, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Synthesis Report, 2014.

C. M. White, B. R. Strazisar, E. J. Granite, J. S. Hoffman, and H. W. Pennline, Separation and capture of CO2 from large stationary sources and sequestration in geological formations-Coalbeds and deep saline aquifers, J. Air Waste Manage. Assoc, vol.53, pp.645-715, 2003.

S. Morais, N. Liu, A. Diouf, D. Bernard, C. Lecoutre et al.,

. Marre, Monitoring CO2 invasion processes at the pore scale using geological labs on chip, Lab Chip, vol.16, pp.3493-3502, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371024

N. Liu and T. , Supercritical Microfuidics for understanding CO 2 / water systems under pressure and temperature : Application to the sustainable management of the anthropogenic CO2, 2014.

S. Morais, Applications des laboratoires géologiques sur puce pour les problématiques du stockage du CO2, 2017.

N. Liu, C. Aymonier, C. Lecoutre, Y. Garrabos, and S. Marre, Microfluidic approach for studying CO2 solubility in water and brine using confocal Raman spectroscopy, Chem. Phys. Lett, vol.551, pp.139-143, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00745811

B. Bureau, C. Boussard-pledel, J. Troles, V. Nazabal, J. L. Adam et al., Development of optical fibers for mid-infrared sensing: State of the art and recent achievements, Proc. SPIE, Micro-structured and Specialty Optical Fibres IV, vol.950702, 2015.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-pledel, K. Michel-le-pierres et al., Infrared monitoring of underground CO2 storage using chalcogenide glass fibers, Opt. Mater, vol.31, pp.496-500, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400769

R. Chahal, Capteurs optiques en fibres de verre de chalcogénure dopées terres rares appliqués à la surveillance du stockage géologique de CO 2, Thèse Université de Rennes, vol.1, 2015.

F. Starecki, S. Morais, R. Chahal, C. Boussard-pledel, B. Bureau et al., IR emitting Dy 3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems, Int. J. Greenh. Gas Control, vol.55, pp.36-41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398111

C. Ressources-naturelles, Impacts et adaptation liés aux changements climatiques: Perspective canadienne, 2004.

A. , Documentation Base Carbone-Bilans GES

P. and L. Cloirec, CO2 (dioxyde de carbone), 2017.

A. Rojey and E. Tocqué, Captage et stockage géologique de CO2 CSC, 2011.

J. M. Matter, M. Stute, S. O. Snaebjornsdottir, E. H. Oelkers, S. R. Gislason et al., Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions, Science, vol.352, pp.1312-1314, 2016.

B. Garcia and V. Rouchon, Le stockage géologique du CO2 : réactivité géochimique du CO2 avec son environnement" L'actualité chimique FévrierMars, vol.57, p.61, 2013.

, Captage et stockage géologique de CO2 : L'exemple industriel de Lacq

C. Club and . Captage, Stockage et Valorisation du CO2: Une solution pour demain

, Planète énergies, Le transport et stockage du CO2

F. Van-bergen, J. Gale, K. J. Damen, and A. F. Wildenborg, Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2enhanced coal bed methane production, Energy, vol.29, pp.1611-1621, 2004.

X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang et al., A Survey on Gas Sensing Technology" Sensors, vol.12, pp.9635-9665, 2012.

J. Hodgkinson and R. P. Tatam, Optical gas sensing: a review, Meas. Sci. Technol, vol.24, p.59, 2013.

V. Zeninarin, Spectrométrie photoacoustique: Application à l'analyse de gaz, Techniques de l'ingénieur-Spectrométries, 2007.

M. Debliquy, Capteurs de gaz à semi-conducteurs" Techniques de l'ingénieurMétrologie relative aux gaz, 2006.

. Mediachimie, Micro-capteurs à semi-conducteurs pour la détection du CO2

. Mirsense, MultiSense : QCL based spectrometer module for gas analyzers

P. Barritault, M. Brun, O. Lartigue, J. Willemin, J. Ouvrier-buffet et al., Low power CO2 NDIR sensing using a micro-bolometer detector and a micro-hotplate IR-source, Sens. Actuators, B, vol.182, pp.565-570, 2013.

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang et al., Three-gas detection system with IR optical sensor based on NDIR technology, Opt. Laser Eng, vol.74, pp.103-108, 2015.

, NIST Chemistry WebBook, NIST Standard Reference Database Number, vol.69, 2005.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel et al., Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy 3+ :Ga5Ge20Sb10S65 fibers, Sens. Actuators, B, vol.207, pp.518-525, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01077740

, Projet CGSµLab

C. Hansen and S. R. Quake, Microfluidics in structural biology: smaller, faster? better, vol.13, pp.538-544, 2003.

C. P. Park and D. Kim, Dual-channel microreactor for gas? liquid syntheses, J. Am. Chem. Soc, vol.132, pp.10102-10106, 2010.

K. Jähnisch, V. Hessel, H. Löwe, and M. Baerns, Chemistry in Microstructured Reactors, Angew. Chem. Int. Ed, vol.43, pp.406-446, 2004.

K. F. Jensen, Silicon-based microchemical systems: Characteristics and applications, MRS Bull, vol.31, pp.101-107, 2006.

S. Marre, A. Adamo, S. Basak, C. Aymonier, and K. F. Jensen, Design and Packaging of Microreactors for High Pressure and High Temperature Applications, Ind. & Eng. Chem. Res, vol.49, pp.11310-11320, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00545088

R. M. Tiggelaar, F. Benito-lópez, D. C. Hermes, H. Rathgen, R. J. Egberink et al., Fabrication, mechanical testing and application of high-pressure glass microreactor chips, Chem. Eng. J, vol.131, pp.163-170, 2007.

F. Trachsel, C. Hutter, and P. R. Von-rohr, Transparent silicon/glass microreactor for high-pressure and high-temperature reactions, Chem. Eng. J, vol.135, pp.309-316, 2008.

E. R. Murphy, T. Inoue, H. R. Sahoo, N. Zaborenko, and K. F. Jensen, Solderbased chip-to-tube and chip-to-chip packaging for microfluidic devices, Lab Chip, vol.7, pp.1309-1314, 2007.

V. P. Ashish and V. K. Mayuresh, Novel microfluidic interconnectors for high temperature and pressure applications, J. Micromech. Microeng, vol.13, p.337, 2003.

Y. Peles, V. T. Srikar, T. S. Harrison, C. Protz, A. Mracek et al., Fluidic packaging of microengine and microrocket devices for high-pressure and high-temperature operation, J. Microelectromech. Syst, vol.13, pp.31-40, 2004.

S. Marre, J. Baek, J. Park, M. G. Bawendi, and K. F. Jensen, HighPressure/High-Temperature Microreactors for Nanostructure Synthesis, J. Assoc. Lab. Autom, vol.14, pp.367-373, 2009.

S. Marre, Y. Roig, and C. Aymonier, Supercritical microfluidics: Opportunities in flow-through chemistry and materials science, J. Supercrit. Fluids, vol.66, pp.251-264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00695032

Y. Roig, Microfluidique supercritique : réactivité chimique et germinationcroissance de nanocristaux, 2012.

M. Leester-schädel, T. Lorenz, F. Jürgens, and C. Richter, Fabrication of Microfluidic Devices, Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells, pp.23-57, 2016.

D. Y. Sim, T. Kurabayashi, and M. Esashi, A bakable microvalve with a Kovar-glass-silicon-glass structure, J. Micromech. Microeng, vol.6, p.266, 1996.

M. T. Blom, E. Chmela, J. G. Gardeniers, J. W. Berenschot, M. Elwenspoek et al., Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connections, J. Micromech. Microeng, vol.11, p.382, 2001.

G. Wallis, Direct-Current Polarization During Field-Assisted Glass-Metal Sealing, J. Am. Ceram. Soc, vol.53, pp.563-567, 1970.

A. Perro, G. Lebourdon, S. Henry, S. Lecomte, L. Servant et al., Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes, React. Chem. Eng, vol.1, pp.577-594, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01415473

S. Marre and K. F. Jensen, Synthesis of micro and nanostructures in microfluidic systems, Chem. Soc. Rev, vol.39, pp.1183-1202, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00466576

J. L. Adam, L. Calvez, J. Troles, and V. Nazabal, Chalcogenide Glasses for Infrared Photonics, Int. J. Appl. Glass Sci, vol.6, pp.287-294, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194452

B. J. Eggleton, B. Luther-davies, and K. Richardson, Chalcogenide photonics, Nat. Photonics, vol.5, pp.141-148, 2011.

J. S. Sanghera and I. D. Aggarwal, Active and passive chalcogenide glass optical fibers for IR applications: a review, J. Non-Cryst. Solids, vol.256, issue.257, pp.6-16, 1999.

S. Cui, C. Boussard-plédel, J. Lucas, and B. Bureau, Te-based glass fiber for far-infrared biochemical sensing up to 16 ?m, Opt. Express, vol.22, pp.21253-21262, 2014.

Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu et al., On-chip mid-infrared gas detection using chalcogenide glass waveguide, Appl. Phys. Lett, vol.108, p.141106, 2016.

B. Bureau, C. Boussard, S. Cui, R. Chahal, M. L. Anne et al., Chalcogenide optical fibers for midinfrared sensing, Opt. Eng, vol.53, pp.27101-027101, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00998416

V. K. Rai, K. Kumar, and S. B. Rai, Upconversion in Pr 3+ doped tellurite glass, Opt. Mater, vol.29, pp.873-878, 2007.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon et al., Midinfrared (3.5-5.5 µm) spectroscopic properties of Pr 3+-doped Ge-Ga-Sb-Se glasses and optical fibers, J. Lumin, vol.128, pp.1617-1622, 2008.

A. L. Pele, A. Braud, J. L. Doualan, R. Chahal, V. Nazabal et al., Wavelength conversion in Er 3+ doped chalcogenide fibers for optical gas sensors, Opt. Express, vol.23, pp.4163-4172, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142020

V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. Adam et al., Er 3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy, Opt. Mater, vol.31, pp.39-46, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00348137

G. J. Gao, A. Winterstein-beckmann, O. Surzhenko, C. Dubs, J. Dellith et al., Faraday rotation and photoluminescence in heavily Tb 3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics, Sci. Rep, vol.5, p.6, 2015.

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu et al., Quantum Cutting in Tm 3+ /Yb 3+-Codoped Lanthanum Aluminum Germanate Glasses, J. Am. Ceram. Soc, vol.93, pp.654-657, 2010.

J. K. Kim, B. Kyou-jin, W. J. Chung, B. J. Park, J. Heo et al., Influence of the Ga addition on optical properties of Pr in GeSbSe glasses, J. Phys. Chem. Solids, vol.72, pp.1386-1389, 2011.

B. G. Aitken, C. W. Ponader, and R. S. Quimby, Clustering of rare earths in GeAs sulfide glass, C. R. Chim, vol.5, pp.865-872, 2002.

L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, Midwave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber, IEEE J. Quantum Electron, vol.37, pp.1127-1137, 2001.

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass, J. Lumin. 72-4, pp.419-421, 1997.

R. Chahal, F. Starecki, C. Boussard-plédel, J. Doualan, K. Michel et al., Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers, Sens. Actuators, B, vol.229, pp.209-216, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01269748

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel et al., Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy 3+ :Ga5Ge20Sb10S65 fibers, Sens. Actuators, B, vol.207, pp.518-525, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01077740

S. Cui, R. Chahal, Y. Shpotyuk, C. Boussard, J. Lucas et al., Selenide and telluride glasses for mid-infrared bio-sensing, Proc. SPIE, vol.8938, p.893805, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01011852

F. Starecki, S. Morais, R. Chahal, C. Boussard-pledel, B. Bureau et al., IR emitting Dy 3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems, Int. J. Greenh. Gas Control, vol.55, pp.36-41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398111

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, Modeling of cascade lasing in Dy : Chalcogenide glass fiber laser with efficient output at 4.5 µm, IEEE Photonics Tech. Lett, vol.20, pp.123-125, 2008.

S. Sujecki, A. Oladeji, A. Phillips, A. B. Seddon, T. M. Benson et al., Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited), Opt. Quantum Electron, vol.47, pp.1389-1395, 2015.

?. Sójka, Z. Tang, H. Zhu, E. Bere?-pawlik, D. Furniss et al., Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy 3+ , Pr 3+ and Tb 3+, Opt. Mater. Express, vol.2, pp.1632-1640, 2012.

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sojka et al., Mid-infrared photoluminescence in smallcore fiber of praseodymium-ion doped selenide-based chalcogenide glass, Opt. Mater. Express, vol.5, pp.870-886, 2015.

C. Gmachl, H. Y. Hwang, R. Paiella, D. L. Sivco, J. N. Baillargeon et al., Quantum cascade lasers with low-loss chalcogenide lateral waveguides, IEEE Photonics Tech. Lett, vol.13, pp.182-184, 2001.

L. Robichaud, V. Fortin, J. Gauthier, S. Châtigny, J. Couillard et al.,

R. Delarosbil, M. Vallée, and . Bernier, Compact 3-8 ?m supercontinuum generation in a low-loss As2Se3 step-index fiber, Opt. Lett, vol.41, pp.4605-4608, 2016.

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai et al., Multi-milliwatt midinfrared supercontinuum generation in a suspended core chalcogenide fiber, Opt. Express, vol.23, pp.3282-3291, 2015.

R. Chahal, Capteurs optiques en fibres de verre de chalcogénure dopées terres rares appliqués à la surveillance du stockage géologique de CO2, Thèse Université Rennes, vol.1, 2015.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy et al., Mid-IR luminescence of Dy 3+ and Pr 3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers, Mater. Lett, vol.101, pp.21-24, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00848941

E. V. Karaksina, V. S. Shiryaev, T. V. Kotereva, and M. F. Churbanov, Preparation of high-purity Pr( 3+ ) doped Ge-Ga-Sb-Se glasses with intensive middle infrared luminescence, J. Lumin, vol.170, pp.37-41, 2016.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo et al., Dy 3+ doped Ge-Ga-Sb-Se glasses and optical fibers for the mid-IR gain media, J. Ceram. Soc. Jpn, vol.116, pp.1087-1091, 2008.

L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, Spectroscopy of the IR transitions in Pr 3+ doped heavy metal selenide glasses, Opt. Express, vol.1, pp.87-96, 1997.

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera et al.,

. Aggarwal, Core/clad selenide glass fiber doped with Pr 3+ for active mid-IR applications, J. Mater. Sci. Lett, vol.20, pp.465-467, 2001.

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera et al.,

. Aggarwal, Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR, J. Non-Cryst. Solids, vol.256, pp.253-259, 1999.

A. Oladeji, L. Sojka, Z. Tang, D. Furniss, A. Phillips et al., Numerical investigation of mid-infrared emission from Pr doped GeAsGaSe fibre, Opt. Quantum Electron, vol.46, pp.593-602, 2014.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Oladeji et al., Broadband, mid-infrared emission from Pr 3+ doped GeAsGaSe chalcogenide fiber, optically clad, Opt. Mater, vol.36, pp.1076-1082, 2014.

S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, Energy transfer between Er 3+ and Pr 3+ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers, J. Appl. Phys, vol.91, pp.9072-9077, 2002.

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim et al., Superior photoluminescence (PL) of Pr 3+-In, compared to Pr 3+-Ga, selenide-chalcogenide bulk glasses and PL of opticallyclad fiber, Opt. Express, vol.22, pp.21236-21252, 2014.

E. V. Karaksina, V. S. Shiryaev, T. V. Kotereva, A. P. Velmuzhov, L. A. Ketkova et al., Preparation of high-purity Pr 3+ doped Ge-As-SeIn-I glasses for active mid-infrared optics, J. Lumin, vol.177, pp.275-279, 2016.

M. Ichikawa, Y. Ishikawa, T. Wakasugi, and K. Kadono, Near and mid-infrared emissions from Dy 3+ and Nd 3+-doped Ga2S3-GeS2-Sb2S3 glass, Opt. Mater, vol.35, pp.1914-1917, 2013.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak et al., Infrared emission and ion-ion interactions in thulium-and terbium-doped gallium lanthanum sulfide glass, J. Opt. Soc. Am. B, vol.16, pp.308-316, 1999.

L. Sojka, Z. Tang, H. Sakr, D. Furniss, T. M. Benson et al., Spectroscopy of mid-infrared (4.8 µm) photoluminescence in Tb 3+ doped chalcogenide glass and fibre, 17th International Conference on Transparent Optical Networks (ICTON), pp.1-3, 2015.

T. H. Lee, J. Heo, Y. G. Choi, B. J. Park, and W. J. Chung, Emission properties of Ho 3+ /Tb 3+ co-doped in Ge30Ga2As8S60 glass, J. Appl. Phys, vol.96, pp.4827-4832, 2004.

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, Spectroscopic data of the 1.8, 2.9, and 4.3 ?m transitions in dysprosium-doped gallium lanthanum sulfide glass, Opt. Lett, vol.21, pp.1594-1596, 1996.

H. Guo, Y. Xu, H. Chen, X. Cui, Z. Qiao et al., Spectroscopic properties and Judd-Ofelt analysis of Dy 3+-doped and Dy 3+ , Tm 3+-codoped Ge-In-S chalcogenide glasses, J. Non-Cryst. Solids, vol.377, pp.95-99, 2013.

M. J. Zhang, A. P. Yang, Y. F. Peng, B. Zhang, H. Ren et al., Dy 3+-doped Ga-Sb-S chalcogenide glasses for mid-infrared lasers, Mater. Res. Bull, vol.70, pp.55-59, 2015.
DOI : 10.1016/j.materresbull.2015.04.019

L. Li, J. Bian, Q. Jiao, Z. Liu, S. Dai et al., GeS2-In2S3-CsI Chalcogenide Glasses Doped with Rare Earth Ions for Near-and Mid-IR Luminescence, Sci. Rep, vol.6, p.37577, 2016.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak et al., Infrared emission from holmium doped gallium lanthanum sulphide glass, Infrared Phy. Techn, vol.40, pp.329-335, 1999.
DOI : 10.1016/s1350-4495(98)00060-7

M. Ichikawa, Y. Ishikawa, T. Wakasugi, and K. Kadono, Mid-infrared emissions from Ho 3+ in Ga2S3-GeS2-Sb2S3 glass, J. Lumin, vol.132, pp.784-788, 2012.
DOI : 10.1016/j.jlumin.2011.11.007

V. Moizan, Étude de l'amplification laser en bande II dans les fibres de verres chalcogénures, Thèse Université Rennes, vol.1, 2008.

M. Ichikawa, Y. Ishikawa, T. Wakasugi, and K. Kadono, Mid-infrared emissions from Er 3+ in Ga2S3-GeS2-Sb2S3 glasses, J. Mater. Res, vol.25, pp.2111-2119, 2010.
DOI : 10.1016/j.jlumin.2011.11.007

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, Spectral properties of Er 3+-doped gallium lanthanum sulphide glass, J. NonCryst. Solids, vol.208, pp.56-63, 1996.

T. Schweizer, Rare-earth-doped gallium lanthanum sulphide glasses for midinfrared fibre lasers, Doctoral University of Southampton, 2000.

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal et al., Dy 3+ doped GeGaSbS fluorescent fiber at 4.4 ?m for optical gas sensing: Comparison of simulation and experiment, Opt. Mater, vol.61, pp.37-44, 2016.

Q. Tan, L. Tang, M. Yang, C. Xue, W. Zhang et al., Three-gas detection system with IR optical sensor based on NDIR technology, Opt. Laser Eng, vol.74, pp.103-108, 2015.

L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao et al., Miniature low-power IR monitor for methane detection, Measurement, vol.44, pp.823-831, 2011.

P. Barritault, M. Brun, O. Lartigue, J. Willemin, J. Ouvrier-buffet et al., Low power CO2 NDIR sensing using a micro-bolometer detector and a micro-hotplate IR-source, Sens. Actuators, B, vol.182, pp.565-570, 2013.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-pledel, K. Michel-le-pierres et al., Infrared monitoring of underground CO2 storage using chalcogenide glass fibers, Opt. Mater, vol.31, pp.496-500, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400769

X. B. Dai, X. Y. Liu, L. Liu, B. Zhu, and Z. Fang, A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases, Sens. Actuators, B, vol.220, pp.414-419, 2015.

J. D. Albert, V. Monbet, A. Jolivet-gougeon, N. Fatih, M. L. Corvec et al., A novel method for a fast diagnosis of septic arthritis using mid infrared and deported spectroscopy, Joint Bone Spine, vol.83, pp.318-323, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01243032

Y. Zhao, Y. Wei, Y. Li, T. Zhang, Y. Shang et al., All-Optical Remote Sensing Monitoring Technique of Methane Concentration Based on Tunable Diode Laser Absorption Spectroscopy, Symposium on Photonics and Optoelectronics (SOPO), pp.1-3, 2012.

J. Troles, Y. Niu, C. Duverger-arfuso, F. Smektala, L. Brilland et al., Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a singlemode fiber at 1.55 µm, Mater. Res. Bull, vol.43, pp.976-982, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00370070

J. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications, 2014.

F. T. Wallenberger and P. A. Bingham, Fiberglass and Glass Technology: Energy-Friendly Compositions and Applications, 2010.

J. Barton and C. Guillemet, Le verre, science et technologie, EDP sciences, 2005.

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, Progress in rare-earth-doped mid-infrared fiber lasers, Opt. Express, vol.18, pp.26704-26719, 2010.

Y. G. Choi, Spatial distribution of rare-earth ions in Se-based chalcogenide glasses with or without Ga, J. Non-Cryst. Solids, vol.353, pp.1930-1935, 2007.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl et al., Spectroscopy of infrared transitions of Pr 3+ ions in Ga-Ge-Sb-Se glasses, J. Lumin, vol.129, pp.1148-1153, 2009.

Z. Q. Tang, D. Furniss, N. C. Neate, E. Barney, T. M. Benson et al., Dy 3+-Doped Selenide Chalcogenide Glasses: Influence of Dy 3+

C. Dopant-additive, J. Am. Ceram. Soc, vol.99, pp.2283-2291, 2016.

S. D. Pangavhane, P. Némec, V. Nazabal, A. Moreac, P. Jóvári et al., Laser desorption ionization time-of-flight mass spectrometry of erbium-doped Ga-Ge-Sb-S glasses, Rapid Commun. Mass Spectrom, vol.28, pp.1221-1232, 2014.

B. G. Aitken and C. W. Ponader, Physical properties and Raman spectroscopy of GeAs sulphide glasses, J. Non-Cryst. Solids, vol.256, pp.143-148, 1999.

L. Macalik, J. Hanuza, J. Sokolnicki, and J. Legendziewicz, Optical properties of Pr 3+ in lanthanum double molybdates and tungstates: KLa1?xPrx(MO4)2 (M=Mo, W; x?1), Spectrochim. Acta Mol. Biomol. Spectrosc, vol.55, pp.251-262, 1999.

B. R. Judd, Optical absorption intensities of rare-earth ions, Phy. Rev, vol.127, pp.750-761, 1962.

G. S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys, vol.37, pp.511-520, 1962.

B. M. Walsh, Judd-Ofelt theory: principles and practices, Advances in Spectroscopy for Lasers and Sensing, pp.403-433, 2006.

P. Goldner and F. Auzel, Application of standard and modified Judd-Ofelt theories to a praseodymium-doped fluorozirconate glass, J. Appl. Phys, vol.79, pp.7972-7977, 1996.

M. Olivier, J. Doualan, V. Nazabal, P. Camy, and J. Adam, Spectroscopic study and Judd-Ofelt analysis of Pr 3+-doped Zr-Ba-La-Al glasses in visible spectral range, J. Opt. Soc. Am. B, vol.30, pp.2032-2042, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01069954

E. R. Barney, Z. Tang, A. Seddon, D. Furniss, S. Sujecki et al., The local environment of Dy 3+ in selenium-rich chalcogenide glasses, Rsc Advances, vol.4, pp.42364-42371, 2014.

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang et al., Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm, Opt. Express, vol.22, pp.19169-19182, 2014.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi et al., Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses, Opt. Mater, vol.29, pp.1075-1083, 2007.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte et al., Effect of the substitution of S for Se on the structure and nonlinear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70-xSex, J. Non-Cryst. Solids, vol.352, pp.5413-5420, 2006.

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath et al., Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se, Opt. Lett, vol.31, pp.1495-1497, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00077252

G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal et al.,

. Richardson, Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60-xSex glass network, J. Non-Cryst. Solids, vol.358, pp.1740-1745, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00712602

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez et al., Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S, Mater. Chem. Phys, vol.97, pp.64-70, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00109064

G. Lucovsky, F. L. Galeener, R. C. Keezer, R. H. Geils, and H. A. Six, Structural interpretation of the infrared and Raman spectra of glasses in the alloy system Ge1-xSx, Phy. Rev. B, vol.10, pp.5134-5146, 1974.

S. Sugai, Stochastic random network model in Ge and Si chalcogenide glasses, Phy. Rev. B, vol.35, pp.1345-1361, 1987.

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke et al., Chalcogenide glasses based on germanium disulfide for second harmonic generation, Adv. Funct. Mater, vol.17, pp.3284-3294, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00369235

O. Matsuda, K. Inoue, and K. Murase, Resonant Raman study on crystalline GeSe2 in relation to amorphous states, Solid State Commun, vol.75, pp.303-308, 1990.

P. N?mec, M. Frumar, B. Frumarová, M. Jelínek, J. Lan?ok et al., Pulsed laser deposition of pure and praseodymium-doped Ge-Ga-Se amorphous chalcogenide films, Opt. Mater, vol.15, pp.191-197, 2000.

L. Petit, N. Carlie, K. Richardson, Y. Guo, B. Schulte et al., Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70?xSex, J. Phys. Chem. Solids, vol.66, pp.1788-1794, 2005.

B. Liu, Z. Song, T. Zhang, S. Feng, and B. Chen, Raman spectra and XPS studies of phase changes in Ge2Sb2Te5 films, Chin. Phy, vol.13, p.1947, 2004.

W. Wei, L. Fang, X. Shen, and R. Wang, Transition threshold in GexSb10Se90?x glasses, J. Appl. Phys, vol.115, p.113510, 2014.

P. Goldner, Accuracy of the Judd-Ofelt theory, Mol. Phys, vol.101, pp.903-908, 2003.

E. B. Dunina, A. A. Kornienko, and L. A. Fomicheva, Modified theory of f-f transition intensities and crystal field for systems with anomalously strong configuration interaction" Cent, Eur. J. Phys, vol.6, pp.407-414, 2008.

H. Inoue, K. Soga, and A. Makishima, The effects of crystal-fields on the optical properties of Pr: ZBLAN glass, J. Non-Cryst. Solids, vol.325, pp.282-294, 2003.

E. Nieboer, C. K. Jørgensen, R. D. Peacock, and R. Reisfeld, Rare Earths, 2014.

R. S. Quimby and W. J. Miniscalco, Modified Judd-Ofelt Technique and application to optical-transitions in Pr 3+-doped glass, J. Appl. Phys, vol.75, pp.613-615, 1994.

M. Eyal, E. Greenberg, R. Reisfeld, and N. Spector, Spectroscopy of praseodymium(III) in zirconium fluoride glass, Chem. Phys. Lett, vol.117, pp.108-114, 1985.

B. E. Bowlby and B. D. Bartolo, Applications of the Judd-Ofelt theory to the praseodymium ion in laser solids, J. Lumin, vol.100, pp.131-139, 2002.

C. K. Jorgensen and B. R. Judd, Hypersensitive pseudoquadrupole transistions in lanthanides, Mol. Phys, vol.8, pp.281-290, 1964.

V. Q. Nguyen, G. Drake, G. Villalobos, D. Gibson, S. Bayya et al., Effect of aluminum and tellurium tetrachloride addition on the loss of arsenic selenide optical fiber, Opt. Mater, vol.64, pp.327-333, 2017.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, Fabrication of arsenic selenide optical fiber with low hydrogen impurities, J. Am. Ceram. Soc, vol.85, pp.2849-2851, 2002.

V. S. Shiryaev and M. F. Churbanov, Trends and prospects for development of chalcogenide fibers for mid-infrared transmission, J. Non-Cryst. Solids, vol.377, pp.225-230, 2013.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics, J. Non-Cryst. Solids, vol.357, pp.2352-2357, 2011.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, High-purity chalcogenide glasses for fiber optics, Inorg. Mater, vol.45, pp.1439-1460, 2009.

T. Katsuyama, K. Ishida, S. Satoh, and H. Matsumura, Low-loss Ge-Se chalcogenide glass optical fibers, Appl. Phys. Lett, vol.45, pp.925-927, 1984.
DOI : 10.1063/1.95462

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki et al., Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics, Opt. Mater. Express, vol.5, pp.1722-1737, 2015.

R. L. Hartman and K. F. Jensen, Microchemical systems for continuous-flow synthesis, Lab Chip, vol.9, pp.2495-2507, 2009.

K. F. Jensen, B. J. Reizman, and S. G. Newman, Tools for chemical synthesis in microsystems, Lab Chip, vol.14, pp.3206-3212, 2014.

C. P. Park and D. Kim, Dual-channel microreactor for gas? liquid syntheses, J. Am. Chem. Soc, vol.132, pp.10102-10106, 2010.

K. Jähnisch, V. Hessel, H. Löwe, and M. Baerns, Chemistry in Microstructured Reactors, Angew. Chem. Int. Ed, vol.43, pp.406-446, 2004.

T. A. Duncombe, A. M. Tentori, and A. E. Herr, Microfluidics: Reframing biological enquiry, Nat. Rev. Mol. Cell. Biol, vol.16, issue.9, pp.554-567, 2015.
DOI : 10.1038/nrm4041

URL : https://cloudfront.escholarship.org/dist/prd/content/qt4wj347mj/qt4wj347mj.pdf?t=o4vlea

J. El-ali, P. K. Sorger, and K. F. Jensen, Cells on chips, Nature, vol.442, pp.403-411, 2006.

C. Hansen and S. R. Quake, Microfluidics in structural biology: smaller, faster? better, Curr. Opin. Struct. Biol, vol.13, pp.538-544, 2003.

S. Marre and K. F. Jensen, Synthesis of micro and nanostructures in microfluidic systems, Chem. Soc. Rev, vol.39, pp.1183-1202, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00466576

K. F. Jensen, Silicon-based microchemical systems: Characteristics and applications, MRS Bull, vol.31, pp.101-107, 2006.

J. A. Rogers, 10 emerging technologies that will change the world, MIT Technology Review, 2004.

. Micronit,

J. Keybl and K. F. Jensen, Microreactor system for high-pressure continuous flow homogeneous catalysis measurements, Ind. Eng. Chem. Res, vol.50, pp.11013-11022, 2011.

S. Das and V. C. Srivastava, Microfluidic-based photocatalytic microreactor for environmental application: a review of fabrication substrates and techniques, and operating parameters, Photochem. Photobiol. Sci, vol.15, pp.714-730, 2016.

S. Marre, J. Park, J. Rempel, J. Guan, M. G. Bawendi et al., Supercritical Continuous-Microflow Synthesis of Narrow Size Distribution Quantum Dots, Adv. Mater, vol.20, pp.4830-4834, 2008.

J. Baek, P. M. Allen, M. G. Bawendi, and K. F. Jensen, Investigation of Indium Phosphide Nanocrystal Synthesis Using a High-Temperature and High-Pressure Continuous Flow Microreactor, Angew. Chem. Int. Ed, vol.50, pp.627-630, 2011.

B. Pinho, S. Girardon, F. Bazer-bachi, G. Bergeot, S. Marre et al., A microfluidic approach for investigating multicomponent system thermodynamics at high pressures and temperatures, Lab Chip, vol.14, pp.3843-3849, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064668

N. S. Gunda, B. Bera, N. K. Karadimitriou, S. K. Mitra, and S. M. Hassanizadeh, Reservoir-on-a-Chip (ROC): A new paradigm in reservoir engineering, Lab Chip, vol.11, pp.3785-3792, 2011.

W. Song, T. W. De-haas, H. Fadaei, and D. Sinton, Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels, Lab Chip, vol.14, pp.4382-4390, 2014.

S. Morais, N. Liu, A. Diouf, D. Bernard, C. Lecoutre et al.,

. Marre, Monitoring CO2 invasion processes at the pore scale using geological labs on chip, Lab Chip, vol.16, pp.3493-3502, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371024

S. Morais, Applications des laboratoires géologiques sur puce pour les problématiques du stockage du CO2, 2017.

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.442, pp.368-373, 2006.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang et al., Towards biochips using microstructured optical fiber sensors, Anal. Bioanal. Chem, vol.385, p.1370, 2006.
DOI : 10.1007/s00216-006-0480-8

URL : http://orbit.dtu.dk/en/publications/towards-biochips-using-microstructured-optical-fiber-sensors(ac1c92b7-af92-4f54-926c-f6702b74a21d).html

M. Bowden, L. Song, and D. R. Walt, Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection, Anal. Chem, vol.77, pp.5583-5588, 2005.

D. Psaltis, S. R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics, Nature, vol.442, pp.381-386, 2006.

J. Yue, F. H. Falke, J. C. Schouten, and T. A. Nijhuis, Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow, Lab Chip, vol.13, pp.4855-4863, 2013.

N. Liu, C. Aymonier, C. Lecoutre, Y. Garrabos, and S. Marre, Microfluidic approach for studying CO2 solubility in water and brine using confocal Raman spectroscopy, Chem. Phys. Lett, vol.551, pp.139-143, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00745811

S. Dochow, M. Becker, R. Spittel, C. Beleites, S. Stanca et al., Raman-on-chip device and detection fibres with fibre Bragg grating for analysis of solutions and particles, Lab Chip, vol.13, pp.1109-1113, 2013.

C. Wagner, W. Buchegger, M. Vellekoop, M. Kraft, and B. Lendl, Timeresolved mid-IR spectroscopy of (bio) chemical reactions in solution utilizing a new generation of continuous-flow micro-mixers, Anal. Bioanal. Chem, vol.400, pp.2487-2497, 2011.

D. P. Kise, D. Magana, M. J. Reddish, and R. B. Dyer, Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection, Lab Chip, vol.14, pp.584-591, 2014.

K. A. Chan, X. Niu, A. J. De-mello, and S. G. Kazarian, Rapid prototyping of microfluidic devices for integrating with FT-IR spectroscopic imaging, Lab Chip, vol.10, pp.2170-2174, 2010.

T. Pan, R. T. Kelly, M. C. Asplund, and A. T. Woolley, Fabrication of calcium fluoride capillary electrophoresis microdevices for on-chip infrared detection, J. Chromatogr. A, vol.1027, pp.231-235, 2004.

F. Starecki, S. Morais, R. Chahal, C. Boussard-pledel, B. Bureau et al., IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems, Int. J. Greenh. Gas Control, vol.55, pp.36-41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398111

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal et al., Dy 3+ doped GeGaSbS fluorescent fiber at 4.4 ?m for optical gas sensing: Comparison of simulation and experiment, Opt. Mater, vol.61, pp.37-44, 2016.

S. Marre, A. Adamo, S. Basak, C. Aymonier, and K. F. Jensen, Design and Packaging of Microreactors for High Pressure and High Temperature Applications, Ind. Eng. Chem. Res, vol.49, pp.11310-11320, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00545088

R. M. Tiggelaar, F. Benito-lópez, D. C. Hermes, H. Rathgen, R. J. Egberink et al., Fabrication, mechanical testing and application of high-pressure glass microreactor chips, Chem. Eng. J, vol.131, pp.163-170, 2007.
DOI : 10.1016/j.cej.2006.12.036

URL : https://ris.utwente.nl/ws/files/6675684/Tiggelaar07fabrication.pdf

F. Trachsel, C. Hutter, and P. R. Rohr, Transparent silicon/glass microreactor for high-pressure and high-temperature reactions, Chem. Eng. J, vol.135, pp.309-316, 2008.

A. Perro, G. Lebourdon, S. Henry, S. Lecomte, L. Servant et al., Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes, Reac. Chem. Eng, vol.1, pp.577-594, 2016.
DOI : 10.1039/c6re00127k

URL : https://hal.archives-ouvertes.fr/hal-01415473

. X. Corning-;-39, J. Jiang, B. Lousteau, A. Richards, and . Jha, Investigation on germanium oxide-based glasses for infrared optical fibre development, Opt. Mater, vol.31, pp.1701-1706, 2009.

J. T. Kohli and J. E. Shelby, Rare-Earth Aluminogermanate Glasses, J. Am. Ceram. Soc, vol.74, pp.1031-1035, 1991.
DOI : 10.1111/j.1151-2916.1991.tb04339.x

G. Cao, F. Lin, H. Hu, and F. Gan, A new fluorogermanate glass, J. Non-Cryst. Solids, vol.326, issue.327, pp.170-176, 2003.
DOI : 10.1016/s0022-3093(03)00404-6

M. C. Wang, J. S. Wang, and M. H. Hon, Effect of Na2O addition on the properties and structure of germanate glass, Ceram. Int, vol.21, pp.113-118, 1995.

J. E. Shelby, Thermal expansion of mixed-alkali germanate glasses, J. Appl. Phys, vol.46, pp.193-196, 1975.
DOI : 10.1063/1.321318

. Corning, , p.45

M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke et al., Chalcogenide glasses based on germanium disulfide for second harmonic generation, Adv. Funct. Mater, vol.17, pp.3284-3294, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00369235

A. B. Seddon, Chalcogenide glasses: a review of their preparation, properties and applications, J. Non-Cryst. Solids, vol.184, pp.44-50, 1995.

P. P. Fedorov, R. M. Zakalyukin, L. N. Ignat'eva, and V. M. Bouznik, Fluoroindate glasses, Russ. Chem. Rev, vol.69, pp.705-716, 2000.
DOI : 10.1070/rc2000v069n08abeh000582

. Crystran, , p.49

D. Hubbard and E. H. Hamilton, Studies of the chemical durability of glass by an interferometer method, 1941.

M. Takahashi and K. Ikeuchi, Anodic Bonding of Glass to Metal through Migration of Ag Ions, Brazing and Soldering, pp.60-66, 2006.

M. Takahashi and K. Ikeuchi, Anodic bonding of Ag-impregnated glass and reaction of derived joints to reverese voltage, Thermec 2006, Pts 1-5, p.3931, 2007.

S. Shoji, H. Kikuchi, and H. Torigoe, Low-temperature anodic bonding using lithium aluminosilicate-?-quartz glass ceramic, Sens. Actuator A-Phys, vol.64, pp.95-100, 1998.
DOI : 10.1016/s0924-4247(97)01659-2

J. Isard, The mixed alkali effect in glass, J. Non-Cryst. Solids, vol.1, pp.235-261, 1969.

Y. Zhao and D. Shi, Effect of alkali metal oxides R2O (R= Na, K) on 1.53 ?m luminescence of Er 3+-doped Ga2O3-GeO2 glasses for optical amplification, J. Rare Earths, vol.31, pp.857-863, 2013.

J. E. Shelby, A limited review of water diffusivity and solubility in glasses and melts, J. Am. Ceram. Soc, vol.91, pp.703-708, 2008.

J. Shelby, Viscosity and thermal expansion of alkali germanate glasses, J. Am. Ceram. Soc, vol.57, pp.436-439, 1974.

G. Wallis, Direct-Current Polarization During Field-Assisted Glass-Metal Sealing, J. Am. Ceram. Soc, vol.53, pp.563-567, 1970.

A. K. Varshneya, Some comments on physical properties of chalcogenide glasses, J. Non-Cryst. Solids, vol.273, pp.1-7, 2000.

A. P. Savikin, I. A. Grishin, V. V. Sharkov, and A. V. Budruev, Luminescence of erbium ions in tellurite glasses, J. Solid State Chem, vol.207, pp.80-86, 2013.

M. Boivin, M. El-amraoui, Y. Ledemi, F. Celarie, R. Vallee et al.,

. Messaddeq, Thermal stress analysis and supercontinuum generation in germanate-tellurite composite fibers, Opt. Mater. Express, vol.6, pp.1653-1662, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01343397

M. Boivin, Développement de fibres optiques composites pour la génération du supercontinuum dans l'infrarouge, Thèse Université Laval, 2016.

J. Adam, F. Smektala, and J. Lucas, Active fluoride glass optical waveguides for laser sources, Opt. Mater, vol.4, pp.85-90, 1994.

D. Ehrt and W. Vogel, Fluoroaluminate glass, J. Fluorine Chem, vol.29, p.54, 1985.

J. M. Reau and M. Poulain, Ionic-conductivity in fluorine-containing glasses, Mater. Chem. Phys, vol.23, pp.189-209, 1989.

J. Bei, H. T. Foo, G. Qian, T. M. Monro, A. Hemming et al., Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water, Opt. Mater. Express, vol.4, pp.1213-1226, 2014.

D. C. Harris, Durable 3-5 ?m transmitting infrared window materials, Infrared Phys Technol, vol.39, pp.185-201, 1998.

J. E. Shelby, Formation and properties of calcium aluminosilicate glasses, J. Am. Ceram. Soc, vol.68, pp.155-158, 1985.

P. R. Foy, Fabrication and characterization of calcium aluminate glass fibers Thesis Rutgers University, 2008.

L. D. Pye, Aluminate Glasses-A Review, International Society for Optics and Photonics, pp.149-156, 1988.

L. G. Hwa and G. W. Lee, Influence of water on the physical properties of calcium aluminate oxide glasses, Mater. Chem. Phys, vol.58, pp.191-194, 1999.

F. T. Wallenberger and S. D. Brown, High-modulus glass-fibers for new transportation and infrastructure composites and new infrared uses, Compos. Sci. Technol, vol.51, pp.243-263, 1994.

J. E. Shelby, C. M. Shaw, and M. S. Spess, Calcium fluoroaluminate glasses, J. Appl. Phys, vol.66, pp.1149-1154, 1989.

M. K. Murthy and B. Scroggie, Properties and structure of glasses in system M2O-Al2O3-GeO2 (M=Li, Na, K), Phys. Chem. Glasses, vol.6, pp.162-167, 1965.

J. M. Jewell, P. L. Higby, I. D. Aggarwal-;-r-=-y, A. , L. et al., Properties of BaO-R2O3Ga2O3-GeO2, vol.77, pp.697-700, 1994.

J. M. Jewell, Alkaline-earth gallogermanate glasses, Key Eng. Mat, vol.94, issue.9, pp.317-343, 1994.
DOI : 10.4028/www.scientific.net/kem.94-95.317

V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara et al.,

S. Araki, C. Inoue, T. Rivero, and . Cardinal, Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties, J. Non-Cryst. Solids, vol.325, pp.85-102, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00180224

K. Fukumi and S. Sakka, Properties of Cs2O-Nb2O5-Ga2O3 glasses, J. Mater. Sci. Lett, vol.8, pp.1064-1066, 1989.

P. Hee, Exploration de nouvelles générations de verres de gallates pour la photonique, 2014.

T. Kokubo, Y. Inaka, and S. Sakka, Formation and optical properties of (R2O or R?O)-TiO2-Ga2O3 glasses, J. Non-Cryst. Solids, vol.95, pp.547-554, 1987.

T. Kokubo, Y. Inaka, and S. Sakka, Formation and optical properties of (R2O or R?O)-Nb2O5-Ga2O3 glasses, J. Non-Cryst. Solids, vol.81, pp.337-350, 1986.

T. Kokubo, Y. Inaka, and S. Sakka, Glass formation and optical properties of glasses in the systems (R2O or R'O)-Ta2O5-Ga2O3, J. Non-Cryst. Solids, vol.80, pp.518-526, 1986.

J. C. Lapp and W. H. Dumbaugh, Gallium oxide glasses" Key Eng. Mat. 94-95, pp.257-278, 1994.
DOI : 10.4028/www.scientific.net/kem.94-95.257

J. M. Jewell, L. E. Busse, K. K. Crahan, B. B. Harbison, and I. D. Aggarwal, Optical properties of BaO-Ga2O3-GeO2 glasses for fiber and bulk optical applications, Proc. SPIE 2287, pp.154-163, 1994.

S. Bayya, G. Chin, G. Villalobos, J. Sanghera, and I. Aggarwal, VIS-IR transmitting windows, Proc. SPIE, vol.5078, pp.262-271, 2005.
DOI : 10.1117/12.603753

L. Hwa, Y. Chang, and W. Chao, Infrared spectra of lanthanum gallogermanate glasses, Mater. Chem. Phys, vol.85, pp.158-162, 2004.

S. Zhang, M. Xu, X. Chen, Y. Zhang, L. Calvez et al., Enhanced thermostability, thermo-optics, and thermomechanical properties of barium gallo-germanium oxyfluoride glasses and glass-ceramics, J. Am. Ceram. Soc, vol.96, pp.2461-2466, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862126

J. Fan, B. Tang, D. Wu, Y. Fan, R. Li et al., Dependence of fluorescence properties on substitution of BaF2 for BaO in barium gallo-germanate glass, J. Non-Cryst. Solids, vol.357, pp.1106-1109, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00719720

X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian et al., Tm 3+ doped barium gallo-germanate glass single-mode fibers for 2.0 ?m laser, Opt. Express, vol.23, pp.7722-7731, 2015.

S. Szu, C. Shu, and L. Hwa, Structure and properties of lanthanum galliogermanate glasses, J. Non-Cryst. Solids, vol.240, pp.22-28, 1998.
DOI : 10.1016/s0022-3093(98)00710-8

J. Fan, B. Tang, D. Wu, Y. Fan, R. Li et al., Dependence of fluorescence properties on substitution of BaF2 for BaO in barium gallo-germanate glass, J. Non-Cryst. Solids, vol.357, pp.1106-1109, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00719720

S. Inaba, S. Oda, and K. Morinaga, Equation for estimating the thermal diffusivity, specific heat and thermal conductivity of oxide glasses, J. Jpn. Inst. Met, vol.65, pp.680-687, 2001.

S. El-rabaie, T. Taha, and A. Higazy, Non-linear optical and electrical properties of germanate glasses, Physica B: Condens. Matter, vol.429, pp.1-5, 2013.

M. P. Thomas and N. L. Peterson, Electrical conductivity and tracer diffusion in sodium germanate glasses, Solid State Ion, vol.14, pp.297-307, 1984.

P. Mezeix, Verres et vitrocéramiques du système BaO-TiO2-SiO2: élaboration, propriétés mécaniques et couplage mécanoélectrique, Thèse Université de Rennes, vol.1, 2017.

J. Krautkrämer and H. Krautkrämer, Ultrasonic Testing of Mat, 1971.

S. Palmqvist, Occurence of Crack Formation During Vickers Indentation as a Measure of the Toughness of Hard Metals, Arch. Eisenhuttenwes, vol.33, p.629, 1962.

G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements, J. Am. Ceram. Soc, vol.64, pp.533-538, 1981.

P. Chantikul, G. R. Anstis, B. R. Lawn, and D. B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method, J. Am. Ceram. Soc, vol.64, pp.539-543, 1981.

S. S. Bayya, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, BaO-Ga2O3GeO2 glasses with enhanced properties, J. Non-Cryst. Solids, vol.212, pp.198-207, 1997.
DOI : 10.1016/s0022-3093(96)00658-8

J. He, F. Yang, W. Wang, L. Zhang, X. Huang et al., Electric current characteristic of anodic bonding, J. Micromech. Microeng, vol.25, p.10, 2015.

T. M. Lee, D. H. Lee, C. Y. Liaw, A. I. Lao, and I. M. Hsing, Detailed characterization of anodic bonding process between glass and thinfilm coated silicon substrates, Sens. Actuators A-Phys, vol.86, pp.103-107, 2000.