A. P. Selvadurai, Laplace's Equation, Diffusion Equation, Wave Equation, Partial Differential Equations in Mechanics, vol.1, 2013.

A. P. Selvadurai, Partial Differential Equations in Mechanics 2: the Biharmonic Equation, Poisson's Equation, vol.2, 2013.

M. Stone and P. Goldbart, Mathematics for physics: a guided tour for graduate students, 2009.

G. Barton, Elements of Green's functions and propagation: potentials, diffusion, and waves, 1989.

S. Agmon, Lectures on elliptic boundary value problems, vol.369, 2010.
DOI : 10.1090/chel/369

O. Pantz and C. Acad, Sensibilité de l'´ equation de la chaleur aux sauts de conductivité, Comptes Rendus Mathematique, vol.341, issue.5, pp.333-337, 2005.
DOI : 10.1016/j.crma.2005.07.005

M. M. Brahim, Méthodes d'´ eléments finis pour leprobì eme de changement de phase en milieux composites, 2016.

P. Grisvard, Elliptic problems in nonsmooth domains. SIAM, 2011.

C. S. Peskin, The immersed boundary method, Acta numerica, vol.11, pp.479-517, 2002.

A. Gilmanov and F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics, vol.207, issue.2, pp.457-492, 2005.

P. Mccorquodale, P. Colella, D. P. Grote, and J. Vay, A nodecentered local refinement algorithm for poisson's equation in complex geometries, Journal of Computational Physics, vol.201, issue.1, pp.34-60, 2004.

A. Mckenney, L. Greengard, and A. Mayo, A fast poisson solver for complex geometries, Journal of Computational Physics, vol.118, issue.2, pp.348-355, 1995.

F. Gibou, R. P. Fedkiw, L. Cheng, and M. Kang, A second-orderaccurate symmetric discretization of the poisson equation on irregular domains, Journal of Computational Physics, vol.176, issue.1, pp.205-227, 2002.

S. Osher and J. A. Sethian, Fronts propagating with curvaturedependent speed: algorithms based on hamilton-jacobi formulations, Journal of computational physics, vol.79, issue.1, pp.12-49, 1988.

J. A. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol.3, 1999.

C. Min, F. Gibou, and H. D. Ceniceros, A supra-convergent finite difference scheme for the variable coefficient poisson equation on nongraded grids, Journal of Computational Physics, vol.218, issue.1, pp.123-140, 2006.

F. Gibou, C. Min, and R. Fedkiw, High resolution sharp computational methods for elliptic and parabolic problems in complex geometries, Journal of Scientific Computing, vol.54, issue.2, pp.369-413, 2013.

J. Huh and J. A. Sethian, Exact subgrid interface correction schemes for elliptic interface problems, Proceedings of the National Academy of Sciences, vol.105, issue.29, pp.9874-9879, 2008.

D. P. Young, R. G. Melvin, M. B. Bieterman, F. T. Johnson, S. S. Samant et al., A locally refined rectangular grid finite element method: Application to computational fluid dynamics and computational physics, Journal of Computational Physics, vol.92, issue.1, pp.1-66, 1991.

H. Johansen and P. Colella, A cartesian grid embedded boundary method for poisson's equation on irregular domains, Journal of Computational Physics, vol.147, issue.1, pp.60-85, 1998.

A. N. Marques, J. Nave, and R. R. Rosales, High order solution of poisson problems with piecewise constant coefficients and interface jumps, Journal of Computational Physics, vol.335, pp.497-515, 2017.

X. Li, J. Lowengrub, A. Rätz, and A. Voigt, Solving pdes in complex geometries: a diffuse domain approach, Communications in mathematical sciences, vol.7, issue.1, p.81, 2009.

A. Guittet, M. Lepilliez, S. Tanguy, and F. Gibou, Solving elliptic problems with discontinuities on irregular domains-the voronoi interface method, Journal of Computational Physics, vol.298, pp.747-765, 2015.

A. Guittet, M. Theillard, and F. Gibou, A stable projection method for the incompressible navier-stokes equations on arbitrary geometries and adaptive quad/octrees, Journal of Computational Physics, vol.292, pp.215-238, 2015.

A. J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, vol.135, issue.2, pp.118-125, 1997.

F. Losasso, F. Gibou, and R. Fedkiw, Simulating water and smoke with an octree data structure, ACM Transactions on Graphics (TOG), vol.23, pp.457-462, 2004.

S. Popinet, Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries, Journal of Computational Physics, vol.190, issue.2, pp.572-600, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01445436

Z. Li and C. Wang, A fast finite differenc method for solving navierstokes equations on irregular domains, Communications in Mathematical Sciences, vol.1, issue.1, pp.180-196, 2003.

E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, Journal of computational physics, vol.161, issue.1, pp.35-60, 2000.

M. A. Olshanskii, K. M. Terekhov, and Y. V. Vassilevski, An octreebased solver for the incompressible navier-stokes equations with enhanced stability and low dissipation, Computers & Fluids, vol.84, pp.231-246, 2013.

A. Mcadams, E. Sifakis, and J. Teran, A parallel multigrid poisson solver for fluids simulation on large grids, Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp.65-74, 2010.

R. A. Finkel and J. L. Bentley, Quad trees a data structure for retrieval on composite keys, Acta Informatica, vol.4, issue.1, pp.1-9, 1974.

S. F. Frisken and R. N. Perry, Simple and efficient traversal methods for quadtrees and octrees, Journal of Graphics Tools, vol.7, issue.3, pp.1-11, 2002.

A. Angelo, A brief introduction to quadtrees and their applications

H. Samet, Design and Implementation of Large Spatial Databases, pp.191-212, 1990.

H. Samet, An overview of quadtrees, octrees, and related hierarchical data structures, Theoretical Foundations of Computer Graphics and CAD, pp.51-68, 1988.

M. R. Lattanzi, Table-driven quadtree traversal algorithms, 1989.

H. Samet, The quadtree and related hierarchical data structures, ACM Computing Surveys (CSUR), vol.16, issue.2, pp.187-260, 1984.

E. Balaras and M. Vanella, Adaptive mesh refinement strategies for immersed boundary methods, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, p.162, 2009.

P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D. Teresco, Dynamic octree load balancing using space-filling curves, 2003.

T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer, Spacefilling curves and their use in the design of geometric data structures, Theoretical Computer Science, vol.181, issue.1, pp.3-15, 1997.

G. M. Morton, A computer oriented geodetic data base and a new technique in file sequencing, International Business Machines Company, 1966.

C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing, vol.33, issue.3, pp.1103-1133, 2011.

D. Causon and C. Mingham, Introductory finite difference methods for PDEs. Bookboon, 2010.

D. N. Arnold, Lecture notes on numerical analysis of partial differential equations, 2012.

R. J. Leveque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM, 2007.

R. E. White, Computational Mathematics: Models, Methods, and Analysis with MATLAB R and MPI, vol.35, 2015.

M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of computational Physics, vol.82, issue.1, pp.64-84, 1989.
DOI : 10.1016/0021-9991(89)90035-1

URL : https://zenodo.org/record/1253914/files/article.pdf

M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, Journal of computational Physics, vol.53, issue.3, pp.484-512, 1984.

O. V. Vasilyev, High order finite difference schemes on non-uniform meshes with good conservation properties, Journal of Computational Physics, vol.157, issue.2, pp.746-761, 2000.

F. Ham, F. Lien, and A. Strong, A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids, Journal of Computational Physics, vol.177, issue.1, pp.117-133, 2002.

K. W. Morton and D. F. Mayers, Numerical solution of partial differential equations: an introduction, 2005.

D. N. Arnold, Stability, consistency, and convergence of numerical discretizations, Encyclopedia of Applied and Computational Mathematics, pp.1358-1364, 2015.

P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations, Communications on pure and applied mathematics, vol.9, issue.2, pp.267-293, 1956.

M. Kadri, Analysis of the nine-point finite difference approximation for the heat conduction equation in a nuclear fuel element, 1983.

Z. Chen, D. Cheng, W. Feng, and T. Wu, An optimal 9-point finite difference scheme for the helmholtz equation with pml, vol.10, pp.389-410, 2013.

C. Jo, C. Shin, and J. H. Suh, An optimal 9-point, finite-difference, frequency-space, 2-d scalar wave extrapolator, Geophysics, vol.61, issue.2, pp.529-537, 1996.

C. Batty, A cell-centred finite volume method for the poisson problem on non-graded quadtrees with second order accurate gradients, Journal of Computational Physics, vol.331, pp.49-72, 2017.

M. Cisternino, A. Iollo, L. Weynans, A. Colin, and P. Poulin, Electrostrictive materials: modelling and simulation, Computational Methods in Applied Sciences and Engineering, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01411132

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.

G. Carbou and P. Fabrie, Boundary layer for a penalization method for viscous incompressible flow, Advances in Differential Equations, vol.8, pp.1453-1480, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00295077

F. Chantalat, C. Bruneau, C. Galusinski, and A. Iollo, Levelset, penalization and cartesian meshes: A paradigm for inverse problems and optimal design, Journal of Computational Physics, vol.228, issue.17, pp.6291-6315, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00385460

S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune et al., , 2014.

R. W. Freund, G. H. Golub, and N. M. , Iterative solution of linear systems, Acta numerica, vol.1, pp.57-100, 1992.

K. Morikuni, L. Reichel, and K. Hayami, Fgmres for linear discrete illposed problems, Applied Numerical Mathematics, vol.75, pp.175-187, 2014.

Y. Saad, A flexible inner-outer preconditioned gmres algorithm, SIAM Journal on Scientific Computing, vol.14, issue.2, pp.461-469, 1993.

V. Voller, An overview of numerical methods for solving phase change problems, Advances in numerical heat transfer, vol.1, pp.341-380, 1997.

F. Jelassi, M. Aza¨?ezaza¨?ez, and E. Barrio, A substructuring method for phase change modelling in hybrid media, Computers and Fluids, vol.88, issue.Complete, pp.81-92, 2013.

X. Jin, H. Hu, X. Shi, X. Zhou, and X. Zhang, Comparison of two numerical heat transfer models for phase change material board, Applied Thermal Engineering, 2017.

V. Voller, Fast implicit finite-difference method for the analysis of phase change problems, Numerical Heat Transfer, vol.17, issue.2, pp.155-169, 1990.

V. Voller and C. Swaminathan, Eral source-based method for solidification phase change, Numerical Heat Transfer, vol.19, issue.2, pp.175-189, 1991.

T. Kim, D. M. France, W. Yu, W. Zhao, and D. Singh, Heat transfer analysis of a latent heat thermal energy storage system using graphite foam for concentrated solar power, Solar Energy, vol.103, pp.438-447, 2014.

J. Brusche, A. Segal, C. Vuik, and H. Urbach, A comparison of enthalpy and temperature methods for melting problems on composite domains, Numerical Mathematics and Advanced Applications, pp.585-592, 2006.

P. Giménez, A. Jové, C. Prieto, and S. Fereres, Effect of an increased thermal contact resistance in a salt pcm-graphite foam composite tes system, Renewable Energy, vol.106, pp.321-334, 2017.

Z. Acem, J. Lopez, and E. P. Barrio, Kno 3/nano 3-graphite materials for thermal energy storage at high temperature: Part i.elaboration methods and thermal properties, Applied Thermal Engineering, vol.30, issue.13, pp.1580-1585, 2010.

.. .. Composite,

. The-ps10-solar-power-plant and . Solar-sevilla, Spain 2 7 Tank containing the PCM and a section of the material

. .. Simplified-domain-example, 3 9 Empty layer generated by the loss of volume in liquid state

. , An example of a triangular mesh

. , Non-conforming interface passing through unstructured (triangular) mesh

. .. , 18 1.5 llustration of the procedure for generating a Voronoi diagram based computational mesh

, Quadree image representations: example of union, p.26

. .. , 27 2.3 Construction of a quadtree for a square domain with an internal subdomain

, Hilbert filling curve ordering on quadree data structure, p.30

, Gray code filling curve ordering on quadtree data structure, p.30

, Morton filling curve ordering on quadtree data structure, p.30

, Internal Morton code of an octant through faces and vertices, p.31

, Morton filling curve ordering on octree data structure, p.31

, Creation of Morton index by binary interleaving, p.32

. Computing-morton-code,

. Computing-morton-code,

. Computing-morton-code,

. .. , 35 2.14 A parallel partition of a structured grid and its global indexing along the cores intersections, Surface indices vs. number of processes: four tests

, 3D PETSc operator matrix draw. 36128 points, octree level 6, p.36

, A parallel partition of a structured grid on 16 cores, p.37

, Possible neighbourhood cases through a face, p.39

. , Identifying a configuration

. , Uniform mesh

, A two dimensional nodes centred discretization, p.52

. .. Test-quadtree-configuration, 53 3.4 Uniform mesh configuration. The weights are enumerated following the internal Z-Order of a 0 through faces, then through vertices

. , 62 4.3 Examples of error distribution on a grid corresponding to two different levels. Simple repeat test configuration for each level of refinement

.. .. Diamond,

, Error distribution example. Unbalanced case mesh, p.67

, Error distribution example, level 8, sinus analytical function, p.68

. .. , 69 4.9 Distribution of error on a AMR following a central sphere with radius 0.15

, Section of the domain studying the residual, p.71

. , Distribution of error around and inside the sphere. Tree's levels 9 inside and 6 outside

, Distribution of error around and inside the sphere. Tree's levels 9 inside and 6 outside, p.75

, Zoom of error near the penalized spherical zone, p.76

, Approximated boundary conditions convergence study, p.77

. , Error distribution when Dirichlet condition is imposed on a circle of radius 0

. , Zoom of the error next to the circle

. , 82 4.22 Numerical result obtained on uniform mesh

. , Levels 8 and 9 of the AMR along the mollification with uniform mesh outside at level 7

, Comparison between uniform and AMR resolutions, p.86

, Time comparison for different parallel cases (strong scalability, p.91

, Time partition for a complete execution. 48 cores distributed on 2 nodes. Total execution time 29 sec(s), p.92

, Time comparison for different parallel cases (weak scalability, p.93

, Empty layers generated by the liquid phase, p.98

. , Hybrid media simplified domain

, One dimensional sub-interval containing the fictitious layer, p.99

. .. , 103 5.5 Boundary layer zone behaviour in order with the level of refinement, Double mollified function ?( x) from 1 to 10

, 105 5.7 Numerical domain, host media containing three PCM capsules, p.110

. , Propagation front of temperature u f in time and liquid fraction, vol.113

, Liquid fraction propagation front: three capsules, p.113

, Liquid fraction propagation front: six capsules, p.114

, u f propagation front for three capsules case, p.114

. .. , u f propagation front for six capsules case, p.115

.. .. , 117 List of Tables 4.1 Error norms and order of the scheme. Proof of consistency.. 63 4.2 Error norms and order of the scheme. A second proof of consistency, vol.115

, Error norms and order. Unbalanced mesh, p.67

, Error norms and order. Unbalanced circle mesh, p.68

.. .. Study,

. , Errors of Laplacian resolution AMR in a sphere. Two-dimensional sinus function

. , Errors of Laplacian resolution AMR in a sphere. Three-dimensional sinus function

. , Error norms and order of the scheme

. .. , 80 4.14 Convergence results. Difference between AMR along the mollification and external mesh: five levels, Times

, Convergence results with ? = ?x

). .. , , vol.104