B. Belzunces, S. Hoyau, M. Benoit, N. Tarrat, and F. Bessac, Additional Supporting Information may be, vol.38, pp.133-143, 2017.

J. Ahlers, F. Stock, and B. Werschkun, Environ. Sci. Pollut. Res, vol.15, p.656, 2008.

, European Council Regulation 793/93/EEC on the evaluation and control of risks of existing substances, p.161, 1993.

D. C. Muir and P. H. Howard, Environ. Sci. Technol, p.7157, 2006.

D. J. Kyle, Photochem. Photobiol, p.107, 1985.

J. Hirschberg and L. E. Mcintosh, Science, vol.222, p.1346, 1983.

M. S. Mills and E. M. Thurman, Environ. Sci. Technol, vol.28, p.600, 1994.

E. M. Thurman, D. A. Goolsby, M. T. Meyer, M. S. Mills, M. L. Pomes et al., Environ. Sci. Technol, 1992.

L. Cornejo, R. Celis, C. Dominguez, M. C. Hermosin, and J. Cornejo, Appl. Clay Sci, vol.42, p.284, 2008.

M. C. Hermosin and J. Cornejo, J. Environ. Quality, vol.22, p.325, 1993.

P. Benoit, E. Barriuso, S. Houot, and R. Calvet, Eur. J. Soil Sci, p.567, 1996.

P. Benoit, I. Madrigal, C. M. Preston, C. Chenu, and E. Barriuso, Eur. J. Soil Sci, p.178, 2008.

L. Mamy, E. Barriuso, and B. Gabrielle, Pest Manag. Sci, p.905, 2005.

T. M. Ward and J. B. Weber, J. Agric. Food Chem, p.959, 1968.

D. S. Brown and E. W. Flagg, J. Environ. Quality, vol.10, p.382, 1981.

C. Macbean, ver. 5.1; British Crop Protection Council

B. Minisini and F. Tsobnang, Appl. Surf. Sci, 2005.

D. Tunega, B. A. Goodman, G. Haberhauer, T. G. Reichenauer, M. H. Gerzabek et al., Clays Clay Miner, vol.55, p.220, 2007.

J. P. Prates-ramalho, A. V. Dordio, and A. J. Carvalho, Adsorption, p.937, 2013.

D. Tunega, M. H. Gerzabek, G. Haberhauer, and H. Lischka, Eur. J. Soil Sci, vol.58, p.680, 2007.

V. K. Voora, W. A. Al-saidi, and K. D. Jordan, J. Phys. Chem. A, p.9695, 2011.

L. Gorb, R. Lutchyn, Y. Zub, D. Leszczynska, and J. Leszczynski, J. Mol. Struct. THEOCHEM, p.151, 2006.

D. R. Katti, P. Ghosh, S. Schmidt, and K. S. Katti, Biomacromolecules, vol.6, p.3276, 2005.

A. Rennig, A. Slutter, and L. Tribe, Int. J. Quantum Chem, p.538, 2008.

T. L. Robinson, A. Michalkov, L. Gorb, and J. Leszczynski, Studies in hydrogen-bonded systems-A collection of Invited Papers in honour of Professor Lucjan Sobcyk, on the occasion of his 80th Birthday, vol.48, pp.844-845, 2007.

S. P. Newman, T. D. Cristina, P. V. Coveney, and W. Jones, Langmuir, vol.18, p.2933, 2002.

L. Aristilde, B. Lanson, and L. Charlet, Langmuir, vol.29, p.4492, 2013.

S. Pirillo, C. R. Luna, I. Opez-corral, A. Juan, and M. J. Avena, J. Phys. Chem. C, p.16082, 2015.

A. Michalkova, T. L. Robinson, and J. Leszczynski, Phys. Chem. Chem. Phys, p.7862, 2011.

K. E. Adraa, V. Timon, J. F. Lambert, A. R. Al-rabaa, F. Jaber et al., J. Phys. Chem. C, p.26414, 2012.

P. Mignon, P. Geerlings, and R. Schoonheydt, J. Phys. Chem. C, p.12376, 2007.

P. Mignon and M. Sodupe, Phys. Chem. Chem. Phys, vol.14, p.945, 2012.

P. Mignon and M. Sodupe, J. Phys. Chem. C, p.26179, 2013.

P. Mignon, P. Ugliengo, and M. Sodupe, J. Phys. Chem. C, p.13741, 2009.

P. Mignon, P. Ugliengo, M. Sodupe, and E. R. Hernandez, Phys. Chem. Chem. Phys, p.688, 2010.

V. Aggarwal, Y. Y. Chien, and B. J. Teppen, Eur. J. Soil Sci, vol.58, p.945, 2007.

V. Aggarwal, H. Li, and B. Teppen, J. Environ. Toxicol. Chem, p.392, 2006.

P. Clausen, W. Andreoni, A. Curioni, E. Hughes, and C. J. Plummer, J. Phys. Chem. C, p.15218, 2009.

P. Clausen, W. Andreoni, A. Curioni, E. Hughes, and C. J. Plummer, J. Phys. Chem. C, p.12293, 2009.

F. Bessac and S. Hoyau, Comput. Theor. Chem, issue.6, p.1022, 2013.

F. Bessac and S. Hoyau, Comput. Theor. Chem, p.284, 2011.

D. Marx and J. Hutter, Modern Methods and Algorithms of Quantum Chemistry

J. Grotendorst, Forschungszentrum J? ulich, pp.301-449, 2000.

D. Marx and J. Hutter, Ab Initio Molecular Dynamics, 2009.

W. Andreoni and A. Curioni, Parallel Comput, vol.26, p.819, 2000.

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett, p.3865, 1996.

N. Troullier and J. L. Martins, Phys. Rev. B, p.43, 1991.

L. Kleinman and D. M. Bylander, Phys. Rev. Lett, p.1425, 1982.

S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B, p.1738, 1982.

H. J. Monkhorst and J. D. Pack, Phys. Rev. B, p.5188, 1976.

S. Grimme, J. Comput. Chem, p.1787, 2006.

F. L. Hirshfeld, Theor. Chim. Acta, vol.44, p.129, 1977.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., Gaussian 03, Revision C.02, 2004.

R. Wardle and G. W. Brindley, Am. Mineral, vol.57, p.732, 1972.

D. Tunega, T. Bucko, and A. Zaoui, J. Chem. Phys, p.114105, 2012.

R. Servien, L. Mamy, Z. Li, V. Rossard, E. Latrille et al., Chemosphere, vol.111, p.613, 2014.

S. Tandon, S. Kumar, and N. K. Sand, Development and validation of GC-ECD method for the determination of metamitron in soil, Int. J. Anal. Chem, vol.2015, pp.1-5, 2015.

C. Abbate, D. Borz?, `. Borz?`borz?, `. , P. Caboni et al., Behavior of fenhexamid in soil and water, J. Environ. Sci. Health Part B, vol.42, issue.7, pp.843-849, 2007.

Y. Wang, M. He, C. Zhang, S. Fan, J. Ma et al., Determination of multiresidual fungicides in environmental water samples by high performance liquid chromatography tandem mass spectrometry, Chin, J. Anal. Chem. (Chinese Version), vol.40, issue.11, pp.1764-1771, 2013.

U. Schulte-oehlmann, J. Oehlmann, and F. Keil, Before the curtain falls: endocrineactive pesticides-a german contamination legacy, Reviews of Environmental Contamination and Toxicology, pp.137-159, 2011.

F. A. Esteve-turrillas, A. Abad-fuentes, and J. V. Mercader, Determination of fenhexamid residues in grape must, kiwifruit, and strawberry samples by enzyme-linked immunosorbent assay, Food Chem, vol.124, issue.4, pp.1727-1733, 2011.

L. Mamy and E. Barriuso, Desorption and time-dependent sorption of herbicides in soils, Eur. J. Soil Sci, vol.58, issue.1, pp.174-187, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01191964

G. Sheng, C. T. Johnston, B. J. Teppen, and S. A. Boyd, Adsorption of dinitrophenol herbfrom water by montmorillonites, Clays Clay Miner, vol.50, issue.1, pp.25-34, 2002.

V. Aggarwal, H. Li, and B. J. Teppen, Triazine adsorption by saponite and beidellite clay minerals, Environ. Toxicol. Chem, vol.25, issue.2, p.392, 2006.

D. Tunega, M. H. Gerzabek, G. Haberhauer, and H. Lischka, Formation of 2,4-d complexes on montmorillonites-an ab initio molecular dynamics study, Eur. J. Soil Sci, vol.58, issue.3, pp.680-691, 2007.

D. Muñoz-santiburcio, J. Ortega-castro, C. Sainz-díaz, F. Huertas, and A. Hernández-laguna, Theoretical study of the adsorption of 2-nitro-1propanol on smectite surface models, J. Mol. Struct.: THEOCHEM, vol.912, issue.1-3, pp.95-104, 2009.

B. Belzunces, S. Hoyau, M. Benoit, N. Tarrat, and F. Bessac, Theoretical study of the atrazine pesticide interaction with pyrophyllite and Ca2+-montmorillonite clay surfaces, J. Comput. Chem, vol.38, issue.3, pp.133-143, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01483785

A. J. Aquino, D. Tunega, G. Haberhauer, M. H. Gerzabek, and H. Lischka, Adsorption of organic substances on broken clay surfaces: a quantum chemical study, J. Comput. Chem, vol.24, issue.15, pp.1853-1863, 2003.

P. Clausen, W. Andreoni, A. Curioni, E. Hughes, and C. J. Plummer, Adsorption of low-molecular-weight molecules on a dry clay surface: an ab initio study, J. Phys. Chem. C, vol.113, issue.28, pp.12293-12300, 2009.

S. V. Churakov and G. Kosakowski, An ab initio molecular dynamics study of hydronium complexation in na-montmorillonite, Phil. Mag, vol.90, pp.2459-2474, 2010.

A. Berghout, D. Tunega, and A. Zaoui, Density functional theory (DFT) study of the hydration steps of Na + /Mg 2+ /Ca 2+ /Sr 2+ /Ba 2+-Exchanged montmorillonites, Clays Clay Miner, vol.58, issue.2, pp.174-187, 2010.

P. Mignon, P. Ugliengo, M. Sodupe, and E. R. Hernandez, Ab initio molecular dynamics study of the hydration of Li + , Na + and K + in a montmorillonite model. Influence of isomorphic substitution, Phys. Chem. Chem. Phys, vol.12, issue.3, pp.688-697, 2010.

L. Sun, J. T. Tanskanen, J. T. Hirvi, S. Kasa, T. Schatz et al., Molecular dynamics study of montmorillonite crystalline swelling: roles of interlayer cation species and water content, Chem. Phys, vol.455, pp.23-31, 2015.

F. Salles, J. Douillard, O. Bildstein, S. E. Ghazi, B. Prélot et al., Diffusion of interlayer cations in swelling clays as a function of water content: case of montmorillonites saturated with alkali cations, J. Phys. Chem. C, vol.119, issue.19, pp.10370-10378, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01152139

P. Mignon, P. Ugliengo, and M. Sodupe, Theoretical study of the adsorption of RNA/DNA bases on the external surfaces of Na +-montmorillonite, J. Phys. Chem. C, vol.113, issue.31, pp.13741-13749, 2009.

P. Mignon and M. Sodupe, Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite, Phys. Chem. Chem. Phys, vol.14, issue.2, pp.945-954, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00877343

P. Mignon and M. Sodupe, Structural behaviors of cytosine into the hydrated interlayer of na þ-montmorillonite clay. An ab initio molecular dynamics study, J. Phys. Chem. C, vol.117, issue.49, pp.26179-26189, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00954677

A. Panebianco, I. Castello, G. Cirvilleri, G. Perrone, F. Epifani et al., Detection of botrytis cinerea field isolates with multiple fungicide resistance from table grape in sicily, Crop Prot, vol.77, pp.65-73, 2015.

E. E. Authority, Conclusion Regarding the Peer Review of the Pesticide Risk Assessment of the Active Substance Metamitron

B. Cropscience, Bayer Cropscience fiche de données de sécurité conformément au réglement (ce) no, 1907.

E. E. Authority, Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Fenhexamid

R. Calvet, Le sol: propriétés et fonctions, Editions France Agricole, vol.1, 2003.

R. Calvet and L. Sol, Agriproduction: univers agricole, 2013.

F. Bessac and S. Hoyau, Pesticide interaction with environmentally important cations: a theoretical study of atrazine, Comput. Theor. Chem, vol.966, issue.1-3, pp.284-298, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00871266

F. Bessac and S. Hoyau, Pesticide interaction with environmentally important cations: a theoretical study of atrazine in interaction with two Ca 2+ cations, Comput. Theor. Chem, vol.1022, pp.6-13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00941802

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/physrev.140.a1133

URL : http://link.aps.org/pdf/10.1103/PhysRev.140.A1133

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/physrevlett.77.3865

, Copyright MPI für Festkörperforschung Stuttgart, 1990.

N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, vol.43, issue.3, 1991.
DOI : 10.1103/physrevb.43.1993

G. J. Martyna and M. E. Tuckerman, A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters, J. Chem. Phys, vol.110, issue.6, p.2810, 1999.

R. Car and M. Parrinello, Unified approach for molecular dynamics and densityfunctional theory, Phys. Rev. Lett, vol.55, issue.22, pp.2471-2474, 1985.
DOI : 10.1103/physrevlett.55.2471

URL : http://link.aps.org/pdf/10.1103/PhysRevLett.55.2471

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2009.

M. M. Francl, Self-consistent molecular orbital methods. XXIII. A polarizationtype basis set for second-row elements, J. Chem. Phys, vol.77, issue.7, p.3654, 1982.

J. Blaudeau, M. P. Mcgrath, L. A. Curtiss, and L. Radom, Extension of gaussian-2 (g2) theory to molecules containing third-row atoms k and ca, J. Chem. Phys, vol.107, issue.13, 1997.

A. D. Mclean and G. S. Chandler, Contracted gaussian basis sets for molecular calculations. I. Second row atoms, J. Chem. Phys, vol.72, issue.10, p.5639, 1980.

S. Boys and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors, Mol. Phys, vol.19, issue.4, pp.553-566, 1970.

B. Belzunces, Computational and Theoretical Chemistry, vol.1117, pp.220-234, 2017.

W. J. Stevens and W. H. Fink, Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer, Chem. Phys. Lett, vol.139, issue.1, pp.15-22, 1987.

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon et al., General atomic and molecular electronic structure system, J. Comput. Chem, vol.14, issue.11, pp.1347-1363, 1993.

M. S. Gordon and M. W. Schmidt, Theory and Applications of Computational Chemistry, pp.1167-1189, 2005.

K. Morokuma, Molecular orbital studies of hydrogen bonds, J. Chem. Phys, vol.55, issue.3, p.1236, 1971.

M. A. Wilson and D. Chandler, Molecular dynamics study of cyclohexane interconversion, Chem. Phys, vol.149, issue.1-2, p.80127, 1990.

M. Squillacote, R. S. Sheridan, O. L. Chapman, and F. A. Anet, Spectroscopic detection of the twist-boat conformation of cyclohexane. Direct measurement of the free energy difference between the chair and the twistboat, J. Am. Chem. Soc, vol.97, issue.11, pp.3244-3246, 1975.

A. C. Van-duin, S. Dasgupta, F. Lorant, and W. A. Goddard, Reaxff: a reactive force field for hydrocarbons, J. Phys. Chem. A, vol.105, issue.41, pp.9396-9409, 2001.

M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk et al., Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B, vol.58, pp.7260-7268, 1998.

B. Belzunces, Computational and Theoretical Chemistry, vol.1117, pp.220-234, 2017.

, trois sont communesàcommunes`communesà Na + et Ca 2+. De plus, l'ordre des familles dépend de la base : PBE/basis2 doitêtredoitêtre utilisée pour retrouver le bon ordré energétique

+. Dans-le-cas-de-na, . Le-site-de-complexation-privilégié-implique-l'oxygène-du-carbonyle, and . Le-chlore-le-plus-proche, Pour Ca 2+ , une complexation sur l'oxygène du carbonyle et le système ? du phényle substitué est plus favorable (comme pour Meta). Enfin, la basè a une influence non négligeable même sur les géométries, en particulier pour les complexes avec le calcium. Afin de réduire la BSSE et de traiter correctement la contribution du transfert de charge (Charge Transfer (CT) en Anglais), la basis2 doitêtredoitêtre utilisée. Pour Fen-(cation) 2 , de nombreux isomères ontétéontété optimisés pour lesquels les sites de complexation ne

, L'ordré energétique des familles est le même pour Na + et Ca 2+ (comme pour Meta)

, L'isomère le plus bas enénergieenénergie implique dans les deux cas une interaction bidentate sur l'oxygène de l'hydroxyle et le chlore le plus proche, et une interaction monodentate du second cation sur l'oxygène du carbonyle

, Pour des délocalisations totalement brisées dans la famille CO-Phe, les cadres ontétéontété colorés en violet. Audeì a de la limite matérialisée par la ligne pointillée, Résumé Figure 15: Les principaux isomères de bassesénergiesbassesénergies du fenhexamide avec un cation Ca 2+

, LesénergiesLesénergies relatives (` a gauche) et de préparation (` a droite) sont présentées en kcal/mol aux niveaux PBE/basis1 et PBE/basis2 (en italique). Les distances sont enÅenÅ et lesdì edres en degrés (en gras) au niveau PBE/basis1. Pour les isomères les plus bas de chaque famille, Résumé Figure 17: Les principaux isomères de bassesénergiesbassesénergies du fenhexamide avec deux cations Ca 2+

, La coordonnée de réaction choisie ne peut pas discriminer ces deux chemins possibles. Le profil d'´ energie libre le long de cette coordonnée, a ´ eté obtenu pour 14 ? ? z(com) ? 20 Bohr, et correspondàspondà l'insertion de molécules d'eau entre le pesticide et la surface. Dans Well 1, le cation complexé (Ca1) est en interaction avec 2 H 2 O. Ensuite, deuxbarrì eres ´ energétiques ? 3, 0 et 4,5 kcal/mol ontétéontété franchies et ont permis d'explorer deux puits, Résumé deux processus de désorption peutêtrépeutêtré emise : une désorption de la molécule seule, ou bien une désorption du complexe pesticide-cation, vol.2

, Dans Well 1 et 2, la désorption de Fen-Ca 2+ est observée par inclusion d'eau

. Cependant, dans Well 3, l'interaction entre le pesticide et Ca 2+ est plus faible, ce dernier restant adsorbé sur la surface

, correspondantà Well 2, pourraient meneràmener`menerà la désorption de Fen-Ca 2+. Finalement, ces résultats mettent enévidence enévidence leprobì eme délicat du choix d'une coordonnée de réaction appropriée, particulì erement avec le coût extrêmementextrêmementélevé en ressources informatiques d'un Umbrella Sampling en CP/DFT, De plus amples recherches

G. Sposito, The chemistry of soils, 2008.

F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities

, Theoretica Chimica Acta, vol.44, issue.2, pp.129-138, 1977.

T. Reemtsma, L. Alder, and U. Banasiak, A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry, Journal of Chromatography A, vol.1271, issue.1, pp.95-104, 2013.

C. Moschet, L. M. Etiënne, H. Vermeirssen, C. Singer, J. Stamm et al., Evaluation of in-situ calibration of chemcatcher passive samplers for 322 micropollutants in agricultural and urban affected rivers, Water Research, vol.71, pp.306-317, 2015.

P. Janaki, S. Rathika, C. Chinnusamy, and N. K. Prabhakaran, Field dissipation of metamitron in soil and sugar beet crop, Bulletin of Environmental Contamination and Toxicology, vol.90, issue.1, pp.116-119, 2012.

F. Bessac and S. Hoyau, Pesticide interaction with environmentally important cations: A theoretical study of atrazine, Computational and Theoretical Chemistry, vol.966, issue.1-3, pp.284-298, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00871266

F. Bessac and S. Hoyau, Pesticide interaction with environmentally important cations: A theoretical study of atrazine in interaction with two Ca 2+ cations, Computational and Theoretical Chemistry, vol.1022, pp.6-13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00941802

N. Brunet, L. Guichard, B. Omon, N. Pingault, E. Pleyber et al., L'indicateur de fréquence de traitements (ift) : un indicateur pour une utilisation durable des pesticides. Courrier de l'environnement de l'INRA n°56, pp.131-141, 2008.

R. Servien, L. Mamy, Z. Li, V. Rossard, E. Latrille et al., TyPol-a new methodology for organic compounds clustering based on their molecular characteristics and environmental behavior, Chemosphere, vol.111, pp.613-622, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00924015

H. Wold, Estimation of principal component and related models by iterative least squares, Multivariate Analysis

. York, , pp.391-420, 1966.

L. Eriksson, P. L. Andersson, E. Johansson, and M. Tysklind, Megavariate analysis of environmental QSAR data. part i-a basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD), Molecular Diversity, vol.10, issue.2, pp.169-186, 2006.

A. Mudhoo and V. K. Garg, Sorption, transport and transformation of atrazine in soils, minerals and composts: A review, Pedosphere, vol.21, issue.1, pp.11-25, 2011.

N. Sathiakumar, E. Delzell, and P. Cole, Mortality among workers at two triazine herbicide manufacturing plants, American Journal of Industrial Medicine, vol.29, issue.2, pp.143-151, 1996.

J. Sass and P. W. Brandt-rauf, Cancer incidence among triazine herbicide manufacturing workers, Journal of Occupational and Environmental Medicine, vol.45, issue.4, pp.343-344, 2003.

C. Hopenhayn-rich, M. L. Stump, and S. R. , Browning. Regional assessment of atrazine exposure and incidence of breast and ovarian cancers in kentucky, Archives of Environmental Contamination and Toxicology, vol.42, issue.1, pp.127-136, 2002.

D. P. Oliver, Y. Fong-pan, J. S. Anderson, T. F. Lin, R. S. Kookana et al., Sorption of pesticides by a mineral sand mining by-product, neutralised used acid (NUA), Science of The Total Environment, vol.442, pp.255-262, 2013.
DOI : 10.1016/j.scitotenv.2012.10.020

J. W. Simpkins, J. A. Swenberg, N. Weiss, D. Brusick, J. C. Eldridge et al., Atrazine and breast cancer: A framework assessment of the toxicological and epidemiological evidence, Toxicological Sciences, vol.123, issue.2, pp.441-459, 2011.

J. L. Rinsky, C. Hopenhayn, V. Golla, S. Browning, and H. M. Bush, Atrazine exposure in public drinking water and preterm birth
DOI : 10.1177/003335491212700108

URL : http://europepmc.org/articles/pmc3234399?pdf=render

, Public Health Reports, vol.127, issue.1, pp.72-80, 2012.

C. Villanueva, Atrazine in municipal drinking water and risk of low birth weight, preterm delivery, and small-for-gestational-age status. Occupational and Environmental Medicine, vol.62, pp.400-405, 2005.

R. Munger, . Isacson, . Hu, . Burns, C. Hanson et al., Intrauterine growth retardation in iowa communities with herbicide-contaminated drinking water supplies, Environmental Health Perspectives, vol.105, issue.3, pp.308-314, 1997.
DOI : 10.2307/3433268

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470002/pdf/envhper00316-0054.pdf

H. Ochoa-acuña and J. Frankenberger, Leighanne Hahn, and Cristina Carbajo. Drinking-water herbicide exposure in indiana and prevalence of smallBibliography for-gestational-age and preterm delivery, Environmental Health Perspectives, vol.117, issue.10, pp.1619-1624, 2009.

D. Paul, J. Winchester, J. Huskins, and . Ying, Agrichemicals in surface water and birth defects in the united states, Acta Paediatrica, vol.98, issue.4, pp.664-669, 2009.

L. T. Wetzel, L. G. Luempert, C. B. Breckenridge, M. O. Tisdel, J. T. Stevens et al., Chronic effects of atrazine on estrus and mammary tumor formation in female sprague-dawley and fischer 344 rats, Journal of Toxicology and Environmental Health, vol.43, issue.2, pp.169-182, 1994.

J. , C. Eldridge, L. T. Wetzel, J. T. Stevens, and J. W. Simpkins, The mammary tumor response in triazine-treated female rats: A threshold-mediated interaction with strain and species-specific reproductive senescence, Steroids, vol.64, issue.9, pp.672-678, 1999.

R. L. Cooper, Atrazine disrupts the hypothalamic control of pituitary-ovarian function, Toxicological Sciences, vol.53, issue.2, pp.297-307, 2000.

T. E. Stoker, The effect of atrazine on puberty in male wistar rats: An evaluation in the protocol for the assessment of pubertal development and thyroid function

, Toxicological Sciences, vol.58, issue.1, pp.50-59, 2000.

S. C. Laws, The effects of atrazine on female wistar rats: An evaluation of the protocol for assessing pubertal development and thyroid function, Toxicological Sciences, vol.58, issue.2, pp.366-376, 2000.

C. D. Foradori, L. R. Hinds, W. H. Hanneman, M. E. Legare, C. M. Clay et al., Atrazine inhibits pulsatile luteinizing hormone release without altering pituitary sensitivity to a gonadotropin-releasing hormone receptor agonist in female wistar rats1, Biology of Reproduction, vol.81, issue.1, pp.40-45, 2009.

C. D. Foradori, A. D. Zimmerman, L. R. Hinds, K. L. Zuloaga, C. B. Breckenridge et al., Atrazine inhibits pulsatile gonadotropin-releasing hormone (GnRH) release without altering GnRH messenger RNA or protein levels in the female rat1, Biology of Reproduction, vol.88, issue.1, 2013.

K. Pogrmic-majkic, S. Fa, V. Dakic, S. Kaisarevic, and R. Kovacevic, Upregulation of peripubertal rat leydig cell steroidogenesis following 24

, Bibliography h in vitro and in vivo exposure to atrazine, Toxicological Sciences, vol.118, issue.1, pp.52-60, 2010.

K. Pogrmic-majkic, D. Samardzija, S. Fa, J. Hrubik, B. Glisic et al., Atrazine enhances progesterone production through activation of multiple signaling pathways in FSH-stimulated rat granulosa cells: Evidence for premature luteinization1, Biology of Reproduction, vol.91, issue.5, 2014.

K. R. Solomon, D. B. Baker, R. P. Richards, K. R. Dixon, S. J. Klaine et al., Ecological risk assessment of atrazine in north american surface waters, Environmental Toxicology and Chemistry, vol.15, issue.1, pp.31-76, 1996.

T. B. Hayes, A. Collins, M. Lee, M. Mendoza, N. Noriega et al., Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses, Proceedings of the National Academy of Sciences, vol.99, issue.8, pp.5476-5480, 2002.

J. A. Mclachlan, E. Simpson, and M. Martin, Endocrine disrupters and female reproductive health, Best Practice & Research Clinical Endocrinology & Metabolism, vol.20, issue.1, pp.63-75, 2006.

K. R. Solomon, J. A. Carr, L. H. Du-preez, J. P. Giesy, R. J. Kendall et al., Effects of atrazine on fish, amphibians, and aquatic reptiles: A critical review, Critical Reviews in Toxicology, vol.38, issue.9, pp.721-772, 2008.

J. R. Rohr and K. A. Mccoy, A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians, vol.118, pp.20-32, 2009.

S. E. Wirbisky, G. J. Weber, K. E. Schlotman, M. S. Sepúlveda, and J. L. Freeman, Embryonic atrazine exposure alters zebrafish and human miRNAs associated with angiogenesis, cancer, and neurodevelopment, Food and Chemical Toxicology, vol.98, pp.25-33, 2016.

W. A. Battaglin, E. M. Thurman, S. J. Kalkhoff, and S. D. Porter, Herbicides and transformation products in surface waters of the midwestern united states, Journal of the American Water Resources Association, vol.39, issue.4, pp.743-756, 2003.

D. B. Barr, P. Panuwet, J. V. Nguyen, S. Udunka, and L. L. Needham, Assessing exposure to atrazine and its metabolites using biomonitoring

, Environmental Health Perspectives, 2007.

S. Jonathan-r-roy, T. R. Chakraborty, and . Chakraborty, Estrogen-like endocrine disrupting chemical affecting puberty in humans-review, vol.15, pp.137-182, 2009.

, The endocrine disruptor effect of the herbicides atrazine and glyphosate on biomphalaria alexandrina snails, Toxicology and Industrial Health, vol.32, issue.4, pp.656-665, 2013.

Y. Jin, L. Wang, G. Chen, X. Lin, W. Miao et al., Exposure of mice to atrazine and its metabolite diaminochlorotriazine elicits oxidative stress and endocrine disruption, Environmental Toxicology and Pharmacology, vol.37, issue.2, pp.782-790, 2014.

M. Mao and L. Ren, Simulating nonequilibrium transport of atrazine through saturated soil, Ground Water, vol.42, issue.4, pp.500-508, 2004.

I. Anagu, J. Ingwersen, Y. Drori, B. Chefetz, and T. Streck, Modeling concentration-dependent sorption-desorption hysteresis of atrazine in a sandy loam soil, Journal of Environment Quality, vol.40, issue.2, p.538, 2011.

S. Rubin, I. Dror, and B. Berkowitz, Experimental and modeling analysis of coupled non-fickian transport and sorption in natural soils, Journal of Contaminant Hydrology, vol.132, pp.28-36, 2012.

J. Dusek, M. Dohnal, M. Snehota, M. Sobotkova, C. Ray et al., Transport of bromide and pesticides through an undisturbed soil column: A modeling study with global optimization analysis, Journal of Contaminant Hydrology, pp.175-176, 2015.

D. D. Giannouli and V. Z. Antonopoulos, Evaluation of two pesticide leaching models in an irrigated field cropped with corn, Journal of Environmental Management, vol.150, pp.508-515, 2015.

D. Djozan and B. Ebrahimi, Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: Application for GC and GC/MS screening of triazine herbicides in water, rice and onion, Analytica Chimica Acta, vol.616, issue.2, pp.152-159, 2008.

S. Maa-lgorzata-kica and . Ronka, The removal of atrazine from water using specific polymeric adsorbent, Separation Science and Technology, vol.49, issue.11, pp.1634-1642, 2014.

. Sylwia-ronka, H. Maa-lgorzata-kujawska, and . Ju´skiewiczju´skiewicz, Triazines removal by selective polymeric adsorbent, Pure and Applied Chemistry, vol.86, issue.11, 2014.

S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, and C. Colella, Atrazine adsorption by acid-activated zeolite-rich tuffs, Applied Clay Science, vol.49, issue.3, pp.330-335, 2010.

S. Tarek, . Jamil, A. Tarek, H. S. Gad-allah, T. S. Ibrahim et al., Adsorption and isothermal models of atrazine by zeolite prepared from egyptian kaolin

, Solid State Sciences, vol.13, issue.1, pp.198-203, 2011.

, Use of natural zeolites for organic compounds removal from water, pp.363-381, 2012.

H. P. Toledo-jaldin and A. Blanco-flores, Víctor Sánchez-Mendieta, and Osnieski Martín-Hernández. Influence of the chain length of surfactant in the modification of zeolites and clays. removal of atrazine from water solutions, Environmental Technology, pp.1-12, 2017.

X. M. Yan, B. Y. Shi, J. J. Lu, C. H. Feng, D. S. Wang et al., Adsorption and desorption of atrazine on carbon nanotubes, Journal of Colloid and Interface Science, vol.321, issue.1, pp.30-38, 2008.

G. Min, S. Wang, H. Zhu, G. Fang, and Y. Zhang, Multi-walled carbon nanotubes as solid-phase extraction adsorbents for determination of atrazine and its principal metabolites in water and soil samples by gas chromatography-mass spectrometry, Science of The Total Environment, vol.396, issue.1, pp.79-85, 2008.

B. Shi, X. Zhuang, X. Yan, J. Lu, and H. Tang, Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes, Journal of Environmental Sciences, vol.22, issue.8, pp.1195-1202, 2010.

N. Rambabu, C. A. Guzman, J. Soltan, and V. Himabindu, Adsorption characteristics of atrazine on granulated activated carbon and carbon nanotubes, Chemical Engineering & Technology, vol.35, issue.2, pp.272-280, 2012.

W. Tang, G. Zeng, J. Gong, Y. Liu, X. Wang et al., Simultaneous adsorption of atrazine and cu (II) from wastewater by magnetic multi-walled carbon nanotube, Chemical Engineering Journal, pp.470-478, 2012.

L. Zarpon, G. Abate, B. O. Luciana, J. C. Santos, and . Masini, Montmorillonite as an adsorbent for extraction and concentration of atrazine, propazine, deethylatrazine, deisopropylatrazine and hydroxyatrazine, Analytica Chimica Acta, vol.579, issue.1, pp.81-87, 2006.

G. Abate and J. C. Masini, Adsorption of atrazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine onto fe(III) polyhydroxy cations intercalated vermiculite and montmorillonite, Journal of Agricultural and Food Chemistry, vol.53, issue.5, pp.1612-1619, 2005.

A. Mark, D. A. Chappell, M. L. Laird, H. Thompson, B. J. Li et al., Influence of smectite hydration and swelling on atrazine sorption behavior, Environmental Science & Technology, vol.39, issue.9, pp.3150-3156, 2005.

B. L. Sawhney, Sorption of atrazine by al-and ca-saturated smectite, Clays and Clay Minerals, vol.45, issue.3, pp.333-338, 1997.

P. G. Edivaltrys-inayve-pissinati-de-rezende, W. Peralta-zamora, . De-figueiredo, C. Jardim, G. Vidal et al., Sorption and preconcentration of the herbicides atrazine, simazine, and ametryne on montmorillonite

, Analytical Letters, vol.46, issue.3, pp.439-451, 2013.

D. A. Laird, E. Barriuso, R. H. Dowdy, and W. C. Koskinen, Adsorption of atrazine on smectites, Soil Science Society of America Journal, vol.56, issue.1, p.62, 1992.

E. Barriuso, D. A. Laird, W. C. Koskinen, and R. H. Dowdy, Atrazine desorption from smectites, Soil Science Society of America Journal, vol.58, issue.6, p.1632, 1994.

T. P. Shabeer, A. Saha, V. T. Gajbhiye, S. Gupta, K. M. Manjaiah et al., Exploitation of nano-bentonite, nano-halloysite and organically modified nano-montmorillonite as an adsorbent and coagulation aid for the removal of multi-pesticides from water: A sorption modelling approach, Water, Air, & Soil Pollution, vol.226, issue.3, 2015.

G. Bia, P. I. Ortiz, V. Pfaffen, and L. Borgnino, Humic acid-fe(hydr)oxide composites supported on montmorillonite: Synthesis, characterization, and atrazine adsorption, Journal of Chemical & Engineering Data, vol.62, issue.11, pp.3793-3801, 2017.

S. Shishir-tandon, N. K. Kumar, and . Sand, Development and validation of GC-ECD method for the determination of metamitron in soil, International Journal of Analytical Chemistry, pp.1-5, 2015.

B. Coyette and F. Tencalla, Ivo Brants, Yann Fichet, and Denis Rouchouze. Effect of introducing glyphosate-tolerant sugar beet on pesticide usage in Europe. Pesticide Outlook, vol.13, pp.219-224, 2002.

R. Allen and A. Walker, The influence of soil properties on the rates of degradation of metamitron, metazachlor and metribuzin, Pesticide Science, vol.18, issue.2, pp.95-111, 1987.

F. Führ and W. Mittelstaedt, Effect of varying soil temperatures on the degradation of methabenzthiazuron, isocarbamid and metamitron. Zeitschrift für Pflanzenernährung und Bodenkunde, vol.142, pp.657-668, 1979.

L. Cox, M. C. Hermosin, and J. Cornejo, Sorption of metamitron on soils with low organic matter content, Chemosphere, vol.32, issue.7, pp.1391-1400, 1996.

P. Laitinen, K. Siimes, L. Eronen, S. Rämö, L. Welling et al., Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two finnish arable soils, Pest Management Science, vol.62, issue.6, pp.473-491, 2006.

S. Autio, K. Siimes, P. Laitinen, and S. Rämö, Seija Oinonen, and Liisa Eronen. Adsorption of sugar beet herbicides to finnish soils, Chemosphere, vol.55, issue.2, pp.215-226, 2004.

L. Mamy and E. Barriuso, Desorption and time-dependent sorption of herbicides in soils, European Journal of Soil Science, vol.58, issue.1, pp.174-187, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01191964

L. Cox, Photolysis of metamitron in water in the presence of soils and soil components, Chemosphere, vol.33, issue.10, pp.2057-2064, 1996.

W. Palm, M. Millet, and C. Zetzsch, Photochemical reactions of metamitron

, Chemosphere, vol.35, issue.5, pp.1117-1130, 1997.

D. Mijin, M. Savi´csavi´c, P. Sne?ana, A. Smiljani´csmiljani´c, O. Glava?ki et al., A study of the photocatalytic degradation of metamitron in ZnO water suspensions, Desalination, vol.249, issue.1, pp.286-292, 2009.

K. Macounová, . Urban, . Kr´ysovákr´ysová, . Kr´ysakr´ysa, J. Jirkovsk´yjirkovsk´y et al., Photodegradation of metamitron (4-amino-6-phenyl-3-methyl-1, 2, 4-triazin-5(4h)-one) on TiO2, Journal of Photochemistry and Photobiology A: Chemistry, vol.140, issue.1, pp.93-98, 2001.

C. Vischetti, C. Marucchini, C. Casucci, L. Leita, and G. Porzi, Transformation of metamitron in a sandy clay loam soil, Agronomie, vol.19, issue.6, pp.477-481, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00885946

C. Shiben, A. Debnath, . Kundu, K. Shyamal, T. K. Das et al., Toxicokinetics, recovery, and metabolism of metamitron in goat, Journal of Agricultural and Food Chemistry, vol.51, issue.20, pp.5977-5984, 2003.

D. Chanda, C. Shiben, . Debnath, K. Shyamal, T. K. Das et al., Metabolism of metamitron in goat following a single oral administration of a nontoxic dose level: A continued study, Journal of Agricultural and Food Chemistry, vol.52, issue.24, pp.7377-7381, 2004.

G. Engelhardt, W. Ziegler, P. R. Wollnofer, H. J. Jarczyk, and L. Oehlmann, Degradation of the triazinone herbicide metamitron by arthrobacter spec. DSM 20369, Journal of Agricultural and Food Chemistry, vol.30, issue.2, pp.278-282, 1982.

N. R. Parekh, A. Walker, S. J. Roberts, and S. J. Welch, Rapid degradation of the triazinone herbicide metamitron by a rhodococcus sp. isolated from treated soil, Journal of Applied Bacteriology, vol.77, issue.5, pp.467-475, 1994.

S. Wang, A. Miltner, and K. M. Nowak, Identification of degradation routes of metamitron in soil microcosms using 13c-isotope labeling, Environmental Pollution, vol.220, pp.927-935, 2017.

S. Wang, A. Miltner, M. Kästner, A. Schäffer, and K. M. Nowak, Transformation of metamitron in water-sediment systems: Detailed insight into the biodegradation processes, Science of The Total Environment, vol.578, pp.100-108, 2017.

C. Planas, J. Caixach, F. J. Santos, and J. Rivera, Occurrence of pesticides in spanish surface waters. analysis by high resolution gas chromatography coupled to mass spectrometry, Chemosphere, vol.34, issue.11, pp.2393-2406, 1997.

, Validation data of 127 pesticides using a multiresidue method by LC-MS/MS and GC-MS/MS in olive oil, 2011.

L. Mamy, E. Barriuso, and B. Gabrielle, Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops, Pest Management Science, vol.61, issue.9, pp.905-916, 2005.

T. Tuzimski, Application of RP-HPLC-diode array detector after SPE to the determination of pesticides in pepper samples, Journal of AOAC International, vol.95, issue.5, pp.1357-1361, 2012.

S. Kumar, S. Tandon, and N. K. Sand, Determination and method validation of metamitron in soil by RP-HPLC, Bulletin of Environmental Contamination and Toxicology, vol.92, issue.2, pp.165-168, 2013.

A. Sánchez-arribas, E. Bermejo, M. Chicharro, and A. Zapardiel, Voltammetric detection of the herbicide metamitron at a bismuth film electrode in nondeaerated solution, Electroanalysis, vol.18, issue.23, pp.2331-2336, 2006.

L. Renátarenáta?renáta?ele?ovská, J. Janíková, and . Ch´ylkovách´ylková, Green electrochemical sensors based on boron-doped diamond and silver amalgam for sensitive voltammetric determination of herbicide metamitron, Monatshefte für Chemie-Chemical Monthly, vol.146, issue.5, pp.795-805, 2014.

J. Moros, S. Armenta, S. Garrigues, and M. Guardia, Quality control of metamitron in agrochemicals using fourier transform infrared spectroscopy in the middle and near range, Analytica Chimica Acta, vol.565, issue.2, pp.255-260, 2006.

A. Panebianco, I. Castello, G. Cirvilleri, G. Perrone, F. Epifani et al., Detection of botrytis cinerea field isolates with multiple fungicide resistance from table grape in sicily, Crop Protection, vol.77, pp.65-73, 2015.

Y. Xing-jie-wang, Y. Sheng-tao, and . Wu, Rong yan An, and Zhuo ya Yue. Aroma compounds and characteristics of noble-rot wines of chardonnay grapes artificially botrytized in the vineyard, Food Chemistry, vol.226, pp.41-50, 2017.

M. Mari, S. Bautista-baños, and D. Sivakumar, Decay control in the postharvest system: Role of microbial and plant volatile organic compounds

, Postharvest Biology and Technology, vol.122, pp.70-81, 2016.

A. Gotor-vila, N. Teixidó, A. Di-francesco, J. Usall, L. Ugolini et al., Antifungal effect of volatile organic compounds produced by bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry, Food Microbiology, vol.64, pp.219-225, 2017.

A. Passera, G. Venturini, G. Battelli, P. Casati, F. Penaca et al., Competition assays revealed paenibacillus pasadenensis strain r16 as a novel antifungal agent, Microbiological Research, vol.198, pp.16-26, 2017.
DOI : 10.1016/j.micres.2017.02.001

URL : https://doi.org/10.1016/j.micres.2017.02.001

H. Calvo, P. Marco, D. Blanco, R. Oria, and M. E. Venturini, Potential of a new strain of bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases, Food Microbiology, vol.63, pp.101-110, 2017.

G. Elpiniki, . Amvrazi, T. Asimina, N. G. Papadi-psyllou, and . Tsiropoulos, Pesticide enrichment factors and matrix effects on the determination of multiclass pesticides in tomato samples by single-drop microextraction (SDME) coupled with gas chromatography and comparison study between SDME and acetone-partition extraction procedure, International Journal of Environmental Analytical Chemistry, vol.90, issue.3-6, pp.245-259, 2010.

P. Cabras, A. Angioni, V. L. Garau, F. M. Pirisi, F. Cabitza et al., Fenhexamid residues in grapes and wine, Food Additives and Contaminants, vol.18, issue.7, pp.625-629, 2001.
DOI : 10.1080/02652030110038054

G. Rose, S. Lane, and R. Jordan, The fate of fungicide and insecticide residues in australian wine grape by-products following field application, Food Chemistry, vol.117, issue.4, pp.634-640, 2009.

A. Francesc, A. Esteve-turrillas, J. V. Abad-fuentes, and . Mercader, Determination of fenhexamid residues in grape must, kiwifruit, and strawberry samples by enzyme-linked immunosorbent assay, Food Chemistry, vol.124, issue.4, pp.1727-1733, 2011.

M. Vukcevic, A. Kalijadis, M. Radisic, B. Pejic, M. Kostic et al., Application of carbonized hemp fibers as a new solid-phase extraction sorbent for analysis of pesticides in water samples, Chemical Engineering Journal, pp.224-232, 2012.

T. Rodríguez-cabo, M. Paganini, I. Carpinteiro, L. Fontenla, I. Rodríguez et al., Liquid chromatography time-of-flight mass spectrometry evaluation of fungicides reactivity in free chlorine containing water samples, Journal of Mass Spectrometry, vol.48, issue.2, pp.216-226, 2013.

G. Nicolini, T. R. Villegas, L. Tonidandel, S. Moser, and R. Larcher, Small amounts of charcoal during fermentation reduce fungicide residues without penalising white wine aroma compounds and colour, Australian Journal of Grape and Wine Research, vol.22, issue.3, pp.376-383, 2016.
DOI : 10.1111/ajgw.12227

A. Baglieri, S. Sidella, V. Barone, A. Silkina, M. Michèle-n`-egre et al., Cultivating chlorella vulgaris and scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water
DOI : 10.1007/s11356-016-6996-3

, Environmental Science and Pollution Research, vol.23, issue.18, pp.18165-18174, 2016.

T. Rodríguez-cabo, I. Rodríguez, M. Ramil, and R. Cela, Assessment of silicone as support to investigate the transformation routes of organic chemicals under environmental conditions and UV exposure. application to selected fungicides, Analytical and Bioanalytical Chemistry, vol.405, issue.12, pp.4187-4198, 2013.

F. Rivera-becerril, D. Van-tuinen, O. Chatagnier, N. Rouard, J. Béguet et al., Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of glomeromycota in two agricultural soils, Science of The Total Environment, vol.577, pp.84-93, 2017.

M. Vittoria-pinna, M. Budroni, G. A. Farris, and A. Pusino, Fenhexamid adsorption behavior on soil amended with wine lees, Journal of Agricultural and Food Chemistry, vol.56, issue.22, pp.10824-10828, 2008.

C. Abbate, D. Borz`borz`?, P. Caboni, A. Baglieri, and M. Gennari, Behavior of fenhexamid in soil and water, Journal of Environmental Science and Health, vol.42, issue.7, pp.843-849, 2007.

A. Baglieri, D. Borzí, and C. Abbate, Michéle Négre, and Mara Gennari. Removal of fenhexamid and pyrimethanil from aqueous solutions by clays and Bibliography organoclays, Journal of Environmental Science and Health, vol.44, issue.3, pp.220-225, 2009.

H. Jenny, The Soil Resource : Origin and Behavior, 1980.
DOI : 10.1097/00010694-198111000-00010

F. Bergaya, Handbook of clay science, 2006.

E. Lowenstein, Zeitschr. anorg. Chemie, vol.63, p.69, 1909.

S. Pérez-conesa, J. M. Martínez, and E. S. Marcos, Hydration and diffusion mechanism of uranyl in montmorillonite clay: Molecular dynamics using an ab initio potential, The Journal of Physical Chemistry C, vol.121, issue.49, pp.27437-27444, 2017.

B. Campos, J. Aguilar-carrillo, M. Algarra, A. Mário, E. Gonçalves et al., Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material, Applied Clay Science, vol.85, pp.53-63, 2013.
DOI : 10.1016/j.clay.2013.08.046

W. P. Li, X. Y. Han, X. Y. Wang, Y. Q. Wang, W. X. Wang et al., Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated na-montmorillonite composite, Chemical Engineering Journal, vol.279, pp.735-746, 2015.

P. Mignon, P. Ugliengo, M. Sodupe, and E. R. Hernandez, Ab initio molecular dynamics study of the hydration of Li + , Na + and K + in a montmorillonite model. Influence of isomorphic substitution, Phys. Chem. Chem. Phys, vol.12, issue.3, pp.688-697, 2010.

R. Wardle and G. W. Brindley, American Mineralogist, vol.57, pp.732-750, 1972.

B. Belzunces, S. Hoyau, M. Benoit, N. Tarrat, and F. Bessac, Theoretical study of the atrazine pesticide interaction with pyrophyllite and ca2+-montmorillonite clay surfaces, Journal of Computational Chemistry, vol.38, issue.3, pp.133-143, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01483785

K. Emmerich and G. Kahr, The cis-and trans-vacant variety of a montmorillonite: an attempt to create a model smectite, Applied Clay Science, vol.20, issue.3, pp.119-127, 2001.

T. Beermann and O. Brockamp, Structure analysis of montmorillonite crystallites by convergent-beam electron diffraction, Clay Minerals, vol.40, issue.1, pp.1-14, 2005.
DOI : 10.1180/0009855054010151

D. Tunega, B. A. Goodman, G. Haberhauer, T. G. Reichenauer, M. H. Gerzabek et al., Ab initio calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates, Clays and Clay Minerals, vol.55, issue.2, pp.220-232, 2007.

F. Salles, S. Devautour-vinot, O. Bildstein, M. Jullien, G. Maurin et al., Ionic mobility and hydration energies in montmorillonite clay, The Journal of Physical Chemistry C, vol.112, issue.36, pp.14001-14009, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00291645

F. Salles, J. Douillard, O. Bildstein, S. E. Ghazi, B. Prélot et al., Diffusion of interlayer cations in swelling clays as a function of water content: Case of montmorillonites saturated with alkali cations, The Journal of Physical Chemistry C, vol.119, issue.19, pp.10370-10378, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01152139

B. Rotenberg, Modélisation multi-´ echelles du comportement de l'eau et des ions dans les argiles, 2007.

B. Rotenberg, J. Morel, V. Marry, P. Turq, and N. Morel-desrosiers, On the driving force of cation exchange in clays: Insights from combined microcalorimetry experiments and molecular simulation, Geochimica et Cosmochimica Acta, vol.73, issue.14, pp.4034-4044, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00391354

M. Segad, B. Jönsson, T. Akesson, and B. Cabane, Ca/Na montmorillonite: Structure, forces and swelling properties, Langmuir, vol.26, issue.8, pp.5782-5790, 2010.

A. Meleshyn and C. Bunnenberg, Swelling of Na/Mg-montmorillonites and hydration of interlayer cations: A monte carlo study, The Journal of Chemical Physics, vol.123, issue.7, p.74706, 2005.

K. Vamsee, W. A. Voora, K. D. Al-saidi, and . Jordan, Density functional theory study of pyrophyllite and m-montmorillonites (m = li, na, k, mg, and ca): Role of dispersion interactions, The Journal of Physical Chemistry A, vol.115, issue.34, pp.9695-9703, 2011.

P. Boulet, H. C. Greenwell, S. Stackhouse, and P. V. Coveney, Recent advances in understanding the structure and reactivity of clays using electronic structure Bibliography calculations, Journal of Molecular Structure: THEOCHEM, vol.762, issue.1-3, pp.33-48, 2006.

T. J. Tambach, P. G. Bolhuis, J. M. Emiel, B. Hensen, and . Smit, Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states

, Langmuir, vol.22, issue.3, pp.1223-1234, 2006.

R. Steven, D. R. Schmidt, P. Katti, K. S. Ghosh, and . Katti, Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics, Langmuir, vol.21, issue.17, pp.8069-8076, 2005.

L. Sun, J. T. Tanskanen, J. T. Hirvi, S. Kasa, T. Schatz et al., Molecular dynamics study of montmorillonite crystalline swelling: Roles of interlayer cation species and water content, Chemical Physics, vol.455, pp.23-31, 2015.

A. Berghout, D. Tunega, and A. Zaoui, Density functional theory (DFT) study of the hydration steps of Na + /Mg 2+ /Ca 2+ /Sr 2+ /Ba 2+-Exchanged montmorillonites, Clays and Clay Minerals, vol.58, issue.2, pp.174-187, 2010.

C. G. Fonseca, G. S. De-carvalho, F. Wypych, R. Diniz, and A. A. Leitão, Na+ as a probe to structural investigation of dehydrated smectites using NMR spectra calculated by DFT, Applied Clay Science, vol.126, pp.132-140, 2016.

P. Mignon, P. Ugliengo, and M. Sodupe, Theoretical study of the adsorption of RNA/DNA bases on the external surfaces of Na +-montmorillonite

, J. Phys. Chem. C, vol.113, issue.31, pp.13741-13749, 2009.

P. Mignon and M. Sodupe, Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite, Phys. Chem. Chem. Phys, vol.14, issue.2, pp.945-954, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00877343

M. Evgeniy, W. A. Myshakin, . Saidi, N. Vyacheslav, R. T. Romanov et al., Molecular dynamics simulations of carbon dioxide intercalation in hydrated na-montmorillonite, The Journal of Physical Chemistry C, vol.117, issue.21, pp.11028-11039, 2013.

P. Mignon and M. Sodupe, Structural behaviors of cytosine into the hydrated interlayer of na +-montmorillonite clay. an ab initio molecular dynamics study, J. Phys. Chem. C, vol.117, issue.49, pp.26179-26189, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00954677

P. Clausen, W. Andreoni, A. Curioni, E. Hughes, and C. J. Plummer, Adsorption of low-molecular-weight molecules on a dry clay surface: An ab initio study, J. Phys. Chem. C, vol.113, issue.28, pp.12293-12300, 2009.

G. Sheng, C. T. Johnston, B. J. Teppen, and S. A. Boyd, Adsorption of dinitrophenol herbicides from water by montmorillonites, Clays and Clay Minerals, vol.50, issue.1, pp.25-34, 2002.

V. Aggarwal, H. Li, and B. J. Teppen, TRIAZINE ADSORPTION BY SAPONITE AND BEIDELLITE CLAY MINERALS. Environmental Toxicology and Chemistry, vol.25, issue.2, p.392, 2006.

D. Tunega, M. H. Gerzabek, G. Haberhauer, and H. Lischka, Formation of 2,4-d complexes on montmorillonites-an ab initio molecular dynamics study, Eur J Soil Science, vol.58, issue.3, pp.680-691, 2007.

V. Sergey, G. Churakov, and . Kosakowski, An ab initio molecular dynamics study of hydronium complexation in na-montmorillonite, Philosophical Magazine, vol.90, pp.2459-2474, 2010.

E. Schrödinger, Quantisierung als eigenwertproblem, Annalen der Physik, vol.384, issue.4, pp.361-376, 1926.

E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Physical Review, vol.28, issue.6, pp.1049-1070, 1926.

M. Born and R. Oppenheimer, Zur quantentheorie der molekeln, Annalen der Physik, vol.389, issue.20, pp.457-484, 1927.

D. R. Hartree, The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, issue.01, p.89, 1928.

W. Pauli, Z.Physik, vol.31, p.719, 1925.

J. C. Slater, Note on hartrees method, Physical Review, vol.35, issue.2, pp.210-211, 1930.

V. Fock, Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems, Zeitschrift fur Physik, vol.61, issue.1-2, pp.126-148, 1930.

E. Huckel, Zur quantentheorie der doppelbindung, Zeitschrift fur Physik, vol.60, issue.78, pp.423-456, 1930.

E. Huckel, Quantentheoretische beiträge zum benzolproblem, Zeitschrift für Physik, vol.70, issue.3-4, pp.204-286, 1931.

E. Huckel, Quanstentheoretische beiträge zum benzolproblem, Zeitschrift für Physik, vol.72, issue.5-6, pp.310-337, 1931.

E. Huckel, Quantentheoretische beiträge zum problem der aromatischen und ungesattigten verbindungen, III. Zeitschrift für Physik, vol.76, issue.9, pp.628-648, 1932.

J. C. Slater, Atomic shielding constants, Physical Review, vol.36, issue.1, pp.57-64, 1930.

S. F. Boys, Electronic wave functions. i. a general method of calculation for the stationary states of any molecular system, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.200, pp.542-554, 1063.

W. J. Hehre, R. F. Stewart, and J. A. Pople, Self-consistent molecular-orbital methods. i. use of gaussian expansions of slater-type atomic orbitals, The Journal of Chemical Physics, vol.51, issue.6, pp.2657-2664, 1969.

R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, Self-consistent molecular orbital methods. XX. a basis set for correlated wave functions, The Journal of Chemical Physics, vol.72, issue.1, pp.650-654, 1980.

C. C. Roothaan, New developments in molecular orbital theory, Reviews of Modern Physics, vol.23, issue.2, pp.69-89, 1951.

F. Coester, Bound states of a many-particle system, Nuclear Physics, vol.7, pp.421-424, 1958.

F. Coester and H. Kümmel, Short-range correlations in nuclear wave functions, Nuclear Physics, vol.17, pp.477-485, 1960.

J. Cizek and . Paldus, Coupled cluster approach, Physica Scripta, vol.21, issue.3-4, pp.251-254, 1980.

R. J. Bartlett, Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry, The Journal of Physical Chemistry, vol.93, issue.5, pp.1697-1708, 1989.

. Per-olov-löwdin, Quantum theory of many-particle systems. i. physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction, Physical Review, vol.97, issue.6, pp.1474-1489, 1955.

B. O. Roos, Lecture notes in quantum chemistry, 1992.

. Chr, M. S. Møller, and . Plesset, Note on an approximation treatment for manyelectron systems, Physical Review, vol.46, issue.7, pp.618-622, 1934.

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, vol.23, issue.05, pp.542-548, 1927.

E. Fermi, Un metodo statistico per la determinazione di alcune prioprietà dell'atomo, Rend. Accad. Naz. Lincei, vol.6, pp.602-607, 1927.

P. A. Dirac, Note on exchange phenomena in the thomas atom, Mathematical Proceedings of the Cambridge Philosophical Society, vol.26, issue.03, p.376, 1930.

E. Teller, On the stability of molecules in the thomas-fermi theory, Rend. Accad. Naz. Lincei, vol.34, issue.4, pp.627-630, 1962.

W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, 2015.

, Density Functional Theory (Nato Science Series B: (closed)), 1995.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, issue.3B, pp.864-871, 1964.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.

R. M. Martin, Electronic Structure: Basic Theory and Practical Methods

D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters, vol.45, issue.7, pp.566-569, 1980.

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, vol.23, pp.5048-5079, 1981.

F. Herman, J. P. Van-dyke, and I. B. Ortenburger, Improved statistical exchange approximation for inhomogeneous many-electron systems, Phys. Rev

. Lett, , vol.22, pp.807-811, 1969.

P. John, Y. Perdew, and . Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, vol.45, pp.13244-13249, 1992.

P. John, K. Perdew, and . Burke, Comparison shopping for a gradient-corrected density functional, International Journal of Quantum Chemistry, vol.57, issue.3, pp.309-319, 1996.

F. Sérgio, P. A. Sousa, M. Fernandes, and . Ramos, General performance of density functionals, The Journal of Physical Chemistry A, vol.111, issue.42, pp.10439-10452, 2007.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, pp.3098-3100, 1988.

C. Lee, W. Yang, and R. G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, pp.785-789, 1988.

P. John, W. Perdew, and . Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Physical Review B, vol.33, issue.12, pp.8800-8802, 1986.

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation

, Physical Review B, vol.46, issue.11, pp.6671-6687, 1992.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/physrevlett.77.3865

D. Tunega, T. Bu?ko, and A. Zaoui, Assessment of ten DFT methods in predicting structures of sheet silicates: Importance of dispersion corrections, The Journal of Chemical Physics, vol.137, issue.11, p.114105, 2012.

M. Evgeniy, . Myshakin-guozhen, W. A. Zhang, K. D. Al-saidi, and . Jordan, Dispersion-corrected density functional theory and classical force field calculations of water loading on a pyrophyllite(001) surface, J. Phys. Chem. C, vol.116, issue.32, pp.17134-17141, 2012.

F. Musso, P. Mignon, P. Ugliengo, and M. Sodupe, Cooperative effects at water-crystalline silica interfaces strengthen surface silanol hydrogen bonding. an ab initio molecular dynamics study, Phys. Chem. Chem. Phys, vol.14, pp.10507-10514, 2012.
DOI : 10.1039/c2cp40756f

URL : https://hal.archives-ouvertes.fr/hal-00877322

A. D. Becke, A new mixing of hartree-fock and local density-functional theories, The Journal of Chemical Physics, vol.98, issue.2, pp.1372-1377, 1993.

E. Scholtzová, D. Tunega, and L. Nagy, Theoretical study of cation substitution in trioctahedral sheet of phyllosilicates. an effect on inner oh group, Journal of Molecular Structure: Theochem, vol.620, issue.1, pp.1-8, 2003.

D. Muñoz-santiburcio, J. Ortega-castro, C. Sainz-díaz, A. Huertas, and . Hernandez-laguna, Theoretical study of the adsorption of 2-nitro-1propanol on smectite surface models, vol.912, pp.95-104, 2009.

F. Musso, M. Sodupe, M. Corno, and P. Ugliengo, H-bond features of fully hydroxylated surfaces of crystalline silica polymorphs: A periodic b3lyp study, The Journal of Physical Chemistry C, vol.113, issue.41, pp.17876-17884, 2009.

M. De-la-pierre, R. Orlando, L. Maschio, K. Doll, P. Ugliengo et al., Performance of six functionals (LDA, PBE, PBESOL, b3lyp, PBE0, and WC1lyp) in the simulation of vibrational and dielectric properties of crystalline compounds. the case of forsterite mg2sio4, Journal of Computational Chemistry, vol.32, issue.9, pp.1775-1784, 2011.

A. Kovács, J. C. Dobrowolski, J. E. Ostrowski, and . Rode, Benchmarking density functionals in conjunction with grimmes dispersion correction for noble gas dimers (ne2 , ar2 , kr2 , xe2 , rn2 ), International Journal of Quantum Chemistry, vol.117, issue.9, p.25358, 2017.

E. R. Johnson, R. A. Wolkow, and G. A. Dilabio, Application of 25 density functionals to dispersion-bound homomolecular dimers, Chemical Physics Letters, vol.394, issue.4-6, pp.334-338, 2004.

P. Ji?íji?í?ji?í?ern´ji?í?ern´y and . Hobza, The x3lyp extended density functional accurately describes h-bonding but fails completely for stacking, Phys. Chem. Chem. Phys, vol.7, issue.8, pp.1624-1626, 2005.

P. Kolandaivel, D. U. Maheswari, and L. Senthilkumar, The study of performance of DFT functional for van der waals interactions, Computational and Theoretical Chemistry, vol.1004, pp.56-60, 2013.

Y. Zhao and D. G. Truhlar, Benchmark databases for nonbonded interactions and their use to test density functional theory, Journal of Chemical Theory and Computation, vol.1, issue.3, pp.415-432, 2005.

S. Kanchana, E. G. Thanthiriwatte, L. A. Hohenstein, C. D. Burns, and . Sherrill, Assessment of the performance of DFT and DFT-D methods for describing Bibliography distance dependence of hydrogen-bonded interactions, Journal of Chemical Theory and Computation, vol.7, issue.1, pp.88-96, 2011.

T. P. Goumans, A. Wander, W. A. Brown, C. Richard, and A. Catlow, Structure and stability of the (001) ?-quartz surface, Phys. Chem. Chem. Phys, vol.9, issue.17, pp.2146-2152, 2007.

J. Ireta, J. Neugebauer, and M. Scheffler, On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality, The Journal of Physical Chemistry A, vol.108, issue.26, pp.5692-5698, 2004.

M. V. Vener, X. Rozanska, and J. Sauer, Protonation of water clusters in the cavities of acidic zeolites: (h2o)n·h-chabazite, n = 1-4, Physical Chemistry Chemical Physics, vol.11, issue.11, p.1702, 2009.

J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, and G. Galli, Towards an assessment of the accuracy of density functional theory for first principles simulations of water, The Journal of Chemical Physics, vol.120, issue.1, pp.300-311, 2004.

E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, Towards an assessment of the accuracy of density functional theory for first principles simulations of water. ii, The Journal of Chemical Physics, vol.121, issue.11, pp.5400-5409, 2004.

P. H. , -. Sit, and N. Marzari, Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics, The Journal of Chemical Physics, vol.122, issue.20, p.204510, 2005.

T. D. Kühne, M. Krack, and M. Parrinello, Static and dynamical properties of liquid water from first principles by a novel car-parrinello-like approach, Journal of Chemical Theory and Computation, vol.5, issue.2, p.26610101, 2009.

R. A. Distasio, B. Santra, Z. Li, X. Wu, and R. Car, The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water, The Journal of Chemical Physics, vol.141, issue.8, p.84502, 2014.

A. Bankura, A. Karmakar, V. Carnevale, A. Chandra, and M. L. Klein, Structure, dynamics, and spectral diffusion of water from first-principles molecular dynamics, The Journal of Physical Chemistry C, vol.118, issue.50, pp.29401-29411, 2014.

M. J. Gillan, D. Alfè, and A. Michaelides, Perspective: How good is DFT for water?, The Journal of Chemical Physics, vol.144, issue.13, p.130901, 2016.

K. Forster, -. , and A. Groß, Dispersion corrected RPBE studies of liquid water, The Journal of Chemical Physics, vol.141, issue.6, p.64501, 2014.

S. Grimme, Accurate description of van der waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry, vol.25, issue.12, pp.1463-1473, 2004.

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, vol.27, issue.15, pp.1787-1799, 2006.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFTd) for the 94 elements h-pu, The Journal of Chemical Physics, vol.132, issue.15, p.154104, 2010.

, Copyright MPI für Festkörperforschung, 1990.

J. C. Phillips, Energy-band interpolation scheme based on a pseudopotential, Physical Review, vol.112, issue.3, pp.685-695, 1958.

D. R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopotentials, Physical Review Letters, vol.43, issue.20, pp.1494-1497, 1979.

N. Troullier and J. Martins, Efficient pseudopotentials for plane-wave calculations, Physical Review B, vol.43, issue.3, pp.1993-2006, 1991.

M. Allen and D. Tildesley, Computer simulation of liquids, 1989.

C. W. Gear, The numerical integration of ordinary differential equations, vol.21, pp.146-146, 1967.

C. W. Gear, Numerical initial value problems in ordinary differential equations. Prentice-Hall series in automatic computation, 1971.

L. Verlet, Computer "experiments" on classical fluids. i. thermodynamical properties of lennard-jones molecules, Physical Review, vol.159, issue.1, pp.98-103, 1967.

F. Y. Fraige and P. A. Langston, Integration schemes and damping algorithms in distinct element models, Advanced Powder Technology, vol.15, issue.2, pp.227-245, 2004.

C. William, H. C. Swope, P. H. Andersen, K. R. Berens, and . Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics, vol.76, issue.1, pp.637-649, 1982.

T. Helgaker, E. Uggerud, H. J. Aa, and . Jensen, Integration of the classical equations of motion on ab initio molecular potential energy surfaces using gradients and hessians: application to translational energy release upon fragmentation, Chemical Physics Letters, vol.173, issue.2-3, pp.145-150, 1990.

E. Uggerud and T. Helgaker, Dynamics of the reaction CH2OH + ? CHO + + H 2. Translational energy release from ab initio trajectory calculations, Journal of the American Chemical Society, vol.114, issue.11, pp.4265-4268, 1992.

R. Car and M. Parrinello, Unified approach for molecular dynamics and densityfunctional theory, Phys. Rev. Lett, vol.55, issue.22, pp.2471-2474, 1985.

H. Hellmann, Einführung in die Quantenchemie, 1937.

R. P. Feynman, Forces in molecules, Physical Review, vol.56, issue.4, pp.340-343, 1939.

J. Walter, W. H. Stevens, and . Fink, Frozen fragment reduced variational space analysis of hydrogen bonding interactions. application to the water dimer, Chemical Physics Letters, vol.139, issue.1, pp.15-22, 1987.

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon et al., General atomic and molecular electronic structure system, J. Comput. Chem, vol.14, issue.11, pp.1347-1363, 1993.

S. Mark, M. W. Gordon, and . Schmidt, Advances in electronic structure theory, Theory and Applications of Computational Chemistry, pp.1167-1189, 2005.

K. Morokuma, Molecular orbital studies of hydrogen bonds, The Journal of Chemical Physics, vol.55, issue.3, p.1236, 1971.

B. Liu and A. D. Mclean, Accurate calculation of the attractive interaction of two ground state helium atoms, The Journal of Chemical Physics, vol.59, issue.8, pp.4557-4558, 1973.

B. Liu and A. D. Mclean, The interacting correlated fragments model for weak interactions, basis set superposition error, and the helium dimer potential, The Journal of Chemical Physics, vol.91, issue.4, pp.2348-2359, 1989.

B. Frans, J. G. Van-duijneveldt, J. H. Van-duijneveldt-van-de-rijdt, and . Van-lenthe, State of the art in counterpoise theory, Chemical Reviews, vol.94, issue.7, pp.1873-1885, 1994.

S. F. Boys and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors, Molecular Physics, vol.19, issue.4, pp.553-566, 1970.

J. Glenn, M. E. Martyna, and . Tuckerman, A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters, The Journal of Chemical Physics, vol.110, issue.6, pp.2810-2821, 1999.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al.,

K. Martin, V. G. Morokuma, G. A. Zakrzewski, P. Voth, J. J. Salvador et al., Gaussian09 Revision E.01, 2009.

B. Belzunces, S. Hoyau, J. Cuny, and F. Bessac, Pesticide interaction with environmentally important cations: A molecular dynamics and DFT study of metamitron and fenhexamid, Computational and Theoretical Chemistry, vol.1117, pp.220-234, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619340

W. Matthew, C. Foulkes, and R. Haydock, Tight-binding models and densityfunctional theory, Physical Review B, vol.39, issue.17, pp.12520-12536, 1989.

D. Porezag, . Th, . Frauenheim, . Th, G. Köhler et al., Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon, Physical Review B, vol.51, issue.19, pp.12947-12957, 1995.

M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk et al., Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties, Physical Review B, vol.58, issue.11, pp.7260-7268, 1998.

T. Heine, M. Rapacioli, J. Cuny, S. Patchkovskii, J. Frenzel et al.,

S. Nosé and M. L. Klein, Constant pressure molecular dynamics for molecular systems, Molecular Physics, vol.50, issue.5, pp.1055-1076, 1983.

N. Sh¯-uichi, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.52, issue.2, pp.255-268, 1984.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, issue.1, pp.511-519, 1984.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, pp.1695-1697, 1985.

A. K. Soper, The radial distribution functions of water and ice from 220 to 673 k and at pressures up to 400 MPa, Chemical Physics, vol.258, issue.2-3, pp.121-137, 2000.

B. Lawrie, C. Skinner, D. Huang, L. G. Schlesinger, A. Pettersson et al., Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide q-range

, The Journal of Chemical Physics, vol.138, issue.7, p.74506, 2013.

G. Bussi and M. Parrinello, Stochastic thermostats: comparison of local and global schemes, Computer Physics Communications, vol.179, issue.1-3, pp.26-29, 2008.

M. Ceriotti, G. Bussi, and M. Parrinello, Langevin equation with colored noise for constant-temperature molecular dynamics simulations, Phys. Rev

. Lett, , vol.102, p.20601, 2009.

M. Ceriotti, G. Bussi, and M. Parrinello, Colored-noise thermostatsà thermostats`thermostatsà la carte, Journal of Chemical Theory and Computation, vol.6, issue.4, pp.1170-1180, 2010.

. I. Yu and . Naberukhin, The pair distribution function of liquid water: Truncation problem in light of recent x-ray diffraction data, Journal of Molecular Liquids, vol.239, pp.45-48, 2017.

I. Lin, A. P. Seitsonen, I. Tavernelli, and U. Rothlisberger, Structure and dynamics of liquid water from ab initio molecular dynamics-comparison of BLYP, PBE, and revPBE density functionals with and without van der waals corrections, Journal of Chemical Theory and Computation, vol.8, issue.10, pp.3902-3910, 2012.

L. B. Skinner, C. J. Benmore, J. C. Neuefeind, and J. B. Parise, The structure of water around the compressibility minimum, The Journal of Chemical Physics, vol.141, issue.21, p.214507, 2014.

H. David, T. Brookes, and . Head-gordon, Family of oxygen-oxygen radial distribution functions for water, The Journal of Physical Chemistry Letters, vol.6, issue.15, pp.2938-2943, 2015.

P. Clausen, Release kinetics of volatiles from smectite clay minerals, 2009.

J. G. Kirkwood, Statistical mechanics of fluid mixtures, The Journal of Chemical Physics, vol.3, issue.5, pp.300-313, 1935.

M. Glenn, J. P. Torrie, and . Valleau, Monte carlo free energy estimates using nonboltzmann sampling: Application to the sub-critical lennard-jones fluid, Chemical Physics Letters, vol.28, issue.4, pp.578-581, 1974.

G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in monte carlo free-energy estimation: Umbrella sampling, Journal of Computational Physics, vol.23, issue.2, pp.187-199, 1977.

B. Roux, The calculation of the potential of mean force using computer simulations, Computer Physics Communications, vol.91, issue.1-3, pp.275-282, 1995.

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, The weighted histogram analysis method for free-energy calculations on biomolecules. i. the method, Journal of Computational Chemistry, vol.13, issue.8, pp.1011-1021, 1992.

G. Alan, WHAM: the weighted histogram analysis method

I. Bakó, J. Hutter, and G. Pálinkás, Car-parrinello molecular dynamics simulation of the hydrated calcium ion, The Journal of Chemical Physics, vol.117, issue.21, pp.9838-9843, 2002.

T. Megyes, T. Grósz, T. Radnai, I. Bakó, and G. Pálinkás, Solvation of calcium ion in polar solvents: an x-ray diffraction and ab initio study

, The Journal of Physical Chemistry A, vol.108, issue.35, pp.7261-7271, 2004.

A. Waheed, N. L. Adeagbo, M. Doltsinis, W. V. Burchard, T. Maresch et al., Ca2+ solvation as a function of p, t, and pH from ab initio simulation, The Journal of Chemical Physics, vol.137, issue.12, p.124502, 2012.

Y. S. Badyal, A. C. Barnes, G. J. Cuello, and J. M. Simonson, Understanding the effects of concentration on the solvation structure of ca2+in aqueous solution. II: insights into longer range order from neutron diffraction isotope substitution, The Journal of Physical Chemistry A, vol.108, issue.52, pp.11819-11827, 2004.

M. Mor, K. Naor, C. Van-nostrand, and . Dellago, Car-parrinello molecular dynamics simulation of the calcium ion in liquid water, Chemical Physics Letters, vol.369, issue.1-2, pp.159-164, 2003.

T. Ikeda, M. Boero, and K. Terakura, Hydration properties of magnesium and calcium ions from constrained first principles molecular dynamics, The Journal of Chemical Physics, vol.127, issue.7, p.74503, 2007.

G. Yang, I. Neretnieks, and M. Holmboe, Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores, The Journal of Chemical Physics, vol.147, issue.8, p.84705, 2017.

R. Monsalvo, M. L. Liberto-de-pablo, and . Chávez, Hydration of camontmorillonite at basin conditions: A monte carlo molecular simulation, Revista Mexicana de Ciencias Geológicas, 2006.

N. T. Skipper, P. A. Lock, J. O. Titiloye, J. Swenson, Z. A. Mirza et al., The structure and dynamics of 2-dimensional fluids in swelling clays, Chemical Geology, vol.230, issue.3-4, pp.182-196, 2006.

M. Makaremi, K. D. Jordan, G. D. Guthrie, and E. M. Myshakin, Multiphase monte carlo and molecular dynamics simulations of water Bibliography and CO2 intercalation in montmorillonite and beidellite, The Journal of Physical Chemistry C, vol.119, issue.27, pp.15112-15124, 2015.