Détermination des caractéristiques fondamentales de combustion de pré-mélange air-kérosène, de l’allumage à la vitesse de flamme : représentativité de surrogates mono et multi-composants

Abstract : With air traffic expected to soar in the next few years, the impact of civil aviation on the environment is a major issue. International environmental organizations such as ACARE (the Advisory Council for Aeronautical Research and Innovation in Europe), in partnership with the main international aeronautical groups, have set drastic objectives to preserve the environment: a reduction of 75 % of CO2emissions and a reduction of 90 % of nitrogen oxide emissions into the atmosphere are sought by 2050, with reference to aircraft produced at the beginning of the 21st century. Current turboshaft engines have a very high degree of maturity and may not achieve these objectives. Engineers are therefore aiming to study new concepts that will become technological breakthroughs at the 2050 horizon, such as detonation engines or constant volume combustion engines. Currently, the physical phenomena associated with the combustion of kerosene in those kinds of engines are still poorly documented. The objective of this PhD thesis is to contribute to the improvement of the knowledge and understanding of these physical phenomena. In this work, premixed flames of kerosene and air are experimentally studied with optical diagnostics (Schlieren, PIV) and metrology techniques. The combustion process is here studied in thermodynamic conditions similar to those encountered in an aeronautical engine. First, the propagation phaseis analyzed in laminar and adiabatic conditions through the determination of the unstretched laminar burning velocity, which drives the combustion process. Then, in a second stage, the sensitivity of the flame front to stretch and the formation of combustion instabilities are examined. Finally, the ignition phase of premixed flames of kerosene and air under critical aerodynamic conditions is also investigated. A second issue tackled in this work is the reproduction of a real kerosene by a surrogate made up of a limited number of species, to simplify industrial problems and initial studies. Indeed, the composition of a commercial kerosene is complex and can vary, and the use of a surrogate allows an easier numerical simulation of the combustion process. The relevance of some more or less representative surrogates, formulated in the literature and elaborated all through different studies, is also studied in this thesis, by comparing the results obtained with those of a commercial kerosene. In addition, the modelling of those surrogates by a valid chemical kinetic mechanism is also analyzed. This research was conducted within the CAPA industrial Chair project dedicated to innovative combustion modes for air-breathing propulsion, financially supported by SAFRAN Tech, MBDA and France’s ANR national research agency.
Document type :
Theses
Complete list of metadatas

Cited literature [137 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02004255
Contributor : Abes Star <>
Submitted on : Friday, February 1, 2019 - 4:18:35 PM
Last modification on : Tuesday, June 4, 2019 - 6:21:41 PM
Long-term archiving on : Thursday, May 2, 2019 - 10:29:57 PM

File

2018ESMA0008_le_dortz.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02004255, version 1

Collections

Citation

Romain Le Dortz. Détermination des caractéristiques fondamentales de combustion de pré-mélange air-kérosène, de l’allumage à la vitesse de flamme : représentativité de surrogates mono et multi-composants. Autre. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique - Poitiers, 2018. Français. ⟨NNT : 2018ESMA0008⟩. ⟨tel-02004255⟩

Share

Metrics

Record views

132

Files downloads

71