, Une étude plus approfondie de ce sujet permettrait de savoir si la théorie proposée par Addabbo et al. [78] est trop simplificatrice de ce qu'il se passe dans la réalité, ou inversement, si la théorie est juste mais que les diagnostics employés ne permettent pas de visualiser correctement le début des instabilités dont la formation des structures cellulaires est une conséquence

, Au cours de la partie dédiée à l'étude de l'allumage des pré-mélanges de kérosène et d'air en conditions critiques, la réalisation d'essais en plus grande quantité parait indispensable pour pouvoir mieux estimer l'énergie à apporter pour enflammer le mélange. Il serait également intéressant d'étudier le phénomène d'allumage des pré-mélanges de kérosène et d'air dans d'autres conditions aérothermodynamiques

, Ces quelques modestes questions, leurs réponses et les nombreuses questions futures qu'apporteront ces réponses ont de quoi occuper quelques générations de thésards et chercheurs. La recherche en combustion aéronautique a encore de nombreuses années devant elle avant d'atteindre le stade ultime et rêvé par tous de moteurs 100 % écologique

. Bibliographie,

B. Dudley, BP Statistical Review of World Energy, p.1, 2016.

, Key world energy statistics, International Energy Agency (IEA), issue.1, 2015.

, Commissariat général au développement durable-France, 2015.

, Energy Information Administration, vol.xvii, 2016.

, Aviation benefits beyond borders, Air Transport Action Group (ATAG), 2016.

, Flightpath 2050 Europe's vision for aviation-Report of the high level group on aviation research, 2011.

E. Coustols, Effet des parois rainurées ("riblets") sur la structure d'une couche limite turbulente

, Mécanique & Industries, vol.2, issue.5, pp.421-434, 2001.

, Aspiration de la couche limite turbulente : test sur l'empennage d'un avion

F. Culick, M. V. Heitor, and J. H. Whitelaw, Unsteady Combustion

A. Wulff and J. Hourmouziadis, Technology review of aeroengine pollutant emissions, Aerospace Science and Technology, vol.8, p.6, 1997.

R. Tacina, C. Wey, P. Laing, and A. Mansour, A low NO x lean-direct injection, multipoint integrated module combustor concept for advanced aircraft gas turbines, Sixth International Conference on Technologies and Combustion for a Clean Environment (Clear Air VI), 2001.

E. Wintenberger and J. E. Shepherd, Thermodynamic cycle analysis for propagating detonations, Journal of Propulsion and Power, vol.22, issue.8, pp.694-698, 2006.

R. Nalim, P. Akbari, and N. Mueller, A review of wave rotor technology and its applications, Journal of Engineering for Gas Turbines and Power, vol.128, issue.10, pp.717-735, 2006.

M. Aguilar, Réacteur, notamment réacteur pour aéronef

S. S. Shy, C. C. Liu, and W. T. Shih, Ignition transition in turbulent premixed combustion, Combustion and Flame, vol.157, p.16, 2010.

R. Maly, Spark ignition : its physics and effect on the internal combustion engine, p.15

M. Kono, K. Hatori, and K. Iinuma, Investigation on ignition ability of composite sparks in flowing mixtures, Symposium (International) on Combustion, vol.20, p.16, 1984.

. Bibliographie,

C. Huang, S. S. Shy, C. C. Liu, and Y. Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proceedings of the Combustion Institute, vol.31, p.16, 2007.

J. Moorhouse, A. Williams, and T. E. Maddison, An investigation of the minimum ignition energies of some c1 to c7 hydrocarbons, Combustion and Flame, vol.23, p.16, 1974.

S. P. Bane, Spark ignition : experimental and numerical investigation with application to aviation safety, vol.16, p.172

B. Lewis and G. Von-elbe, Combusion, flames and explosions of gases. xviii, vol.16, p.43

, Standard test method for minimum ignition energy and quenching distance is gaseous mixtures, p.16

V. Babrauskas, Ignition Handbook : Principles and Applications to Fire Safety Engineering, Fire Investigation, Risk Management and Forensic Science, p.16

E. C. Magison, Electrical Equipment in Hazardous Locations, p.16

M. Kono, K. Niu, T. Tsukamoto, and Y. Ujiie, Mechanism of flame kernel formation produced by short duration sparks, Symposium (International) on Combustion, vol.22, p.16, 1989.

S. S. Shy, W. T. Shih, and C. C. Liu, More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combustion Science and Technology, vol.180, p.16, 2008.

J. Han, H. Yamashita, and N. Hayashi, Numerical study on the spark ignition characteristics of a methane-air mixture using detailed chemical kinetics. effect of equivalence ratio, electrode gap distance, and electrode radius on mie, quenching distance, and ignition delay, Combustion and Flame, vol.157, p.16, 2010.

S. P. Bane, J. L. Ziegler, and J. E. Shepherd, Investigation of the effect of electrode geometry on spark ignition, Combustion and Flame, vol.162, p.16, 2015.

T. X. Phuoc and F. P. White, Laser-induced spark ignition of ch4/air mixtures, Combustion and Flame, vol.119, p.45, 1999.

D. Bradley, C. G. Sheppard, I. M. Suardjaja, and R. Wooley, Fundamentals of high-energy spark ignition with lasers, Combustion and Flame, vol.138, issue.1-2, p.17, 2004.

D. H. Mcneill, Minimum ignition energy for laser spark ignition, Proceedings of the Combustion Institute, vol.30, p.17, 2005.

C. Cardin, Etude expérimentale des phénomènes physico-chimiques de l'allumage dans des écoulements laminaires et turbulents, p.17

M. Champion, B. Deshaies, G. Joulin, and K. Kinoshita, Spherical flame initiation : theory versus experiments for lean propane-air mixtures, Combustion and Flame, vol.65, p.17, 1986.
DOI : 10.1016/0010-2180(86)90045-3

Y. Ko, R. W. Anderson, and V. S. Arpaci, Spark ignition of propane-air mixtures near the minimum ignition energy : Part i. an experimental study, Combustion and Flame, vol.83, p.17, 1991.

A. P. Kelley, G. Jomaas, and C. K. Law, Critical radius for sustained propagation of spark-ignited spherical flames, Combustion and Flame, vol.156, issue.5, p.17, 2009.

Z. Chen, On the extraction of laminar flame speed and markstein length from outwardly propagating flames, Combustion and Flame, vol.158, p.157, 2011.

D. R. Ballal and A. H. Lefebvre, The influence of flow parameters on minimum ignition energy and quenching distances, Symposium (International) on Combustion, vol.15, p.18, 1975.

I. Glassman and R. A. Yetter, Combustion (Fourth Edition), vol.18

E. F. Mallard and H. L. Le-chatelier, Sur les vitesses de propagation de l'inflammation dans les mélanges gazeux explosifs, Comptes-rendus hebdomadaires des séances de l'Académie des Sciences, vol.93, pp.145-149

J. Abraham, F. Williams, and F. Bracco, A discussion of turbulent flame structure in premixed charges, p.21, 1985.

T. Poinsot and D. Veynante, Theoretical and numerical combustion, vol.23, p.67, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00270731

D. B. Spalding, Some fundamentals of combustion, 1921.

Y. B. , Zel'dovich. Theory of combustion and detonation of gases, 1921.

F. A. Williams, Combustion theory, vol.21, p.23, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00014918

A. Lefebvre, Analyses théorique, numérique et expérimentale de la détermination de la vitesse de combustion laminaire à partir de flammes en expansion sphériques, vol.22, p.177

G. H. Markstein, Experimental and theoretical studies of flame-front stability, Journal of the Aeronautical Sciences, vol.18, issue.3, p.29, 1951.

M. Matalon and B. J. Matkowsky, Flames as gasdynamic discontinuities, Journal of Fluid Mechanics, vol.124, p.122, 1982.
DOI : 10.1017/s0022112082002481

S. Candel and T. Poinsot, Flame stretch and the balance equation for the flame surface area, Combustion Science and Technology, vol.70, issue.23, pp.1-15, 1990.

S. H. Chung and C. K. Law, An invariant derivation of flame stretch, Combustion and Flame, vol.55, issue.23, pp.123-125, 1984.

G. E. Andrews and D. Bradley, Determination of burning velocities : a critical review, Combustion and Flame, vol.18, p.25, 1972.

C. J. Rallis and A. M. Garforth, The determination of laminar burning velocity, Progress in Energy and Combustion Science, vol.6, p.28, 1980.

L. Selle, T. Poinsot, and B. Ferret, Experimental and numerical study of the accuracy of flamespeed measurements for methane/air combustion in a slot burner, Combustion and Flame, vol.158, issue.1, p.25, 2011.

Y. Wu, Experimental investigation of laminar flame speeds of kerosene fuel and second generation biofuels in elevated conditions of pressure and preheat temperature, vol.25, p.108
URL : https://hal.archives-ouvertes.fr/tel-01430861

L. P. De-goey, A. Van-maaren, and R. M. Quax, Stabilization of adiabatic premixed laminar flames on a flat flame burner, Combustion Science and Technology, vol.92, p.25, 1993.

C. Vagelopoulos and F. Egolfopoulos, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air, Internation Symposium on Combustion, vol.25, issue.1, p.26, 1994.

A. Van-maaren and L. P. De-goey, Stretch and the adiabatic burning velocity of methane-and propane-air flames, Combustion Science and Technology, vol.102, issue.1-6, p.26, 1994.

K. O'donovan and C. Rallis, A modified analysis for the determination of the burning velocity of a gas mixture in a spherical constant volume combustion vessel, Combustion and Flame, vol.3, p.28, 1959.

C. C. Luijten, E. Doosje, and L. P. De-goey, Accurate analytical models for fractional pressure rise in constant volume combustion, International Journal of Thermal Sciences, vol.48, p.28, 2009.

C. J. Rallis and G. E. Tremeer, Equations for the determination of burning velocity in a spherical constant volume vessel, Combustion and Flame, vol.7, p.28, 1963.

J. Nagy, J. Conn, and H. Verakis, Explosion development in a spherical vessel, vol.28

D. Oancea, D. Razus, and N. I. Ionescu, Burning velocity determination by spherical bomb technique. 1. a new model for burnt mass fraction, Revue Roumaine de Chimie, vol.39, p.28, 1994.

M. Faghih and Z. Chen, The constant-volume propagating spherical flame method for laminar flame speed measurement, Science Bulletin, vol.60, issue.16, p.28, 2016.

K. Saeed and C. R. Stone, Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multi-zone model, Combustion and Flame, vol.139, p.28, 2004.

A. Moghaddas, K. Eisazadeh-far, and H. Metghalchi, Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding flames at high temperatures and pressures, Combustion and Flame, vol.159, p.28, 2012.

P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Progress in Energy and Combustion Science, vol.11, issue.1, p.33, 1985.

C. K. Law and C. J. Sung, Structure, aerodynamics, and geometry of premixed flamelets, Progress in Energy and Combustion Science, vol.26, issue.4-6, p.175, 2000.

A. P. Kelley and C. K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combustion and Flame, vol.156, p.81, 2009.

F. Halter, T. Tahtouh, and C. Mounaim-rousselle, Nonlinear effects of stretch on the flame front propagation, Combustion and Flame, vol.157, p.30, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01276405

E. Varea, V. Modica, A. Vandel, and B. Renou, Measurement of laminar burning velocity and markstein length relative to fresh gases using a new postprocessing procedure : Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures, Combustion and Flame, vol.159, issue.2, p.31, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01670652

E. Varea, Experimental analysis of laminar spherically expanding flames, p.31
URL : https://hal.archives-ouvertes.fr/tel-00800616

O. C. Kwon, G. Rozenchan, and C. K. Law, Cellular instabilities and self-acceleration of outwardly propagating spherical flames, Proceedings of the Combustion Institute, vol.29, p.114, 2002.

L. Qiao, Y. Gu, W. J. Dahm, E. S. Oran, and G. M. Faeth, Near-limit laminar burning velocities of microgravity premixed hydrogen flames with chemically-passive fire suppressants, Proceedings of the Combustion Institute, vol.31, p.31, 2007.

P. D. Rooney and H. Y. Wachman, Effect of gravity on laminar premixed gas combustion i : Flammability limits and burning velocities, Combustion and Flame, vol.62, issue.2, p.32, 1985.

G. Darrieus, Propagation d'un front de flamme. essai de théorie des vitesses anormales de déflagration par développement spontané de turbulence, p.32

L. D. Landau, On the theory of slow combustion, Acta Physicochimica U.S.S.R, vol.19, p.32, 1944.

D. Bradley, R. A. Hicks, M. Lawes, C. G. Sheppard, and R. Woolley, The measurement of laminar burning velocities and markstein numbers for iso-octane-air and iso-octane-n-heptaneair mixtures at elevated temperatures and pressures in an explosion bomb, Combustion and Flame, vol.115, issue.1-2, p.32, 1998.

F. Liu, X. Bao, J. Gu, and R. Chen, Onset of cellular instabilities in spherically propagating hydrogen-air premixed laminar flames, International Journal of Hydrogen Energy, vol.37, issue.15, p.34, 2012.

R. Addabbo, J. K. Bechtold, and M. Matalon, Wrinkling of spherically expanding flames. Proceedings of the Combustion Institute, vol.29, p.178, 2002.

C. K. Law, G. Jomaas, and J. K. Bechtold, Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures : theory and experiment, Proceedings of the Combustion Institute, vol.30, p.120, 2005.

, American Society for Testing and Materials International. Standard specification for aviation turbine fuels, p.36

A. Violi, S. Yan, E. G. Eddings, and A. F. Sarofim, Experimental formulation and kinetic model for jp-8 surrogate mixtures, Combustion Science and Technology, vol.174, issue.11-12, p.98, 2002.

T. Edwards and L. Q. Maurice, Surrogate mixtures to represent complex aviation and rocket fuels, Journal of Propulsion and Power, vol.17, p.37, 2001.

W. Schultz, Jet surrogate fuels formulation, ACS Petrol. Chem. Div. Preprints, vol.37, p.41, 1991.

P. Dagaut and M. Cathonnet, The ignition, oxidation, and combustion of kerosene : A review of experimental and kinetic modeling, Progress in Energy and Combustion Science, vol.32, p.104, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02021199

. Bibliographie,

M. Colket, T. Edwards, S. Williams, N. P. Cernansky, D. L. Miller et al., Development of an experimental database and kinetic models of surrogate jet fuels, 45th AIAA Aerospace Sciences Meeting and Exhibit, p.38, 2007.

P. Dagaut, A. E. Bakali, and A. Ristori, The combustion of kerosene : experimental results and kinetic modelling using 1-to 3-component surrogate model fuels, Fuel, vol.85, p.69, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02021206

S. Humer, A. Frassoldati, S. Granata, T. Faravelli, E. Ranzi et al., Experimental and kinetic modeling study of combustion of jp-8, its surrogates and reference components in laminar nonpremixed flows, Proceedings of the Combustion Institute, vol.31, p.41, 2007.

S. Honnet, K. Seshadri, U. Niemann, and N. Peters, A surrogate fuel for kerosene, Proceedings of the Combustion Institute, vol.32, p.41, 2009.

T. J. Bruno and B. L. Smith, Evaluation of the physicochemical authenticity of aviation kerosene surrogate mixtures. part 1 : Analysis of volatility with the advanced distillation curve, Energy and Fuels, vol.24, p.41, 2010.

S. Dooley, S. H. Won, M. Chaos, J. Heyne, Y. Ju et al., A jet fuel surrogate formulated by real fuel properties, Combustion and Flame, vol.157, issue.12, p.41, 2010.

S. Dooley, S. H. Won, J. Heyne, T. I. Farouk, Y. Ju et al., The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena, Combustion and Flame, vol.159, issue.4, p.69, 2012.

D. Kim, J. Martz, and A. Violi, A surrogate for emulating the physical and chemical properties of conventional jet fuel, Combustion and Flame, vol.161, p.41, 2014.

A. Comandini, T. Dubois, and N. Chaumeix, Laminar flame speeds of n-decane, n-butylbenzene, and n-propylcyclohexane mixtures, Proceedings of the Combustion Institute, vol.35, p.95, 2015.

J. Luche, Elaboration of reduced kinetic models of combustion. application to a kerosene mechanism, vol.40, p.69
URL : https://hal.archives-ouvertes.fr/tel-00636023

B. Franzelli, E. Riber, M. Sanjosé, and T. Poinsot, A two-step chemical scheme for kerosene-air premixed flames, Combustion and Flame, vol.157, p.40, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01272968

L. J. Nestor, Investigation of turbine fuel flammability within aircraft fuel tanks. xviii, p.44

E. E. Ott, Effects of fuel slosh and vibration on the flammability hazards of hydrocarbon turbine fuels within aircraft fuel tanks, p.44

J. M. Kuchta, Summary of ignition properties of jet fuels and other aircraft combustible fluids

K. V. Rao and A. H. Lefebvre, Minimum ignition energies in flowing kerosine-air mixtures, Combustion and Flame, vol.27, p.169, 1976.

J. E. Shepherd, J. C. Krok, and J. J. Lee, Jet a explosion experiments : laboratory testing, vol.45, p.162

J. E. Shepherd, J. C. Krok, and J. J. Lee, Spark ignition energy measurements in jet a, p.45

J. J. Lee and J. E. Shepherd, Spark ignition measurements in jet a : part ii, vol.45, p.46

T. W. Lee, V. Jain, and S. Kozola, Measurements of minimum ignition energy by using laser sparks for hydrocarbon fuels in air : propane, dodecane and jet-a fuel, Combustion and Flame, vol.125, p.46, 2001.

I. Sochet and P. Gillard, Flammability of kerosene in civil and military aviation, vol.15, p.45, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01833432

S. P. Bane, J. L. Ziegler, P. A. Boettcher, S. A. Coronel, and J. E. Shepherd, Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen, Journal of Loss Prevention in the Process Industries, vol.26, p.162, 2013.

D. L. Dietrich, N. P. Cernansky, and M. B. Somashekara, Spark ignition of bidisperse n-decane fuel spray, Proceedings of the Combustion Institute, vol.23, p.46, 1991.

C. Strozzi, P. Gillard, and J. Minard, Laser-induced spark ignition of gaseous and quiescent n-decane-air mixtures, Combustion Science and Technology, vol.186, p.46, 2014.

D. Singh, T. Nishiie, and L. Qiao, Experimental and kinetic modeling study of the combustion of n-decane, jet-a, and s-8 in laminar premixed flames, Combustion Science and Technology, vol.183, issue.10, p.101, 2011.

K. Kumar, C. Sung, and X. Hui, Laminar flame speeds and extinction limits of conventional and alternative jet fuels, Fuel, vol.90, p.101, 2011.

X. Hui and C. Sung, Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures, Fuel, vol.109, p.47, 2013.

X. Hui, K. Kumar, C. Sung, T. Edwards, and D. Gardner, Experimental studies on the combustion characteristics of alternative jet fuels, Fuel, vol.98, p.47, 2013.

V. Vukadinovic, P. Habisreuther, and N. Zarzalis, Influence of pressure and temperature on laminar burning velocity and markstein number of kerosene jet a-1 : Experimental and numerical study, Fuel, vol.111, p.101, 2013.

S. Richter, M. B. Raida, C. Naumann, and U. Riedel, Measurement of the laminar burning velocity of neat jet fuel components, Proceedings of the World Congress on Momentum, Heat and Mass Transfer (MHMT'2016, vol.46, p.101

C. K. Law, F. Wu, F. N. Egolfopoulos, V. Gururajan, and H. Wang, On the rational interpretation of data on laminar flame speeds and ignition delay times, Combustion Science and Technology, vol.187, p.47, 2015.

F. N. Egolfopoulos, N. Hansen, Y. Ju, K. Kohse-höinghaus, C. K. Law et al., Advances and challenges in laminar flame experiments and implications for combustion chemistry, Progress in Energy and Combustion Science, vol.43, p.50

. Bibliographie,

C. Antoine, Tensions des vapeurs ; nouvelle relation entre les tensions et les températures

, Comptes-rendus des séances de l'Académie des Sciences, vol.107, pp.836-837

C. L. Yaws and H. C. Yang, To estimate vapor pressure easily. antoine coefficients relate vapor pressure to temperature for almost 700 major organic compounds, Hydrocarbon Process, vol.68, p.53, 1989.

Z. Chen, On the accuracy of laminar flame speeds measured from outwardly propagating flames : Methane/air at normal temperature and pressure, Combustion and Flame, vol.162, p.93, 2015.

J. Beeckmann, Uncertainties in spherical flame measurements : a collaborative study. 2 nd Workshop on laminar burning velocity, vol.57, p.177, 2015.

G. S. Settles, Schlieren and shadowgraph techniques, vol.58
DOI : 10.1007/978-3-642-56640-0

B. Boust, Étude expérimentale et modélisation des pertes thermiques pariétales lors de l'intéraction flamme-paroi instationnaire, vol.61, p.146

A. Boutier, Vélocimétrie laser pour la mécanique des fluides, p.65

. Gri-mech-website, , p.68

H. Wang, E. Dames, B. Sirjean, D. A. Sheen, R. Tangko et al.,

R. P. Miller and . Lindstedt, A high-temperature chemical kinetic model of n-alkane (up to ndodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures. JetSurF version 2.0, vol.68, p.94, 2010.

J. Luche, Reduction of large detailed kinetic mechanisms : application to kerosene/air combustion, Combustion Science and Technology, vol.176, issue.11, p.69, 2004.

G. Linassier, A. Bruyat, P. Villedieu, N. Bertien, C. Laurent et al., Application of numerical simulations to predict aircraft combustor ignition

C. Mécanique, , vol.341, p.69, 2013.

B. Cuenot, R. Vicquelin, E. Riber, V. Moureau, G. Lartigue et al., Advanced simulation of aeronautical combustors, Aerospace Lab Journal, vol.11, p.69, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01366045

T. Malewicki, S. Gudiyella, and K. Brezinsky, Experimental and modeling study on the oxidation of jet a and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene surrogate fuel, Combustion and Flame, vol.160, p.69, 2013.

W. K. Pratt, Digital Image Processing, p.73

D. L. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, vol.42, issue.3, p.73, 1995.

R. Chartrand, Numerical differentiation of noisy, nonsmooth data, ISRN Applied Mathematics, p.73, 2011.

, BIBLIOGRAPHIE 187

E. Van-den-bulck, Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion, Journal of Loss Prevention in the Process Industries, vol.18, p.74, 2005.

A. Omari and L. Tartakovsky, Measurement of the laminar burning velocity using the confined and unconfined spherical flame methods-a comparative analysis, Combustion and Flame, vol.168, p.191, 2016.

B. Galmiche, Caractérisation expérimentale des flammes laminaires et turbulentes en expansion, vol.81, p.156

Z. Chen, M. P. Burke, and Y. Ju, Effects of lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames, Proceedings of the Combustion Institute, vol.32, p.175, 2009.

J. Goulier, Comportements aux limites de flammes de prémélange hydrogène/air. Étude de la transition flamme laminaire-flamme turbulente, vol.85, p.87

M. L. Frankel and G. I. Sivashinsky, On effects due to thermal expansion and lewis number in spherical flame propagation, Combustion Science and Technology, vol.31, issue.3-4, pp.131-138

D. York, N. M. Evenson, M. L. Martinez, M. De-basabe, and . Delgado, Unified equations for the slope, intercept, and standard errors of the best straight line, American Journal of Physics, vol.72, issue.3, p.90, 2004.

C. A. Cantrell, Technical note : Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, Atmospheric Chemistry and Physics, vol.8, p.90, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00304067

J. Beeckmann, L. Cai, and H. Pitsch, Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure, Fuel, vol.117, p.94, 2014.

K. Kumar and C. Sung, Laminar flame speeds and extinction limits of preheated ndecane/o 2 /n 2 and n-dodécane/o 2 /n 2 mixtures, Combustion and Flame, vol.151, p.94, 2007.

C. Ji, E. Dames, Y. L. Wang, H. Wang, and F. N. Egolfopoulos, Propagation and extinction of premixed c 5-c 12 n-alkane flames, Combustion and Flame, vol.157, p.94, 2010.

X. Hui and C. Sung, Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures, Fuel, vol.109, p.101, 2013.

J. D. Munzar, B. Akih-kumgeh, B. M. Denman, A. Zia, and J. M. Bergthorson, An experimental and reduced modeling study of the laminar flame speed of jet fuel surrogate components, Fuel, vol.113, p.94, 2013.

H. H. Kim, S. H. Won, J. Santner, Z. Chen, and Y. Ju, Measurements of the critical initiation radius and unsteady propagation of n-decane/air premixed flames, Proceedings of the Combustion Institute, vol.34, p.94, 2015.

L. E. Faith, G. H. Ackermann, and H. T. Henderson, Heat sink capability of jet a fuel : heat transfer and cooking studies, p.101

. Bibliographie,

Y. Wu, V. Modica, X. Yu, and F. Grisch, Experimental investigation of laminar flame speed measurement for kerosene fuels : Jet a-1, surrogate fuel, and its pure components, Energy and Fuels, vol.32, issue.2, pp.2332-2343
URL : https://hal.archives-ouvertes.fr/hal-01684065

C. E. Okafor, Y. Nagano, and T. Kitagawa, Experimental and theoretical analysis of cellular instability in lean h2-ch4-air flames at elevated pressures, International Journal of Hydrogen Energy, vol.41, issue.15, p.138, 2016.

N. Bouvet, F. Halter, C. Chauveau, and Y. Yoon, On the effective lewis number formulations for lean hydrogen/hydrocarbon/air mixtures, International Journal of Hydrogen Energy, vol.38, p.126, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00919086

D. Lapalme, R. Lemaire, and P. Seers, Assessment for the method for calculating the lewis number of H 2 /CO/CH 4 mixtures and comparison with experimental results, International Journal of Hydrogen Energy, vol.42, issue.12, p.175, 2017.

T. R. Marrero and E. A. Mason, Gaseous diffusion coefficients, The Journal of Physical Chemistry, vol.1, issue.1, p.118, 1972.

C. Tang, Z. Huang, J. Wang, and J. Zheng, Effects of hydrogen addition on cellular instabilities of the spherically expanding propane flames, International Journal of Hydrogen Energy, vol.34, p.119, 2009.

S. P. Muppala, M. Nakahara, N. K. Aluri, H. Kido, J. X. Wen et al., Experimental and analytical investigation of the turbulent burning velocity of two-component fuel mixtures of hydrogen, methane and propane, International Journal of Hydrogen Energy, vol.34, p.120, 2009.

F. Dinkelacker, B. Manickam, and S. P. Muppala, Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective lewis number approach, Combustion and Flame, vol.158, p.120, 2011.

J. K. Bechtold and M. Matalon, The dependence of the markstein length on stoichiometry, Combustion and Flame, vol.127, p.175, 0121.

G. K. Giannakopoulos, A. Gatzoulis, C. E. Frouzakis, M. Matalon, and A. G. Tomboulides, Consistent definitions of "flame displacement speed" and "markstein length" for premixed flame propagation, Combustion and Flame, vol.162, p.122, 2015.

Z. Chen and Y. Ju, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combustion Theory and Modelling, vol.11, p.122, 2007.

C. K. Law, Combustion Physics, p.122

C. J. Sun, C. J. Sung, L. He, and C. K. Law, Dynamics of weakly stretched flames : quantitative description and extraction of global flame parameters, Combustion and Flame, vol.118, p.124, 1999.

K. Coudouro, Étude expérimentale et modélisation de la propagation de flamme en milieu confiné ou semi-confiné, vol.124

L. I. Lin, A corcordance correlation coefficient to evaluate reproducibility, Biometrics, vol.45, pp.255-268

, BIBLIOGRAPHIE 189

J. K. Bechtold and M. Matalon, Hydrodynamic and diffusion effects on the stability of spherically expanding flames, Combustion and Flame, vol.67, p.133, 1987.

G. Jomaas, C. K. Law, and J. K. Bechtold, On transition to cellularity in expanding spherical flames, Journal of Fluid Mechanics, vol.583, p.138, 2007.

L. J. Jiang, S. S. Shy, M. T. Nguyen, S. Y. Huang, and D. W. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combustion and Flame, vol.187, p.166, 2018.

L. Muller, Étude expérimentale de l'interaction flamme-paroi instationnaire dans des conditions initiales non isothermes, vol.144, p.154

C. J. Benito-parejo, Caractérisation expérimentale de décharges électriques et de la formation du noyau d'allumage. application à l'étude des performances d'allumeurs innovants, p.164

H. J. Langlie, A test-to-failure program for thermal batteries, Sixteenth Annual Power Sources Conference, p.164, 1962.

G. Mech,

. Egolfopoulos, , 1989.

. Vagelopoulos, , 1994.

. Vagelopoulos, , 1998.

. Dong, , 2002.

. Huang, , 2004.

. Hanniff, , 1989.

. Kurata, , 1994.

. Mazas, , 2011.

. Wu, , 1994.

. Dyakov, , 2001.

. Coppens, , 2007.

. Kishore, , 2008.

. Hermanns, , 2010.

. Expériences,

B. Figure, 1-Vitesse de flamme laminaire non-étirée pour un pré-mélange méthane/air aux conditions normales de pression et de température-Expériences réalisées avec un brûleur à jets opposés (rouge), un brûleur Bunsen ou un tube à choc (vert) et par la méthode de flamme plate adiabatique (bleu)Simulations numériques réalisées avec le schéma cinétique GRI-Mech 3.0 et le code de calcul Cantera-Comparaison avec les