C. Dye, After 2015: infectious diseases in a new era of health and development, Philosophical Transactions of the Royal Society B: Biological Sciences, p.369, 2014.

D. Campoccia, L. Montanaro, and C. R. Arciola, The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials, vol.27, pp.2331-2339, 2006.

J. P. Guggenbichler, O. Assadian, M. Boeswald, and A. Kramer, Incidence and clinical implication of nosocomial infections associated with implantable biomaterials-catheters, ventilator-associated pneumonia, urinary tract infections, GMS Krankenhaushygiene Interdisziplinär, p.6, 2011.

H. C. Flemming and J. Wingender, The biofilm matrix, Nature Reviews Microbiology, vol.8, pp.623-633, 2010.

H. C. Flemming and J. Wingender, Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects, Water Science and Technology, vol.43, pp.1-8, 2001.

J. S. Dickschat, Quorum sensing and bacterial biofilms, Natural Product Reports, vol.27, pp.343-369, 2010.

N. Rabin, Y. Zheng, C. Opoku-temeng, Y. Du, E. Bonsu et al., Biofilm formation mechanisms and targets for developing antibiofilm agents, Future Medicinal Chemistry, vol.7, pp.493-512, 2015.

L. Hall-stoodley, J. W. Costerton, and P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases, Nature Reviews Microbiology, vol.2, pp.95-108, 2004.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg, Bacterial biofilms: a common cause of persistent infections, Science, vol.284, pp.1318-1322, 1999.

D. Davies, Understanding biofilm resistance to antibacterial agents, Nature Reviews Drug Discovery, vol.2, pp.114-122, 2003.

J. M. Schierholz and J. Beuth, Implant infections: a haven for opportunistic bacteria, Journal of Hospital Infection, vol.49, pp.87-93, 2001.

H. O. Gbejuade, A. M. Lovering, and J. C. Webb, The role of microbial biofilms in prosthetic joint infections, Acta Orthopeadica, vol.86, pp.147-158, 2015.

M. F. Sampedro and R. Patel, Infections associated with long-term prosthetic devices. Infectious disease clinics of North America, vol.21, pp.785-819, 2007.

R. Meckenstock and A. Therby, Modifications de l'immunité dans l'obésité : impact sur le risque infectieux. La Revue de Médecine Interne, vol.36, pp.760-768, 2015.

B. H. Kapadia, R. A. Berg, J. A. Daley, J. Fritz, A. Bhave et al., Periprosthetic joint infection, The Lancet, vol.387, pp.386-394, 2016.

K. G. Tarakji, C. R. Ellis, P. Defaye, and C. Kennergren, Cardiac implantable electronic device infection in patients risk, Arrhythmia & Electrophysiology Review, vol.5, pp.65-71, 2016.

J. P. Steinberg, C. C. Clark, and B. O. Hackman, Nosocomial and community-acquired Staphylococcus aureus bacteremias from 1980 to 1993: impact of intravascular devices and methicillin resistance, Clinical Infectious Diseases, vol.23, pp.255-259, 1996.

R. M. Donlan and J. W. Costerton, Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms, Clinical Microbiology Reviews, vol.15, pp.167-193, 2002.

B. Amorena, E. Gracia, M. Monzón, J. Leiva, C. Oteiza et al.,

J. Yago, Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro, Journal of Antimicrobial Chemotherapy, vol.44, pp.43-55, 1999.

I. Foley and P. Gilbert, Antibiotic resistance of biofilms, Biofouling, vol.10, pp.331-346, 1996.

G. L. French, Bactericidal agents in the treatment of MRSA infections-the potential role of daptomycin, Journal of Antimicrobial Chemotherapy, vol.58, pp.1107-1117, 2006.

B. Lemaitre and J. Hoffmann, The host defense of Drosophila melanogaster, Annual Review of Immunology, vol.25, pp.697-743, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167467

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, pp.389-395, 2002.

E. F. Haney and R. E. Hancock, Peptide design for antimicrobial and immunomodulatory applications, Biopolymers, vol.100, pp.572-583, 2013.

R. E. Hancock and H. G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nature Biotechnology, vol.24, pp.1551-1557, 2006.

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, pp.389-395, 2002.

W. C. Wimley, Describing the mechanism of antimicrobial peptide action with the interfacial activity model, ACS Chemical Biology, vol.5, pp.905-922, 2010.

K. Glinel, P. Thebault, V. Humblot, C. M. Pradier, and T. Jouenne, Antibacterial surfaces developed from bio-inspired approaches, Acta Biomaterialia, vol.8, pp.1670-1684, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00689996

F. Costa, I. F. Carvalho, R. C. Montelaro, P. Gomes, and M. C. Martins, Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces, Acta Biomaterialia, vol.7, pp.1431-1440, 2011.

V. Balhara, R. Schmidt, S. U. Gorr, and C. Dewolf, Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K, Biochimica et Biophysica Acta, vol.1828, pp.2193-2203, 2013.

J. F. Frantz, S. Castano, B. Desbat, B. Odaert, M. Roux et al., Aggregation of cateslytin beta-sheets on negatively charged lipids promotes rigid membrane domains. A new mode of action for antimicrobial peptides?, Biochemistry, vol.47, pp.6394-6402, 2008.

M. Malmsten, Antimicrobial peptides, Upsala Journal of Medical Sciences, vol.119, pp.199-204, 2014.

N. W. Schmidt and G. C. Wong, Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Current Opinion in Solid State and Materials Sciences, vol.17, pp.151-163, 2013.

G. Wang, B. Mishra, K. Lau, T. Lushnikova, R. Golla et al., Antimicrobial peptides in 2014, Pharmaceuticals, vol.8, pp.123-150, 2015.

K. Splith and I. Neundorf, Antimicrobial peptides with cell-penetrating peptide properties and vice versa, European Biophysics Journal, vol.40, pp.387-397, 2011.

H. Traboulsi, H. Larkin, M. A. Bonin, L. Volkov, C. L. Lavoie et al., Macrocyclic cell penetrating peptides: a study of structure-penetration properties, Bioconjugate Chemistry, vol.26, pp.405-411, 2015.

S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka et al., Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery, Journal of Biological Chemistry, vol.276, pp.5836-5840, 2001.

M. Sugawara, J. M. Resende, C. M. Moraes, A. Marquette, J. F. Chich et al., Membrane structure and interactions of human catestatin by multidimensional solution and solid-state NMR spectroscopy, FASEB Journal, vol.24, pp.1737-1746, 2010.

K. Lugardon, S. Chasserot-golaz, A. E. Kieffer, R. Maget-dana, G. Nullans et al., Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47-66)-derived peptide, Journal of Biological Chemistry, vol.276, pp.35875-35882, 2001.

R. Aslam, C. Marban, C. Corazzol, F. Jehl, F. Delalande et al., Cateslytin, a chromogranin A derived peptide is active against Staphylococcus aureus and resistant to degradation by its proteases, Nature Reviews Microbiology, vol.8, pp.423-435, 2010.

L. Ploux, M. Mateescu, K. Anselme, and K. Vasilev, Antibacterial Properties of Silver-Loaded Plasma Polymer Coatings, Journal of Nanomaterials, vol.2012, pp.1-9, 2012.

V. Sambhy, M. M. Macbride, B. R. Peterson, and A. Sen, Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials, Journal of the American Chemical Society, vol.128, pp.9798-9808, 2006.

K. Chaloupka, Y. Malam, and A. M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications, Trends in Biotechnology, vol.28, pp.580-588, 2010.

X. Chen and H. J. Schluesener, Nanosilver: A nanoproduct in medical application, Toxicology Letters, vol.176, pp.1-12, 2008.

P. V. Asharani, G. Low-kah-mun, M. P. Hande, S. Valiyaveettil, L. Braydich-stolle et al., Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells, In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicological Sciences, vol.3, pp.412-419, 2005.

R. Young, Bacteriophage lysis: mechanism and regulation, Microbiological Reviews, vol.56, pp.430-481, 1992.

K. Glinel, A. M. Jonas, T. Jouenne, J. Leprince, L. Galas et al., Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide, Bioconjugate Chemistry, vol.20, pp.71-77, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01962744

S. V. Pavlukhina, J. B. Kaplan, L. Xu, W. Chang, X. Yu et al., Noneluting enzymatic antibiofilm coatings, A review of the antimicrobial activity of chitosan. Polímeros, vol.4, pp.241-247, 2009.

E. I. Rabea, M. E. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, Chitosan as antimicrobial agent: Applications and mode of action, Biomacromolecules, vol.4, pp.1457-1465, 2003.

M. Conte, F. Aliberti, L. Fucci, and M. Piscopo, Antimicrobial activity of various cationic molecules on foodborne pathogens, World Journal of Microbiology and Biotechnology, vol.23, pp.1679-1683, 2007.

D. J. Mitchell, D. T. Kim, L. Steinman, C. G. Fathman, and J. B. Rothbard, Polyarginine enters cells more efficiently than other polycationic homopolymers, Journal of Peptide Research, vol.56, pp.318-325, 2000.

P. T. Hammond, Building biomedical materials layer-by-layer, Materials Today, vol.15, pp.196-206, 2012.

G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, vol.277, pp.1232-1237, 1997.

J. J. Richardson, J. Cui, M. Bjornmalm, J. A. Braunger, H. Ejima et al., Innovation in layer-by-layer assembly, Chemical Reviews, vol.116, pp.14828-14867, 2016.

N. Laugel, C. Betscha, M. Winterhalter, J. C. Voegel, P. Schaaf et al., Relationship between the growth regime of polyelectrolyte multilayers and the polyanion/polycation complexation enthalpy, Journal of Physical Chemistry. B, vol.110, pp.19443-19449, 2006.

A. R. Statz, J. P. Park, N. P. Chongsiriwatana, A. E. Barron, and P. B. Messersmith, Surfaceimmobilised antimicrobial peptoids, Biofouling, vol.24, pp.439-448, 2008.

J. Peyre, V. Humblot, C. Methivier, J. M. Berjeaud, and C. M. Pradier, Co-grafting of aminopoly(ethylene glycol) and Magainin I on a TiO2 surface: tests of antifouling and antibacterial activities, Journal of Physical Chemistry B, vol.116, pp.13839-13847, 2012.

L. Seon, P. Lavalle, P. Schaaf, and F. Boulmedais, Polyelectrolyte Multilayers: A Versatile Tool for Preparing Antimicrobial Coatings, Langmuir, vol.31, pp.12856-13872, 2015.

S. Satpathy, S. K. Sen, S. Pattanaik, and S. Raut, Review on bacterial biofilm: An universal cause of contamination, Biocatalysis and Agricultural Biotechnology, vol.7, pp.56-66, 2016.

M. E. Olson, K. L. Garvin, P. D. Fey, and M. E. Rupp, Adherence of Staphylococcus epidermidis to biomaterials is augmented by PIA, Clinical Orthopaedics and Related Research, vol.451, pp.21-24, 2006.

O. Öztürk, M. Sudagidan, and U. Türkan, Biofilm formation by Staphylococcus epidermidis on nitrogen ion implanted CoCrMo alloy material, Journal of Biomedical Materials Research Part A, vol.81, pp.663-668, 2007.

M. Quirynen, H. C. Van-der-mei, C. M. Bollen, A. Schotte, M. Marechal et al., An in vivo study of the influence of the surface roughness of implants on the microbiology of supra-and subgingival plaque, Journal of Dental Research, vol.72, pp.1304-1309, 1993.

J. Bruzaud, J. Tarrade, A. Coudreuse, A. Canette, J. M. Herry et al., Flagella but not type IV pili are involved in the initial adhesion of Pseudomonas aeruginosa PAO1 to hydrophobic or superhydrophobic surfaces, Colloid and Surfaces B : Biointerfaces, vol.131, pp.59-66, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01151646

C. Faille, C. Jullien, F. Fontaine, M. Bellon-fontaine, C. Slomianny et al., Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity, Canadian Journal of Microbiology, vol.48, pp.728-738, 2002.

I. Banerjee, R. C. Pangule, and R. S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Advanced Materials, vol.23, pp.690-718, 2011.

J. A. Lichter, M. T. Thompson, M. Delgadillo, T. Nishikawa, M. F. Rubner et al., Substrata Mechanical Stiffness Can Regulate Adhesion of Viable Bacteria, Biomacromolecules, vol.9, pp.1571-1578, 2008.

Y. Chang, J. Lin, A. Prasannan, P. Chen, C. Ko et al., Evaluation of the bacterial anti-adhesive properties of polyacrylic acid, chitosan and heparin-modified medical grade Silicone rubber substrate, Journal of Polymer Research, p.22, 2015.

J. H. Fu, J. Ji, W. Y. Yuan, and J. C. Shen, Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan, Biomaterials, vol.26, pp.6684-6692, 2005.

C. X. Liu, D. R. Zhang, Y. He, X. S. Zhao, and R. Bai, Modification of membrane surface for antibiofouling performance: Effect of anti-adhesion and anti-bacteria approaches, Journal of Membrane Science, vol.346, pp.121-130, 2010.

D. E. Fullenkamp, J. G. Rivera, Y. K. Gong, K. H. Lau, L. He et al., Mussel-inspired silver-releasing antibacterial hydrogels, Biomaterials, vol.33, pp.3783-3791, 2012.

M. Malcher, D. Volodkin, B. Heurtault, P. Andre, P. Schaaf et al., Embedded silver ions-containing liposomes in polyelectrolyte multilayers: cargos films for antibacterial agents, Langmuir, vol.24, pp.10209-10215, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00345225

J. Min, R. D. Braatz, and P. T. Hammond, Tunable staged release of therapeutics from layer-bylayer coatings with clay interlayer barrier, Biomaterials, vol.35, pp.2507-2517, 2014.

I. Zhuk, F. Jariwala, A. B. Attygalle, Y. Wu, M. R. Libera et al., Self-defensive layerby-layer films with bacteria-triggered antibiotic release, ACS Nano, vol.8, pp.7733-7745, 2014.

A. Shukla, K. E. Fleming, H. F. Chuang, T. M. Chau, C. R. Loose et al., Controlling the release of peptide antimicrobial agents from surfaces, Biomaterials, vol.31, pp.2348-2357, 2010.

N. Raman, K. Marchillo, M. R. Lee, A. L. Rodriguez-lopez, D. R. Andes et al., Intraluminal Release of an Antifungal beta-Peptide Enhances the Antifungal and Anti-Biofilm Activities of Multilayer-Coated Catheters in a Rat Model of Venous Catheter Infection, ACS Biomaterials Science & Engineering, vol.2, pp.112-121, 2016.

M. E. Cassin, A. J. Ford, S. M. Orbach, S. E. Saverot, and P. Rajagopalan, The design of antimicrobial LL37-modified collagen-hyaluronic acid detachable multilayers, Acta Biomaterialia, vol.40, pp.119-129, 2016.

J. Min, K. Y. Choi, E. C. Dreaden, R. F. Padera, R. D. Braatz et al., Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair, ACS Nano, vol.10, pp.4441-4450, 2016.

H. Cheng, K. Yue, M. Kazemzadeh-narbat, Y. Liu, A. Khalilpour et al., Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis, ACS Applied Materials & Interfaces, vol.9, pp.11428-11439, 2017.

A. Agarwal, T. B. Nelson, P. R. Kierski, M. J. Schurr, C. J. Murphy et al., Polymeric multilayers that localize the release of chlorhexidine from biologic wound dressings, Biomaterials, vol.33, pp.6783-6792, 2012.

N. Aumsuwan, S. Heinhorst, and M. W. Urban, Antibacterial surfaces on expanded polytetrafluoroethylene; penicillin attachment, Biomacromolecules, vol.8, pp.713-718, 2007.

X. Chen, H. Hirt, Y. Li, S. U. Gorr, and C. Aparicio, Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms, PloS one, vol.9, p.111579, 2014.

S. L. Haynie, G. A. Crum, and B. A. Doele, Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin, Antimicrobial Agents and Chemotherapy, vol.39, pp.301-307, 1995.

M. Gabriel, K. Nazmi, E. C. Veerman, A. V. Nieuw-amerongen, and A. Zentner, Preparation of LL37-grafted titanium surfaces with bactericidal activity, Bioconjugate Chemistry, vol.17, pp.548-550, 2006.

L. D. Lozeau, T. E. Alexander, and T. A. Camesano, Proposed Mechanisms of Tethered Antimicrobial Peptide Chrysophsin-1 as a Function of Tether Length Using QCM-D, Journal of Physical Chemistry B, vol.119, pp.13142-13151, 2015.

G. Cado, R. Aslam, L. Seon, T. Garnier, R. Fabre et al., Self-Defensive Biomaterial Coating Against Bacteria and Yeasts: Polysaccharide Multilayer Film with Embedded Antimicrobial Peptide, Advanced Functional Materials, vol.23, pp.4801-4809, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02163993

B. L. Wang, K. F. Ren, H. Wang, and J. Ji, Construction of Degradable Multilayer Films for Enhanced Antibacterial Properties, ACS Applied Materials & Interfaces, vol.5, pp.4136-4143, 2013.

J. A. Lichter and M. F. Rubner, Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations, Langmuir, vol.25, pp.7686-7694, 2009.

J. L. Dalsin and P. B. Messersmith, Bioinspired antifouling polymers, Materials Today, vol.8, pp.38-46, 2005.

H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, vol.318, pp.426-430, 2007.

H. Lee, N. F. Scherer, and P. B. Messersmith, Single-molecule mechanics of mussel adhesion, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.12999-13003, 2006.

R. Aslam, C. Marban, C. Corazzol, F. Jehl, F. Delalande et al., Cateslytin, a chromogranin A derived peptide is active against Staphylococcus aureus and resistant to degradation by its proteases, PloS one, issue.8, p.68993, 2013.

G. R. Drapeau, Y. Boily, and J. Houmard, Purification and properties of an extracellular protease of Staphylococcus aureus, Journal of Biological Chemistry, vol.247, pp.6720-6726, 1972.

C. E. Brubaker and P. B. Messersmith, The present and future of biologically inspired adhesive interfaces and materials, Langmuir, vol.28, pp.2200-2205, 2012.

E. W. Danner, Y. Kan, M. U. Hammer, J. N. Israelachvili, and J. H. Waite, Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue, Biochemistry, vol.51, pp.6511-6518, 2012.

G. P. Maier, M. V. Rapp, J. H. Waite, J. N. Israelachvili, and A. Butler, Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement, Science, vol.349, pp.628-632, 2015.

A. R. Statz, R. J. Meagher, A. E. Barron, and P. B. Messersmith, New peptidomimetic polymers for antifouling surfaces, Journal of the American Chemical Society, vol.127, pp.7972-7973, 2005.

J. Peyre, V. Humblot, C. Methivier, J. M. Berjeaud, and C. M. Pradier, Co-grafting of aminopoly(ethylene glycol) and Magainin I on a TiO2 surface: tests of antifouling and antibacterial activities, Journal of Physical Chemistry B, vol.116, pp.13839-13847, 2012.

M. Krogsgaard, V. Nue, and H. Birkedal, Mussel-Inspired Materials: Self-Healing through Coordination Chemistry, vol.22, pp.844-857, 2016.

J. Yang, M. A. Stuart, and M. Kamperman, Jack of all trades: versatile catechol crosslinking mechanisms, Chemical Society Reviews, vol.43, pp.8271-8298, 2014.

J. Yu, W. Wei, E. Danner, R. K. Ashley, J. N. Israelachvili et al., Mussel protein adhesion depends on interprotein thiol-mediated redox modulation, Nature Chemical Biology, vol.7, pp.588-590, 2011.

M. V. Voinova, M. Rodahl, M. Jonson, and B. Kasemo, Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces : continuum mechanics approach, Physica Scripta, vol.59, pp.391-396, 1999.

B. P. Lee, J. L. Dalsin, and P. B. Messersmith, Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels, Biomacromolecules, vol.3, pp.1038-1047, 2002.

L. Khalafi, M. Rafiee, M. Shahbak, H. Shirmohammadi, M. K. Manthey et al., Addition of aliphatic and aromatic-amines to catechol in aqueous-solution under oxidizing conditions, Australian Journal of Chemistry, vol.42, pp.365-373, 1989.

Z. Liu, S. Ma, S. Duan, D. Xuliang, Y. Sun et al., Modification of Titanium Substrates with Chimeric Peptides Comprising Antimicrobial and Titanium-Binding Motifs Connected by Linkers To Inhibit Biofilm Formation, ACS Applied Materials & Interfaces, vol.8, pp.5124-5136, 2016.

F. Costa, I. F. Carvalho, R. C. Montelaro, P. Gomes, and M. C. Martins, Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces, Acta Biomaterialia, vol.7, pp.1431-1440, 2011.

N. Aumsuwan, S. Heinhorst, and M. W. Urban, Antibacterial surfaces on expanded polytetrafluoroethylene; penicillin attachment, Biomacromolecules, vol.8, pp.713-718, 2007.

E. Pensa, E. Cortés, G. Corthey, P. Carro, C. Vericat et al., The Chemistry of the Sulfur-Gold Interface: In Search of a Unified Model, Accounts of Chemical Research, vol.45, pp.1183-1192, 2012.

Y. Lee, H. J. Chung, S. Yeo, C. Ahn, H. Lee et al., Thermosensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction, Soft Matter, vol.6, pp.977-983, 2010.

S. L. Haynie, G. A. Crum, and B. A. Doele, Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin, Antimicrobial Agents and Chemotherapy, vol.39, pp.301-307, 1995.

F. Jean-francois, S. Castano, B. Desbat, B. Odaert, M. Roux et al., Aggregation of cateslytin beta-sheets on negatively charged lipids promotes rigid membrane domains. A new mode of action for antimicrobial peptides?, Biochemistry, vol.47, pp.6394-6402, 2008.

M. Gabriel, K. Nazmi, E. C. Veerman, A. V. Nieuw-amerongen, and A. Zentner, Preparation of LL37-grafted titanium surfaces with bactericidal activity, Bioconjugate Chemistry, vol.17, pp.548-550, 2006.

L. D. Lozeau, T. E. Alexander, and T. A. Camesano, Proposed Mechanisms of Tethered Antimicrobial Peptide Chrysophsin-1 as a Function of Tether Length Using QCM-D, Journal of Physical Chemistry B, vol.119, pp.13142-13151, 2015.

. , Revêtements à base de polypeptides Introduction, vol.4

P. .. De, Effet du polyanion sur les films antibactériens à base

. , Efficacité antibactérienne et fongicide des homopolypeptides

. .. Conclusion,

.. .. Références, Y. Wang, P. Podsiadlo, and N. A. Kotov, Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering, Advanced Materials, vol.18, pp.3203-3224, 2006.

J. Min, K. Y. Choi, E. C. Dreaden, R. F. Padera, R. D. Braatz et al., Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair, ACS Nano, vol.10, pp.4441-4450, 2016.

Y. Liu, T. He, and C. Gao, Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells, Colloids and Surfaces B Biointerfaces, vol.46, pp.117-126, 2005.

G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites, Science, vol.277, pp.1232-1237, 1997.

L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux et al., Improvement of Stability and Cell Adhesion Properties of Polyelectrolyte Multilayer Films by Chemical Cross-Linking, Biomacromolecules, vol.5, pp.284-294, 2004.

J. Chluba, J. Voegel, G. Decher, P. Erbacher, P. Schaaf et al., Peptide Hormone Covalently Bound to Polyelectrolytes and Embedded into Multilayer Architectures Conserving Full Biological Activity, Biomacromolecules, vol.2, pp.800-805, 2001.

H. Özçelik, N. E. Vrana, A. Gudima, V. Riabov, A. Gratchev et al.,

A. Carradò, J. Faerber, T. Roland, H. Klüter, J. Kzhyshkowska et al., Harnessing the Multifunctionality in Nature: A Bioactive Agent Release System with Self-Antimicrobial and Immunomodulatory Properties, Advanced Healthcare Materials, vol.4, pp.2026-2036, 2015.

G. Huynh-ba, Peri-implantitis: "tsunami" or marginal problem? International Journal of Oral and Maxillofacial Implants, vol.28, pp.333-337, 2013.

K. G. Tarakji, C. R. Ellis, P. Defaye, and C. Kennergren, Cardiac implantable electronic device infection in patients risk, Arrhythmia Electrophysiology Review, vol.5, pp.65-71, 2016.

M. F. Sampedro and R. Patel, Infections associated with long-term prosthetic devices. Infectious Disease Clinics of North America, vol.21, pp.785-819, 2007.

J. P. Guggenbichler, O. Assadian, M. Boeswald, A. Kramer, L. Seon et al., Incidence and clinical implication of nosocomial infections associated with implantable biomaterials-catheters, ventilator-associated pneumonia, urinary tract infections, GMS Krankenhhygiene Interdisziplinär, vol.31, pp.12856-12872, 2011.

S. V. Pavlukhina, J. B. Kaplan, L. Xu, W. Chang, X. Yu et al., Noneluting enzymatic antibiofilm coatings, ACS Applied Materials and Interfaces, vol.4, pp.4708-4716, 2012.

G. Cado, R. Aslam, L. Seon, T. Garnier, R. Fabre et al., Self-Defensive Biomaterial Coating Against Bacteria and Yeasts: Polysaccharide Multilayer Film with Embedded Antimicrobial Peptide, Advanced Functional Materials, vol.23, pp.4801-4809, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02163993

I. Zhuk, F. Jariwala, A. B. Attygalle, Y. Wu, M. R. Libera et al., Self-defensive layerby-layer films with bacteria-triggered antibiotic release, ACS Nano, vol.8, pp.7733-7745, 2014.

J. M. Silva, R. L. Reis, and J. F. Mano, Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers, 2016.

M. A. Stuart, W. T. Huck, J. Genzer, M. Muller, C. Ober et al., Emerging applications of stimuli-responsive polymer materials, Nature Materials, vol.9, pp.101-113, 2010.

T. Boudou, T. Crouzier, K. F. Ren, G. Blin, and C. Picart, Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications, Advanced Materials, vol.22, pp.441-467, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00670215

P. Lavalle, J. C. Voegel, D. Vautier, B. Senger, P. Schaaf et al., Dynamic aspects of films prepared by a sequential deposition of species: perspectives for smart and responsive materials, Advanced Materials, vol.23, pp.1191-221, 2011.

P. T. Hammond, Building biomedical materials layer-by-layer, Materials Today, vol.15, pp.196-206, 2012.

A. Guyomard, E. Dé, T. Jouenne, J. J. Malandain, G. Muller et al., Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: A bioinspired approach to prepare biocidal thin coatings, Advanced Functional Materials, vol.18, pp.758-765, 2008.

C. Porcel, P. Lavalle, V. Ball, G. Decher, B. Senger et al., From exponential to linear growth in polyelectrolyte multilayers, Langmuir, vol.22, pp.4376-4383, 2006.

C. Picart, J. Mutterer, L. Richert, Y. Luo, G. D. Prestwich et al., Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.12531-12535, 2002.

M. V. Voinova, M. Rodahl, M. Jonson, and B. Kasemo, Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces : continuum mechanics approach, Physica Scripta, vol.59, pp.391-396, 1999.

D. M. Soumpasis, Theoretical-Analysis of Fluorescence Photobleaching Recovery Experiments, Biophysical Journal, vol.41, pp.95-97, 1983.

C. Picart, J. Mutterer, Y. Arntz, J. C. Voegel, P. Schaaf et al., Application of fluorescence recovery after photobleaching to diffusion of a polyelectrolyte in a multilayer film, Microscopy Research and Technique, vol.66, pp.43-57, 2005.

T. P. Mcnamara and C. F. Blanford, A sensitivity metric and software to guide the analysis of soft films measured by a quartz crystal microbalance, The Analyst, vol.141, pp.2911-2919, 2016.

L. Richert, P. Lavalle, E. Payan, X. Z. Shu, G. D. Prestwich et al., Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects, Langmuir, vol.20, pp.448-458, 2004.

J. Raphel, M. Holodniy, S. B. Goodman, and S. C. Heilshorn, Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants, Biomaterials, vol.84, pp.301-314, 2016.

N. J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nature Protocols, vol.1, pp.2876-2890, 2006.

S. Zahouani, A. Chaumont, B. Senger, F. Boulmedais, P. Schaaf et al., StretchInduced Helical Conformations in Poly(l-lysine)/Hyaluronic Acid Multilayers, ACS Applied Materials & Interfaces, vol.8, pp.14958-14965, 2016.

F. Boulmedais, P. Schwinté, C. Gergely, J. Voegel, and P. Schaaf, Secondary structure of polypeptide multilayer films: An example of locally ordered polyelectrolyte multilayers, Langmuir, pp.4523-4525, 2002.

K. Lugardon, S. Chasserot-golaz, A. E. Kieffer, R. Maget-dana, G. Nullans et al., Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47-66)-derived peptide, Journal of Biological Chemistry, vol.276, pp.35875-35882, 2001.

P. Lavalle, J. C. Voegel, D. Vautier, B. Senger, P. Schaaf et al., Dynamic aspects of films prepared by a sequential deposition of species: perspectives for smart and responsive materials, Advanced Materials, vol.23, pp.1191-1221, 2011.

A. Schneider, G. Francius, R. Obeid, P. Schwinté, J. Hemmerlé et al., Polyelectrolyte Multilayers with a Tunable Young's Modulus: Influence of Film Stiffness on Cell Adhesion, Langmuir, vol.22, pp.1193-1200, 2005.

G. Wang, B. Mishra, K. Lau, T. Lushnikova, R. Golla et al., Antimicrobial peptides in 2014, Pharmaceuticals, vol.8, pp.123-150, 2015.

W. C. Wimley, Describing the mechanism of antimicrobial peptide action with the interfacial activity model, ACS Chemical Biology, vol.5, pp.905-917, 2010.

M. F. Sampedro and R. Patel, Infections associated with long-term prosthetic devices. Infectious disease clinics of North America, vol.21, pp.785-819, 2007.

J. M. Schierholz and J. Beuth, Implant infections: a haven for opportunistic bacteria, Journal of Hospital Infection, vol.49, pp.87-93, 2001.

H. O. Gbejuade, A. M. Lovering, and J. C. Webb, The role of microbial biofilms in prosthetic joint infections, Acta Orthopedica, vol.86, pp.147-158, 2015.

D. Campoccia, L. Montanaro, and C. R. Arciola, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, vol.34, pp.8533-8554, 2013.

D. Campoccia, L. Montanaro, and C. R. Arciola, The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials, vol.27, pp.2331-2339, 2006.

G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science, vol.277, pp.1232-1237, 1997.

Z. Y. Tang, Y. Wang, P. Podsiadlo, and N. A. Kotov, Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering, Advanced Materials, vol.18, pp.3203-3224, 2006.

J. J. Richardson, J. Cui, M. Bjornmalm, J. A. Braunger, H. Ejima et al., Innovation in layer-by-layer assembly, Chemical Reviews, vol.116, pp.14828-14867, 2016.

A. Shukla, K. E. Fleming, H. F. Chuang, T. M. Chau, C. R. Loose et al., Controlling the release of peptide antimicrobial agents from surfaces, Biomaterials, vol.31, pp.2348-2357, 2010.

B. L. Wang, K. F. Ren, H. Wang, and J. Ji, Construction of Degradable Multilayer Films for Enhanced Antibacterial Properties, ACS Applied Materials & Interfaces, vol.5, pp.4136-4143, 2013.

J. A. Lichter, M. T. Thompson, M. Delgadillo, T. Nishikawa, M. F. Rubner et al., Substrata mechanical stiffness can regulate adhesion of viable bacteria, Biomacromolecules, vol.9, pp.1571-1578, 2008.

J. Min, R. D. Braatz, and P. T. Hammond, Tunable staged release of therapeutics from layer-bylayer coatings with clay interlayer barrier, Biomaterials, vol.35, pp.2507-2517, 2014.

P. Podsiadlo, S. Paternel, J. M. Rouillard, Z. F. Zhang, J. Lee et al., Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties, Langmuir, vol.21, pp.11915-11921, 2005.

A. Agarwal, T. B. Nelson, P. R. Kierski, M. J. Schurr, C. J. Murphy et al., Polymeric multilayers that localize the release of chlorhexidine from biologic wound dressings, Biomaterials, vol.33, pp.6783-6792, 2012.

H. Özçelik, N. E. Vrana, A. Gudima, V. Riabov, A. Gratchev et al., Harnessing the multifunctionality in nature: a bioactive agent release system with self-antimicrobial and immunomodulatory properties, Advanced Healthcare Materials, vol.4, pp.2026-2036, 2015.

A. Mutschler, L. Tallet, M. Rabineau, C. Dollinger, M. Metz-boutigue et al., Unexpected bactericidal activity of poly(arginine)/hyaluronan nanolayered coatings, Chemistry of Materials, vol.28, pp.8700-8709, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02142312

C. Picart, J. Mutterer, L. Richert, Y. Luo, G. D. Prestwich et al., Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.12531-12535, 2002.

G. Sauerbrey, Verwendung von Schwingquartzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik, vol.155, pp.206-222, 1959.

D. M. Soumpasis, Theoretical-analysis of fluorescence photobleaching recovery experiments, Biophysical Journal, vol.41, pp.95-97, 1983.

T. Crouzier and C. Picart, Ion pairing and hydration in polyelectrolyte multilayer films containing polysaccharides, Biomacromolecules, vol.10, pp.433-442, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00670203

O. Guillaume-gentil, R. Zahn, S. Lindhoud, N. Graf, J. Voros et al., From nanodroplets to continuous films: how the morphology of polyelectrolyte multilayers depends on the dielectric permittivity and the surface charge of the supporting substrate, Soft Materials, vol.7, pp.3861-3871, 2011.

J. P. Steinberg, C. C. Clark, and B. O. Hackman, Nosocomial and community-acquired Staphylococcus aureus bacteremias from 1980 to 1993: impact of intravascular devices and methicillin resistance, Clinical Infectious Diseases, vol.23, pp.255-259, 1996.

N. Laugel, C. Betscha, M. Winterhalter, J. C. Voegel, P. Schaaf et al., Relationship between the growth regime of polyelectrolyte multilayers and the polyanion/polycation complexation enthalpy, Journal of Physical Chemistry B, vol.110, pp.19443-19449, 2006.

B. Amorena, E. Gracia, M. Monzón, J. Leiva, C. Oteiza et al.,

J. Yago, Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro, Journal of Antimicrobial Chemotherapy, vol.44, pp.43-55, 1999.