. , 2.1 The two linear rigid rotors coupled equations

. .. Results,

. .. Conclusions,

, The coupled radial equations for the collision of C 3 N ? and H 2 are solved using an improved version of the code DIDIMAT [115] which uses the log-derivative propagator developed by Manolopoulos

A. Dalgarno and R. A. Mccray, The formation of interstellar molecules from negative ions, ApJ, vol.181, pp.95-100, 1973.

E. Herbst, Can negative molecular ions be detected in dense interstellar clouds?, Nature, vol.289, issue.5799, pp.656-657, 1981.

M. Tulej, D. A. Kirkwood, M. Pachkov, and J. P. Maier, Gas-phase electronic transitions of carbon chain anions coinciding with diffuse interstellar bands, ApJ, vol.506, issue.1, p.69, 1998.

R. Terzieva and E. Herbst, Radiative electron attachment to small linear carbon clusters and its significance for the chemistry of diffuse interstellar clouds, Int. J. Mass Spectrom, vol.201, issue.1, pp.135-142, 2000.

B. J. Mccall, J. Thorburn, L. M. Hobbs, T. Oka, and D. G. York, Rejection of the C ? 7 diffuse interstellar band hypothesis, ApJ, vol.559, issue.1, p.49, 2001.

Y. Morisawa, H. Hoshina, Y. Kato, Z. Simizu, S. Kuma et al., Search for CCH ? , NCO ? , and NCS ? negative ions in molecular clouds, Publ. Astron. Soc. Japan, vol.57, issue.2, pp.325-334, 2005.

M. C. Mccarthy, C. A. Gottlieb, H. Gupta, and P. Thaddeus, Laboratory and astronomical identification of the negative molecular ion C 6 H ?, ApJ, vol.652, issue.2, p.141, 2006.

T. J. Millar, C. Walsh, and T. A. Field, Negative ions in space, Chem. Rev, vol.117, issue.3, p.28112897, 2017.

S. Brünken, H. Gupta, C. A. Gottlieb, M. C. Mccarthy, and P. Thaddeus, Detection of the carbon chain negative ion C 8 H ? in TMC-1, ApJ, vol.664, issue.1, p.43, 2007.

P. Thaddeus, C. A. Gottlieb, H. Gupta, S. Brünken, M. C. Mccarthy et al., Laboratory and astronomical detection of the negative molecular ion C 3 N ?, ApJ, vol.677, issue.2, p.1132, 2008.

M. Agúndez, J. Cernicharo, M. Guélin, M. Gerin, M. C. Mccarthy et al., Search for anions in molecular sources: C 4 H ? detection in L1527, A&A, vol.478, issue.1, pp.19-22, 2008.

N. Sakai, T. Sakai, T. Hirota, and S. Yamamoto, Abundant carbon-chain molecules toward the low-mass protostar IRAS 04368+2557 in L1527, ApJ, vol.672, issue.1, p.371, 2008.

M. A. Cordiner, J. V. Buckle, E. S. Wirström, A. O. Olofsson, and S. , Charnley. On the ubiquity of molecular anions in the dense interstellar medium, ApJ, vol.770, issue.1, p.48, 2013.

H. Gupta, C. A. Gottlieb, M. C. Mccarthy, and P. Thaddeus, ApJ, vol.691, issue.2, p.1494, 2009.

N. Sakai, T. Shiino, T. Hirota, T. Sakai, and S. Yamamoto, Long carbon-chain molecules and their anions in the starless core, Lupus-1A, vol.718, issue.2, p.49, 2010.

M. A. Cordiner, S. B. Charnley, J. V. Buckle, C. Walsh, and T. J. Millar, Discovery of interstellar anions in cepheus and auriga, ApJ, vol.730, issue.2, p.18, 2011.

N. Sakai, T. Sakai, Y. Osamura, and S. Yamamoto, Detection of C 6 H ? toward the low-mass protostar IRAS 04368+2557 in L1527, ApJ, vol.667, issue.1, p.65, 2007.

A. J. Remijan, J. M. Hollis, F. J. Lovas, M. A. Cordiner, T. J. Millar et al., Detection of C 8 H ? and comparison with C 8 H toward IRC +10216, ApJ, vol.664, issue.1, p.47, 2007.

J. Cernicharo, M. Guélin, M. Agúndez, K. Kawaguchi, M. Mccarthy et al., Astronomical detection of C 4 H ? , the second interstellar anion, A&A, vol.467, issue.2, pp.37-40, 2007.

J. Cernicharo, M. Guélin, M. Agúndez, M. C. Mccarthy, and P. Thaddeus, Detection of C 5 N ? and vibrationally excited C 6 H in IRC +10216, ApJ, vol.688, issue.2, p.83, 2008.

M. Agúndez, J. Cernicharo, M. Guélin, C. Kahane, E. Roueff et al., Astronomical identification of CN ? , the smallest observed molecular anion, A&A, vol.517, p.2, 2010.

T. J. Millar, E. Herbst, and R. P. Bettens, Large molecules in the envelope surrounding IRC+10216, MNRAS, vol.316, issue.1, pp.195-203, 2000.

T. J. Millar, C. Walsh, M. A. Cordiner, R. N. Chuimín, and E. Herbst, Hydrocarbon anions in interstellar clouds and circumstellar envelopes, ApJ, vol.662, issue.2, p.87, 2007.

N. Harada and E. Herbst, Modeling carbon chain anions in L1527, ApJ, vol.685, issue.1, p.272, 2008.

E. Herbst and Y. Osamura, Calculations on the formation rates and mechanisms for C n H anions in interstellar and circumstellar media, ApJ, vol.679, issue.2, p.1670, 2008.

N. Douguet, S. Fonseca-dos-santos, M. Raoult, O. Dulieu, A. E. Orel et al., Theory of radiative electron attachment to molecules: Benchmark study of CN ?, Phys. Rev. A, vol.88, p.52710, 2013.

N. Douguet, V. Kokoouline, and A. E. Orel, Photodetachment cross sections of the C 2n H ? (n = 1 ? ?3) hydrocarbon-chain anions, Phys. Rev. A, vol.90, p.63410, 2014.

N. Douguet, S. Fonseca-dos-santos, M. Raoult, O. Dulieu, A. E. Orel et al., Theoretical study of radiative electron attachment to CN, C 2 H, and C 4 H radicals, J. Chem. Phys, vol.142, issue.23, p.234309, 2015.

M. Khamesian, N. Douguet, S. Fonseca-dos-santos, O. Dulieu, M. Raoult et al., Formation of CN ? , C 3 N ? and C 5 N ? molecules by radiative electron attachment and their destruction by photodetachment, Phys. Rev. Lett, vol.117, p.123001, 2016.

C. Barckholtz, T. P. Snow, and V. M. Bierbaum, Reactions of C ? n and C n H ? with atomic and molecular hydrogen, ApJ, vol.547, issue.2, p.171, 2001.

S. S. Kumar, D. Hauser, R. Jindra, T. Best, ?. Rou?ka et al., Photodetachment as a destruction mechanism for CN ? and C 3 N ? anions in circumstellar envelopes, ApJ, vol.776, issue.1, p.25, 2013.

J. K?os and F. Lique, First rate coefficients for an interstellar anion: application to the CN ?-H 2 collisional system, MNRAS, vol.418, issue.1, pp.271-275, 2011.

K. M. Walker, F. Lique, F. Dumouchel, and R. Dawes, Inelastic rate coefficients for collisions of C 6 H ? with H 2 and He, MNRAS, vol.466, issue.1, pp.831-837, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01919530

H. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al.,

M. J. Cooper, A. J. Deegan, F. Dobbyn, E. Eckert, C. Goll et al.,

J. Cí?ek, Calculation of wavefunction components in ursell-type expansion using quantumfield theoretical methods, J. Chem. Phys, vol.45, issue.11, pp.4256-4266, 1966.

J. Cí?ek and J. Paldus, Coupled cluster approach, Phys. Scr, vol.21, issue.3-4, p.251, 1980.

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys, vol.90, issue.2, pp.1007-1023, 1989.

R. A. Kendall, T. H. Dunning, and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys, vol.96, issue.9, pp.6796-6806, 1992.

D. E. Woon and T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, J. Chem. Phys, vol.98, issue.2, pp.1358-1371, 1993.

D. E. Woon and T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties, J. Chem. Phys, vol.100, issue.4, pp.2975-2988, 1994.

A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton, J. Chem. Phys, vol.110, issue.16, pp.7667-7676, 1999.

J. C. Light and R. B. Walker, An R matrix approach to the solution of coupled equations for atom-molecule reactive scattering, J. Chem. Phys, vol.65, issue.10, pp.4272-4282, 1976.

D. E. Manolopoulos, An improved log derivative method for inelastic scattering, J. Chem. Phys, vol.85, issue.11, pp.6425-6429, 1986.

J. Lill, G. Parker, and J. Light, Discrete variable representations and sudden models in quantum scattering theory, Chem. Phys. Lett, vol.89, issue.6, pp.483-489, 1982.

J. C. Light, I. P. Hamilton, and J. V. Lill, Generalized discrete variable approximation in quantum mechanics, J. Chem. Phys, vol.82, issue.3, pp.1400-1409, 1985.

J. C. Light and T. Carrington, Discrete-Variable Representations and their Utilization, pp.263-310, 2007.

M. Lara-moreno, T. Stoecklin, P. Halvick, and J. Loison, New single-center approach of photodetachment and radiative electron attachment: Comparison with other theoretical approaches and with experimental photodetachment data, J. Chem. Phys, 2018.

K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, Cross sections for photodetachment of electrons from negative ions near threshold, J. Chem. Phys, vol.64, issue.4, pp.1368-1375, 1976.

C. M. Oana and A. I. Krylov, Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster Dyson orbitals, J. Chem. Phys, vol.131, issue.12, p.124114, 2009.

Y. Liu and C. Ning, Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory, J. Chem. Phys, vol.143, issue.14, p.144310, 2015.

L. A. Collins and B. I. Schneider, Molecular photoionization in the linear algebraic approach: H 2 , N 2 , NO, and C 2, Phys. Rev. A, vol.29, pp.1695-1708, 1984.

T. N. Rescigno and A. E. Orel, Separable approximation for exchange interactions in electron-molecule scattering, Phys. Rev. A, vol.24, pp.1267-1271, 1981.

T. N. Rescigno and A. E. Orel, Separable approximation for exchange interactions in electron-molecule scattering: Numerical stabilization procedures, Phys. Rev. A, vol.25, pp.2402-2404, 1982.

C. M. Granados-castro, L. U. Ancarani, G. Gasaneo, and D. M. Mitnik, Chapter one-A Sturmian approach to photoionization of molecules, Electron Correlation in Molecules-ab initio Beyond Gaussian Quantum Chemistry, vol.73, pp.3-57, 2016.

W. Sun, R. M. Pitzer, and C. W. Mccurdy, Photodetachment cross section for the 3? u channel of f ? 2 in the static-exchange approximation, Phys. Rev. A, vol.40, pp.3669-3672, 1989.

E. Milne and . Xviii, Statistical equilibrium in relation to the photo-electric effect, and its application to the determination of absorption coefficients, Phil. Mag. Series, vol.47, issue.277, pp.209-241, 1924.

J. C. Light, J. Ross, and K. E. Shuler, Rate coefficients, reaction cross sections and microscopic reversibility, Kinetic processes in gases and plasmas, pp.281-320, 1969.

C. M. Oana and A. I. Krylov, Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: Theory, implementation, and examples, J. Chem. Phys, vol.127, issue.23, p.234106, 2007.

G. Grell, S. I. Bokarev, B. Winter, R. Seidel, E. F. Aziz et al., Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling, J. Chem. Phys, vol.143, issue.7, p.74104, 2015.

P. Duffy, D. P. Chong, M. E. Casida, and D. R. Salahub, Assessment of KohnSham density-functional orbitals as approximate Dyson orbitals for the calculation of electron-momentum-spectroscopy scattering cross sections, Phys. Rev. A, vol.50, pp.4707-4728, 1994.

S. Hamel, P. Duffy, M. E. Casida, and D. R. Salahub, Kohn-Sham orbitals and orbital energies: fictitious constructs but good approximations all the same, J. Electron Spectrosc. Relat. Phenom, vol.123, issue.2, pp.345-363, 2002.

F. E. Harris and H. H. Michels, Multicenter integrals in quantum mechanics. I. Expansion of Slater type orbitals about a new origin, J. Chem. Phys, vol.43, issue.10, pp.165-169, 1965.

H. and L. Rouzo, Multipole expansion of Cartesian Gaussian orbitals about a new origin, Int. J. Quantum Chem, vol.64, issue.6, pp.647-653, 1997.

I. Ema, J. M. García-de-la, G. Vega, R. Ramírez, R. J. López et al., Polarized basis sets of slater-type orbitals: H to ne atoms, J. Comput. Chem, vol.24, issue.7, pp.859-868, 2003.

R. J. Fernández, R. López, I. Ema, and G. Ramírez, Efficiency of the algorithms for the calculation of slater molecular integrals in polyatomic molecules, J. Comput. Chem, vol.25, issue.16, pp.1987-1994, 2004.

M. A. Morrison and L. A. Collins, Exchange in low-energy electron-molecule scattering: Free-electron-gas model exchange potentials and applications to e ?-H 2 and e ?-N 2 collisions, Phys. Rev. A, vol.17, pp.918-938, 1978.

N. T. Padial and D. W. Norcross, Parameter-free model of the correlationpolarization potential for electron-molecule collisions, Phys. Rev. A, vol.29, pp.1742-1748, 1984.

W. N. Sams and D. J. Kouri, Noniterative solutions of integral equations for scattering. I. Single channels, J. Chem. Phys, vol.51, issue.11, pp.4809-4814, 1969.

W. N. Sams and D. J. Kouri, Noniterative solutions of integral equations for scattering. II. Coupled channels, J. Chem. Phys, vol.51, issue.11, pp.4815-4819, 1969.

R. G. Tonkyn, J. W. Winniczek, and M. G. White, Rotationally resolved photoionization of O + 2 near threshold, Chem. Phys. Lett, vol.164, issue.2, pp.137-142, 1989.

K. M. Ervin, I. Anusiewicz, P. Skurski, J. Simons, and W. C. Lineberger, The only stable state of O ? 2 is the X 2 ? g ground state and it (still!) has an adiabatic electron detachment energy of 0.45 eV, J. Phys. Chem. A, vol.107, issue.41, pp.8521-8529, 2003.

K. P. Huber and G. H. , Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules, 1979.

S. E. Bradforth, E. H. Kim, D. W. Arnold, and D. M. Neumark, Photoelectron spectroscopy of CN ? , NCO ? , and NCS ?, J. Chem. Phys, vol.98, issue.2, pp.800-810, 1993.

R. T. Wiedmann, R. G. Tonkyn, M. G. White, K. Wang, and V. Mckoy, Rotationally resolved threshold photoelectron spectra of OH and OD, J. Chem. Phys, vol.97, issue.2, pp.768-772, 1992.

J. R. Smith, J. B. Kim, and W. C. Lineberger, High-resolution threshold photodetachment spectroscopy of OH ?, Phys. Rev. A, vol.55, pp.2036-2043, 1997.

G. Parlant and F. Fiquet-fayard, The O 2 2 ? g resonance: theoretical analysis of electron scattering data, J. Phys. B At. Mol. Phys, vol.9, issue.9, p.1617, 1976.

L. M. Branscomb, Photodetachment cross section, electron affinity, and structure of the negative hydroxyl ion, Phys. Rev, vol.148, pp.11-18, 1966.

S. Gozem and A. I. Krylov,

S. Gozem, A. O. Gunina, T. Ichino, D. L. Osborn, J. F. Stanton et al., Photoelectron wave function in photoionization: Plane wave or coulomb wave?, J. Phys. Chem. Lett, vol.6, issue.22, pp.4532-4540, 2015.

R. A. Beyer and J. A. Vanderhoff, Cross section measurements for photodetachment or photodissociation of ions produced in gaseous mixtures of O 2 , CO 2 , and H 2 O, J. Chem. Phys, vol.65, issue.6, pp.2313-2321, 1976.

D. S. Burch, S. J. Smith, and L. M. Branscomb, Photodetachment of O ?, Phys. Rev, vol.112, pp.171-175, 1958.

L. C. Lee and G. P. Smith, Photodissociation and photodetachment of molecular negative ions. VI. ions in O 2 /CH 4 /H 2 O mixtures from 3500 to 8600 å, J. Chem. Phys, vol.70, issue.4, pp.1727-1735, 1979.

S. Trippel, J. Mikosch, R. Berhane, R. Otto, M. Weidemüller et al., Photodetachment of cold OH ? in a multipole ion trap, Phys. Rev. Lett, vol.97, p.193003, 2006.

P. Hlavenka, R. Otto, S. Trippel, J. Mikosch, M. Weidemüller et al., Absolute photodetachment cross section measurements of the O ? and OH ? anion, J. Chem. Phys, vol.130, issue.6, p.61105, 2009.

W. Skomorowski, S. Gulania, and A. I. Krylov, Bound and continuumembedded states of cyanopolyyne anions, Phys. Chem. Chem. Phys, vol.20, pp.4805-4817, 2018.

S. J. Burns, J. M. Matthews, and D. L. Mcfadden, Rate coefficients for dissociative electron attachment by halomethane compounds between, vol.300, p.800

K. J. , Chem. Phys, vol.100, issue.50, pp.19436-19440, 1996.

L. G. Christophorou and J. K. Olthoff, Electron attachment cross sections and negative ion states of SF 6, Int. J. Mass Spec, vol.205, issue.1, pp.27-41, 2001.

A. A. Viggiano, T. M. Miller, J. F. Friedman, and J. Troe, Low-energy electron attachment to SF 6. III. From thermal detachment to the electron affinity of SF 6, J. Chem. Phys, vol.127, issue.24, p.244305, 2007.

W. B. Knighton, T. M. Miller, E. P. Grimsrud, and A. A. Viggiano, Electron attachment to PSCl 3, J. Chem. Phys, vol.120, issue.1, pp.211-216, 2004.

S. Petrie, Novel pathways to CN ? within interstellar clouds and circumstellar envelopes: implications for IS and CS chemistry, MNRAS, vol.281, issue.1, pp.137-144, 1996.

S. Petrie and E. Herbst, Some interstellar reactions involving electrons and neutral species: Attachment and isomerization, Astrophys. J, vol.491, issue.1, p.210, 1997.

T. Pino, M. Tulej, F. Güthe, M. Pachkov, and J. P. Maier, Photodetachment spectroscopy of the C 2n H ? (n = 2 ? 4) anions in the vicinity of their electron detachment threshold, J. Chem. Phys, vol.116, issue.14, pp.6126-6131, 2002.

T. Best, R. Otto, S. Trippel, P. Hlavenka, A. Zastrow et al., Absolute photodetachment cross-section measurements for hydrocarbon chain anions, ApJ, vol.742, issue.2, p.63, 2011.

A. N. Heays, A. D. Bosman, and E. F. Van-dishoeck, Photodissociation and photoionisation of atoms and molecules of astrophysical interest, A&A, vol.602, p.105, 2017.

E. P. Wigner, On the behavior of cross sections near thresholds, Phys. Rev, vol.73, pp.1002-1009, 1948.

M. A. Cordiner and T. J. Millar, Density-enhanced gas and dust shells in a new chemical model for irc+10216, The Astrophysical Journal, vol.697, issue.1, p.68, 2009.

F. Carelli, F. A. Gianturco, R. Wester, and M. Satta, Formation of cyanopolyyne anions in the interstellar medium: The possible role of permanent dipoles, J. Chem. Phys, vol.141, issue.5, p.54302, 2014.

K. Connolly and D. J. Griffiths, Critical dipoles in one, two, and three dimensions, Am. J. Phys, vol.75, issue.6, pp.524-531, 2007.

M. Lara-moreno, T. Stoecklin, and P. Halvick, Interaction of rigid C 3 N ? with He: Potential energy surface, bound states, and rotational spectrum, J. Chem. Phys, vol.146, issue.22, p.224310, 2017.

R. Ko?os, M. Gronowski, and P. Botschwina, Matrix isolation IR spectroscopic and ab initio studies of c 3 n ? and related species, J. Chem. Phys, vol.128, issue.15, p.154305, 2008.

T. Stoecklin, O. Denis-alpizar, and P. Halvick, Rovibrational energy transfer in the He-C 3 collision: rigid bender treatment of the bending-rotation interaction and rate coefficients, MNRAS, vol.449, issue.4, pp.3420-3425, 2015.

C. Hampel, K. A. Peterson, and H. Werner, A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods, Chem. Phys. Lett, vol.190, issue.1, pp.1-12, 1992.

S. M. Cybulski and R. R. Toczylowski, Ground state potential energy curves for He 2, J. Chem. Phys, vol.111, issue.23, pp.10520-10528, 1999.

S. Boys and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys, vol.19, issue.4, pp.553-566, 1970.

Y. Ajili, T. Trabelsi, O. Denis-alpizar, T. Stoecklin, A. G. Császár et al., Vibrational memory in quantum localized states, Phys. Rev. A, vol.93, p.52514, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01673222

D. Papp, J. Sarka, T. Szidarovszky, A. G. Csaszar, E. Matyus et al., Complex rovibrational dynamics of the Ar-NO + complex, Phys. Chem. Chem. Phys, vol.19, pp.8152-8160, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01673256

M. Rotenberg, Theory and Application of Sturmian Functions, of Advances in Atomic and Molecular Physics, vol.6, 1970.

E. Yurtsever, O. Yilmaz, and D. Shillady, Sturmian basis matrix solution of vibrational potentials, Chem. Phys. Lett, vol.85, issue.1, pp.111-116, 1982.

S. E. Choi and J. C. Light, Determination of the bound and quasibound states of Ar-HCl van der Waals complex: Discrete variable representation method, J. Chem. Phys, vol.92, issue.4, pp.2129-2145, 1990.

J. Hutson, An introduction to the dynamics of van der Waals complexes, volume 1A of Advances in Molecular Vibrations and Collision Dynamics, 1991.

M. Lara-moreno, T. Stoecklin, and P. Halvick, Rotational (de-)excitation of C 3 N ? by collision with He atoms, MNRAS, vol.467, issue.1, p.4174, 2017.

F. Dumouchel, A. Spielfiedel, M. Senent, and N. Feautrier, Temperature dependence of rotational excitation rate coefficients of C 2 H ? in collision with He, Chem. Phys. Lett, vol.533, pp.6-9, 2012.

T. A. Yen, E. Garand, A. T. Shreve, and D. M. Neumark, Anion photoelectron spectroscopy of C 3 N ? and C 5 N ?, J. Phys. Chem. A, vol.114, issue.9, pp.3215-3220, 2010.

O. Denis-alpizar, T. Stoecklin, P. Halvick, and M. Dubernet, Rotational relaxation of CS by collision with ortho-and para-H 2 molecules, J. Chem. Phys, vol.139, issue.20, p.204304, 2013.

G. Guillon, T. Stoecklin, A. Voronin, and P. Halvick, Rotational relaxation of HF by collision with ortho-and para-H 2 molecules, J. Chem. Phys, vol.129, issue.10, p.104308, 2008.

M. L. Dubernet, F. Daniel, A. Grosjean, and C. Y. Lin, Rotational excitation of ortho-H 2 O by para-H 2 (j 2 = 0, 2, 4, 6, 8) at high temperature, A&A, vol.497, issue.3, pp.911-925, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00384215

F. Lique, R. Tobo?a, J. K?os, N. Feautrier, A. Spielfiedel et al., Can we estimate H 2 (j = 0) rate coefficients from He rate coefficients? Application to the SiS molecule, A&A, vol.478, issue.2, pp.567-574, 2008.

J. Cernicharo, A. Spielfiedel, C. Balança, F. Dayou, M. Senent et al., Collisional excitation of sulfur dioxide in cold molecular clouds, A&A, vol.531, p.103, 2011.

K. M. Walker, B. H. Yang, P. C. Stancil, N. Balakrishnan, and R. C. Forrey, On the validity of collider-mass scaling for molecular rotational excitation, ApJ, vol.790, issue.2, p.96, 2014.

A. E. Depristo, S. D. Augustin, R. Ramaswamy, and H. Rabitz, Quantum number and energy scaling for nonreactive collisions, J. Chem. Phys, vol.71, issue.2, pp.850-865, 1979.

G. C. Corey and F. R. Mccourt, Inelastic differential and integral cross sections for 2S+1 ? linear molecule-1 S atom scattering: The use of hund's case (b) representation, J. Phys. Chem, vol.87, issue.15, pp.2723-2730, 1983.

D. H. Zhang and J. Z. Zhang, Uniform J-shifting approach for calculating reaction rate constant, J. Chem. Phys, vol.110, issue.16, pp.7622-7626, 1999.

A. M. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. R. Soc. London. Series A, Math. Phys. Sci, vol.256, pp.540-551, 1287.

I. C. Percival and M. J. Seaton, The partial wave theory of electron-hydrogen atom collisions, Math. Proc. Cambridge Philos. Soc, vol.53, issue.3, pp.654-662, 1957.

T. Stoecklin, A. Voronin, and J. C. Rayez, Vibrational quenching of N 2 (? = 1, j rot = j) by 3 He: Surface and close-coupling calculations at very low energy, Phys. Rev. A, vol.66, p.42703, 2002.

F. Lique, N. Bulut, and O. Roncero, Hyperfine excitation of OH + by H, MNRAS, vol.461, p.4477, 2016.

G. Werfelli, P. Halvick, P. Honvault, B. Kerkeni, and T. Stoecklin, Low temperature rate coefficients of the H + CH + ? C + + H 2 reaction: New potential energy surface and time-independent quantum scattering, J. Chem. Phys, vol.143, issue.11, p.114304, 2015.

C. W. Mccurdy and W. H. Miller, Interference effects in rotational state distributions: Propensity and inverse propensity, J. Chem. Phys, vol.67, issue.2, pp.463-468, 1977.

M. Wernli, L. Wie, A. Faure, and P. Valiron, Rotational excitation of HC 3 N by H 2 and He at low temperatures, A&A, vol.464, issue.3, pp.1147-1154, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00116656

P. Langevin, Une formule fundamentale de theorie cinetique, Ann. Chim. Phys, vol.5, p.245, 1905.

G. Gioumousis and D. P. Stevenson, Reactions of gaseous molecule ions with gaseous molecules. V. Theory, J. Chem. Phys, vol.29, issue.2, pp.294-299, 1958.

R. Mcgill, J. W. Tukey, and W. A. Larsen, Variations of Box Plots, Am. Stat, vol.32, issue.1, pp.12-16, 1978.

M. Frigge, D. C. Hoaglin, and B. Iglewicz, Some implementations of the Boxplot, Am. Stat, vol.43, issue.1, pp.50-54, 1989.

P. Halvick, T. Stoecklin, F. Lique, and M. Hochlaf, Explicitly correlated treatment of the Ar-NO + cation, J. Chem. Phys, vol.135, issue.4, p.44312, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00766153

C. Orek, J. K?os, F. Lique, and N. Bulut, Ab initio studies of the Rg-NO + (X 1 ? + ) van der Waals complexes (Rg = He, Ne, Ar, Kr, and Xe), J. Chem. Phys, vol.144, issue.20, p.204303, 2016.

G. B. Arfken, Mathematical methods for physicists, 1985.

A. D. Buckingham, Permanent and Induced Molecular Moments and Long-Range Intermolecular Forces, pp.107-142, 2007.

D. Shiner, J. M. Gilligan, B. M. Cook, and W. Lichten, H 2 , D 2 and HD ionization potentials by accurate calibration of several iodine lines, Phys. Rev. A, vol.47, pp.4042-4045, 1993.

P. Bunker, Molecular Symmetry and Spectroscopy, 2012.

J. C. Light and Z. Ba?i´ba?i´c, Adiabatic approximation and nonadiabatic corrections in the discrete variable representation: Highly excited vibrational states of triatomic molecules, J. Chem. Phys, vol.87, issue.7, pp.4008-4019, 1987.

E. Wilson, J. Decius, and P. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, 2012.

G. F. Englot and H. Rabitz, Dimensionality control of coupled scattering equations using partitioning techniques: The case of two molecules, Phys. Rev. A, vol.10, pp.2187-2205, 1974.

S. Green, Rotational excitation in H 2-H 2 collisions: Close-coupling calculations, J. Chem. Phys, vol.62, issue.6, pp.2271-2277, 1975.

G. Herzberg and L. L. Howe, The lyman bands of molecular hydrogen, Can. J. Phys, vol.37, issue.5, pp.636-659, 1959.

M. Lara-moreno, T. Stoecklin, P. Halvick, and M. Hochlaf, Quantum tunneling dynamical behaviour on weakly bound complexes: the case of a CO 2-N 2 dimer, Phys. Chem. Chem. Phys, 2018.

M. A. Walsh, T. R. Dyke, and B. J. Howard, Determination of the structure of N 2 ? CO 2 from its infrared spectrum, J. Mol. Struct, vol.189, issue.1, pp.111-120, 1988.

J. A. Castano, A. Fantoni, and R. M. Romano, Matrix-isolation FTIR study of carbon dioxide: Reinvestigation of the CO 2 dimer and CO 2 ? N 2 complex, J. Mol. Struct, vol.881, issue.1, pp.68-75, 2008.

D. J. Frohman, E. S. Contreras, R. S. Firestone, S. E. Novick, and W. Klemperer, Microwave spectra, structure, and dynamics of the weakly bound complex, N 2 ? CO 2, J. Chem. Phys, vol.133, issue.24, p.244303, 2010.

T. Konno, S. Yamaguchi, and Y. Ozaki, Infrared diode laser spectroscopy of N 2 ? 12 C 18 O 2, J. Mol. Spectrosc, vol.270, issue.1, pp.66-69, 2011.

M. Venayagamoorthy and T. Ford, Ab initio molecular orbital studies of the vibrational spectra of some van der waals complexes. part 1. complexes of molecular nitrogen with carbon dioxide, nitrous oxide, carbonyl sulphide and carbon disulphide, J. Mol. Struct, pp.399-409, 2001.

J. Fi?er, T. Boublík, and R. Polák, Intermolecular interactions in the (CO 2 ) 2 , N 2 ? CO 2 and CO ? CO 2 complexes, Collect. Czech. Chem. Commun, vol.69, issue.1, pp.177-188, 2004.

K. M. De-lange and J. R. Lane, Explicit correlation and intermolecular interactions: Investigating carbon dioxide complexes with the CCSD(T) ? F12 method, J. Chem. Phys, vol.134, issue.3, p.34301, 2011.

S. Nasri, Y. Ajili, N. Jaidane, Y. N. Kalugina, P. Halvick et al., Potential energy surface of the CO 2 ? N 2 van der Waals complex, J. Chem. Phys, vol.142, issue.17, p.174301, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01673160

J. Tennyson and A. Van-der-avoird, Quantum dynamics of the van der Waals molecule (N 2 ) 2 : An ab initio treatment, J. Chem. Phys, vol.77, issue.11, pp.5664-5681, 1982.

H. Chen and J. C. Light, Vibrations of the carbon dioxide dimer, J. Chem. Phys, vol.112, issue.11, pp.5070-5080, 2000.

R. Zare, Angular momentum: understanding spatial aspects in chemistry and physics. George Fisher Baker non-resident lectureship in chemistry at Cornell University, 1988.

L. Wang, M. Yang, A. R. Mckellar, and D. H. Zhang, Spectroscopy and potential energy surface of the H 2 ? CO 2 van der waals complex: experimental and theoretical studies, Phys. Chem. Chem. Phys, vol.9, pp.131-137, 2007.

Z. Ba?i´ba?i´c and J. C. Light, Accurate localized and delocalized vibrational states of HCN/HNC, J. Chem. Phys, vol.86, issue.6, pp.3065-3077, 1987.

S. Zou, J. M. Bowman, and A. Brown, Full-dimensionality quantum calculations of acetylene-vinylidene isomerization, J. Chem. Phys, vol.118, issue.22, pp.10012-10023, 2003.

J. H. Baraban, P. B. Changala, G. C. Mellau, J. F. Stanton, A. J. Merer et al., Spectroscopic characterization of isomerization transition states, Science, vol.350, issue.6266, pp.1338-1342, 2015.

W. Arbelo-gonzález, R. Crespo-otero, and M. Barbatti, Steady and timeresolved photoelectron spectra based on nuclear ensembles, J. Chem. Theory Comput, vol.12, issue.10, pp.5037-5049, 2016.