw. Opt. Technol. Lett, vol.40, issue.1, pp.9-11, 2004.

C. Quendo, E. Rius, Y. Clavet, C. Person, F. Bouchriha et al., Miniaturized and out-of-band improved bandpass filter in Si-BCB technology, 2004 IEEE MTT-S International Microwave Symposium Digest, vol.3, pp.1475-1478, 2004.

X. Li, Y. Shi, D. Chen, Y. Ding, Q. Xiao et al., Design and performance of CPW and CPW bandpass filter on SOI substrate, 2008 8th International Symposium on Antennas, Propagation and EM Theory, pp.1334-1337, 2008.

E. Rius, G. Prigent, H. Happy, G. Dambrine, S. Boret et al., Wide-and narrow-band bandpass coplanar filters in the W-frequency band, IEEE Trans. Microw. Theory Tech, vol.51, issue.3, pp.784-791, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00145985

F. Gianesello, D. Gloria, S. Montusclat, C. Raynaud, S. Boret et al., 65 nm RFCMOS technologies with bulk and HR SOI substrate for millimeter wave passives and circuits characterized up to 220 GHZ, IEEE MTT-S International Microwave Symposium Digest, pp.1927-1930, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00154919

G. Prigent, F. Gianesello, D. Gloria, and C. Raynaud, Bandpass filter for millimeter-wave applications up to 220 GHz integrated in advanced thin SOI CMOS technology on High Resistivity substrate, 2007 European Microwave Conference, pp.676-679, 2007.

K. T. Chan, C. Y. Chen, A. Chin, J. C. Hsieh, J. Liu et al., 40-GHz coplanar waveguide bandpass filters on silicon substrate, IEEE Microw. Wirel. Components Lett, vol.12, issue.11, pp.429-431, 2002.
DOI : 10.1109/lmwc.2002.805535

J. Papapolymerou and G. E. Ponchak, Microwave filters on a low resistivity Si substrate with a polyimide interface layer for wireless circuits, 2001 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (IEEE Cat, pp.125-128, 2001.

G. Mikhail, Y. Quere, C. Quendo, and C. Person, A novel THz-enhanced dipole antenna using second-order high impedance surface resonance for MM imaging and sensing, 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems, pp.41-43, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00966393

D. Hou, Y. Xiong, W. Hong, W. L. Goh, and J. Chen, Silicon-based on-chip antenna design for millimeter-wave/THz applications, 2011 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), pp.1-4, 2011.

, Chapitre 1 Etat de l'art-Vers des dispositifs accordables totalement intégrés 76

A. B. Rashid, S. Watanabe, and T. Kikkawa, High transmission gain integrated antenna on extremely high resistivity Si for ULSI wireless interconnect, IEEE Electron Device Lett, vol.23, issue.12, pp.731-733, 2002.

K. T. Chan, A. Chin, Y. B. Chen, Y. Lin, T. S. Duh et al., Integrated antennas on Si, proton-implanted Si and Si-on-quartz, International Electron Devices Meeting, 2001.
DOI : 10.1109/iedm.2001.979659

K. Kim, H. Yoon, and K. Kenneth, On-chip wireless interconnection with integrated antennas, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138, pp.485-488, 2000.

S. Montusclat, F. Gianesello, D. Gloria, and S. Tedjini, Silicon Integrated Antenna Developments up to 80 GHz for Millimeter Wave Wireless Links, The European Conference on Wireless Technology, pp.257-260, 2005.

Y. P. Zhang, M. Sun, and L. H. Guo, On-Chip Antennas for 60-GHz Radios in Silicon Technology, IEEE Trans. Electron Devices, vol.52, issue.7, pp.1664-1668, 2005.

F. Gutierrez, S. Agarwal, K. Parrish, and T. S. Rappaport, On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems, IEEE J. Sel. Areas Commun, vol.27, issue.8, pp.1367-1378, 2009.

W. Yang, K. Ma, K. S. Yeo, and W. M. Lim, A 60GHz on-chip antenna in standard CMOS silicon Technology, 2012 IEEE Asia Pacific Conference on Circuits and Systems, pp.252-255, 2012.

G. Kumar and K. P. Ray, Broadband Mircostrip Antennas, 2003.

L. P. Katehi, Micromachined microstrip patch antenna with controlled mutual coupling and surface waves, IEEE Trans. Antennas Propag, vol.49, issue.9, pp.1282-1289, 2001.

M. Abdel-aziz, H. Ghali, H. F. Ragaie, and H. Haddara, Microstrip patch antenna using silicon micromachining technology, pp.16-17, 2003.

M. A. Basha, A. Abdellatif, and S. Safavi-naeini, Low-cost fabrication of millimeter-wave all-silicon high efficiency antenna, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, pp.1-2, 2012.

A. Taeb, A. S. Abdellatif, G. Z. Rafi, S. Gigoyan, S. Safavi-neini et al., A low-cost silicon-based beam-steering grating antenna for G-band applications, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp.1282-1283, 2014.

J. Yan and R. D. Murch, Fabrication of a Wideband Antenna on a Low-Resistivity Silicon Substrate Using a Novel Micromachining Technique, Antennas Wirel. Propag. Lett, vol.6, issue.11, pp.476-479, 2007.

Y. Guo, X. Liu, and Z. Zhu, Study of MEMS-based high-resistance silicon K-band planar array microstrip antenna, 2010 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia), pp.368-371, 2010.

, Bibliographie du chapitre, vol.1, p.77

E. Öjefors, K. Grenier, L. Mazenq, A. Rydberg, and R. Plana, Micromachined inverted F antenna for integration on low resistivity silicon substrates, IEEE Microw. Wirel. components Lett, vol.15, issue.10, pp.627-629

E. Jefors, H. Kratz, K. Grenier, R. Plana, and A. Rydberg, Micromachined Loop Antennas on Low Resistivity Silicon Substrates, IEEE Trans. Antennas Propag, vol.54, issue.12, pp.3593-3601, 2006.

S. Montusclat, F. Gianesello, and D. Gloria, Silicon full integrated LNA, Filter and Antenna system beyond 40 GHz for MMW wireless communication links in advanced CMOS technologies, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.77-80, 2006.

M. Uzunkol and G. M. Rebeiz, 140-220 GHz SPST and SPDT Switches in 45 nm CMOS SOI, IEEE Microw. Wirel. Components Lett, vol.22, issue.8, pp.412-414, 2012.

R. Wolf, A. Joseph, A. Botula, and J. Slinkman, A Thin-Film SOI 180nm CMOS RF Switch, 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp.1-4, 2009.

H. Mizutani, N. Iwata, Y. Takayama, and K. Honjo, Design Considerations for TravelingWave Single-Pole Multithrow MMIC Switch Using Fully Distributed FET, IEEE Trans. Microw. Theory Tech, vol.55, issue.4, pp.664-671, 2007.

H. Mizutani, N. Iwata, Y. Takayama, and K. Honjo, 38-80 GHz SPDT traveling wave switch MMIC utilizing fully distributed FET, 2006 Asia-Pacific Microwave Conference, pp.3-6, 2006.

Z. Tsai, M. Yehn, H. Chang, M. Lei, K. Lin et al., FETintegrated CPW and the application in filter synthesis design method on traveling-wave switch above 100 GHz, IEEE Trans. Microw. Theory Tech, vol.54, issue.5, pp.2090-2097, 2006.

K. Lin, W. Tu, P. Chen, H. Chang, H. Wang et al., Millimeter-Wave MMIC Passive HEMT Switches Using Traveling-Wave Concept, IEEE Trans. Microw. Theory Tech, vol.52, issue.8, pp.1798-1808, 2004.

B. Pillans, A. Malczewski, R. Allison, and J. Brank, 6-15 GHz RF MEMS tunable filters, IEEE MTT-S International Microwave Symposium Digest, pp.919-922, 2005.
DOI : 10.1109/mwsym.2005.1516773

J. Kiriazi, H. Ghali, H. Ragaie, and H. Haddara, Reconfigurable dual-band dipole antenna on silicon using series MEMS switches, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), vol.1, pp.403-406, 2003.

P. Panaia, C. Luxey, G. Jacquemod, R. Staraj, G. Kossiavas et al., MEMS-based reconfigurable antennas, 2004 IEEE International Symposium on Industrial Electronics, vol.1, pp.175-179, 2004.
DOI : 10.1109/isie.2004.1571803

URL : https://hal.archives-ouvertes.fr/hal-00984158

F. Mohammed, M. F. Bain, F. H. Ruddell, D. Linton, H. S. Gamble et al., A Novel Silicon Schottky Diode for NLTL Applications, IEEE Trans. Electron Devices, vol.52, issue.7, pp.1384-1391, 2005.

, Chapitre 1 Etat de l'art-Vers des dispositifs accordables totalement intégrés 78

D. Jäger, Invited paper Characteristics of travelling waves along the non-linear transmission lines for monolithic integrated circuits: a review, Int. J. Electron, vol.58, issue.4, pp.649-669, 2007.

M. J. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman et al., GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling, IEEE Trans. Microw. Theory Tech, vol.39, issue.7, pp.1194-1204, 1991.

E. Afshari and A. Hajimiri, Nonlinear transmission lines for pulse shaping in silicon, IEEE J. Solid-State Circuits, vol.40, issue.3, pp.744-752, 2005.

, Silicon-based reconfigurable antennas-concepts, analysis, implementation, and feasibility

A. E. Fathy, A. Rosen, H. S. Owen, F. Mcginty, D. J. Mcgee et al., Silicon-based reconfigurable antennas-concepts, analysis, implementation, and feasibility, IEEE Trans. Microw. Theory Tech, vol.51, issue.6, pp.1650-1661, 2003.
DOI : 10.1109/tmtt.2003.812559

, Bibliographie du chapitre 2

, Silvaco

C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 2013.

. Silvaco, Atlas User ' s Manual, pp.567-1000, 2013.

. Keysight, Advanced Design System (ADS)

M. Uzunkol and G. M. Rebeiz, 140-220 GHz SPST and SPDT Switches in 45 nm CMOS SOI, IEEE Microw. Wirel. Components Lett, vol.22, issue.8, pp.412-414, 2012.

R. Wolf, A. Joseph, A. Botula, and J. Slinkman, A Thin-Film SOI 180nm CMOS RF Switch, 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp.1-4, 2009.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 2006.

. Macom, MA4SWx10 series.pdf

. Skyworks, AS179-92LF

. Macom, SW-393

P. Sun, P. Upadhyaya, D. Jeong, D. Heo, and G. S. La-rue, A Novel SiGe PIN Diode SPST Switch for Broadband T/R Module, IEEE Microw. Wirel. Components Lett, vol.17, issue.5, pp.352-354, 2007.

K. Lin, W. Tu, P. Chen, H. Chang, H. Wang et al., Millimeter-Wave MMIC Passive HEMT Switches Using Traveling-Wave Concept, IEEE Trans. Microw. Theory Tech, vol.52, issue.8, pp.1798-1808, 2004.

Z. Brito-brito, I. Llamas-garro, G. Navarro-munoz, J. Perruisseau-carrier, and L. Pradell, UMTS-WiFi switchable bandpass filter, pp.125-128, 2009.

Z. Brito-brito, I. Llamas-garro, L. Pradell-cara, and A. Corona-chavez, Microstrip Switchable Bandstop Filter using PIN Diodes with Precise Frequency and Bandwidth Control, 38th European Microwave Conference, pp.1707-1710, 2008.

C. G. Christodoulou, Y. Tawk, S. A. Lane, and S. R. Erwin, Reconfigurable Antennas for Wireless and Space Applications, Proc. IEEE, vol.100, pp.2250-2261, 2012.

M. Jusoh, T. Sabapathy, M. F. Jamlos, and M. R. Kamarudin, Reconfigurable Four-ParasiticElements Patch Antenna for High-Gain Beam Switching Application, IEEE Antennas Wirel. Propag. Lett, vol.13, pp.79-82, 2014.

C. Lugo and J. Papapolymerou, Electronic switchable bandpass filter using PIN diodes for wireless low cost system-on-a-package applications, IEE Proc.-Microwaves, vol.151, p.497, 2004.

S. Sirci, J. D. Martinez, and V. E. Boria, Low-loss 3-bit tunable SIW filter with PIN diodes and integrated bias network, pp.1211-1214, 2013.

P. Wong and I. Hunter, Electronically Tunable Filters, IEEE Microw. Mag, vol.10, issue.6, pp.46-54, 2009.

A. Sheta and S. F. Mahmoud, A Widely Tunable Compact Patch Antenna, IEEE Antennas Wirel. Propag. Lett, vol.7, pp.40-42, 2008.

M. F. Ismail, M. K. Rahim, and H. A. Majid, The Investigation of PIN diode switch on reconfigurable antenna, 2011 IEEE International RF & Microwave Conference, pp.234-237, 2011.

G. L. Matthaei, L. Young, and E. M. Jones, Microwave filters, impedance-matching networks, and coupling structures, vol.1, 1964.

A. Ocera, P. Farinelli, P. Mezzanotte, R. Sorrentino, B. Margesin et al., A Novel MEMS-Tunable Hairpin Line Filter on Silicon Substrate, 2006 European Microwave Conference, pp.803-806, 2006.

, WAVEGUIDES Flexible Waveguide manufacturers custom waveguide suppliers FLEXIGUIDE LIMITED UK

P. Combes, Micro-ondes-Tome 1, Lignes, guides et cavités, 2007.

R. E. Collin, Foundations for Microwave Engineering, 2000.

R. Vahldieck, Design and development of high-Q microwave filters-past, present and future, 1999 IEEE Africon. 5th Africon Conference in Africa (Cat. No.99CH36342), vol.2, pp.1099-1104, 1999.

, Bibliographie du chapitre, vol.3, p.171

M. T. Stickel, P. C. Kremer, and G. V. Eleftheriades, High-Q silicon micromachined cavity resonators at 30 GHz using the split-block technique, IEE Proc.-Microwaves, vol.151, p.450, 2004.

V. Singh, K. S. Parikh, S. Singh, and R. B. Bavaria, DR OMUX for Satellite Communications: A Complete Step-by-Step Design Procedure for the C-Band Dielectric Resonator Output Multiplexer, IEEE Microw. Mag, vol.14, issue.6, pp.104-118, 2013.

M. Armendariz, V. Sekar, and K. Entesari, Tunable SIW bandpass filters with PIN diodes, pp.830-833, 2010.

J. Bohorquez, B. Potelon, C. Person, E. Rius, C. Quendo et al., Reconfigurable Planar SIW Cavity Resonator and Filter, 2006 IEEE MTT-S International Microwave Symposium Digest, pp.947-950, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00437418

A. E. Mostrah, B. Potelon, E. Rius, C. Quendo, and J. Favennec, C-band cross-coupled SIW filter using a novel topology of electric coupling, pp.188-191, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00575006

B. Potelon, J. Favennec, C. Quendo, E. Rius, C. Person et al., Design of a Substrate Integrated Waveguide (SIW) Filter Using a Novel Topology of Coupling, IEEE Microw. Wirel. components Lett, vol.18, issue.9, pp.596-598
URL : https://hal.archives-ouvertes.fr/hal-00491979

S. Montusclat, F. Gianesello, D. Gloria, and S. Tedjini, Silicon Integrated Antenna Developments up to 80 GHz for Millimeter Wave Wireless Links, The European Conference on Wireless Technology, pp.257-260, 2005.

S. Byun, J. Lee, J. Lim, and T. Yun, Reconfigurable Ground-Slotted Patch Antenna Using PIN Diode Switching, ETRI J, vol.29, issue.6, pp.832-834, 2007.

L. P. Katehi, Micromachined microstrip patch antenna with controlled mutual coupling and surface waves, IEEE Trans. Antennas Propag, vol.49, issue.9, pp.1282-1289, 2001.

Y. J. Sung, T. U. Jang, and Y. Kim, A reconfigurable microstrip antenna for switchable polarization, IEEE Microw. Wirel. Components Lett, vol.14, issue.11, pp.534-536, 2004.

N. Behdad and K. Sarabandi, A Varactor-Tuned Dual-Band Slot Antenna, IEEE Trans. Antennas Propag, vol.54, issue.2, pp.401-408, 2006.

A. Grau-besoli and F. De-flaviis, A Multifunctional Reconfigurable Pixeled Antenna Using MEMS Technology on Printed Circuit Board, IEEE Trans. Antennas Propag, vol.59, issue.12, pp.4413-4424, 2011.

C. A. Balanis, Antenna Theory: Analysis and Design, 2012.

J. Garreau, Etude de filtres hyperfréquence SIW et hybride-planaire SIW en technologie LTCC, 2012.

, Le silicium poreux : nouvelles applications de ce matériau aux propriétés remarquablesL'Actualité Chimique

G. G. , D. T. , K. S. , and C. , Metal-Free Disordered Vertical Sub-Micron Silicon Wires Produced from Electrochemical p-Type Porous Silicon Layers, Electrochem. Solid State Lett, vol.14, issue.8, pp.81-83, 2011.

J. Billoué, G. Gautier, and L. Ventura, Integration of RF inductors and filters on mesoporous silicon isolation layers, Phys. status solidi, vol.208, issue.6, pp.1449-1452, 2011.

G. E. Ponchak, I. K. Itotia, and R. F. Drayton, Propagation Characteristics of Finite Ground Coplanar Waveguide on Si Substrates With Porous Si and Polyimide Interface Layers, 33rd European Microwave Conference, pp.45-48, 2003.

R. L. Peterson and R. F. Drayton, Dielectric properties of oxidized porous silicon in a low resistivity substrate, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), vol.2, pp.767-770, 2001.

G. E. Ponchak, RF Transmission Lines on Silicon Substrates, 29th European Microwave Conference, vol.1, pp.158-161, 1999.
DOI : 10.1109/euma.1999.338297

URL : http://amsacta.unibo.it/1444/1/GAAS_99_083.pdf

, Microwave Materials, Springer Science & Business Media, 2013.

W. E. Courtney, Complex Permittivity of GaAs and CdTe at Microwave Frequencies, IEEE Trans. Microw. Theory Tech, vol.25, issue.8, pp.697-701, 1977.

C. B. Rogers, Dielectric Constant and Los Tangent of Semi-insulating GaAs at Microwave Frequencies, Appl. Phys. Lett, vol.11, issue.11, p.353, 1967.

A. E. Popa, Materials Study for Millimeter Subcarrier Optical Modulators, 1973 IEEE GMTT International Microwave Symposium, pp.295-296, 1973.

D. Lioubtchenko, S. Tretyakov, and S. Dudorov, Millimeter-Wave Waveguides, 2007.

A. G. Engel and L. P. Katehi, Low-loss monolithic transmission lines for submillimeter and terahertz frequency applications, IEEE Trans. Microw. Theory Tech, vol.39, issue.11, pp.1847-1854, 1991.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 2006.

K. Buisman, Device Realization, Characterization and Modeling for Linear RF Applications

L. Athukorala and D. Budimir, Compact Second-Order Highly Linear Varactor-Tuned Dual-Mode Filters With Constant Bandwidth, IEEE Trans. Microw. Theory Tech, vol.59, issue.9, pp.2214-2220, 2011.

R. and &. S. International, Measuring with Modern Spectrum Analyzers-Application Note1MA201, 2013.

L. Dussopt and G. M. Rebeiz, Intermodulation distortion and power handling in RF MEMS switches, varactors, and tunable filters, IEEE Trans. Microw. Theory Tech, vol.51, issue.4, pp.1247-1256, 2003.

. Skyworks, SKY13298-360LF

. Macom, SW-393

. Skyworks, AS179-92LF

A. Wideband, 40 dB Isolation at 1 GHz, CMOS 1.65 V to 2.75 V, SPST Switches Data Sheet (Rev. B)-ADG901_902-246502.pdf

. Hittite, HMC550A

. Triquint, TQP4M0013-483372

D. Deslandes and K. Wu, Integrated microstrip and rectangular waveguide in planar form, IEEE Microw. Wirel. Components Lett, vol.11, issue.2, pp.68-70, 2001.

D. Deslandes and K. Wu, Millimeter-wave substrate integrated waveguide filters, CCECE 2003-Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436), vol.3, pp.1917-1920, 2003.

T. Yun, H. Nam, K. Kim, and J. Lee, Iris Waveguide Bandpass Filter Using Substrate Integrated Waveguide (SIW) for Satellite Communication, p.2005

. Asia-pacific, Microwave Conference Proceedings, vol.1, pp.1-4, 2005.

D. Deslandes, Single-substrate integration technique of planar circuits and waveguide filters, IEEE Trans. Microw. Theory Tech, vol.51, issue.2, pp.593-596, 2003.

A. E. Mostrah, B. Potelon, E. Rius, C. Quendo, and J. Favennec, C-band cross-coupled SIW filter using a novel topology of electric coupling, pp.188-191, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00575006

G. L. Matthaei, B. M. Schiffman, E. G. Cristal, and L. A. Robinson, Microwave Filters And Coupling Structures, 1963.

R. Mongia, RF and Microwave Coupled-Line Circuits, 1999.

D. L. Diedhiou, Etude de dipositifs hyperfréquences accordables en technologie microfluidique, 2012.

F. Mahe, G. Tanne, E. Rius, C. Person, S. Toutain et al., Electronically Switchable Dual-Band Microstrip Interdigital Bandpass Filter For 4, vol.11, p.215

, Multistandard Communication Applications, 30th European Microwave Conference, pp.1-4, 2000.

E. Fourn, A. Pothier, C. Champeaux, P. Tristant, A. Catherinot et al., MEMS switchable interdigital coplanar filter, IEEE Trans. Microw. Theory Tech, vol.51, issue.1, pp.320-324, 2003.

G. Kumar and K. P. Ray, Broadband Mircostrip Antennas, 2003.

S. Wi, Y. Lee, and J. Yook, Wideband Microstrip Patch Antenna With U-Shaped Parasitic Elements, IEEE Trans. Antennas Propag, vol.55, issue.4, pp.1196-1199, 2007.

M. Jusoh, T. Sabapathy, M. F. Jamlos, and M. R. Kamarudin, Reconfigurable Four-ParasiticElements Patch Antenna for High-Gain Beam Switching Application, IEEE Antennas Wirel. Propag. Lett, vol.13, pp.79-82, 2014.

T. Sabapathy, R. B. Ahmad, M. Jusoh, M. R. Kamarudin, and A. Alomainy, A patternreconfigurable parasitic patch antenna using BAR and HPND PIN Diode, The 8th

, European Conference on Antennas and Propagation, pp.3444-3445, 2014.

M. Jusoh, M. F. Jamlos, M. R. Kamarudin, N. M. Nawawi, T. Sabapathy et al., Switchable parasitic patch antenna with beam steering for WiMAX application, 2013 IEEE Symposium on Wireless Technology & Applications (ISWTA), pp.368-371, 2013.

S. Zhang, G. H. Huff, J. Feng, and J. T. Bernhard, A Pattern Reconfigurable Microstrip Parasitic Array, IEEE Trans. Antennas Propag, vol.52, issue.10, pp.2773-2776, 2004.

L. Petit, L. Dussopt, and J. Laheurte, MEMS-Switched Parasitic-Antenna Array for Radiation Pattern Diversity, IEEE Trans. Antennas Propag, vol.54, issue.9, pp.2624-2631, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00795532

B. Kim, B. Pan, S. Nikolaou, Y. Kim, J. Papapolymerou et al., A Novel Single-Feed Circular Microstrip Antenna With Reconfigurable Polarization Capability, IEEE Trans. Antennas Propag, vol.56, issue.3, pp.630-638, 2008.

Y. Wu, C. Wu, D. Lai, and F. Chen, A Reconfigurable Quadri-Polarization Diversity Aperture-Coupled Patch Antenna, IEEE Trans. Antennas Propag, vol.55, issue.3, pp.1009-1012, 2007.

F. Ferrero, C. Luxey, R. Staraj, G. Jacquemod, M. Yedlin et al., A Novel QuadPolarization Agile Patch Antenna, IEEE Trans. Antennas Propag, vol.57, issue.5, pp.1563-1567, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00392373

R. L. Haupt and M. Lanagan, Reconfigurable antennas, IEEE Antennas Propag. Mag, vol.55, issue.1, pp.49-61, 2013.

A. Khaleghi and M. Kamyab, Reconfigurable Single Port Antenna With Circular Polarization Diversity, IEEE Trans. Antennas Propag, vol.57, issue.2, pp.555-559, 2009.

N. S. Barker and G. M. Rebeiz, Distributed MEMS transmission-line BPSK modulator, IEEE Microw. Guid. Wave Lett, vol.10, issue.5, pp.198-200, 2000.

, Chapitre 4 Perspectives 216

P. Anand, S. Sharma, D. Sood, and C. C. Tripathi, Design of compact reconfigurable switched line microstrip phase shifters for phased array antenna, 2012 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking, pp.1-3, 2012.

A. Stehle, G. Georgiev, V. Ziegler, B. Schoenlinner, U. Prechtel et al., RF-MEMS Switch and Phase Shifter Optimized for W-Band, 38th European Microwave Conference, pp.104-107, 2008.

S. Ortiz and A. Mortazawi, Design and performance of a new digital phase shifter at Xband, IEEE Microw. Wirel. Components Lett, vol.14, issue.9, pp.428-430, 2004.

G. Bartolucci, S. Catoni, F. Giacomozzi, R. Marcelli, B. Margesin et al., Realisation of distributed RF MEMS phase shifter with very low number of switches, Electron. Lett, vol.43, issue.23, p.1290, 2007.

B. Espana, Accordabilité des filtres à pertes, 2004.

A. R. Brown and G. M. Rebeiz, A varactor-tuned RF filter, IEEE Trans. Microw. Theory Tech, vol.48, issue.7, pp.1157-1160, 2000.

M. Makimoto and M. Sagawa, Varactor Tuned Bandpass Filters Using Microstrip-Line Ring Resonators, MTT-S International Microwave Symposium Digest, vol.86, pp.411-414, 1986.

E. Fourn, C. Quendo, E. Rius, A. Pothier, P. Blondy et al., Bandwidth and central frequency control on tunable bandpass filter by using MEMS cantilevers, IEEE MTT-S International Microwave Symposium Digest, vol.1, pp.523-526, 2003.

B. Pillans, A. Malczewski, R. Allison, and J. Brank, 6-15 GHz RF MEMS tunable filters, IEEE MTT-S International Microwave Symposium Digest, pp.919-922, 2005.

M. Sanchez-renedo, R. Gomez-garcia, J. I. Alonso, and C. Briso-rodriguez, Tunable combline filter with continuous control of center frequency and bandwidth, IEEE Trans. Microw. Theory Tech, vol.53, issue.1, pp.191-199, 2005.

M. A. El-tanani and G. M. Rebeiz, High-Performance 1.5-2.5-GHz RF-MEMS Tunable Filters for Wireless Applications, IEEE Trans. Microw. Theory Tech, vol.58, issue.6, pp.1629-1637, 2010.

G. Torregrosa-penalva, G. Lopez-risueno, and J. I. Alonso, A simple method to design wide-band electronically tunable combline filters, IEEE Trans. Microw. Theory Tech, vol.50, issue.1, pp.172-177, 2002.

I. C. Hunter and J. D. Rhodes, Electronically Tunable Microwave Bandpass Filters, IEEE Trans. Microw. Theory Tech, vol.30, issue.9, pp.1354-1360, 1982.

M. Chung, I. Kim, and S. Yun, Varactor-Tuned Hairpin Bandpass Filter With An Attenuation Pole, 2005 Asia-Pacific Microwave Conference Proceedings, vol.4, pp.1-4, 2005.

A. Abbaspour-tamijani, L. Dussopt, and G. M. Rebeiz, Miniature and tunable filters using mems capacitors, IEEE Trans. Microw. Theory Tech, vol.51, issue.7, pp.1878-1885, 2003.

N. Behdad and K. Sarabandi, A Varactor-Tuned Dual-Band Slot Antenna, IEEE Trans. Antennas Propag, vol.54, issue.2, pp.401-408, 2006.

E. Fourn, C. Quendo, E. Rius, A. Pothier, P. Blondy et al., Bandwidth and central frequency control on tunable bandpass filter by using MEMS cantilevers, IEEE MTT-S International Microwave Symposium Digest, vol.1, pp.523-526, 2003.