/. Empilements-ti, . Al, . Préalablement-déposée-sur-le, . Gan, and . Le-saphir, Des premiers essais de gravure ont montré qu'à l'aide du procédé Corial CHF 3 , ce tampon était gravé avec des performances proches de celles du GaN. De plus, les états de surface obtenus sont alors peu rugueux. Enfin, aucune incidence sur la vitesse de gravure moyenne n'a été observée lors de la gravure du tampon à travers des "vias

. Aujourd'hui, les nombreuses dislocations présentes dans les couches de GaN ont conduit le PROJET Tours 2015 à développer une diode Schottky selon une nouvelle structure. Basée sur l'utilisation d'un gaz 2DEG d'électrons, elle utilise un empilement AlGaN/GaN similaire aux structures HEMTs

, Pour répondre à ce besoin de nouveaux procédés devront voir le jour. Des plasmas en chimies Cl 2 /Ar/SF 6 et/ou le procédé de gravure alterné, et les mécanismes qu'ils induisent, pourraient alors constituer une base de travail intéressante. Par ailleurs, de nombreuses perspectives restent ouvertes pour la réalisation d'une diode Schottky verticale et pseudo-verticale à base de GaN sur Si. En effet, si des masques de type B 4 C et TiN peuvent s'avérer intéressants, leurs impacts sur les états du surface du GaN restent inconnus. De même, de multiples recherches et optimisations restent à mener sur le procédé alterné afin de graver des plus fortes épaisseurs de GaN sans défaut. Pour finir, des travaux doivent encore être conduits sur la gravure du Si et des couches composant le tampon à travers des vias de petites ouvertures, Cette nouvelle configuration induit de nouvelles problématiques telles que la gravure partielle ou totale de la couche d'AlGaN d'une vingtaine de nanomètres, p.219

. Bibliographie,

V. Rozite, More Data, Less Energy : Making Network Standby More Efficient in Billions of Connected Devices, 2014.

H. Mathieu and H. Fanet, Physique des semiconducteurs et des composants électroniques-6ième édition : Cours et exercices corrigés, 2009.

W. C. Johnson, J. B. Parson, and M. C. Crew, Nitrogen Compounds of Gallium, III. The Journal of Physical Chemistry, vol.36, issue.10, pp.2651-2654, 1931.

S. Strite, H. Morkoç, A. Gan, and . Inn, review. Journal of Vacuum Science & Technology B, vol.10, issue.4, pp.1237-1266, 1992.

T. Hanada, Basic Properties of ZnO, GaN, and Related Materials, Oxide and Nitride Semiconductors, vol.12, pp.1-19

H. Springer-berlin, , 2009.

F. Benkabou, P. Becker, M. Certier, and H. Aourag, Structural and Dynamical Properties of Zincblende GaN. physica status solidi (b), vol.209, pp.223-233, 1998.

W. Seifert and A. Tempel, Zur Epitaxie von Galliumnitrid auf Korund im System GaCl/NH 3 /Ar. Kristall und Technik, vol.9, pp.1213-1221, 1974.

R. Jochen and . Müllhäuser, Properties of Zincblende GaN and (In,Ga,Al)N Heterostructures grown by Molecular Beam Epitaxy, 1998.

W. J. Fan, M. F. Li, T. C. Chong, and J. B. Xia, Electronic properties of zinc-blende GaN, AlN, and their alloys Ga 1?x Al x N, Journal of Applied Physics, vol.79, issue.1, pp.188-194, 1996.

S. V. Novikov, C. T. Foxon, and A. J. Kent, Zinc-blende (cubic) GaN bulk crystals grown by molecular beam epitaxy. physica status solidi (c), vol.8, pp.1439-1444, 2011.

T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham et al., Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon, Applied Physics Letters, vol.59, issue.8, pp.944-946, 1991.

P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates, Journal of Applied Physics, vol.75, issue.9, pp.4515-4519, 1994.

H. Morkoç, Nitride Semiconductors and Devices. Springer Series in Materials Science, 1999.

E. Trybus, Molecular Beam Epitaxy Growth of Indium Nitride and Indium Gallium Nitride Materials for Photovoltaic Applications, 2009.

A. R. Smith, R. M. Feenstra, D. W. Greve, M. S. Shin, M. Skowronski et al., Determination of wurtzite GaN lattice polarity based on surface reconstruction, Applied Physics Letters, vol.72, issue.17, pp.2114-2116, 1998.

T. Zhu, Non-polar GaN Epilayers and Heterostructures for Photonic Applications, 2009.

T. Sasaki and T. Matsuoka, Substrate-polarity dependence of metalorganic vapor-phase epitaxy-grown GaN on SiC, Journal of Applied Physics, vol.64, issue.9, pp.4531-4535, 1988.

E. S. Hellman, The Polarity of GaN : a Critical Review, MRS Internet Journal of Nitride Semiconductor Research, vol.3, 1998.

V. Ramachandran, R. M. Feenstra, W. L. Sarney, L. Salamanca-riba, J. E. Northrup et al., Inversion of wurtzite GaN(0001) by exposure to magnesium, Applied Physics Letters, vol.75, issue.6, pp.808-810, 1999.

D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que et al., Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy, Journal of Applied Physics, vol.90, issue.8, pp.4219-4223, 2001.

R. Gaska, J. W. Yang, A. D. Bykhovski, M. S. Shur, V. V. Kaminski et al., The influence of the deformation on the twodimensional electron gas density in GaN-AlGaN heterostructures, Applied Physics Letters, vol.72, issue.1, pp.64-66, 1998.

M. Stutzmann, O. Ambacher, M. Eickhoff, U. Karrer, A. Lima-pimenta et al.,

, Grober. Playing with Polarity. physica status solidi (b), vol.228, pp.505-512, 2001.

D. Li, M. Sumiya, K. Yoshimura, Y. Suzuki, Y. Fukuda et al., Characteristics of the GaN Polar Surface during an Etching Process in KOH Solution. physica status solidi (a), vol.180, pp.357-362, 2000.

J. Karpi?ski, J. Jun, and S. Porowski, Equilibrium pressure of N 2 over GaN and high pressure solution growth of GaN, Journal of Crystal Growth, vol.66, issue.1, pp.1-10, 1984.

S. Porowski, Bulk and homoepitaxial GaN-growth and characterisation, Journal of Crystal Growth, issue.0, pp.153-158, 1998.

B. B. Kosicki and D. Kahng, Preparation and Structural Properties of GaN Thin Films, Journal of Vacuum Science & Technology, vol.6, issue.4, pp.593-596, 1969.

M. Ilegems, Vapor epitaxy of gallium nitride, Journal of Crystal Growth, issue.0, pp.360-364, 1972.

W. Li and W. Ni, Residual strain in GaN epilayers grown on sapphire and (6H)SiC substrates, Applied Physics Letters, vol.68, issue.19, pp.2705-2707, 1996.

Y. S. Cho, J. Kim, Y. J. Park, H. Na, H. J. Kim et al., The effects of strained sapphire (0001) substrate on the structural quality of GaN epilayer. physica status solidi (b), pp.2722-2725, 2004.

A. E. Wickenden, W. B. Alexander, D. D. Koleske, and J. A. Freitas, The influence of strain and mosaic structure on electrical and optical properties of GaN films on sapphire substrates, Journal of Crystal Growth, vol.170, issue.1-4, pp.367-371, 1997.

O. Ambacher, Growth and applications of Group III-nitrides, Journal of Physics D : Applied Physics, vol.31, issue.20, p.2653, 1998.

F. Hamdani, M. Yeadon, D. J. Smith, H. Tang, W. Kim et al., Microstructure and optical properties of epitaxial GaN on ZnO (0001) grown by reactive molecular beam epitaxy, Journal of Applied Physics, vol.83, issue.2, pp.983-990, 1998.

V. Kirchner, M. Fehrer, S. Figge, H. Heinke, S. Einfeldt et al., Correlations between Structural, Electrical and Optical Properties of GaN Layers Grown by Molecular Beam Epitaxy. physica status solidi (b), vol.216, pp.659-662, 1999.

O. Gfrörer, T. Schlüsener, V. Härle, F. Scholz, and A. Hangleiter, Relaxation of thermal strain in GaN epitaxial layers grown on sapphire

, Materials Science and Engineering : B, vol.43, issue.1-3, pp.250-252, 1997.

F. C. Wang, C. L. Cheng, Y. F. Chen, C. F. Huang, and C. C. Yang, Residual thermal strain in thick GaN epifilms revealed by crosssectional Raman scattering and cathodoluminescence spectra, Science and Technology, vol.22, issue.8, p.896, 2007.

W. M. Yim and R. J. Paff, Thermal expansion of AlN, sapphire, and silicon, Journal of Applied Physics, vol.45, issue.3, pp.1456-1457, 1974.

R. R. Reeber and K. Wang, Lattice Parameters and Thermal Expansion of Important Semiconductors and Their Substrates, Symposium T-Wide-Bandgap Electronic Devices, vol.622, 2000.

H. Y. Shin, C. W. Wang, S. H. Jung, and J. B. Yoo, A Study on Growth Characteristics of GaN Layers Grown by MOCVD on Si, issue.111

. Substrate, Journal of the Korean Physical Society, vol.42, pp.403-407, 2003.

J. Bai, T. Wang, K. B. Lee, P. J. Parbrook, Q. Wang et al., Generation of misfit dislocations in highly mismatched GaN/AlN layers, Surface Science, vol.602, issue.15, pp.2643-2646, 2008.

L. Zhang, Y. Shao, X. Hao, Y. Wu, S. Qu et al., Comparison of the strain of GaN films grown on MOCVD-GaN/Al 2 O 3 and MOCVD-GaN/SiC samples by HVPE growth, Journal of Crystal Growth, vol.334, issue.1, pp.62-66, 2011.

H. P. Maruska and J. J. Tietjen, THE PREPARATION AND PROPERTIES OF VAPOR-DEPOSITED SINGLE-CRYSTAL-LINE GaN, Applied Physics Letters, vol.15, issue.10, pp.327-329, 1969.

J. Ryou, 3-Gallium nitride (GaN) on sapphire substrates for visible LEDs, Nitride Semiconductor Light-Emitting Diodes (LEDs), pp.66-98, 2014.

S. C. Jain, M. Willander, J. Narayan, and R. Van-overstraeten, III-nitrides : Growth, characterization, and properties, Journal of Applied Physics, vol.87, issue.3, pp.965-1006, 2000.

W. A. Melton and J. I. Pankove, GaN growth on sapphire, Journal of Crystal Growth, vol.178, issue.1-2, pp.168-173, 1997.

D. Doppalapudi, E. Iliopoulos, S. N. Basu, and T. D. Moustakas, Epitaxial growth of gallium nitride thin films on A-Plane sapphire by molecular beam epitaxy, Journal of Applied Physics, vol.85, issue.7, pp.3582-3589, 1999.

T. Paskova, V. Darakchieva, E. Valcheva, P. P. Paskov, B. Monemar et al., Growth of GaN on a-plane sapphire : in-plane epitaxial relationships and lattice parameters, physica status solidi (b), vol.240, pp.318-321, 2003.

K. Okuno, Y. Saito, S. Boyama, N. Nakada, S. Nitta et al., m-Plane GaN Films Grown on Patterned a-Plane Sapphire Substrates with 3-inch Diameter, Applied Physics Express, vol.2, issue.3, p.31002, 2009.

A. Usikov, L. Shapovalov, V. Ivantsov, O. Kovalenkov, A. Syrkin et al., GaN layer growth by HVPE on m-plane sapphire substrates. physica status solidi (c), vol.6, pp.321-324, 2009.

A. Lankinen, T. Lang, S. Suihkonen, O. Svensk, A. Säynätjoki et al., Dislocations at the interface between sapphire and GaN, Journal of Materials Science : Materials in Electronics, vol.19, issue.2, pp.143-148, 2008.

S. Huang and J. Yang, A Transmission Electron Microscopy Observation of Dislocations in GaN Grown on (0001) Sapphire by Metal Organic Chemical Vapor Deposition, Japanese Journal of Applied Physics, vol.47, issue.10R, p.7998, 2008.

H. Shin, S. K. Kwon, Y. I. Chang, M. J. Cho, and K. H. Park, Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate, Journal of Crystal Growth, vol.311, issue.17, pp.4167-4170, 2009.

C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido, A. Usui et al., High-quality InGaN MQW on low-dislocation-density GaN substrate grown by hydride vapor-phase epitaxy, Journal of Crystal Growth, issue.0, pp.61-66, 1998.

N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, Scattering of electrons at threading dislocations in GaN, Journal of Applied Physics, vol.83, issue.7, pp.3656-3659, 1998.

H. K. Kwon, C. J. Eiting, D. J. Lambert, M. M. Wong, R. D. Dupuis et al., Observation of long photoluminescence decay times for high-quality GaN grown by metalorganic chemical vapor deposition, Applied Physics Letters, vol.77, issue.16, pp.2503-2505, 2000.

V. Potin, P. Ruterana, and G. Nouet, Initial stages of growth of GaN over (0001) Al 2 O 3 substrate using MBE : a crystallographic analysis of the defects, Materials Science and Engineering : B, vol.50, issue.1-3, pp.29-31, 1997.

J. Lee, H. Paek, J. Yoo, G. Kim, and D. Kum, Low temperature buffer growth to improve hydride vapor phase epitaxy of GaN, Materials Science and Engineering : B, vol.59, issue.1-3, pp.12-15, 1999.

H. Li, M. Tsukihara, Y. Naoi, and S. Sakai, Dislocation Reduction in GaN Epilayers Grown on a GaNP Buffer on Sapphire Substrate by Metalorganic Chemical Vapor Deposition, Japanese Journal of Applied Physics, vol.41, issue.11B, p.1332, 2002.

M. Sakai, H. Ishikawa, T. Egawa, T. Jimbo, M. Umeno et al., Growth of high-quality GaN films on epitaxial AlN/sapphire templates by MOVPE, Journal of Crystal Growth, vol.244, issue.1, pp.6-11, 2002.

M. J. Kappers, M. A. Moram, D. V. Sridhara-rao, C. Mcaleese, and C. J. Humphreys, Low dislocation density GaN growth on highBibliographie temperature AlN buffer layers on (0001) sapphire, Journal of Crystal Growth, vol.312, issue.3, pp.363-367, 2010.

V. Dmitriev, K. Irvine, G. Bulman, J. Edmond, A. Zubrilov et al., Growth and characterization of GaN layers on SiC substrates, Journal of Crystal Growth, vol.166, issue.1-4, pp.601-606, 1996.

L. Liu and J. H. Edgar, Substrates for gallium nitride epitaxy, Materials Science and Engineering : R : Reports, vol.37, issue.3, pp.61-127, 2002.

M. D. Bremser, W. G. Perry, T. Zheleva, N. V. Edwards, O. H. Nam et al., Growth, Doping and Characterization of Al x Ga 1?x N Thin Film Alloys on 6H-SiC(0001) Substrates, MRS Internet Journal of Nitride Semiconductor Research, vol.1, 1996.

H. Lahrèche, M. Leroux, M. Laügt, M. Vaille, B. Beaumont et al., Buffer free direct growth of GaN on 6H-SiC by metalorganic vapor phase epitaxy, Journal of Applied Physics, vol.87, issue.1, pp.577-583, 2000.

D. Byun, D. Kim, D. Lim, I. Lee, D. Choi et al., Optimization of the GaN-buffer growth on 6H-SiC (0001), Thin Solid Films, vol.289, issue.1-2, pp.256-260, 1996.

Q. K. Xue, Q. Z. Xue, S. Kuwano, K. Nakayama, T. Sakurai et al., Surface superstructures and optical properties of wurtzite GaN grown on 6H-SiC, Journal of Crystal Growth, vol.229, issue.1-4, pp.41-47, 2001.

S. Qu, C. Wang, S. Li, X. Xu, H. Shao et al., Influence of the misorientation of 6H-SiC substrate on the quality of GaN epilayer grown by MOVPE, Journal of Alloys and Compounds, vol.509, issue.8, pp.3656-3660, 2011.

S. Pal and C. Jacob, Silicon-a new substrate for GaN growth, Bulletin of Materials Science, vol.27, issue.6, pp.501-504, 2004.

A. Dadgar, F. Schulze, M. Wienecke, A. Gadanecz, J. Bläsing et al., Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction, New Journal of Physics, vol.9, issue.10, p.389, 2007.

Y. Honda, Y. Kawaguchi, Y. Ohtake, S. Tanaka, M. Yamaguchi et al., Selective area growth of GaN microstructures on patterned (111) and (001) Si substrates, Journal of Crystal Growth, vol.230, issue.3-4, pp.346-350, 2001.

H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo et al., Thermal stability of GaN on (111) Si substrate, Journal of Crystal Growth, issue.0, pp.178-182, 1998.

A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras et al., Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon, pp.1583-1606, 2003.

N. P. Kobayashi, J. T. Kobayashi, P. D. Dapkus, W. Choi, A. E. Bond et al., GaN growth on Si(111) substrate using oxidized AlAs as an intermediate layer, Applied Physics Letters, vol.71, issue.24, pp.3569-3571, 1997.

P. R. Hageman, S. Haffouz, A. Grzegorczk, V. Kirilyuk, and P. K. Larsen, Growth of GaN epilayers on Si(111) substrates using multiple buffer layers, Symposium I-GaN and Related Alloys-2001, vol.693, 2001.

R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes et al., Growth of epitaxial GaN films by pulsed laser deposition, Physics Letters, vol.71, issue.1, pp.102-104, 1997.

J. Ohta, H. Fujioka, H. Takahashi, M. Sumiya, and M. Oshima, RHEED and XPS study of GaN on Si(111) grown by pulsed laser deposition, Journal of Crystal Growth, vol.233, issue.4, pp.779-784, 2001.

M. L. Yin, C. W. Zou, M. Li, C. S. Liu, L. P. Guo et al., Middlefrequency magnetron sputtering for GaN growth, Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol.262, pp.189-193, 2007.

M. Junaid, D. Lundin, J. Palisaitis, C. Hsiao, V. Darakchieva et al., Two-domain formation during the epitaxial growth of GaN (0001) on c-plane Al 2 O 3 (0001) by high power impulse magnetron sputtering, Journal of Applied Physics, vol.110, issue.12, 2011.

M. A. Khan, R. A. Skogman, J. M. Van-hove, D. T. Olson, and J. N. Kuznia, Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition, Applied Physics Letters, vol.60, issue.11, pp.1366-1368, 1992.

O. H. Kim, D. Kim, and T. Anderson, Atomic layer deposition of GaN using GaCl 3 and NH 3, Journal of Vacuum Science & Technology A, vol.27, issue.4, pp.923-928, 2009.

M. Weyers, E. Richter, C. Hennig, S. Hagedorn, T. Wernicke et al., GaN substrates by HVPE, Proceedings of SPIE, vol.6910, 2008.

R. J. Molnar, W. Götz, L. T. Romano, and N. M. Johnson, Growth of gallium nitride by hydride vapor-phase epitaxy, Journal of Crystal Growth, vol.178, issue.1-2, pp.147-156, 1997.

S. Khromov, Doping effects on the structural and optical properties of GaN, 2013.

N. M. Nasser, Z. Z. Ye, J. Li, and Y. B. Xu, GaN Heteroepitaxial Growth Techniques, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol.2, issue.3, pp.22-31, 2001.

P. Gibart, Metal organic vapour phase epitaxy of GaN and lateral overgrowth, Reports on Progress in Physics, vol.67, issue.5, p.667, 2004.

H. H. Yao, C. F. Lin, H. C. Kuo, and S. C. Wang, MOCVD growth of AlN/GaN DBR structures under various ambient conditions, Journal of Crystal Growth, vol.262, issue.1-4, pp.151-156, 2004.

Q. Chen and P. D. Dapkus, On the Thermal Decomposition of Trimethylgallium-A Molecular Beam Sampling Mass Spectroscopy Study, J. Electrochem. Soc, vol.138, issue.9, pp.2821-2826, 1991.

C. Li, W. Zhang, and F. Wang, Pyrolysis effect of group V vapor sources on the composition ranges for metal-organic vapor phase epitaxy growth of III-V semiconductors, Journal of Phase Equilibria and Diffusion, vol.25, issue.1, pp.53-58, 2004.

H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Applied Physics Letters, vol.48, issue.5, pp.353-355, 1986.

J. Neugebauer, C. G. Van-de, and . Walle, Role of hydrogen in doping of GaN, Applied Physics Letters, vol.68, issue.13, pp.1829-1831, 1996.

G. El-zammar, W. Khalfaoui, T. Oheix, A. Yvon, E. Collard et al., Surface state of GaN after rapid-thermal-annealing using AlN cap-layer, Applied Surface Science, vol.355, pp.1044-1050, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01784768

X. Wang and A. Yoshikawa, Molecular beam epitaxy growth of GaN, AlN and InN. Progress in Crystal Growth and Characterization of Materials, pp.42-103, 2004.

M. Kappers, J. Guyaux, J. Olivier, R. Bisaro, C. Grattepain et al., Chemical beam epitaxy of GaN on (0001) sapphire substrate, Materials Science and Engineering : B, vol.59, issue.1-3, pp.52-55, 1999.

S. Sienz, J. W. Gerlach, T. Höche, A. Sidorenko, and B. Rauschenbach, Ion-beam-assisted molecular-beam epitaxy : a method to deposit gallium nitride films with high crystalline quality, Thin Solid Films, vol.458, issue.1-2, pp.63-66, 2004.

F. A. Ponce, D. P. Bour, W. Götz, and P. J. Wright, Spatial distribution of the luminescence in GaN thin films, Applied Physics Letters, vol.68, issue.1, p.227, 1996.

S. N. Basu, T. Lei, and T. D. Moustakas, Microstructures of GaN films deposited on (001) and (111) Si substrates using electron cyclotron resonance assisted-molecular beam epitaxy, Journal of Materials Research, vol.9, pp.2370-2378, 1994.

K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano et al., Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE, Journal of Crystal Growth, vol.115, issue.1-4, pp.628-633, 1991.

J. Oila, K. Saarinen, A. E. Wickenden, D. D. Koleske, R. L. Henry et al., Ga vacancies and grain boundaries in gan, Applied Physics Letters, vol.82, issue.7, pp.1021-1023, 2003.

C. Stampfl and C. G. Van-de-walle, Energetics and electronic structure of stacking faults in AlN, GaN, and InN, Phys. Rev. B, vol.57, pp.15052-15055, 1998.

H. K. Cho, J. Y. Lee, K. S. Kim, G. M. Yang, J. H. Song et al., Effect of buffer layers and stacking faults on the reduction of threading dislocation density in GaN overlayers grown by metalorganic chemical vapor deposition, Journal of Applied Physics, vol.89, issue.5, pp.2617-2621, 2001.

Z. Z. Bandiç, T. C. Mcgill, and Z. Ikoni?, Electronic structure of GaN stacking faults, Phys. Rev. B, vol.56, pp.3564-3566, 1997.

J. E. Northrup, J. Neugebauer, and L. T. Romano, Inversion Domain and Stacking Mismatch Boundaries in GaN, Phys. Rev. Lett, vol.77, pp.103-106, 1996.

L. T. Romano, J. E. Northrup, and M. A. O'keefe, Inversion domains in GaN grown on sapphire, Applied Physics Letters, vol.69, issue.16, pp.2394-2396, 1996.

A. M. Sánchez, P. Ruterana, M. Benamara, and H. P. Strunk, Inversion domains and pinholes in GaN grown over Si(111), Applied Physics Letters, vol.82, issue.25, pp.4471-4473, 2003.

J. L. Weyher, P. D. Brown, A. R. Zauner, S. Müller, C. B. Boothroyd et al., Morphological and structural characteristics of homoepitaxial GaN grown by metalorganic chemical vapour deposition (MOCVD), Journal of Crystal Growth, vol.204, issue.4, pp.419-428, 1999.

A. Sakai, H. Sunakawa, and A. Usui, Defect structure in selectively grown GaN films with low threading dislocation density, Applied Physics Letters, vol.71, issue.16, pp.2259-2261, 1997.

H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie et al., Metalorganic chemical vapor deposition of GaN on Si(111) : Stress control and application to Bibliographie field-effect transistors, Journal of Applied Physics, vol.89, issue.12, pp.7846-7851, 2001.

J. M. Mánuel, F. M. Morales, R. García, R. Aidam, L. Kirste et al., Threading dislocation propagation in AlGaN/GaN based HEMT structures grown on Si (111) by plasma assisted molecular beam epitaxy, Journal of Crystal Growth, vol.357, pp.35-41, 2012.

S. Das-bhattacharyya, P. Mukhopadhyay, P. Das, and D. Biswas, A Strategic Review of Reduction of Dislocation Density at the Heterogenious Junction of GaN Epilayer on Foreign Substrate, J. NanoElectron. Phys, vol.3, issue.1, p.67, 2011.

S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, High dislocation densities in high efficiency GaN based light emitting diodes, Applied Physics Letters, vol.66, issue.10, pp.1249-1251, 1995.

T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto et al., Characterization of threading dislocations in GaN epitaxial layers, Applied Physics Letters, vol.76, issue.23, pp.3421-3423, 2000.

D. Cherns, W. T. Young, and F. A. Ponce, Characterisation of dislocations, nanopipes and inversion domains in GaN by transmission electron microscopy, Materials Science and Engineering : B, vol.50, issue.13, pp.76-81, 1997.

C. Y. Hwang, M. J. Schurman, W. E. Mayo, Y. C. Lu, R. A. Stall et al., Effect of structural defects and chemical impurities on hall mobilities in low pressure MOCVD grown GaN, Journal of Electronic Materials, vol.26, issue.3, pp.243-251, 1997.

J. L. Rouviere, M. Arlery, B. Daudin, G. Feuillet, and O. Briot, Transmission electron microscopy structural characterisation of GaN layers grown on (0001) sapphire, Materials Science and Engineering : B, vol.50, issue.13, pp.61-71, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00546189

R. Jones, J. Elsner, M. Haugk, R. Gutierrez, . Th et al., Interaction of Oxygen with Threading Dislocations in GaN. physica status solidi (a), vol.171, pp.167-173, 1999.

S. K. Hong, B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon et al., Evaluation of nanopipes in MOCVD grown (0001) GaN/Al 2 O 3 by wet chemical etching, Journal of Crystal Growth, vol.191, issue.12, pp.275-278, 1998.

E. Valcheva, T. Paskova, and B. Monemar, Nanopipes and their relationship to the growth mode in thick HVPE-GaN layers, Journal of Crystal Growth, vol.255, issue.1-2, pp.19-26, 2003.

C. S. Wang, B. M. Klein-;-ge, . Gap, . Gaas, and Z. I. Zns, Self-consistent energy bands, Bibliographie 229 charge densities, and effective masses, Phys. Rev. B, vol.24, pp.3393-3416, 1981.

Y. Xu and W. Y. Ching, Electronic, optical, and structural properties of some wurtzite crystals, Phys. Rev. B, vol.48, pp.4335-4351, 1993.

T. Nishida, H. Saito, and N. Kobayashi, Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN, Applied Physics Letters, vol.79, issue.6, pp.711-712, 2001.

D. Morita, M. Sano, M. Yamamoto, T. Murayama, S. Nagahama et al., High Output Power 365 nm Ultraviolet Light Emitting Diode of GaN-Free Structure, Japanese Journal of Applied Physics, vol.41, issue.12B, p.1434, 2002.

A. Ougazzaden, S. Gautier, T. Moudakir, Z. Djebbour, Z. Lochner et al., Bandgap bowing in BGaN thin films, Applied Physics Letters, vol.93, issue.8, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315845

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf et al., Approaches for high internal quantum efficiency green InGaN lightemitting diodes with large overlap quantum wells, Opt. Express, vol.19, issue.S4, pp.991-1007, 2011.

B. Ozpineci and L. M. Tolbert, Comparison of Wide-Bandgap semiconductors for power electronics applications, 2003.

U. K. Mishra, L. Shen, T. E. Kazior, and W. Yi-feng, GaN-Based RF Power Devices and Amplifiers, Proceedings of the IEEE, vol.96, issue.2, pp.287-305, 2008.

Z. Z. Bandi?, P. M. Bridger, E. C. Piquette, T. C. Mcgill, R. P. Vaudo et al., High voltage (450 V) GaN Schottky rectifiers, Applied Physics Letters, vol.74, issue.9, pp.1266-1268, 1999.

U. V. Bhapkar and M. S. Shur, Monte Carlo calculation of velocityfield characteristics of wurtzite GaN, Journal of Applied Physics, vol.82, issue.4, pp.1649-1655, 1997.

J. M. Barker, D. K. Ferry, D. D. Koleske, and R. J. Shul, Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to the theoretical models, Journal of Applied Physics, vol.97, issue.6, 2005.

S. Nakamura, T. Mukai, and M. Senoh, Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes, Applied Physics Letters, vol.64, issue.13, pp.1687-1689, 1994.

S. Chandramohan, J. H. Kang, Y. S. Katharria, N. Han, Y. S. Beak et al.,

H. Hong, Chemically modified multilayer graphene with metal interlayer as an efficient current spreading electrode for InGaN/GaN blue light-emitting diodes, Journal of Physics D : Applied Physics, vol.45, issue.14, p.145101, 2012.

S. Nakamura and M. R. Krames, History of Gallium-Nitride-Based Light-Emitting Diodes for Illumination, Proceedings of the IEEE, vol.101, issue.10, pp.2211-2220, 2013.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki et al., InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a

, Japanese Journal of Applied Physics, vol.41, issue.12B, p.1431, 2002.

M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske et al., Effect of dislocation density on efficiency droop in GaInN/GaN lightemitting diodes, Applied Physics Letters, vol.91, issue.23, 2007.

M. R. Krames, O. B. Shchekin, R. Mueller-mach, G. O. Mueller, Z. Ling et al., Status and Future of HighPower Light-Emitting Diodes for Solid-State Lighting. Display Technology, Journal, vol.3, issue.2, pp.160-175, 2007.

D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, Semipolar (20 ¯ 2 ¯ 1) InGaN/GaN Light-Emitting Diodes for High-Efficiency SolidState Lighting, Display Technology, Journal, vol.9, issue.4, pp.190-198, 2013.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada et al., InGaN-Based Multi-QuantumWell-Structure Laser Diodes, Japanese Journal of Applied Physics, vol.35, issue.1B, p.74, 1996.

M. C. Schmidt, K. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen et al., Demonstration of Nonpolar m-Plane InGaN/GaN Laser Diodes, Japanese Journal of Applied Physics, vol.46, issue.3L, p.190, 2007.

D. Li, X. Sun, H. Song, Z. Li, Y. Chen et al., Realization of a High-Performance GaN UV Detector by Nanoplasmonic Enhancement, Advanced Materials, vol.24, issue.6, pp.845-849, 2012.

M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, High electron mobility transistor based on a GaN-Al x Ga 1?x N heterojunction, Applied Physics Letters, vol.63, issue.9, pp.1214-1215, 1993.

N. Tipirneni, A. Koudymov, V. Adivarahan, J. Yang, G. Simin et al., The 1.6-kV AlGaN/GaN HFETs. Electron Device Letters, vol.27, pp.716-718, 2006.

H. Sun, A. R. Alt, H. Benedickter, E. Feltin, J. Carlin et al., Electron Device Letters, vol.31, issue.9, pp.957-959, 2010.

L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes et al., Undoped AlGaN/GaN HEMTs for microwave power amplification. Electron Devices, IEEE Transactions on, vol.48, issue.3, pp.479-485, 2001.

V. Paidi, S. Xie, R. Coffie, B. Moran, S. Heikman et al., High linearity and high efficiency of class-B power amplifiers in GaN HEMT technology. Microwave Theory and Techniques, IEEE Transactions on, vol.51, issue.2, pp.643-652, 2003.

T. Mcnutt, B. Passmore, J. Fraley, B. Mcpherson, R. Shaw et al., High-Performance, Wide-Bandgap Power Electronics, Journal of Electronic Materials, vol.43, issue.12, pp.4552-4559, 2014.

E. R. Brown, Megawatt solid-state electronics, Solid-State Electronics, vol.42, issue.12, pp.2119-2130, 1998.

G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton et al., High voltage GaN Schottky rectifiers. Electron Devices, IEEE Transactions on, vol.47, issue.4, pp.692-696, 2000.

A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. Y. Polyakov et al., Lateral Al x Ga 1?x N power rectifiers with 9.7 kV reverse breakdown voltage, vol.78, pp.823-825, 2001.

Y. Zhou, D. Wang, C. Ahyi, C. Tin, J. Williams et al., High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate, Solid-State Electronics, vol.50, pp.1744-1747, 2006.

X. A. Cao, H. Cho, S. J. Pearton, G. T. Dang, A. P. Zhang et al., Depth and thermal stability of dry etch damage in GaN Schottky diodes, Applied Physics Letters, vol.75, issue.2, pp.232-234, 1999.

H. M. Mott-smith, History of "Plasmas, vol.233, pp.219-219, 1971.

P. A. Sturrock, Plasma Physics : An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas. Stanford-Cambridge Program, 1994.

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2005.

M. Moisan and J. Pelletier, Physique des plasmas collisionnels : application aux décharges haute fréquence. Collection Grenoble sciences, 2006.

J. L. Vossen and W. Kern, Thin Film Processes II. Thin Film Processes, 1991.

R. A. Dugdale, The application of the glow discharge to material processing, Journal of Materials Science, vol.1, issue.2, pp.160-169, 1966.

J. A. Bondur, Dry process technology (reactive ion etching), Journal of Vacuum Science & Technology, vol.13, issue.5, pp.1023-1029, 1976.

D. M. Manos and D. L. Flamm, Plasma Etching : An Introduction. Plasma-materials interactions, 1989.

T. Tillocher, W. Kafrouni, J. Ladroue, P. Lefaucheux, M. Boufnichel et al., Optimization of submicron deep trench profiles with the STiGer cryoetching process : reduction of defects, Journal of Micromechanics and Microengineering, vol.21, issue.8, p.85005, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00655002

R. Dussart, P. Lefaucheux, X. Mellhaoui, L. J. Overzet, P. Ranson et al., Deep anisotropic silicon etch method, p.365, 2011.

J. W. Coburn and H. F. Winters, Ion and electron-assisted gas-surface chemistry-An important effect in plasma etching, Journal of Applied Physics, vol.50, issue.5, pp.3189-3196, 1979.

X. Zhu, W. Chen, S. Zhang, Z. Guo, D. Hu et al., Electron density and ion energy dependence on driving frequency in capacitively coupled argon plasmas, Journal of Physics D : Applied Physics, vol.40, issue.22, p.7019, 2007.

K. Kim, W. R. Lambrecht, and B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN, Phys. Rev. B, vol.53, pp.16310-16326, 1996.

B. Paulus, F. Shi, and H. Stoll, A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SiC and III-V nitrides, Journal of Physics : Condensed Matter, vol.9, issue.13, p.2745, 1997.

C. Stampfl and C. G. Van-de-walle, Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation, Phys. Rev. B, vol.59, pp.5521-5535, 1999.

I. Adesida, C. Youtsey, A. T. Ping, F. Khan, L. T. Romano et al., Dry and Wet Etching for Group III-Nitrides, Symposium G-GaN and Related Alloys, vol.537, 1998.

S. J. Pearton, Processing of Wide Band Gap Semiconductors, Bibliographie, vol.233, 2001.

D. A. Stocker, E. F. Schubert, and J. M. Redwing, Crystallographic wet chemical etching of GaN, Applied Physics Letters, vol.73, issue.18, pp.2654-2656, 1998.

T. Palacios, F. Calle, M. Varela, C. Ballesteros, E. Monroy et al., Wet etching of GaN grown by molecular beam epitaxy on Si, vol.15, p.996, 2000.

H. M. Ng, N. G. Weimann, and A. Chowdhury, GaN nanotip pyramids formed by anisotropic etching, Journal of Applied Physics, vol.94, issue.1, pp.650-653, 2003.

J. L. Weyher, Defect sensitive etching of nitrides : appraisal of methods, Crystal Research and Technology, vol.47, issue.3, pp.333-340, 2012.

P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoç et al., Dislocation density in GaN determined by photoelectrochemical and hot-wet etching, Applied Physics Letters, vol.77, issue.22, pp.3532-3534, 2000.

T. C. Wen, W. I. Lee, J. K. Sheu, and G. C. Chi, Observation of dislocation etch pits in epitaxial lateral overgrowth GaN by wet etching, Solid-State Electronics, vol.46, issue.4, pp.555-558, 2002.

D. Zhuang and J. H. Edgar, Wet etching of GaN, AlN, and SiC : a review, Materials Science and Engineering : R : Reports, vol.48, issue.1, pp.1-46, 2005.

M. S. Minsky, M. White, and E. L. Hu, Room-temperature photoenhanced wet etching of GaN, Applied Physics Letters, vol.68, issue.11, pp.1531-1533, 1996.

J. A. Bardwell, J. B. Webb, H. Tang, J. Fraser, and S. Moisa, Ultraviolet photoenhanced wet etching of GaN in K 2 S 2 O 8 solution, Journal of Applied Physics, vol.89, issue.7, pp.4142-4149, 2001.

C. H. Ko, Y. K. Su, S. J. Chang, W. H. Lan, J. Webb et al.,

, Materials Science and Engineering : B, vol.96, issue.1, pp.43-47, 2002.

C. Youtsey, L. T. Romano, and I. Adesida, Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations, Applied Physics Letters, vol.73, issue.6, pp.797-799, 1998.

S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, GaN : Processing, defects, and devices, Journal of Applied Physics, vol.86, issue.1, pp.1-78, 1999.

D. Basak, M. Verdú, M. T. Montojo, M. A. Sánchez-garcía, F. J. Sánchez et al., Reactive ion etching of GaN layers using SF 6, Semiconductor Science and Technology, vol.12, issue.12, p.1654, 1997.

A. T. Ping, I. Adesida, M. A. Khan, and J. N. Kuznia, Reactive ion etching of gallium nitride using hydrogen bromide plasmas, Electronics Letters, vol.30, issue.22, pp.1895-1897, 1994.

C. B. Vartuli, S. J. Pearton, C. R. Abernathy, R. J. Shul, A. J. Howard et al., High density plasma etching of III-V nitrides, Journal of Vacuum Science & Technology A, vol.14, issue.3, pp.1011-1014, 1996.

D. W. Kim, C. H. Jeong, H. Y. Lee, H. S. Kim, Y. J. Sung et al., A study of GaN etching characteristics using HBr-based inductively coupled plasmas, Solid-State Electronics, vol.47, issue.3, pp.549-552, 2003.

G. F. Mclane, L. Casas, S. J. Pearton, and C. R. Abernathy, High etch rates of GaN with magnetron reactive ion etching in BCl 3 plasmas, Applied Physics Letters, vol.66, issue.24, pp.3328-3330, 1995.

L. Zhang, J. Ramer, J. Brown, K. Zheng, L. F. Lester et al., Electron cyclotron resonance etching characteristics of GaN in SiCl 4 /Ar, Applied Physics Letters, vol.68, issue.3, pp.367-369, 1996.

K. Zhu, V. Kuryatkov, B. Borisov, J. Yun, G. Kipshidze et al., Evolution of surface roughness of AlN and GaN induced by inductively coupled Cl 2 /Ar plasma etching, Journal of Applied Physics, vol.95, issue.9, pp.4635-4641, 2004.

J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, C. C. Liu et al., Inductively coupled plasma etching of GaN using Cl 2 /Ar and Cl 2 /N 2 gases, Journal of Applied Physics, vol.85, issue.3, pp.1970-1974, 1999.

J. Lee, K. Chang, S. Kim, C. Huh, I. Lee et al., Dry etch damage in n-type GaN and its recovery by treatment with an N 2 plasma, Journal of Applied Physics, vol.87, issue.11, pp.7667-7670, 2000.

I. Adesida, A. Mahajan, E. Andideh, M. Asif-khan, D. T. Olsen et al., Reactive ion etching of gallium nitride in silicon tetrachloride plasmas, Applied Physics Letters, vol.63, issue.20, pp.2777-2779, 1993.

M. E. Lin, Z. F. Fan, Z. Ma, L. H. Allen, and H. Morkoç, Reactive ion etching of GaN using BCl 3, Applied Physics Letters, vol.64, issue.7, pp.887-888, 1994.

D. Basak, K. Yamashita, T. Sugahara, Q. Fareed, D. Nakagawa et al., Reactive Ion Etching of GaN and Al x Ga 1?x N Using Cl 2 /CH 4 /Ar Plasma, Japanese Journal of Applied Physics, vol.38, issue.4S, p.2646, 1999.

H. S. Kim, D. H. Lee, J. W. Lee, T. I. Kim, and G. Y. Yeom, Effects of plasma conditions on the etch properties of AlGaN, Vacuum, vol.56, issue.1, pp.45-49, 2000.

Y. C. Lin, S. J. Chang, Y. K. Su, S. C. Shei, and S. J. Hsu, Inductively coupled plasma etching of GaN using Cl 2 /He gases, Materials Science and Engineering : B, vol.98, issue.1, pp.60-64, 2003.

S. A. Smith, C. A. Wolden, M. D. Bremser, A. D. Hanser, R. F. Davis et al., High rate and selective etching of GaN, AlGaN, and AlN using an inductively coupled plasma, Applied Physics Letters, vol.71, issue.25, pp.3631-3633, 1997.

C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. Mackenzie et al., ICl/Ar electron cyclotron resonance plasma etching of III-V nitrides, Applied Physics Letters, vol.69, issue.10, pp.1426-1428, 1996.

I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif-khan et al., Characteristics of chemically assisted ion beam etching of gallium nitride, Applied Physics Letters, vol.65, issue.7, pp.889-891, 1994.

S. Nunoue, M. Yamamoto, M. Suzuki, C. Nozaki, J. Nishio et al., Reactive Ion Beam Etching and Overgrowth Process in the Fabrication of InGaN Inner Stripe Laser Diodes, Japanese Journal of Applied Physics, vol.37, issue.3S, p.1470, 1998.

J. Lee, H. Cho, D. C. Hays, C. R. Abernathy, S. J. Pearton et al., Dry etching of GaN and related materials : comparison of techniques. Selected Topics in Quantum Electronics, IEEE Journal, vol.4, issue.3, pp.557-563, 1998.

J. Ladroue, Gravure profonde du nitrure de gallium. Application à l'élaboration de diodes Schottky, 2012.

F. Ren, S. J. Pearton, R. J. Shul, and J. Han, Improved sidewall morphology on dry-etched SiO 2 masked GaN features, Journal of Electronic Materials, vol.27, issue.4, pp.175-178, 1998.

J. Ladroue, A. Meritan, M. Boufnichel, P. Lefaucheux, P. Ranson et al., Deep GaN etching by inductively coupled plasma and induced surface defects, Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.28, issue.5, pp.1226-1233, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00519022

M. Boufnichel, Gravure profonde cryogénique du silicium dans un réacteur ICP utilisant une chimie SF 6 /O 2 : application pour la mise au point d'un procédé d'isolation électrique sur plaquette SOI, 2002.

T. Tillocher, Gravure profonde du silicium par le procédé cryogénique. Application à la réalisation de trous traversants, 2006.

, Etch System for Piezoelectrics MEMS and Other Complex Dielectric Applications, OEM group

. Bibliographie,

I. Langmuir, Positive Ion Currents in the Positive Column of the Mercury Arc, Gen. Elec. Rev, vol.26, p.731, 1923.

H. M. Mott-smith and I. Langmuir, The Theory of Collectors in Gaseous Discharges, Phys. Rev, vol.28, pp.727-763, 1926.

F. F. Chen, Lecture Notes on Langmuir Probe Diagnostics. in Mini-Course on Plasma Diagnostics, 2003.

, Scientific Systems, Smartprobe Product Manual. Scientific Systems, 2002.

P. A. Chatterton, J. A. Rees, W. L. Wu, and K. Al-assadi, A selfcompensating Langmuir probe for use in rf (13.56 MHz) plasma systems, Vacuum, vol.42, issue.7, pp.489-493, 1991.

V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, Measurement of electron energy distribution in low-pressure RF discharges, Plasma Sources Science and Technology, vol.1, issue.1, p.36, 1992.

J. D. Swift and M. J. Schwar, Electrical Probes for Plasma Diagnostics. Iliffe Books, 1970.

J. V. Scanlan, Langmuir probe measurements in 13.56MHz discharges, Dublin City Unversity (School of Physical Sciences), 1991.

F. F. Chen, Langmuir probe analysis for high density plasmas, Physics of Plasmas, vol.8, issue.6, pp.3029-3041, 2001.

A. Guthrie and R. K. Wakerling, The characteristics of electrical discharges in magnetic fields. National nuclear energy series : Electromagnetic Separation Project, 1949.

K. U-riemann, The Bohm criterion and sheath formation, Journal of Physics D : Applied Physics, vol.24, issue.4, p.493, 1991.

J. E. Allen, R. L. Boyd, and P. Reynolds, The Collection of Positive Ions by a Probe Immersed in a Plasma, Proceedings of the Physical Society. Section B, vol.70, issue.3, p.297, 1957.

I. H. Hutchinson, Principles of Plasma Diagnostics, 2002.

J. E. Allen, Probe theory-the orbital motion approach, Physica Scripta, vol.45, issue.5, p.497, 1992.

J. G. Laframboise, Theory of spherical and cylindrical Langmuir probes in a collisionless, Maxwellian plasma at rest, 1966.

E. W. Peterson and L. Talbot, Collisionless electrostatic single-probe and double-probe measurements, AIAA Journal, vol.8, issue.12, pp.2215-2219, 1970.

V. A. Fassel and R. N. Kniseley, Inductively coupled plasma. Optical emission spectroscopy, Analytical Chemistry, vol.46, issue.13, pp.1110-1120, 1974.

P. Irving and . Herman, Optical Diagnostics for Thin Film Processing. Elsevier Science, 1996.

V. M. Donnelly, M. V. Malyshev, M. Schabel, A. Kornblit, W. Tai et al., Optical plasma emission spectroscopy of etching plasmas used in Si-based semiconductor processing, Plasma Sources Science and Technology, vol.11, issue.3A, p.26, 2002.

P. Ranson, Diagnostics en volume par spectroscopie d'émission : Potentialités et limitations de l'actinométrie. Intéractions Plasmas Froids-Matériaux, 1987.

D. J. Kalnicky, R. N. Kniseley, and V. A. , Inductively coupled plasma-optical emission spectroscopy : Excitation temperatures experienced by analyte species, Spectrochimica Acta Part B : Atomic Spectroscopy, vol.30, issue.12, pp.511-525, 1975.

V. M. Donnelly, Plasma electron temperatures and electron energy distributions measured by trace rare gases optical emission spectroscopy, Journal of Physics D : Applied Physics, vol.37, issue.19, p.217, 2004.

J. W. Coburn and M. Chen, Optical emission spectroscopy of reactive plasmas : A method for correlating emission intensities to reactive particle density, Journal of Applied Physics, vol.51, issue.6, pp.3134-3136, 1980.

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry, Journal of Applied Physics, vol.62, issue.3, pp.792-798, 1987.

J. P. Booth and N. Sadeghi, Oxygen and fluorine atom kinetics in electron cyclotron resonance plasmas by time-resolved actinometry, Journal of Applied Physics, vol.70, issue.2, pp.611-620, 1991.

V. M. Donnelly and M. V. Malyshev, Diagnostics of inductively coupled chlorine plasmas : Measurements of the neutral gas temperature, Applied Physics Letters, vol.77, issue.16, pp.2467-2469, 2000.

Y. Kawai, K. Sasaki, and K. Kadota, Comparison of the Fluorine Atom Density Measured by Actinometry and Vacuum Ultraviolet Absorption Spectroscopy, Japanese Journal of Applied Physics, vol.36, issue.9A, p.1261, 1997.

E. S. Aydil and D. J. Economou, Multiple steady states in a radio frequency chlorine glow discharge, Journal of Applied Physics, vol.69, issue.1, pp.109-114, 1991.

M. V. Malyshev, V. M. Donnelly, and S. Samukawa, Ultrahigh frequency versus inductively coupled chlorine plasmas : Comparisons of Bibliographie Cl and Cl 2 concentrations and electron temperatures measured by trace rare gases optical emission spectroscopy, Journal of Applied Physics, vol.84, issue.3, pp.1222-1230, 1998.

N. C. Fuller, I. P. Herman, and V. M. Donnelly, Optical actinometry of Cl 2 , Cl, Cl + , and Ar + densities in inductively coupled Cl 2-Ar plasmas, Journal of Applied Physics, vol.90, issue.7, pp.3182-3191, 2001.

C. K. Hanish, J. W. Grizzle, and F. L. Teny, Estimating and controlling atomic chlorine concentration via actinometry. Semiconductor Manufacturing, IEEE Transactions on, vol.12, issue.3, pp.323-331, 1999.

C. Oh, M. Kang, and J. Hahn, Accurate measurement of atomic chlorine radical density in process plasma with spatially resolvable optical emission spectrometer, International Journal of Precision Engineering and Manufacturing, vol.16, issue.9, pp.1919-1924, 2015.

M. Tadokoro, A. Itoh, N. Nakano, Z. L. Petrovic, and T. Makabe, Diagnostics of an inductively coupled plasma in oxygen. Plasma Science, vol.26, pp.1724-1732, 1998.

J. P. Booth, O. Joubert, J. Pelletier, and N. Sadeghi, Oxygen atom actinometry reinvestigated : Comparison with absolute measurements by resonance absorption at 130 nm, Journal of Applied Physics, vol.69, issue.2, pp.618-626, 1991.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki et al., Detection of atomic oxygen : Improvement of actinometry and comparison with laser spectroscopy, Journal of Applied Physics, vol.88, issue.11, pp.6232-6238, 2000.

N. C. Fuller, M. V. Malyshev, V. M. Donnelly, and I. P. , Herman. Characterization of transformer coupled oxygen plasmas by trace rare gases-optical emission spectroscopy and Langmuir probe analysis, Plasma Sources Science and Technology, vol.9, issue.2, p.116, 2000.

Y. W. Lee, H. L. Lee, and T. H. Chung, E-H mode transition in lowpressure inductively coupled nitrogen-argon and oxygen-argon plasmas, Journal of Applied Physics, vol.109, issue.11, 2011.

O. Menard, Développement de briques technologiques pour la réalisation de diodes Schottky sur nitrure de gallium, Université François Rabelais de Tours (LMP), 2010.

A. Bogner, P. Jouneau, G. Thollet, D. Basset, and C. Gauthier, A history of scanning electron microscopy developments : Towards "wet-STEM" imaging. Micron, vol.38, pp.390-401, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434138

R. Castaing, Electron Probe Microanalysis, of Advances in Electronics and Electron Physics, vol.13, p.239, 1960.

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Phys. Rev. Lett, vol.56, pp.930-933, 1986.

H. Butt, B. Cappella, and M. Kappl, Force measurements with the atomic force microscope : Technique, interpretation and applications, Surface Science Reports, vol.59, issue.1-6, pp.1-152, 2005.

J. F. Watts, X-ray photoelectron spectroscopy, Vacuum, vol.45, issue.67, pp.653-671, 1994.

C. Duluard, Étude de nouvelles voies de passivation non polymérisante pour la gravure profonde du silicium, 2009.

A. Gutmann, A. Kleinhaus, and W. Bade, Thermal stability and etching resistance of formaldehyde-and deep UV-hardened photoresists, Microelectronic Engineering, vol.3, issue.1-4, pp.329-337, 1985.

A. Baram and M. Naftali, Dry etching of deep cavities in Pyrex for MEMS applications using standard lithography, Journal of Micromechanics and Microengineering, vol.16, issue.11, p.2287, 2006.

K. Reinhardt and W. Kern, Handbook of Silicon Wafer Cleaning Technology, Second Edition. Materials science and process technology series, 2008.

M. Yasuda, H. Fukuda, T. Iwabuchi, and S. Ohno, Role of SiN Bond Formed by N 2 O-Oxynitridation for Improving Dielectric Properties of Ultrathin SiO 2 Films, Japanese Journal of Applied Physics, vol.30, issue.12S, p.3597, 1991.

S. R. Kaluri and D. W. Hess, Nitrogen incorporation in thin oxides by constant current N 2 O plasma anodization of silicon and N 2 plasma nitridation of silicon oxides, Applied Physics Letters, vol.69, issue.8, pp.1053-1055, 1996.

M. J. Rand and J. F. Roberts, Silicon Oxynitride Films from the NO-NH 3-SiH 4 Reaction, Journal of The Electrochemical Society, vol.120, issue.3, pp.446-453, 1973.

F. Lanois, P. Lassagne, D. Planson, and M. L. Locatelli, Angle etch control for silicon carbide power devices, Applied Physics Letters, vol.69, issue.2, pp.236-238, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00141623

W. J. Yoo, J. H. Hahm, H. W. Kim, C. O. Jung, Y. B. Koh et al., Control of Etch Slope during Etching of Pt in Ar

, Plasmas. Japanese Journal of Applied Physics, vol.35, issue.4S, p.2501, 1996.

S. Van-nguyen, D. Dobuzinsky, S. R. Stiffler, and G. Chrisman, Substrate Trenching Mechanism during Plasma and Magnetically Enhanced Polysilicon Etching, Journal of The Electrochemical Society, vol.138, issue.4, pp.1112-1117, 1991.

T. J. Dalton, J. C. Arnold, H. H. Sawin, S. Swan, and D. Corliss, Microtrench Formation in Polysilicon Plasma Etching over Thin Gate Oxide, Journal of The Electrochemical Society, vol.140, issue.8, pp.2395-2401, 1993.

R. J. Hoekstra, M. J. Kushner, V. Sukharev, and P. Schoenborn, Microtrenching resulting from specular reflection during chlorine etching of silicon, Journal of Vacuum Science & Technology B, vol.16, issue.4, pp.2102-2104, 1998.

N. Gosset, J. Ladroue, and M. Boufnichel, Procédé de fabrication d'un composant microélectronique au nitrure de gallium, vol.07, p.2013

N. Gosset, M. Boufnichel, E. Bahette, W. Khalfaoui, R. Ljazouli et al., Single and multilayered materials processing by argon ion beam etching : study of ion angle incidence and defect formation, Journal of Micromechanics and Microengineering, vol.25, issue.9, p.95011, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01217644

R. J. Shul, L. Zhang, A. G. Baca, C. G. Willison, J. Han et al., Pearton, and F. Ren. Inductively coupled plasma-induced etch damage of GaN p-n junctions, Journal of Vacuum Science & Technology A, vol.18, issue.4, pp.1139-1143, 2000.

F. A. Khan, L. Zhou, V. Kumar, and I. Adesida, Plasma-induced damage study for n-GaN using inductively coupled plasma reactive ion etching, Journal of Vacuum Science & Technology B, vol.19, issue.6, pp.2926-2929, 2001.

S. Izumi, M. Minami, M. Kamada, T. Tatsumi, A. A. Yamaguchi et al., Photoluminescence Study of Plasma-Induced Damage of GaInN Single Quantum Well, Japanese Journal of Applied Physics, vol.52, issue.8S, pp.8-09, 2013.

, Atomic spectra database

G. Franz, High-rate etching of GaAs using chlorine atmospheres doped with a Lewis acid, Journal of Vacuum Science & Technology A, vol.16, issue.3, pp.1542-1546, 1998.

J. Lee, K. Chang, I. Lee, and S. Park, Cl 2-Based Dry Etching of GaN and InGaN Using Inductively Coupled Plasma The Effects of Gas Additives, Journal of The Electrochemical Society, vol.147, issue.5, pp.1859-1863, 2000.

C. Hsu, W. Lan, and Y. S. Wu, Effect of thermal annealing of Ni/Au ohmic contact on the leakage current of GaN based light emitting diodes, Applied Physics Letters, vol.83, issue.12, pp.2447-2449, 2003.

M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes, Applied Physics Letters, vol.91, issue.23, 2007.

H. Miyake, K. Nakao, and K. Hiramatsu, Blue emission from InGaN/GaN hexagonal pyramid structures. Superlattices and Microstructures, vol.41, pp.341-346, 2007.

Y. Lai, C. Yeh, J. Hwang, H. Hwang, C. Chen et al., Sputtering and Etching of GaN Surfaces, The Journal of Physical Chemistry B, vol.105, issue.41, pp.10029-10036, 2001.

J. Y. Chen, C. J. Pan, and G. C. Chi, Electrical and optical changes in the near surface of reactively ion etched n-GaN. Solid-State Electronics, vol.43, pp.649-652, 1999.

N. J. Watkins, G. W. Wicks, and Y. Gao, Oxidation study of GaN using X-ray photoemission spectroscopy, Applied Physics Letters, vol.75, issue.17, pp.2602-2604, 1999.

B. P. Luther, S. E. Mohney, T. N. Jackson, M. Asif-khan, Q. Chen et al., Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN, Applied Physics Letters, vol.70, issue.1, pp.57-59, 1997.

C. Lee, H. Lee, and H. Chen, GaN MOS device using SiO 2Ga 2 O 3 insulator grown by photoelectrochemical oxidation method, Electron Device Letters, vol.24, issue.2, pp.54-56, 2003.

D. D. Koleske, A. E. Wickenden, R. L. Henry, and M. E. Twigg, Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN, Journal of Crystal Growth, vol.242, issue.1-2, pp.55-69, 2002.

J. Zhang, J. Liu, Y. Pu, W. Fang, M. Zhang et al., Effects of Carrier Gas on Carbon Incorporation in GaN, Chinese Physics Letters, vol.31, issue.3, p.37102, 2014.

M. Qinghua, L. Junlin, W. Xiaoming, Z. Jianli, X. Chuanbing et al., Influence of growth rate on the carbon contamination and luminescence of GaN grown on silicon, Journal of Semiconductors, vol.36, issue.9, p.93003, 2015.

S. Ruvimov, Z. Liliental-weber, J. Washburn, K. J. Duxstad, E. E. Haller et al., Applied Physics Letters, vol.69, issue.11, pp.1556-1558, 1996.

J. , Hard and superhard nanocomposite coatings, Surface and Coatings Technology, vol.125, issue.1-3, pp.322-330, 2000.

S. K. Mishra, A. S. Bhattacharyya, P. Mahato, and L. C. Pathak, Multicomponent Ti-Si-B-C superhard and tough composite coatings by magnetron sputtering, Surface and Coatings Technology, vol.207, issue.0, pp.19-23, 2012.

Y. Shimada, K. Chikamatsu, C. Kimura, H. Aoki, and T. Sugino, Effect of plasma treatment on interface property of BCN/GaN structure, Applied Surface Science, vol.253, issue.3, pp.1459-1463, 2006.

P. Hoffmann, N. Fainer, M. Kosinova, O. Baake, and W. Ensinger, Compilation on Synthesis, Characterization, and Properties of Silicon and Boron Carbonitride Films, 2011.

D. Watanabe, H. Aoki, R. Moriyama, M. K. Mazumder, C. Kimura et al., Characterization of BCN film after wet process for interconnection integration, Diamond and Related Materials, vol.17, issue.4-5, pp.669-672, 2008.

H. Aoki, S. Tokuyama, T. Sasada, D. Watanabe, M. K. Mazumder et al., Dry etching properties of boron carbon nitride (BCN) films using carbon fluoride gas, Diamond and Related Materials, vol.17, issue.7-10, pp.1800-1804, 2008.

H. Aoki, M. Hara, T. Masuzumi, F. Ahmed, C. Kimura et al., Dry etching properties of methyl-BCN film with C 4 F 8 gas for Cu/lowk interconnection, Diamond and Related Materials, vol.19, issue.5-6, pp.507-509, 2010.

R. J. Shul, C. G. Willison, M. M. Bridges, J. Han, J. W. Lee et al., Selective inductively coupled plasma etching of group-III nitrides in Cl 2-and BCl 3-based plasmas, Journal of Vacuum Science & Technology A, vol.16, issue.3, pp.1621-1626, 1998.

S. Tripathy, A. Ramam, S. J. Chua, J. S. Pan, and A. Huan, Characterization of inductively coupled plasma etched surface of GaN using Cl 2 /BCl 3 chemistry, Journal of Vacuum Science & Technology A, vol.19, issue.5, pp.2522-2532, 2001.

H. S. Kim, G. Y. Yeom, J. W. Lee, and T. I. Kim, Characteristics of inductively coupled Cl 2 /BCl 3 plasmas during GaN etching, vol.17, pp.2214-2219, 1999.

H. Lee, D. B. Oberman, and J. S. Harris, Reactive ion etching of GaN using CHF 3 /Ar and C 2 ClF 5 /Ar plasmas, Applied Physics Letters, vol.67, issue.12, pp.1754-1756, 1995.

D. Y. Jeon, K. H. Kim, S. J. Park, J. H. Huh, H. Y. Kim et al., Enhanced voltage-current characteristics of GaN nanowires treated by a selective reactive ion etching, Applied Physics Letters, vol.89, issue.2, 2006.

Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. M. Ding, X. D. Hu et al., Etching damage and its recovery in n-GaN by reactive ion etching, Physica B : Condensed Matter, vol.334, issue.1-2, pp.188-192, 2003.

N. R. Rueger, M. F. Doemling, M. Schaepkens, J. J. Beulens, T. E. Standaert et al., Selective etching of SiO 2 over polycrystalline silicon using CHF 3 in an inductively coupled plasma Bibliographie 243

, Journal of Vacuum Science & Technology A, vol.17, issue.5, pp.2492-2502, 1999.

M. Schaepkens and G. S. Oehrlein, A Review of SiO 2 Etching Studies in Inductively Coupled Fluorocarbon Plasmas, Journal of The Electrochemical Society, vol.148, issue.3, pp.211-221, 2001.

D. J. Oostra, R. P. Van-ingen, A. Haring, A. E. De-vries, and G. N. Van-veen, Near threshold sputtering of Si and SiO 2 in a Cl 2 environment, Applied Physics Letters, vol.50, issue.21, pp.1506-1508, 1987.

A. Manenschijn, E. Van-der-drift, G. C. Janssen, and S. Radelaar, Cl 2 reactive ion etching mechanisms studied by insitu determination of ion energy and ion flux, Journal of Applied Physics, vol.69, issue.12, pp.7996-8004, 1991.

K. L. Seaward, N. J. Moll, D. J. Coulman, and W. F. Stickle, An analytical study of etch and etch-stop reactions for GaAs on AlGaAs in CCl 2 F 2 plasma, Journal of Applied Physics, issue.6, pp.2358-2364, 1987.

R. Carin, J. P. Deville, and J. Werckmann, An XPS study of GaN thin films on GaAs, Surface and Interface Analysis, vol.16, issue.1-12, pp.65-69, 1990.

Y. Yang, H. Ma, C. Xue, H. Zhuang, X. Hao et al., Preparation and structural properties for GaN films grown on Si (111) by annealing, Applied Surface Science, vol.193, issue.1-4, pp.254-260, 2002.

L. Czornomaz, M. E. Kazzi, M. Hopstaken, D. Caimi, P. Mächler et al., CMOS compatible self-aligned S/D regions for implant-free InGaAs MOSFETs, Solid-State Electronics, vol.74, pp.71-76, 2012.

H. Jansen, H. Gardeniers, M. De-boer, M. Elwenspoek, and J. Fluitman, A survey on the reactive ion etching of silicon in microtechnology, Journal of Micromechanics and Microengineering, vol.6, issue.1, p.14, 1996.

R. J. Shul, A. J. Howard, C. B. Vartuli, P. A. Barnes, and W. Seng, Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs, Journal of Vacuum Science & Technology A, vol.14, issue.3, pp.1102-1106, 1996.

D. Humbird and D. B. Graves, Atomistic simulations of spontaneous etching of silicon by fluorine and chlorine, Journal of Applied Physics, vol.96, issue.1, pp.791-798, 2004.

L. Lallement, A. Rhallabi, C. Cardinaud, M. C. Peignon-fernandez, and L. L. Alves, Global model and diagnostic of a low-pressure SF 6 /Ar inductively coupled plasma, Plasma Sources Science and Technology, vol.18, issue.2, p.25001, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432295

S. Saloum, M. Akel, and B. Alkhaled, Diagnostic and processing in SF 6 RF remote plasma for silicon etching, Journal of Physics D : Applied Physics, vol.42, issue.17, p.175206, 2009.

R. S. Pessoa, L. L. Tezani, H. S. Maciel, G. Petraconi, and M. Massi, Study of SF 6 and SF 6 /O 2 plasmas in a hollow cathode reactive ion etching reactor using Langmuir probe and optical emission spectroscopy techniques, Plasma Sources Science and Technology, vol.19, issue.2, p.25013, 2010.

S. J. Ullal, H. Singh, J. Daugherty, V. Vahedi, and E. S. Aydil, Maintaining reproducible plasma reactor wall conditions : SF 6 plasma cleaning of films deposited on chamber walls during Cl 2 /O 2 plasma etching of Si, Journal of Vacuum Science & Technology A, vol.20, issue.4, pp.1195-1201, 2002.

M. Kogelschatz, G. Cunge, and N. Sadeghi, Analysis of the chemical composition and deposition mechanism of the SiO x-Cl y layer on the plasma chamber walls during silicon gate etching, Journal of Vacuum Science & Technology A, vol.22, issue.3, pp.624-635, 2004.

H. Abe, Y. Sonobe, and T. Enomoto, Etching Characteristics of Silicon and its Compounds by Gas Plasma, Japanese Journal of Applied Physics, vol.12, issue.1, p.154, 1973.

Y. Tu, T. J. Chuang, and H. F. Winters, Chemical sputtering of fluorinated silicon, Phys. Rev. B, vol.23, pp.823-835, 1981.

W. Müller-markgraf and M. J. Rossi, The interaction of Cl( 2 P 3/2 ) and Cl( 2 P 1/2 ) with n-Si(100) : Spontaneous etching, Journal of Vacuum Science & Technology A, vol.9, issue.2, pp.217-222, 1991.

C. Cardinaud, M. Peignon, and P. Tessier, Plasma etching : principles, mechanisms, application to micro-and nano-technologies

, Applied Surface Science, vol.164, issue.1-4, pp.72-83, 2000.

W. Ivo and . Rangelow, Dry etching-based silicon micro-machining for MEMS, Vacuum, vol.62, issue.2-3, pp.279-291, 2001.

K. R. Williams and R. S. Muller, Etch rates for micromachining processing, Journal of Microelectromechanical Systems, vol.5, issue.4, pp.256-269, 1996.

K. Tachibana and H. Kamisugi, Vacuum-ultraviolet laser absorption spectroscopy for absolute measurement of fluorine atom density in fluorocarbon plasmas, Appl. Phys. Lett, vol.74, p.2390, 1999.

E. Gogolides, C. Boukouras, G. Kokkoris, O. Brani, A. Tserepi et al., Si etching in high-density SF 6 plasmas for microfabrication : surface roughness formation, Microelectronic Engineering, pp.312-318, 2004.

R. Legtenberg, H. Jansen, M. De-boer, and M. Elwenspoek, Anisotropic Reactive Ion Etching of Silicon Using SF 6 /O 2 /CHF 3 Gas Mixtures, Journal of The Electrochemical Society, vol.142, issue.6, pp.2020-2028, 1995.

F. Laermer and A. Schilp, Method of anisotropically etching silicon, US Patent, vol.5, p.893, 1996.

F. Laerme, A. Schilp, K. Funk, and M. Offenberg, Bosch deep silicon etching : improving uniformity and etch rate for advanced MEMS applications, Micro Electro Mechanical Systems, p.99, 1999.

, Twelfth IEEE International Conference on, pp.211-216, 1999.

R. Zhou, H. Zhang, Y. Hao, and Y. Wang, Simulation of the Bosch process with a string-cell hybrid method, Journal of Micromechanics and Microengineering, vol.14, issue.7, p.851, 2004.

S. Spiesshoefer, Z. Rahman, G. Vangara, S. Polamreddy, S. Burkett et al., Process integration for through-silicon vias, Journal of Vacuum Science & Technology A, vol.23, issue.4, pp.824-829, 2005.

S. Tachi, K. Tsujimoto, and S. Okudaira, Low-temperature reactive ion etching and microwave plasma etching of silicon, Applied Physics Letters, vol.52, issue.8, pp.616-618, 1988.

R. Dussart, T. Tillocher, P. Lefaucheux, and M. Boufnichel, Plasma cryogenic etching of silicon : from the early days to today's advanced technologies, Journal of Physics D : Applied Physics, vol.47, issue.12, p.123001, 2014.

M. J. De-boer, J. G. Gardeniers, H. V. Jansen, E. Smulders, M. J. Gilde et al., Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures, Journal of Microelectromechanical Systems, vol.11, issue.4, pp.385-401, 2002.

R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux, A. Basillais et al., Passivation mechanisms in cryogenic SF 6 /O 2 etching process, Journal of Micromechanics and Microengineering, vol.14, issue.2, p.190, 2004.

H. Jansen, M. De-boer, H. Wensink, B. Kloeck, and M. Elwenspoek, The black silicon method. VIII. A study of the performance of etching silicon using SF 6 /O 2-based chemistry with cryogenical wafer cooling and a high density ICP source, Microelectronics Journal, vol.32, issue.9, pp.769-777, 2001.

K. N. Nguyen, P. Basset, F. Marty, Y. Leprince-wang, and T. Bourouina, On the optical and morphological properties of microstructured Black Silicon obtained by cryogenic-enhanced plasma reactive ion etching, Journal of Applied Physics, vol.113, issue.19, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01721058

T. Tillocher, R. Dussart, L. J. Overzet, X. Mellhaoui, P. Lefaucheux et al., Two Cryogenic Processes Involving SF 6 , O 2 , and SiF 4 for Silicon Deep Etching, Journal of The Electrochemical Society, vol.155, issue.3, pp.187-191, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00349343

M. A. Blauw, T. Zijlstra, and E. Van-der-drift, Balancing the etching and passivation in time-multiplexed deep dry etching of silicon, Journal of Vacuum Science & Technology B, vol.19, issue.6, pp.2930-2934, 2001.

B. Wu, A. Kumar, and S. Pamarthy, High aspect ratio silicon etch : A review, Journal of Applied Physics, vol.108, issue.5, 2010.

H. V. Jansen, M. J. De-boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, Black silicon method X : a review on high speed and selective plasma etching of silicon with profile control : an indepth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment, Journal of Micromechanics and Microengineering, vol.19, issue.3, p.33001, 2009.

H. V. Jansen, M. J. De-boer, K. Ma, M. Gironès, S. Unnikrishnan et al., Black silicon method XI : oxygen pulses in SF 6 plasma, Journal of Micromechanics and Microengineering, vol.20, issue.7, p.75027, 2010.

R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier et al., Silicon columnar microstructures induced by an SF 6 /O 2 plasma, Journal of Physics D : Applied Physics, vol.38, issue.18, p.3395, 2005.

X. Mellhaoui, Mécanismes physico-chimiques dans le procédé de gravure plasma du Silicium, 2006.

C. B. Alcock, V. P. Itkin, and M. K. Horrigan, Vapour pressure equations for the metallic elements : 298-2500k, Canadian Metallurgical Quarterly, vol.23, issue.3, pp.309-313, 1984.

J. A. Moriarty, D. A. Young, and M. Ross, Theoretical study of the aluminum melting curve to very high pressure, Phys. Rev. B, vol.30, pp.578-588, 1984.

J. B. Sturgeon and B. B. Laird, Adjusting the melting point of a model system via Gibbs-Duhem integration : Application to a model of aluminum, Phys. Rev. B, vol.62, pp.14720-14727, 2000.

S. R. Peddada, I. M. Robertson, and H. K. Birnbaum, Hydride precipitation in vapor deposited Ti thin films, Journal of Materials Research, vol.8, pp.291-296, 1993.

S. R. Peddada, I. M. Robertson, and H. K. Birnbaum, Growth of Ti thin films on sapphire substrates, Journal of Materials Research, vol.12, pp.1856-1865, 1997.

A. Bourret, C. Adelmann, B. Daudin, J. Rouvière, G. Feuillet et al., Strain relaxation in (0001) AlN/GaN heterostructures, Phys. Rev. B, vol.63, p.245307, 2001.

E. Feltin, B. Beaumont, M. Laügt, P. De-mierry, P. Vennéguès et al., Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.79, issue.20, pp.3230-3232, 2001.

E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, Buffer optimization for crack-free GaN epitaxial layers grown on Si (111) substrate by MOCVD, Journal of Physics D : Applied Physics, vol.41, issue.15, p.155317, 2008.

K. Zhu, V. Kuryatkov, B. Borisov, G. Kipshidze, S. A. Nikishin et al., Plasma etching of AlN/AlGaInN superlattices for device fabrication, Applied Physics Letters, vol.81, issue.25, pp.4688-4690, 2002.

L. Huang, Q. Tong, Y. Chao, T. Lee, T. Martini et al., Onset of blistering in hydrogen-implanted silicon, Applied Physics Letters, vol.74, issue.7, pp.982-984, 1999.

E. Fourmond, J. Dupuis, F. Marcq, C. Dubois, and M. Lemiti, Impact of ammonia pretreatment of the silicon surface prior to the deposition of silicon nitride layer by PECVD, European Photovoltaic Solar Energy Conference and Exhibition, pp.1629-1632, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00546519

E. Wolfgan and . Frank, Approaches for patterning of aluminum, vol.33, pp.85-100, 1997.

E. R. Parker, B. J. Thibeault, M. F. Aimi, M. P. Rao, and N. C. Macdonald, Inductively Coupled Plasma Etching of Bulk Titanium for MEMS Applications, Journal of The Electrochemical Society, vol.152, issue.10, pp.675-683, 2005.

T. Tillocher, P. Lefaucheux, B. Boutaud, and R. Dussart, Alternated process for the deep etching of titanium, Journal of Micromechanics and Microengineering, vol.24, issue.7, p.75021, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01015146

S. Saito, K. Sugita, and J. Tonotani, Effect of CHF 3 Addition on Reactive Ion Etching of Aluminum Using Inductively Coupled Plasma

, Japanese Journal of Applied Physics, vol.44, issue.5R, p.2971, 2005.

D. Chen, D. Xu, J. Wang, B. Zhao, and Y. Zhang, Dry etching of AlN films using the plasma generated by fluoride, Vacuum, vol.83, issue.2, pp.282-285, 2008.