, Intra-day accuracy (% bias) Intra-day precision (% CV)

, Intra-day accuracy (% bias) Intra-day precision (% CV)

, Intra-day accuracy (% bias) Intra-day precision (% CV)

P. M. Ladwig, D. R. Barnidge, and M. Willrich, Mass spectrometry approaches for identification and quantitation of therapeutic monoclonal antibodies in the clinical laboratory, Clin Vaccine Immunol, issue.5, p.24, 2017.

G. W. Litman, J. P. Rast, and S. D. Fugmann, The origins of vertebrate adaptive immunity, Nat Rev Immunol, issue.8, pp.543-553, 2010.

A. Richter, E. Eggenstein, and A. Skerra, Anticalins: Exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins, FEBS Letters, vol.588, issue.2, pp.213-218, 2014.

K. Murphy, P. Travers, M. Walport, and C. Janeway, Janeway's immunobiology (Garland Science, 2012.

L. D. Wang and M. R. Clark, B-cell antigen-receptor signalling in lymphocyte development
DOI : 10.1111/j.1365-2567.2003.01756.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2567.2003.01756.x

, Immunology, vol.110, issue.4, pp.411-420, 2003.

B. Treanor, B-cell receptor: from resting state to activate, Immunology, vol.136, issue.1, pp.21-27, 2012.
DOI : 10.1111/j.1365-2567.2012.03564.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2567.2012.03564.x

S. Panda and J. L. Ding, Natural antibodies bridge innate and adaptive immunity, J Immunol, vol.194, issue.1, pp.13-20, 2015.
DOI : 10.4049/jimmunol.1400844

URL : http://www.jimmunol.org/content/194/1/13.full.pdf

H. W. Schroeder and L. Cavacini, Structure and function of immunoglobulins, J Allergy Clin Immunol, issue.2, pp.41-52, 2010.

I. Sela-culang, V. Kunik, and Y. Ofran, The structural basis of antibody-antigen recognition, Front Immunol, issue.4, p.302, 2013.

G. Vidarsson, G. Dekkers, and T. Rispens, IgG subclasses and allotypes: from structure to effector functions, Front Immunol, issue.520, p.5, 2014.
DOI : 10.3389/fimmu.2014.00520

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2014.00520/pdf

C. Wingren, T. E. Michaelsen, C. Magnusson, and U. B. Hansson, Comparison of surface properties of human IgA, IgE, IgG and IgM antibodies with identical and different specificities, Scand J Immunol, vol.44, issue.5, pp.430-436, 1996.

J. W. Bloom, M. S. Madanat, D. Marriott, T. Wong, and C. Sy, Intrachain disulfide bond in the core hinge region of human IgG4, Protein Sci, vol.6, issue.2, pp.407-415, 1997.

J. Wypych, Human IgG2 antibodies display disulfide-mediated structural isoforms, J Biol Chem, issue.23, pp.16194-16205, 2008.
DOI : 10.1074/jbc.m709987200

URL : http://www.jbc.org/content/283/23/16194.full.pdf

R. C. Aalberse, S. O. Stapel, J. Schuurman, and T. Rispens, Immunoglobulin G4: an odd antibody, Clin Exp Allergy, vol.39, issue.4, pp.469-477, 2009.
DOI : 10.1111/j.1365-2222.2009.03207.x

C. Gaboriaud, Structure and activation of the C1 complex of complement: unraveling the puzzle, Trends Immunol, vol.25, issue.7, pp.368-373, 2004.

J. Stadlmann, A close look at human IgG sialylation and subclass distribution after lectin fractionation, Proteomics, vol.9, issue.17, pp.4143-4153, 2009.
DOI : 10.1002/pmic.200800931

B. J. Scallon, S. H. Tam, S. G. Mccarthy, A. N. Cai, and T. S. Raju, Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality, Mol Immunol, vol.44, issue.7, pp.1524-1534, 2007.

R. M. Anthony, Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc, Science, vol.320, issue.5874, pp.373-376, 2008.

Y. Kaneko, F. Nimmerjahn, and J. V. Ravetch, Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation, Science, issue.5787, pp.670-673, 2006.
DOI : 10.1126/science.1129594

P. Chames, M. Van-regenmortel, E. Weiss, and D. Baty, Therapeutic antibodies: successes, limitations and hopes for the future, Bri J Pharmacol, vol.157, issue.2, pp.220-233, 2009.
DOI : 10.1111/j.1476-5381.2009.00190.x

URL : http://europepmc.org/articles/pmc2697811?pdf=render

L. M. Weiner, R. Surana, and S. Wang, Antibodies and cancer therapy: versatile platforms for cancer immunotherapy, Nat Rev Immunol, vol.10, issue.5, pp.317-327, 2010.
DOI : 10.1038/nri2744

URL : http://europepmc.org/articles/pmc3508064?pdf=render

M. J. Adler and D. S. Dimitrov, Therapeutic antibodies against cancer, Hematol Oncol Clin North Am, vol.26, issue.3, pp.447-481, 2012.
DOI : 10.1016/j.hoc.2012.02.013

URL : http://europepmc.org/articles/pmc3334873?pdf=render

A. M. Scott, J. P. Allison, and J. D. Wolchok, Monoclonal antibodies in cancer therapy, Cancer Immun, vol.12, p.14, 2012.

A. M. Scott, J. D. Wolchok, and L. J. Old, Antibody therapy of cancer, Nat Rev Cancer, vol.12, issue.4, pp.278-287, 2012.

S. Kotsovilis and E. Andreakos, Human monoclonal antibodies: methods and protocols, pp.37-59, 2014.

P. Rider, Y. Carmi, and I. Cohen, Biologics for targeting inflammatory cytokines, clinical uses, and limitations, Int J Cell Biol, 2016.
DOI : 10.1155/2016/9259646

URL : http://downloads.hindawi.com/journals/ijcb/2016/9259646.pdf

B. Shah and L. Mayer, Current status of monoclonal antibody therapy for the treatment of inflammatory bowel disease, Expert Rev Clin Immunol, vol.6, issue.4, pp.607-620, 2010.

U. De-faire and J. Frostegård, Natural antibodies against phosphorylcholine in cardiovascular disease, Ann N Y Acad Sci, issue.1, pp.292-300, 2009.

J. Frostegård, Low level natural antibodies against phosphorylcholine: a novel risk marker and potential mechanism in atherosclerosis and cardiovascular disease, Clin Immunol, vol.134, issue.1, pp.47-54, 2010.

Z. Rosman, Y. Shoenfeld, and G. Zandman-goddard, Biologic therapy for autoimmune diseases: an update, BMC Medicine, issue.11, p.88, 2013.
DOI : 10.1186/1741-7015-11-88

URL : https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/1741-7015-11-88

R. Ulmansky and Y. Naparstek, Protective antibodies against HSP60 for autoimmune inflammatory diseases, Clin Immunol, 2017.
DOI : 10.1016/j.clim.2017.07.016

J. C. Byrd, The mechanism of tumor cell clearance by rituximab in vivo in patients with Bcell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction, Blood, vol.99, issue.3, pp.1038-1043, 2002.

A. Abulayha, A. Bredan, H. El-enshasy, and I. Daniels, Rituximab: modes of action, remaining dispute and future perspective, Future Oncol, vol.10, issue.15, pp.2481-2492, 2014.
DOI : 10.2217/fon.14.146

H. Einarsdottir, H435-containing immunoglobulin G3 allotypes are transported efficiently across the human placenta: implications for alloantibody-mediated diseases of the newborn, Transfusion, vol.54, issue.3, pp.665-671, 2014.

A. Natsume, R. Niwa, and M. Satoh, Improving effector functions of antibodies for cancer treatment: enhancing ADCC and CDC, Drug Des Devel Ther, vol.3, pp.7-16, 2009.
DOI : 10.2147/dddt.s4378

URL : https://www.dovepress.com/getfile.php?fileID=4071

G. J. Robbie, A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults, Antimicrob Agents Chemother, vol.57, issue.12, pp.6147-6153, 2013.
DOI : 10.1128/aac.01285-13

URL : https://aac.asm.org/content/57/12/6147.full.pdf

M. J. Borrok, Fc-Silenced" IgG1 format with extended half-life designed for improved stability, J Pharm Sci, vol.106, issue.4, pp.1008-1017, 2017.
DOI : 10.1016/j.xphs.2016.12.023

T. Schlothauer, Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions, Protein Eng Des Sel, vol.29, issue.10, pp.457-466, 2016.

C. ,

, I-labeled monoclonal antibody targeting neuropilin receptor type-2 for tumor SPECT imaging, Int J Oncol, vol.50, issue.2, pp.649-659, 2017.

P. H. Hu, 125 )I-labeled anti-bFGF monoclonal antibody inhibits growth of hepatocellular carcinoma, World J Gastroenterol, vol.22, issue.21, pp.5033-5041, 2016.

S. Shusterman, Antitumor activity of Hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a children's oncology group (COG) phase II study, J Clin Oncol, issue.33, pp.4969-4975, 2010.

A. L. Yu, Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma, New Engl J Med, issue.14, pp.1324-1334, 2010.

A. Sommer, Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors, Cancer Res, issue.21, pp.6331-6339, 2016.

J. Willuda, Preclinical antitumor efficacy of BAY 1129980-a novel auristatin-based antiC4.4A (LYPD3) antibody-drug conjugate for the treatment of non-small cell lung cancer

, Mol Cancer Ther, vol.16, issue.5, pp.893-904, 2017.

S. F. Yu, A novel anti-CD22 anthracycline-based antibody-drug conjugate (ADC) that overcomes resistance to auristatin-based ADCs, Clin Cancer Res, vol.21, issue.14, pp.3298-3306, 2015.

C. U. Bialucha, Discovery and optimization of HKT288, a cadherin-6-targeting ADC for the treatment of ovarian and renal cancers, Cancer Discov, vol.7, issue.9, pp.1030-1045, 2017.

E. E. Hong, Design of coltuximab ravtansine, a CD19-targeting antibody-drug conjugate (ADC) for the treatment of B-cell malignancies: structure-activity relationships and preclinical evaluation, Mol Pharm, vol.12, issue.6, pp.1703-1716, 2015.

K. A. Poon, Preclinical safety profile of trastuzumab emtansine (T-DM1): mechanism of action of its cytotoxic component retained with improved tolerability, Toxicol Appl Pharmacol, vol.273, issue.2, pp.298-313, 2013.

A. Beck, L. Goetsch, C. Dumontet, and N. Corvaia, Strategies and challenges for the next generation of antibody-drug conjugates, Nat Rev Drug Discov, vol.16, issue.5, pp.315-337, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01567797

K. Strebhardt, A. Ullrich, and . Paul, Ehrlich's magic bullet concept: 100 years of progress, Nat Rev Cancer, vol.8, issue.6, pp.473-480, 2008.

E. G. Kim and K. M. Kim, Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics, Biomol Ther, vol.23, issue.6, pp.493-509, 2015.

L. Phillips and G. D. , Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate, Cancer Res, vol.68, issue.22, pp.9280-9290, 2008.

J. Y. Li, A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy, Cancer Cell, vol.29, issue.1, pp.117-129, 2016.

C. Peters and S. Brown, Antibody-drug conjugates as novel anti-cancer chemotherapeutics, Biosci Rep, vol.35, issue.4, p.225, 2015.

H. Bouchard, C. Viskov, and C. Garcia-echeverria, Antibody-drug conjugates-a new wave of cancer drugs, Bioorg Med Chem Lett, issue.23, pp.5357-5363, 2014.

A. Beck, Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates, Expert Rev Proteomics, vol.13, issue.2, pp.157-183, 2016.

J. R. Junutula, Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index, Nat Biotech, vol.26, issue.8, pp.925-932, 2008.

J. Y. Axup, Synthesis of site-specific antibody-drug conjugates using unnatural amino acids, Proc Natl Acad Sci, vol.109, issue.40, pp.16101-16106, 2012.

D. Schumacher, Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase, Angew Chem Int Ed Engl, vol.54, issue.46, pp.13787-13791, 2015.

Q. Zhou, Site-specific antibody-drug conjugation through glycoengineering, Bioconjug Chem, vol.25, issue.3, pp.510-520, 2014.

N. Jain, S. W. Smith, S. Ghone, and B. Tomczuk, Current ADC linker chemistry, Pharm Res, vol.32, issue.11, pp.3526-3540, 2015.

T. H. Han and B. Zhao, Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates, Drug Metab Dispos, vol.42, issue.11, pp.1914-1920, 2014.

N. Diamantis and U. Banerji, Antibody-drug conjugates-an emerging class of cancer treatment, Br J Cancer, vol.114, issue.4, pp.362-367, 2016.

E. Wagner-rousset, Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. mAbs, vol.6, pp.173-184, 2014.

H. K. Erickson, Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing, Cancer Res, vol.66, issue.8, pp.4426-4433, 2006.

M. Walles, New insights in tissue distribution, metabolism, and excretion of [ 3 female tumor-bearing nude rats, Drug Metab Dispos, vol.44, issue.7, pp.897-910, 2016.

T. T. Junttila, G. Li, K. Parsons, G. L. Phillips, and M. X. Sliwkowski, Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer, Breast Cancer Res Treat, vol.128, issue.2, pp.347-356, 2011.

N. Jain, S. W. Smith, S. Ghone, and B. Tomczuk, Current ADC linker chemistry, Pharm Res, vol.32, issue.11, pp.3526-3540, 2015.

B. A. Teicher and R. Chari, Antibody conjugate therapeutics: challenges and potential, Clin Cancer Res, vol.17, issue.20, pp.6389-6397, 2011.

S. Sau, H. O. Alsaab, S. K. Kashaw, K. Tatiparti, and A. K. Iyer, Advances in antibody-drug conjugates: A new era of targeted cancer therapy, Drug Discov Today, vol.22, issue.10, pp.1547-1556, 2017.

L. Regales, Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer, J Clin Invest, vol.119, issue.10, pp.3000-3010, 2009.

D. Seimetz, H. Lindhofer, and C. Bokemeyer, Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM×anti-CD3) as a targeted cancer immunotherapy

, Cancer Treat Rev, issue.6, pp.458-467, 2010.

J. B. Fitzgerald, MM-141, an IGF-IR-and ErbB3-directed bispecific antibody, overcomes network adaptations that limit activity of IGF-IR inhibitors, Mol Cancer Ther, vol.13, issue.2, pp.410-425, 2014.

F. Sheikhi-mehrabadi, Bispecific antibodies for targeted delivery of dendritic polyglycerol (dPG) prodrug conjugates. Curr Cancer Drug Targets, vol.16, pp.639-649, 2016.

T. Kitazawa, A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model, Nat Med, vol.18, issue.10, pp.1570-1574, 2012.

G. Fan, Z. Wang, M. Hao, and J. Li, Bispecific antibodies and their applications, J Hematol Oncol, vol.8, p.130, 2015.

R. E. Kontermann and U. Brinkmann, Bispecific antibodies, Drug Discov Today, vol.20, issue.7, pp.838-847, 2015.

C. Spiess, Q. Zhai, and P. J. Carter, Alternative molecular formats and therapeutic applications for bispecific antibodies, Mol Immunol, vol.67, pp.95-106, 2015.

U. D. Staerz and M. J. Bevan, Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity, Proc Natl Acad Sci, vol.83, issue.5, pp.1453-1457, 1986.

W. Schaefer, Heavy and light chain pairing of bivalent quadroma and knobs-into-holes antibodies analyzed by UHR-ESI-QTOF mass spectrometry, mAbs, vol.8, issue.1, pp.49-55, 2016.

Y. Xu, Production of bispecific antibodies in "knobs-into-holes" using a cell-free expression system, mAbs, vol.7, issue.1, pp.231-242, 2015.

G. Hassanzadeh-ghassabeh, N. Devoogdt, D. Pauw, P. Vincke, C. Muyldermans et al., Nanobodies and their potential applications, Nanomedicine, vol.8, issue.6, pp.1013-1026, 2013.

A. L. Nelson, Antibody fragments: Hope and hype, mAbs, vol.2, issue.1, pp.77-83, 2010.

A. Beck and J. M. Reichert, Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. mAbs, vol.3, pp.415-416, 2011.

A. Frenzel, M. Hust, and T. Schirrmann, Expression of recombinant antibodies, Front Immunol, 2013.

P. Holliger and P. J. Hudson, Engineered antibody fragments and the rise of single domains, Nat Biotechnol, vol.23, issue.9, p.1126, 2005.

D. Oyen, V. Srinivasan, J. Steyaert, and J. N. Barlow, Constraining enzyme conformational cange by an antibody leads to hyperbolic inhibition, J Mol Biol, vol.407, issue.1, pp.138-148, 2011.

P. D. Skottrup, Diagnostic evaluation of a nanobody with picomolar affinity toward the protease RgpB from Porphyromonas gingivalis, Anal Biochem, vol.415, issue.2, pp.158-167, 2011.

T. Yokota, D. E. Milenic, M. Whitlow, and J. Schlom, Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms, Cancer Res, vol.52, issue.12, pp.3402-3408, 1992.

R. Van-der-linden, Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies, Biochim Biophys Acta, issue.1, pp.37-46, 1999.

M. C. Holland, Autoantibodies to variable heavy (VH) chain Ig sequences in humans impact the safety and clinical pharmacology of a VH domain antibody antagonist of TNF-? receptor 1, J Clin Immunol, issue.7, pp.1192-1203, 2013.

K. P. Papadopoulos, Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic Nanobody® targeting the DR5 receptor, Cancer Chemother Pharmacol, vol.75, issue.5, pp.887-895, 2015.

B. Gorovits, Pre-existing antibody: biotherapeutic modality-based review, AAPS J, vol.18, issue.2, pp.311-320, 2016.

T. M. Pabst, Camelid VHH affinity ligands enable separation of closely related biopharmaceuticals, Biotech J, vol.12, issue.2, 2017.

P. Verheesen, M. R. Haaft, N. Lindner, C. T. Verrips, and J. De-haard, Beneficial properties of single-domain antibody fragments for application in immunoaffinity purification and immuno-perfusion chromatography, Biochim Biophys Acta, vol.1624, issue.1, pp.21-28, 2003.

T. Romer, H. Leonhardt, and U. Rothbauer, Engineering antibodies and proteins for molecular in vivo imaging, Curr Opin Biotechnol, vol.22, issue.6, pp.882-887, 2011.

C. Xavier,

F. , for PET imaging of HER2 overexpressing tumors, Nucl Med Biol, vol.43, issue.4, pp.247-252, 2016.

L. ?enolt, J. Vencovský, K. Pavelka, C. Ospelt, and S. Gay, Prospective new biological therapies for rheumatoid arthritis, Autoimmun Rev, vol.9, issue.2, pp.102-107, 2009.

H. Kantarjian, Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia, N Engl J Med, vol.376, issue.9, pp.836-847, 2017.

D. R. Lasoff, A. M. Ruha, S. C. Curry, C. Koh, and R. F. Clark, A new F(ab?)2 antivenom for the treatment of crotaline envenomation in children, Am J Emerg Med, vol.34, issue.10, pp.2003-2006, 2016.

M. B. Pucca, Serrumab: A novel human single chain-fragment antibody with multiple scorpion toxin-neutralizing capacities, J Immunotoxicol, vol.11, issue.2, pp.133-140, 2014.

M. S. Kinch, A. Haynesworth, S. L. Kinch, and D. Hoyer, An overview of FDA-approved new molecular entities, Drug Discovery Today, vol.19, issue.8, pp.1033-1039, 2014.

A. Mullard, EMA drug approval recommendations, Nat Rev Drug Discov, vol.16, issue.2, p.77, 2016.

U. S. , Food and Drug Administration-Center for Drug Evaluation and Research, 2016.

J. M. Reichert, Antibodies to watch in 2017, mAbs, vol.9, issue.2, pp.167-181, 2017.

L. M. Publishing, Sales of Recombinant Therapeutic Antibodies & Proteins, 2016.

D. M. Ecker, S. D. Jones, and H. L. Levine, The therapeutic monoclonal antibody market, mAbs, vol.7, issue.1, pp.9-14, 2015.

J. G. Elvin, R. G. Couston, and C. F. Van-der-walle, Therapeutic antibodies: Market considerations, disease targets and bioprocessing, Int J Pharm, vol.440, issue.1, pp.83-98, 2013.

J. Loke, J. N. Khan, J. S. Wilson, C. Craddock, and K. Wheatley, Mylotarg has potent anti-leukaemic effect: a systematic review and meta-analysis of anti-CD33 antibody treatment in acute myeloid leukaemia, Ann Hematol, vol.94, pp.361-373, 2015.

A. Beck and J. M. Reichert, Approval of the first biosimilar antibodies in Europe. mAbs, pp.621-623, 2013.

S. Chow, Quantitative evaluation of bioequivalence/biosimilarity, J Bioequiv Availab, vol.1, pp.1-8, 2011.

E. Hyland, Comparison of the pharmacokinetics, safety, and immunogenicity of MSB11022, a biosimilar of adalimumab, with Humira(®) in healthy subjects, Br J Clin Pharmacol, vol.82, issue.4, pp.983-993, 2016.

N. Upda and R. Million, Monoclonal antibody biosimilars, Nat Rev Drug Discov, vol.15, issue.1, pp.13-14, 2016.

A. Mullard, Bracing for the biosimilar wave, Nat Rev Drug Discov, vol.16, issue.3, pp.152-154, 2017.

E. A. Blackstone and P. F. Joseph, The economics of biosimilars, Am Health Drug Benefits, issue.6, pp.469-478, 2013.

D. S. Dimitrov, Therapeutic proteins: methods and protocols, Methods Mol Biol, vol.899, pp.1-26, 2012.

L. M. Publishing, Top 20 Biologics-2008 Sales of Antibodies & Proteins, 2009.

L. M. Publishing, Sales of Recombinant Therapeutic Antibodies & Proteins, 2015.

G. Walsh, Biopharmaceutical benchmarks, Nat Biotech, vol.28, issue.9, pp.917-924, 2010.

A. Saxena and D. Wu, Advances in therapeutic Fc engineering-modulation of IgG-associated effector functions and serum half-life, Front Immunol, vol.7, p.580, 2016.

P. J. Carter, Potent antibody therapeutics by design, Nat Rev Immunol, vol.6, issue.5, pp.343-357, 2006.

J. M. Reichert, Antibodies to watch in 2016, mAbs, vol.8, issue.2, pp.1-8, 2015.

. Technavio, Global Biologic Therapeutics Market, 2015.

A. Beck, Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies, J Mass Spectrom, vol.50, issue.2, pp.285-297, 2015.

, References |, vol.173

A. Beck, E. Wagner-rousset, D. Ayoub, A. Van-dorsselaer, and S. Sanglier-cianférani, Characterization of therapeutic antibodies and related products, Anal Chem, vol.85, issue.2, pp.715-736, 2013.

G. R. Masson, M. L. Jenkins, and J. E. Burke, An overview of hydrogen deuterium exchange mass spectrometry (HDX-MS) in drug discovery, Expert Opin Drug Discov, vol.12, issue.10, pp.981-994, 2017.

U. H. Mistarz, J. M. Brown, K. F. Haselmann, and K. D. Rand, Probing the binding interfaces of protein complexes using gas-phase H/D exchange mass spectrometry, Structure, vol.24, issue.2, pp.310-318, 2016.

C. Huber, Higher order mass spectrometry techniques applied to biopharmaceuticals, Special Issues, pp.31-36, 2015.

T. Botzanowski, Insights from native mass spectrometry approaches for top-and middle-level characterization of site-specific antibody-drug conjugates, mAbs, vol.9, issue.5, pp.801-811, 2017.

P. Olinares, A robust workflow for native mass spectrometric analysis of affinityisolated endogenous protein assemblies, Anal Chem, vol.88, issue.5, pp.2799-2807, 2016.

Y. Yang, G. Wang, T. Song, C. B. Lebrilla, and A. Heck, Resolving the micro-heterogeneity and structural integrity of monoclonal antibodies by hybrid mass spectrometric approaches, mAbs, vol.9, issue.4, pp.638-645, 2017.

F. Debaene, Time resolved native ion-mobility mass spectrometry to monitor dynamics of IgG4 Fab arm exchange and "bispecific" monoclonal antibody formation, Anal Chem, issue.20, pp.9785-9792, 2013.

J. Marcoux, Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate, Protein Sci, vol.24, issue.8, pp.1210-1223, 2015.

J. Stojko, Ion mobility coupled to native mass spectrometry as a relevant tool to investigate extremely small ligand-induced conformational changes, Analyst, vol.140, issue.21, pp.7234-7245, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01432173

G. Terral, A. Beck, and S. Cianférani, Insights from native mass spectrometry and ion mobilitymass spectrometry for antibody and antibody-based product characterization, J Chromatogr B, vol.1032, pp.79-90, 2016.

U. Aich, J. Lakbub, and A. Liu, State of the art technologies for rapid and high-throughput sample preparation and analysis of n-glycans from antibodies, Electrophoresis, vol.37, issue.11, pp.1468-1488, 2016.

B. Q. Tran, Glycosylation characterization of therapeutic mAbs by top-and middle-down mass spectrometry, Data Brief, vol.6, pp.68-76, 2016.

, References |, vol.175

Y. Wang, Simultaneous monitoring of oxidation, deamidation, isomerization, and glycosylation of monoclonal antibodies by liquid chromatography-mass spectrometry method with ultrafast tryptic digestion, mAbs, vol.8, issue.8, pp.1477-1486, 2016.

H. Xie, M. Gilar, and J. C. Gebler, Characterization of protein impurities and site-specific modifications using peptide mapping with liquid chromatography and data independent acquisition mass spectrometry, Anal Chem, issue.14, pp.5699-5708, 2009.

Y. T. Zhang, Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping, J Chromatogr B, vol.965, pp.65-71, 2014.

A. Tholey, H. Toll, and C. G. Huber, Separation and detection of phosphorylated and nonphosphorylated peptides in liquid chromatography-mass spectrometry using monolithic columns and acidic or alkaline mobile phases, Anal Chem, issue.14, pp.4618-4625, 2005.

M. Tsubaki, I. Terashima, K. Kamata, and A. Koga, C-terminal modification of monoclonal antibody drugs: Amidated species as a general product-related substance, Int J Biol Macromol, vol.52, pp.139-147, 2013.

C. Regl, T. Wohlschlager, J. Holzmann, and C. G. Huber, A generic HPLC method for absolute quantification of oxidation in monoclonal antibodies and Fc-fusion proteins using UV and MS detection, Anal Chem, issue.16, pp.8391-8398, 2017.

J. W. Lee, Bioanalytical approaches to quantify "total" and "free" therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development, AAPS J, vol.13, issue.1, pp.99-110, 2011.

J. F. Pritchard, Making better drugs: decision gates in non-clinical drug revelopment, Nat Rev Drug Discov, vol.2, issue.7, pp.542-553, 2003.

, Guidance for Industry: S6 Preclinical Safety Evaluation of Biotechnology-derived Pharmaceuticals, 1997.

B. Kuang, L. King, and H. F. Wang, Therapeutic monoclonal antibody concentration monitoring: free or total?, Bioanalysis, vol.2, issue.6, pp.1125-1140, 2010.

C. Y. Andersen, Possible new mechanism of cortisol action in female reproductive organs: physiological implications of the free hormone hypothesis, J Endocrinol, vol.173, issue.2, pp.211-217, 2002.

C. M. Mendel, The free hormone hypothesis: a physiologically based mathematical model, Endocr Rev, vol.10, issue.3, pp.232-274, 1989.

A. Smith, Unraveling the effect of immunogenicity on the PK/PD, efficacy, and safety of therapeutic proteins, J Immunol Res, 2016.

H. Myler, An integrated multiplatform bioanalytical strategy for antibody-drug conjugates: a novel case study, Bioanalysis, vol.7, issue.13, pp.1569-1582, 2015.

R. W. Barrette, J. Urbonas, and L. K. Silbart, Quantifying specific antibody concentrations by enzyme-linked immunosorbent assay using slope correction, Clin Vaccine Immunol, vol.13, issue.7, pp.802-805, 2006.

M. Kelley, Theoretical considerations and practical approaches to address the effect of anti-drug antibody (ADA) on quantification of biotherapeutics in circulation, AAPS J, vol.15, issue.3, pp.646-658, 2013.

E. Ezan and F. Bitsch, Critical comparison of MS and immunoassays for the bioanalysis of therapeutic antibodies, Bioanalysis, issue.8, pp.1375-1388, 2009.

J. Findlay, Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective, J Pharm Biomed Anal, vol.21, issue.6, pp.1249-1273, 2000.

J. W. Lee and M. Kelley, Quality assessment of bioanalytical quantification of monoclonal antibody drugs, Ther Deliv, vol.2, issue.3, pp.383-396, 2011.

M. Qu, Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry, Mass Spectrom Rev, vol.36, issue.6, pp.734-754, 2017.

J. Zheng, J. Mehl, Y. Zhu, B. Xin, and T. Olah, Application and challenges in using LC-MS assays for absolute quantitative analysis of therapeutic proteins in drug discovery, Bioanalysis, vol.6, issue.6, pp.859-879, 2014.

B. An, M. Zhang, and J. Qu, Toward sensitive and accurate analysis of antibody biotherapeutics by liquid chromatography coupled with mass spectrometry, Drug Metab Dispos, vol.42, issue.11, pp.1858-1866, 2014.

O. Hara and D. M. , Ligand binding assays in the 21 st century laboratory: recommendations for characterization and supply of critical reagents, AAPS J, vol.14, issue.2, pp.316-328, 2012.

N. Savoie, 2010 white paper on recent issues in regulated bioanalysis & global harmonization of bioanalytical guidance, Bioanalysis, vol.2, issue.12, pp.1945-1960, 2010.

C. Pendley and G. Shankar, Bioanalytical interferences in immunoassays for antibody biotherapeutics, Bioanalysis, vol.3, issue.7, pp.703-706, 2011.

K. Pandya, Strategies to minimize variability and bias associated with manual pipetting in ligand binding assays to assure data quality of protein therapeutic quantification, J Pharm Biomed Anal, vol.53, issue.3, pp.623-630, 2010.

R. Budhraja, LC-MS/MS validation analysis of trastuzumab using dSIL approach for evaluating pharmacokinetics, Molecules, vol.21, issue.11, p.1464, 2016.

J. Shi, Reagent-free LC-MS/MS-based pharmacokinetic quantification of polyhistidinetagged therapeutic proteins, Bioanalysis, vol.9, issue.3, pp.251-264, 2017.

, References |, vol.177

M. E. Szapacs, Absolute quantification of a therapeutic domain antibody using ultraperformance liquid chromatography-mass spectrometry and immunoassay, Bioanalysis, vol.2, issue.9, pp.1597-1608, 2010.

L. Xu, L. E. Packer, C. Li, K. Abdul-hadi, and P. Veiby, A generic approach for simultaneous measurements of total antibody and cleavable antibody-conjugated drug by LC/MS/MS, Anal Biochem, vol.537, pp.33-36, 2017.

Y. Wang, J. D. Roth, and S. W. Taylor, Simultaneous quantification of the glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) receptor agonists in rodent plasma by on-line solid phase extraction and LC-MS/MS, J Chromatogr B, vol.957, pp.24-29, 2014.

M. Bielohuby, Validation of serum IGF-I as a biomarker to monitor the bioactivity of exogenous growth hormone agonists and antagonists in rabbits, Dis Model Mech, vol.7, issue.11, pp.1263-1273, 2014.

J. R. Whiteaker, Peptide immunoaffinity enrichment and targeted mass spectrometry enables multiplex, quantitative pharmacodynamic studies of phospho-signaling, Mol Cell Proteomics, vol.14, issue.8, pp.2261-2273, 2015.

Y. J. Zhang, T. V. Olah, and J. Zeng, The integration of ligand binding and LC-MS-based assays into bioanalytical strategies for protein analysis, Bioanalysis, vol.6, issue.13, pp.1827-1841, 2014.

L. Z. Chen, D. Roos, and E. Philip, Development of immunocapture-LC/MS assay for simultaneous ADA isotyping and semiquantitation, J Immunol Res, p.14, 2016.

H. Jiang, Innovative use of LC-MS/MS for simultaneous quantitation of neutralizing antibody, residual drug, and human immunoglobulin G in immunogenicity assay development, Anal Chem, vol.86, issue.5, pp.2673-2680, 2014.

H. Neubert, C. Grace, K. Rumpel, and J. I. , Assessing immunogenicity in the presence of excess protein therapeutic using immunoprecipitation and quantitative mass spectrometry, Anal Chem, issue.18, pp.6907-6914, 2008.

I. Van-den-broek, W. M. Niessen, and W. D. Van-dongen, Bioanalytical LC-MS/MS of protein-based biopharmaceuticals, J Chromatogr B, vol.929, pp.161-179, 2013.

M. Dupré, Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry, Anal Chem, vol.87, issue.16, pp.8473-8480, 2015.

B. Gilquin, Multiplex and accurate quantification of acute kidney injury biomarker candidates in urine using Protein Standard Absolute Quantification (PSAQ) and targeted proteomics, Talanta, vol.164, pp.77-84, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02096710

D. Lebert, Absolute and multiplex quantification of antibodies in serum using PSAQ? standards and LC-MS/MS, Bioanalysis, vol.7, issue.10, pp.1237-1251, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02086282

Y. Zhu, LC-MS/MS multiplexed assay for the quantitation of a therapeutic protein BMS986089 and the target protein myostatin, Bioanalysis, vol.8, issue.3, pp.193-204, 2016.

P. D. Compton, L. Zamdborg, P. M. Thomas, and N. L. Kelleher, On the scalability and requirements of whole protein mass spectrometry, Anal Chem, issue.17, pp.6868-6874, 2011.

G. Hopfgartner, A. Lesur, and E. Varesio, Analysis of biopharmaceutical proteins in biological matrices by LC-MS/MS II. LC-MS/MS analysis, Trends Analyt Chem, vol.48, pp.52-61, 2013.

S. Gallien, E. Duriez, and B. Domon, Selected reaction monitoring applied to proteomics, J Mass Spectrom, vol.46, issue.3, pp.298-312, 2011.
DOI : 10.1002/jms.1895

B. Maclean, Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics, issue.7, pp.966-968, 2010.

J. A. Mead, MRMaid, the web-based tool for designing multiple reaction monitoring (MRM) transitions, Mol Cell Proteomics, vol.8, issue.4, pp.696-705, 2009.

E. W. Deutsch, H. Lam, and R. Aebersold, PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows, EMBO Reports, vol.9, issue.5, pp.429-434, 2008.
DOI : 10.1038/embor.2008.56

URL : http://embor.embopress.org/content/9/5/429.full.pdf

P. Mallick, Computational prediction of proteotypic peptides for quantitative proteomics, Nat Biotech, vol.25, issue.1, pp.125-131, 2007.

D. B. Martin, MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments, Mol Cell Proteomics, vol.7, issue.11, pp.2270-2278, 2008.

C. A. Sherwood, MaRiMba: A software application for spectral lbrary-based MRM transition list assembly, J Proteome Res, vol.8, issue.10, pp.4396-4405, 2009.
DOI : 10.1021/pr900010h

URL : http://europepmc.org/articles/pmc2837355?pdf=render

P. Van-den-steen, P. M. Rudd, R. A. Dwek, and G. Opdenakker, Concepts and principles of O-linked glycosylation, Crit Rev Biochem Mol Biol, vol.33, issue.3, pp.151-208, 1998.

J. L. Mellquist, L. Kasturi, S. L. Spitalnik, and S. H. Shakin-eshleman, The amino acid following an Asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency, Biochemistry, vol.37, issue.19, pp.6833-6837, 1998.

J. Krieg, Recognition signal for C-mannosylation of Trp-7 in RNase 2 consists of sequence Trp-x-x-Trp, Mol Biol Cell, vol.9, issue.2, pp.301-309, 1998.

Y. Pan, Human germline and pan-cancer variomes and their distinct functional profiles, Nucleic Acids Res, vol.42, issue.18, pp.11570-11588, 2014.

D. W. Mount, Using the basic local alignment search tool (BLAST). CSH Prot, 2007.

C. Hagman, Absolute quantification of monoclonal antibodies in biofluids by liquid chromatography-tandem mass spectrometry, Anal Chem, vol.80, issue.4, pp.1290-1296, 2008.

O. Heudi, Towards absolute quantification of therapeutic monoclonal antibody in serum by LC-MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry, Anal Chem, vol.80, issue.11, pp.4200-4207, 2008.

M. T. Furlong, A universal surrogate peptide to enable LC-MS/MS bioanalysis of a diversity of human monoclonal antibody and human Fc-fusion protein drug candidates in pre-clinical animal studies, Biomed Chromatogr, vol.26, issue.8, pp.1024-1032, 2012.

H. Li, General LC-MS/MS method approach to quantify therapeutic monoclonal antibodies using a common whole antibody internal standard with application to preclinical studies, Anal Chem, vol.84, issue.3, pp.1267-1273, 2012.

M. T. Furlong, Dual universal peptide approach to bioanalysis of human monoclonal antibody protein drug candidates in animal studies, Bioanalysis, issue.5, pp.1363-1376, 2013.

W. S. Law, Use of generic LC-MS/MS assays to characterize atypical PK profile of a biotherapeutic monoclonal antibody, Bioanalysis, vol.6, issue.23, pp.3225-3235, 2014.

Q. Zhang, Generic automated method for liquid chromatography-multiple reaction monitoring mass spectrometry based monoclonal antibody quantitation for preclinical pharmacokinetic studies, Anal Chem, issue.17, pp.8776-8784, 2014.

S. Kaur, Validation of a biotherapeutic immunoaffinity-LC-MS/MS assay in monkey serum: 'plug-and-play' across seven molecules, Bioanalysis, vol.8, issue.15, pp.1565-1577, 2016.

M. A. Kuzyk, Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma, Mol Cell Proteomics, vol.8, issue.8, pp.1860-1877, 2009.

A. J. Percy, A. G. Chambers, J. Yang, D. B. Hardie, and C. H. Borchers, Advances in multiplexed MRMbased protein biomarker quantitation toward clinical utility, Biochim Biophys Acta, issue.5, pp.917-926, 2014.

T. Shi, Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum, Proc Natl Acad Sci, vol.109, issue.38, pp.15395-15400, 2012.

D. Wilffert, R. Bischoff, and N. C. Van-de-merbel, Antibody-free workflows for protein quantification by LC-MS/MS, Bioanalysis, vol.7, issue.6, pp.763-779, 2015.

R. Bischoff, K. J. Bronsema, and N. C. Van-de-merbel, Analysis of biopharmaceutical proteins in biological matrices by LC-MS/MS I. Sample preparation, Trends Analyt Chem, vol.48, pp.41-51, 2013.

A. Furey, M. Moriarty, V. Bane, B. Kinsella, and M. Lehane, Ion suppression; a critical review on causes, evaluation, prevention and applications, Talanta, vol.115, pp.104-122, 2013.

D. R. Barnidge, M. K. Goodmanson, G. G. Klee, and D. C. Muddiman, Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-MS/MS using protein cleavage and isotope dilution mass spectrometry, J Proteome Res, vol.3, issue.3, pp.644-652, 2004.

J. C. Seegmiller, Quantification of urinary albumin by using protein cleavage and LCMS/MS, Clin Chem, issue.6, pp.1100-1107, 2009.

N. L. Anderson, Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA), J Proteome Res, vol.3, issue.2, pp.235-244, 2004.

M. Razavi, L. Anderson, N. Pope, M. E. Yip, R. Pearson et al., High precision quantification of human plasma proteins using the automated SISCAPA immuno-MS workflow, N Biotechnol, issue.5, pp.494-502, 2016.

. Van-den-broek-i, Quantification of serum apolipoproteins A-I and B-100 in clinical samples using an automated SISCAPA-MALDI-TOF-MS workflow, Methods, vol.81, pp.74-85, 2015.

E. Choi, D. Loo, J. W. Dennis, O. Leary, C. A. Hill et al., High-throughput lectin magnetic bead array-coupled tandem mass spectrometry for glycoprotein biomarker discovery
DOI : 10.1002/elps.201100341

, Electrophoresis, vol.32, issue.24, pp.3564-3575, 2011.

X. Gao, Quantitative analysis of factor P (properdin) in monkey serum using immunoaffinity capturing in combination with LC-MS/MS, Bioanalysis, vol.8, issue.5, pp.425-438, 2016.

N. E. Smits, Monolith immuno-affinity enrichment liquid chromatography tandem mass spectrometry for quantitative protein analysis of recombinant bovine somatotropin in serum, Anal Bioanal Chem, issue.20, pp.6041-6050, 2015.

K. Ueda, Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes, Sci Rep, 2014.

Y. Yu, J. Xu, Y. Liu, and Y. Chen, Quantification of human serum transferrin using liquid chromatography-tandem mass spectrometry based targeted proteomics, J Chromatogr B, vol.902, pp.10-15, 2012.

Z. Yang, J. Ke, M. Hayes, M. Bryant, and F. L. Tse, A sensitive and high-throughput LC-MS/MS method for the quantification of pegylated-interferon-alpha2a in human serum using monolithic C18 solid phase extraction for enrichment, J Chromatogr B, vol.877, pp.1737-1742, 2009.

J. L. Proc, A quantitative study of the effects of chaotropic agents, surfactants, and solvents on the digestion efficiency of human plasma proteins by trypsin, J Proteome Res, issue.10, pp.5422-5437, 2010.

P. Mandal, A. R. Molla, and D. K. Mandal, Denaturation of bovine spleen galectin-1 in guanidine hydrochloride and fluoroalcohols: structural characterization and implications for protein folding, J Biochem, vol.154, issue.6, pp.531-540, 2013.

S. T. Wu, Z. Ouyang, T. V. Olah, and M. Jemal, A strategy for liquid chromatography/tandem mass spectrometry based quantitation of pegylated protein drugs in plasma using plasma References, p.181

, protein precipitation with water-miscible organic solvents and subsequent trypsin digestion to generate surrogate peptides for detection, Rapid Commun Mass Spectrom, vol.25, issue.2, pp.281-290, 2011.

X. Duan, L. Abuqayyas, L. Dai, J. P. Balthasar, and J. Qu, High-throughput method development for sensitive, accurate, and reproducible quantification of therapeutic monoclonal antibodies in tissues using orthogonal array optimization and nano liquid chromatography/selected reaction monitoring mass spectrometry, Anal Chem, vol.84, issue.10, pp.4373-4382, 2012.

O. Heudi, S. Barteau, F. Picard, and O. Kretz, Quantitative analysis of maytansinoid (DM1) in human serum by on-line solid phase extraction coupled with liquid chromatography tandem mass spectrometry-method validation and its application to clinical samples, J Pharm Biomed Anal, vol.120, pp.322-332, 2016.

R. Sturm, Absolute quantification of prion protein (90-231) using stable isotope-labeled chymotryptic peptide standards in a LC-MRM AQUA workflow, J Am Soc Mass Spectrom, vol.23, issue.9, pp.1522-1533, 2012.

I. Van-den-broek, R. W. Sparidans, J. H. Schellens, and J. H. Beijnen, Enzymatic digestion as a tool for the LC-MS/MS quantification of large peptides in biological matrices: measurement of chymotryptic fragments from the HIV-1 fusion inhibitor enfuvirtide and its metabolite M-20 in human plasma, J Chromatogr B, vol.854, issue.1, pp.245-259, 2007.

T. Glatter, Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion, J Proteome Res, vol.11, issue.11, pp.5145-5156, 2012.

J. Kehler, N. Akella, D. Citerone, and M. Szapacs, Application of DBS for the quantitative assessment of a protein biologic using on-card digestion LC-MS/MS or immunoassay, Bioanalysis, vol.3, issue.20, pp.2283-2290, 2011.

H. Ye, J. Hill, J. Kauffman, C. Gryniewicz, and X. Han, Detection of protein modifications and counterfeit protein pharmaceuticals using isotope tags for relative and absolute quantification and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry: studies of insulins, Anal Biochem, vol.379, issue.2, pp.182-191, 2008.

L. Yu, Identification and quantification of Fc fusion peptibody degradations by limited proteolysis method, Anal Biochem, vol.428, issue.2, pp.137-142, 2012.

H. Wang, Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics, J Transl Med, vol.15, issue.1, p.175, 2017.

S. S. De-kock, J. P. Rodgers, and B. C. Swanepoel, Growth hormone abuse in the horse: preliminary assessment of a mass spectrometric procedure for IGF-1 identification and quantitation, Rapid Commun Mass Spectrom, vol.15, issue.14, pp.1191-1197, 2001.

S. Nie, Isobaric protein-level labeling strategy for serum glycoprotein quantification analysis by liquid chromatography-tandem mass spectrometry, Anal Chem, issue.11, pp.5353-5357, 2013.

A. Cingöz, F. Hugon-chapuis, and V. Pichon, Total on-line analysis of a target protein from plasma by immunoextraction, digestion and liquid chromatography-mass spectrometry, J Chromatogr B, vol.878, issue.2, pp.213-221, 2010.

J. Sporty, Immunomagnetic separation and quantification of butyrylcholinesterase nerve agent adducts in human serum, Anal Chem, issue.15, pp.6593-6600, 2010.

A. Cappiello, Overcoming matrix effects in liquid chromatography-mass spectrometry, Anal Chem, issue.23, pp.9343-9348, 2008.

P. J. Taylor, Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry, Clin Biochem, vol.38, issue.4, pp.328-334, 2005.

K. J. Bronsema, R. Bischoff, and N. C. Van-de-merbel, High-sensitivity LC-MS/MS quantification of peptides and proteins in complex biological samples: the impact of enzymatic digestion and internal standard selection on method performance, Anal Chem, issue.20, pp.9528-9535, 2013.

K. Lanckmans, S. Sarre, I. Smolders, and Y. Michotte, Use of a structural analogue versus a stable isotope labeled internal standard for the quantification of angiotensin IV in rat brain dialysates using nano-liquid chromatography/tandem mass spectrometry, Rapid Commun Mass Spectrom, vol.21, issue.7, pp.1187-1195, 2007.

E. Nouri-nigjeh, Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein, Anal Chem, issue.7, pp.3575-3584, 2014.

K. J. Bronsema, R. Bischoff, and N. C. Van-de-merbel, Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry, J Chromatogr B, pp.893-894, 2012.

M. Aguiar, R. Masse, and B. F. Gibbs, Mass spectrometric quantitation of C-reactive protein using labeled tryptic peptides, Anal Biochem, vol.354, issue.2, pp.175-181, 2006.

D. S. Kirkpatrick, S. A. Gerber, and S. P. Gygi, The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications, Methods, vol.35, issue.3, pp.265-273, 2005.

P. Picotti, B. Bodenmiller, L. N. Mueller, B. Domon, and R. Aebersold, Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics, Cell, vol.138, issue.4, pp.795-806, 2009.

C. Ji, N. Sadagopan, Y. Zhang, and C. Lepsy, A universal strategy for development of a method for absolute quantification of therapeutic monoclonal antibodies in biological matrices using References, p.183

, differential dimethyl labeling coupled with ultra performance liquid chromatographytandem mass spectrometry, Anal Chem, issue.22, pp.9321-9328, 2009.

L. Callipo, Immunoprecipitation on magnetic beads and liquid chromatography-tandem mass spectrometry for carbonic anhydrase II quantification in human serum, Anal Biochem, vol.400, issue.2, pp.195-202, 2010.

Y. C. Li, Quantification of endostar in rat plasma by LC-MS/MS and its application in a pharmacokinetic study, J Pharm Biomed Anal, vol.70, pp.505-511, 2012.

E. R. Remily-wood and J. M. Koomen, Evaluation of protein quantification using standard peptides containing single conservative amino acid replacements, J Mass Spectrom, vol.47, issue.2, pp.188-194, 2012.

M. Faria, Comparison of a stable isotope labeled (SIL) peptide and an extended SIL peptide as internal standards to track digestion variability of an unstable signature peptide during quantification of a cancer biomarker, human osteopontin, from plasma using capillary microflow LC-MS/MS, J Chromatogr B, vol.1001, pp.156-168, 2015.

S. Lai, A combined tryptic peptide and winged peptide internal standard approach for the determination of ?-lactalbumin in dairy products by ultra high performance liquid chromatography with tandem mass spectrometry, J Sep Sci, vol.38, issue.10, pp.1800-1806, 2015.

H. Neubert, Sequential protein and peptide immunoaffinity capture for mass spectrometry-based quantification of total human ?-nerve growth factor, Anal Chem, vol.85, issue.3, pp.1719-1726, 2013.

R. J. Beynon, M. K. Doherty, J. M. Pratt, and S. J. Gaskell, Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides, Nat Methods, vol.2, issue.8, p.587, 2005.

K. B. Scott, I. V. Turko, and K. W. Phinney, Methods in enzymology, vol.566, pp.289-303, 2016.

D. Smith, G. Gingras, Y. Aubin, and T. D. Cyr, Design and expression of a QconCAT protein to validate Hi3 protein quantification of influenza vaccine antigens, J Proteomics, vol.146, pp.133-140, 2016.

R. J. Bennett, DOSCATs: double standards for protein quantification, 2017.

Z. M. Al-majdoub, K. M. Carroll, S. J. Gaskell, and J. Barber, Quantification of the proteins of the bacterial ribosome using QconCAT technology, J Proteome Res, vol.13, issue.3, pp.1211-1222, 2014.

J. M. Pratt, Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes, Nat Protocols, vol.1, issue.2, p.1029, 2006.

D. M. Simpson and R. J. Beynon, QconCATs: design and expression of concatenated protein standards for multiplexed protein quantification, Anal Bioanal Chem, vol.404, issue.4, pp.977-989, 2012.

M. Dubois, Immunopurification and mass spectrometric quantification of the active form of a chimeric therapeutic antibody in human serum, Anal Chem, vol.80, issue.5, pp.1737-1745, 2008.

M. S. Halquist and H. T. Karnes, Quantification of alefacept, an immunosuppressive fusion protein in human plasma using a protein analogue internal standard, trypsin cleaved signature peptides and liquid chromatography tandem mass spectrometry, J Chromatogr B, vol.879, pp.789-798, 2011.

Z. Yang, LC-MS/MS approach for quantification of therapeutic proteins in plasma using a protein internal standard and 2D-solid-phase extraction cleanup, Anal Chem, issue.24, pp.9294-9301, 2007.

A. Adrait, Development of a protein standard absolute quantification (PSAQ?) assay for the quantification of staphylococcus aureus enterotoxin A in serum, J Proteomics, vol.75, issue.10, pp.3041-3049, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02087622

V. Brun, Isotope-labeled protein standards: toward absolute quantitative proteomics, Mol Cell Proteomics, vol.6, issue.12, pp.2139-2149, 2007.

C. Huillet, Accurate quantification of cardiovascular biomarkers in serum using protein standard absolute quantification (PSAQ?) and selected reaction monitoring, Mol Cell Proteomics, vol.11, issue.2, 2012.

D. Lebert, A. Dupuis, J. Garin, C. Bruley, and V. Brun, Gel-free proteomics: methods and protocols, pp.93-115, 2011.

G. Picard, PSAQ? standards for accurate MS-based quantification of proteins: from the concept to biomedical applications, J Mass Spectrom, vol.47, issue.10, pp.1353-1363, 2012.

P. Amsler, Production and application of high quality stable isotope-labeled human immunoglobulin G1 for mass spectrometry analysis, J Labelled Comp Radiopharm, vol.60, pp.160-167, 2017.

S. E. Ong, Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Mol Cell Proteomics, vol.1, issue.5, pp.376-386, 2002.

H. Liu, A. V. Manuilov, C. Chumsae, M. L. Babineau, and E. Tarcsa, Quantitation of a recombinant monoclonal antibody in monkey serum by liquid chromatography-mass spectrometry, Anal Biochem, vol.414, issue.1, pp.147-153, 2011.

W. Li, H. Lin, Y. Fu, and J. Flarakos, LC-MS/MS determination of a human mAb drug candidate in rat serum using an isotopically labeled universal mAb internal standard, J Chromatogr B, vol.1044, pp.166-176, 2017.

M. Bueno and M. J. , Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater, Anal Chem, issue.24, pp.9372-9384, 2007.

K. Sandra, B. Devreese, J. Van-beeumen, I. Stals, and M. Claeyssens, The Q-Trap mass spectrometer, a novel tool in the study of protein glycosylation, J Am Soc Mass Spectrom, vol.15, issue.3, pp.413-423, 2004.

V. Lange, P. Picotti, B. Domon, and R. Aebersold, Selected reaction monitoring for quantitative proteomics: a tutorial, Mol Syst Biol, vol.4, pp.222-222, 2008.

Z. Du, D. Douglas, and N. Konenkov, Elemental analysis with quadrupole mass filters operated in higher stability regions, J Anal At Spectrom, vol.14, issue.8, pp.1111-1119, 1999.

M. Henchman and C. Steel, Understanding the quadrupole mass filter through computer simulation, J Chem Educ, vol.75, issue.8, p.1049, 1998.

W. Niessen, Liquid chromatography-mass spectrometry, 2006.

D. C. Liebler and L. J. Zimmerman, Targeted quantitation of proteins by mass spectrometry, Biochemistry, vol.52, issue.22, pp.3797-3806, 2013.

C. M. Colangelo, L. Chung, C. Bruce, and K. H. Cheung, Review of software tools for design and analysis of large scale MRM proteomic datasets, Methods, issue.3, pp.287-298, 2013.

N. Bose, T. Zee, P. Kapahi, and M. L. Stoller, Mass spectrometry-based in vitro assay to identify drugs that influence cystine solubility, vol.7, p.2417, 2017.

F. Gosetti, E. Mazzucco, M. C. Gennaro, and E. Marengo, Simultaneous determination of sixteen underivatized biogenic amines in human urine by HPLC-MS/MS, Anal Bioanal Chem, issue.2, pp.907-916, 2013.

P. Picotti and R. Aebersold, Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions, Nat Meth, vol.9, issue.6, pp.555-566, 2012.

S. Gallien and B. Domon, Advances in high-resolution quantitative proteomics: implications for clinical applications, Expert Rev Proteomics, pp.1-10, 2015.

P. Maes, Introducing plasma/serum glycodepletion for the targeted proteomics analysis of cytolysis biomarkers, Talanta, vol.170, pp.473-480, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02191318

J. Mohr, R. Swart, M. Samonig, G. Böhm, and C. G. Huber, High-efficiency nano-and micro-HPLChigh-resolution orbitrap-MS platform for top-down proteomics, Proteomics, issue.20, pp.3598-3609, 2010.

C. Ramus, Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods, Data in brief, vol.6, pp.286-294, 2016.

M. Ke, Differential proteomic analysis of white adipose tissues from T2D KKAy mice by LC-ESI-QTOF, Proteomics, vol.17, issue.5, 2017.

W. Lu, J. Liu, B. Gao, X. Lv, and L. Yu, Technical note: nontargeted detection of adulterated plant proteins in raw milk by UPLC-quadrupole time-of-flight mass spectrometric proteomics combined with chemometrics, J Dairy Sci, vol.100, issue.9, pp.6980-6986, 2017.

G. Fedorova, T. Randak, R. H. Lindberg, and R. Grabic, Comparison of the quantitative performance of a Q-Exactive high-resolution mass spectrometer with that of a triple quadrupole tandem mass spectrometer for the analysis of illicit drugs in wastewater, Rapid Commun Mass Spectrom, issue.15, pp.1751-1762, 2013.

B. Grund, L. Marvin, and B. Rochat, Quantitative performance of a quadrupole-orbitrap-MS in targeted LC-MS determinations of small molecules, J Pharm Biomed Anal, vol.124, pp.48-56, 2016.

N. R. Zhang, Quantitation of small molecules using high-resolution accurate mass spectrometers-a different approach for analysis of biological samples, Rapid Commun Mass Spectrom, vol.23, issue.7, pp.1085-1094, 2009.

A. Michalski, Mass spectrometry-based proteomics using Q Exactive, a highperformance benchtop quadrupole orbitrap mass spectrometer, Mol Cell Proteomics, vol.10, issue.9, 2011.

P. Kumar, Targeted analysis with benchtop quadrupole-orbitrap hybrid mass spectrometer: application to determination of synthetic hormones in animal urine, Anal Chim Acta, vol.780, pp.65-73, 2013.

A. C. Peterson, J. D. Russell, D. J. Bailey, M. S. Westphall, and J. J. Coon, Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics, Mol Cell Proteomics, vol.11, issue.11, pp.1475-1488, 2012.

J. Zhou, Development and evaluation of a parallel reaction monitoring strategy for largescale targeted metabolomics quantification, Anal Chem, vol.88, issue.8, pp.4478-4486, 2016.

Q. Hu, The orbitrap: a new mass spectrometer, J Mass Spectrom, vol.40, issue.4, pp.430-443, 2005.

A. Makarov, Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis, Anal Chem, issue.6, pp.1156-1162, 2000.

R. H. Perry, R. G. Cooks, and R. J. Noll, Orbitrap mass spectrometry: instrumentation, ion motion and applications, Mass Spectrom Rev, vol.27, issue.6, pp.661-699, 2008.

M. Scigelova, M. Hornshaw, A. Giannakopulos, and A. Makarov, Fourier transform mass spectrometry, Mol Cell Proteomics, vol.10, issue.7, 2011.

S. Gallien, Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer, Mol Cell Proteomics, vol.11, issue.12, pp.1709-1723, 2012.

, References |, vol.187

N. Rauniyar, Parallel reaction monitoring: a targeted experiment performed using high resolution and high mass accuracy mass spectrometry. I, J Mol Sci, vol.16, issue.12, pp.28566-28581, 2015.

H. Tsuchiya, K. Tanaka, and Y. Saeki, The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification, Biochem Biophys Res Commun, vol.436, issue.2, pp.223-229, 2013.

Y. Luo, Quantification and confirmation of flunixin in equine plasma by liquid chromatography-quadrupole time-of-flight tandem mass spectrometry, J Chromatogr B, vol.801, issue.2, pp.173-184, 2004.

D. Paul, L. Allakonda, and N. Satheeshkumar, A validated UHPLC-QTOF-MS method for quantification of metformin and teneligliptin in rat plasma: application to pharmacokinetic interaction study, J Pharm Biomed Anal, vol.143, pp.1-8, 2017.

M. M. Fachi, L. B. Cerqueira, L. P. Leonart, T. De-francisco, and R. Pontarolo, Simultaneous quantification of antidiabetic agents in human plasma by a UPLC-QToF-MS method, PloS one, vol.11, issue.12, p.167107, 2016.

M. Balcerzak, An overview of analytical applications of time of flight-mass spectrometric (TOF-MS) analyzers and an inductively coupled plasma-TOF-MS technique, Anal Sci, vol.19, issue.7, pp.979-989, 2003.

K. G. Standing and W. Ens, Encyclopedia of spectroscopy and spectrometry, pp.458-462, 2017.

I. V. Chernushevich, Duty cycle improvement for a quadrupole-time-of-flight mass spectrometer and its use for precursor ion scans, Eur J Mass Spectrom, vol.6, issue.6, pp.471-480, 2000.

D. Helm, Ion mobility tandem mass spectrometry enhances performance of bottom-up proteomics, Mol Cell Proteomics, vol.13, issue.12, pp.3709-3715, 2014.

R. Jenkins, Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics, AAPS J, vol.17, issue.1, pp.1-16, 2015.

U. S. , Guidance for Industry: Bioanalytical Method Validation, 2001.

A. European-medicine, Guideline on Bioanalytical Method Validation, 2011.

F. Becher, A simple and rapid LC-MS/MS method for therapeutic drug monitoring of cetuximab: a GPCO-UNICANCER proof of concept study in head-and-neck cancer patients, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606760

Z. Ouyang, Pellet digestion: a simple and efficient sample preparation technique for LCMS/MS quantification of large therapeutic proteins in plasma, Bioanalysis, vol.4, issue.1, pp.17-28, 2011.

X. Duan, A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome, J Proteome Res, vol.8, issue.6, pp.2838-2850, 2009.

L. Yuan, M. E. Arnold, A. F. Aubry, and Q. C. Ji, Simple and efficient digestion of a monoclonal antibody in serum using pellet digestion: comparison with traditional digestion methods in LC-MS/MS bioanalysis, Bioanalysis, vol.4, issue.24, pp.2887-2896, 2012.

C. Gong, N. Zheng, J. Zeng, A. F. Aubry, and M. E. Arnold, Post-pellet-digestion precipitation and solid phase extraction: A practical and efficient workflow to extract surrogate peptides for ultra-high performance liquid chromatography-tandem mass spectrometry bioanalysis of a therapeutic antibody in the low ng/mL range, J Chromatogr A, pp.27-36, 1424.

J. T. Mehl, Quantification of in vivo site-specific Asp isomerization and Asn deamidation of mAbs in animal serum using IP-LC-MS, Bioanalysis, vol.8, issue.15, pp.1611-1622, 2016.

N. Robinson, Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides, J Pept Res, vol.63, issue.5, pp.426-436, 2004.

V. Timm, P. Gruber, M. Wasiliu, H. Lindhofer, and D. Chelius, Identification and characterization of oxidation and deamidation sites in monoclonal rat/mouse hybrid antibodies, J Chromatogr B, vol.878, issue.9, pp.777-784, 2010.

A. A. Wakankar and R. T. Borchardt, Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization, J Pharm Sci, vol.95, issue.11, pp.2321-2336, 2006.

M. Ewles and L. Goodwin, Bioanalytical approaches to analyzing peptides and proteins by LCMS/MS, Bioanalysis, vol.3, issue.12, pp.1379-1397, 2011.

L. Yuan, A. F. Aubry, M. E. Arnold, and Q. C. Ji, Systematic investigation of orthogonal SPE sample preparation for the LC-MS/MS bioanalysis of a monoclonal antibody after pellet digestion, Bioanalysis, issue.5, pp.2379-2391, 2013.

K. Merrell, Analysis of low-abundance, low-molecular-weight serum proteins using mass spectrometry, J Biomol Tech, vol.15, issue.4, pp.238-248, 2004.

X. Chen, Compound property optimization in drug discovery using quantitative surface sampling micro liquid chromatography with tandem mass spectrometry, Anal Chem, vol.88, issue.23, pp.11813-11820, 2016.

B. R. Jones, G. A. Schultz, J. A. Eckstein, and B. L. Ackermann, Surrogate matrix and surrogate analyte approaches for definitive quantitation of endogenous biomolecules, Bioanalysis, vol.4, issue.19, pp.2343-2356, 2012.

J. W. Lee, Method validation and measurement of biomarkers in nonclinical and clinical samples in drug development: a conference report, Pharm Res, vol.22, issue.4, pp.499-511, 2005.

A. F. Labrijn, Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo, Nat Biotech, vol.27, issue.8, pp.767-771, 2009.

J. P. Silva, O. Vetterlein, J. Jose, S. Peters, and H. Kirby, The S228P mutation prevents in vivo and in vitro IgG4 Fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation, J Biol Chem, vol.290, issue.9, pp.5462-5469, 2015.

H. Yang, M. Lame, S. Naughton, and E. Chambers, Quantification of the antibody drug conjugate, trastuzumab emtansine, and the monocolonal antibody, trastuzumab in plasma using a generic kit-based approach, 2016.

A. Kirmaier, W. Diehl, and W. E. Johnson, Acquisition and processing of nonhuman primate samples for genetic and phylogenetic analyses, Methods, vol.49, issue.1, pp.5-10, 2009.

F. Li, D. Fast, and S. Michael, Absolute quantitation of protein therapeutics in biological matrices by enzymatic digestion and LC-MS, Bioanalysis, vol.3, issue.21, pp.2459-2480, 2011.

L. Switzar, M. Giera, and W. Niessen, Protein digestion: an overview of the available techniques and recent developments, J Proteome Res, vol.12, issue.3, pp.1067-1077, 2013.

J. M. Burkhart, C. Schumbrutzki, S. Wortelkamp, A. Sickmann, and R. P. Zahedi, Systematic and quantitative comparison of digest efficiency and specificity reveals the impact of trypsin quality on MS-based proteomics, J Proteomics, vol.75, issue.4, pp.1454-1462, 2012.

J. Norrgran, Optimization of digestion parameters for protein quantification, Anal Biochem, vol.393, issue.1, pp.48-55, 2009.

L. Switzar, M. Giera, H. Lingeman, H. Irth, and W. Niessen, Protein digestion optimization for characterization of drug-protein adducts using response surface modeling, J Chromatogr A, issue.13, pp.1715-1723, 2011.

Z. Hu, The on-bead digestion of protein corona on nanoparticles by trypsin immobilized on the magnetic nanoparticle, J Chromatogr A, vol.1334, pp.55-63, 2014.

S. Jiang, Z. Zhang, and L. Li, A one-step preparation method of monolithic enzyme reactor for highly efficient sample preparation coupled to mass spectrometry-based proteomics studies, J Chromatogr A, vol.1412, pp.75-81, 2015.

M. Naldi, U. ?ernigoj, A. ?trancar, and M. Bartolini, Towards automation in protein digestion: development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis, Talanta, vol.167, pp.143-157, 2017.

W. Ning and M. L. Bruening, Rapid protein digestion and purification with membranes attached to pipet tips, Anal Chem, vol.87, issue.24, pp.11984-11989, 2015.

F. E. Regnier and J. Kim, Accelerating trypsin digestion: the immobilized enzyme reactor, Bioanalysis, vol.6, issue.19, pp.2685-2698, 2014.

F. Priego-capote and L. De-castro, Ultrasound-assisted digestion: a useful alternative in sample preparation, J Biochem Biophys Methods, vol.70, issue.2, pp.299-310, 2007.

S. Wang, L. Zhang, P. Yang, and G. Chen, Infrared-assisted tryptic proteolysis for peptide mapping, Proteomics, vol.8, issue.13, pp.2579-2582, 2008.

S. J. Bark, N. Muster, J. R. Yates, and G. Siuzdak, High-temperature protein mass mapping using a thermophilic protease, J Am Chem Soc, vol.123, issue.8, pp.1774-1775, 2001.

A. Lesur, E. Varesio, and G. Hopfgartner, Accelerated tryptic digestion for the analysis of biopharmaceutical monoclonal antibodies in plasma by liquid chromatography with tandem mass spectrometric detection, J Chromatogr A, issue.1, pp.57-64, 2010.

Z. Y. Park and D. H. Russell, Thermal denaturation: a useful technique in peptide mass mapping, Anal Chem, vol.72, issue.11, pp.2667-2670, 2000.

F. Li, C. M. Schmerberg, and Q. C. Ji, Accelerated tryptic digestion of proteins in plasma for absolute quantitation using a protein internal standard by liquid chromatography/tandem mass spectrometry, Rapid Commun Mass Spectrom, vol.23, issue.5, pp.729-732, 2009.

W. K. Russell, Z. Y. Park, and D. H. Russell, Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry, Anal Chem, issue.11, pp.2682-2685, 2001.

M. B. Strader, D. L. Tabb, W. J. Hervey, C. Pan, and G. B. Hurst, Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems, Anal Chem, vol.78, issue.1, pp.125-134, 2006.

A. C. Chan and P. J. Carter, Therapeutic antibodies for autoimmunity and inflammation, Nat Rev Immunol, vol.10, issue.5, pp.301-316, 2010.

R. C. Fellner, S. T. Terryah, and R. Tarran, Inhaled protein/peptide-based therapies for respiratory disease, Mol Cell Pediatr, vol.3, issue.1, p.16, 2016.

L. Guilleminault, Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system, J Control Release, vol.196, pp.344-354, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01769891

T. A. Mcdonald, M. L. Zepeda, M. J. Tomlinson, W. H. Bee, and I. A. Ivens, Subcutaneous administration of biotherapeutics: current experience in animal models, Curr Opin Mol Ther, vol.12, issue.4, pp.461-470, 2010.

R. Respaud, L. Vecellio, P. Diot, and . Heuzé-vourc'h-n, Nebulization as a delivery method for mAbs in respiratory diseases, Expert Opin Drug Deliv, vol.12, issue.6, pp.1027-1039, 2015.

, References | 191

W. F. Richter, S. G. Bhansali, and M. E. Morris, Mechanistic determinants of biotherapeutics absorption following SC administration, AAPS J, vol.14, issue.3, pp.559-570, 2012.

W. F. Richter and B. Jacobsen, Subcutaneous absorption of biotherapeutics: knowns and unknowns, Drug Metab Dispos, vol.42, issue.11, pp.1881-1889, 2014.

H. Neubert, Tissue bioanalysis of biotherapeutics and drug targets to support PK/PD, Bioanalysis, vol.4, issue.21, pp.2589-2604, 2012.

E. Ezan, M. Dubois, and F. Becher, Bioanalysis of recombinant proteins and antibodies by mass spectrometry, Analyst, vol.134, issue.5, pp.825-834, 2009.

N. L. Anderson and N. G. Anderson, The human plasma proteome: history, character, and diagnostic prospects, Mol Cell Proteomics, vol.1, issue.11, pp.845-867, 2002.

N. L. Anderson, The human plasma proteome: a nonredundant list developed by combination of four separate sources, Mol Cell Proteomics, vol.3, issue.4, pp.311-326, 2004.

A. P. Boichenko, N. Govorukhina, A. Van-der-zee, and R. Bischoff, Multidimensional separation of tryptic peptides from human serum proteins using reversed-phase, strong cation exchange, weak anion exchange, and fused-core fluorinated stationary phases, J Sep Sci, pp.3463-3470, 2013.

D. W. Cook, S. C. Rutan, D. R. Stoll, and P. W. Carr, Two dimensional assisted liquid chromatographya chemometric approach to improve accuracy and precision of quantitation in liquid chromatography using 2D separation, dual detectors, and multivariate curve resolution, Anal Chim Acta, vol.859, pp.87-95, 2015.

Y. Shen, Online 2D-LC-MS/MS assay to quantify therapeutic protein in human serum in the presence of pre-existing antidrug antibodies, Anal Chem, vol.87, issue.16, pp.8555-8563, 2015.

S. W. Simpkins, Targeted three-dimensional liquid chromatography: a versatile tool for quantitative trace analysis in complex matrices, J Chromatogr A, issue.49, pp.7648-7660, 2010.

V. Spicer, 3D HPLC-MS with reversed-phase separation functionality in all three dimensions for large-scale bottom-up proteomics and peptide retention data collection, Anal Chem, vol.88, issue.5, pp.2847-2855, 2016.

D. R. Stoll and P. W. Carr, Two-dimensional liquid chromatography: a state of the art tutorial, Anal Chem, vol.89, issue.1, pp.519-531, 2017.

D. R. Stoll, Direct identification of rituximab main isoforms and subunit analysis by online selective comprehensive two-dimensional liquid chromatography-mass spectrometry, Anal Chem, vol.87, issue.16, pp.8307-8315, 2015.

R. J. Vonk, Comprehensive two-dimensional liquid chromatography with stationaryphase-assisted modulation coupled to high-resolution mass spectrometry applied to proteome analysis of saccharomyces cerevisiae, Anal Chem, vol.87, issue.10, pp.5387-5394, 2015.

T. Fortin, Multiple reaction monitoring cubed for protein quantification at the low nanogram/milliliter level in nondepleted human serum, Anal Chem, issue.22, pp.9343-9352, 2009.

A. Jaffuel, Optimization of liquid chromatography-multiple reaction monitoring cubed mass spectrometry assay for protein quantification: application to aquaporin-2 water channel in human urine, J Chromatogr A, vol.1301, pp.122-130, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860529

J. Jeudy, Overcoming biofluid protein complexity during targeted mass spectrometry detection and quantification of protein biomarkers by MRM cubed (MRM3), Anal Bioanal Chem, vol.406, issue.4, pp.1193-1200, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00954963

J. Sidibé, E. Varesio, and G. Hopfgartner, Quantification of ghrelin and des-acyl ghrelin in human plasma by using cubic-selected reaction-monitoring LCMS, Bioanalysis, vol.6, issue.10, pp.1373-1383, 2014.

B. C. Bohrer, S. I. Merenbloom, S. L. Koeniger, A. E. Hilderbrand, and D. E. Clemmer, Biomolecule analysis by ion mobility spectrometry, Annu Rev Anal Chem, vol.1, pp.293-327, 2008.

C. E. Doneanu, Enhanced detection of low-abundance host cell protein impurities in highpurity monoclonal antibodies down to 1 ppm using ion mobility mass spectrometry coupled with multidimensional liquid chromatography, Anal Chem, vol.87, issue.20, pp.10283-10291, 2015.

S. Pfammatter, E. Bonneil, and P. Thibault, Improvement of quantitative measurements in multiplex proteomics using high-field asymmetric waveform spectrometry, J Proteome Res, vol.15, issue.12, pp.4653-4665, 2016.

K. E. Swearingen, Nanospray FAIMS fractionation provides significant increases in proteome coverage of unfractionated complex protein digests, Mol Cell Proteomics, vol.11, issue.4, 2012.

C. C. Christianson, C. Johnson, and S. R. Needham, The advantages of microflow LC-MS/MS compared with conventional HPLC-MS/MS for the analysis of methotrexate from human plasma, Bioanalysis, issue.5, pp.1387-1396, 2013.

A. Schmidt, M. Karas, and T. Dülcks, Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI?, J Am Soc Mass Spectrom, vol.14, issue.5, pp.492-500, 2003.

K. Tang, J. S. Page, and R. D. Smith, Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry, J Am Soc Mass Spectrom, vol.15, issue.10, pp.1416-1423, 2004.

M. E. Lassman and C. Fernandez-metzler, Applications of low-flow LC-SRM for the analysis of large molecules in pharmaceutical R&D, Bioanalysis, vol.6, issue.13, pp.1859-1867, 2014.

, References | 193

M. Batycka, Ultra-fast tandem mass spectrometry scanning combined with monolithic column liquid chromatography increases throughput in proteomic analysis, Rapid Commun Mass Spectrom, vol.20, issue.14, pp.2074-2080, 2006.

T. Kocher, P. Pichler, R. Swart, and K. Mechtler, Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients, Nat Protoc, vol.7, issue.5, pp.882-890, 2012.

C. Schley, R. Swart, and C. G. Huber, Capillary scale monolithic trap column for desalting and preconcentration of peptides and proteins in one-and two-dimensional separations, J Chromatogr A, vol.1136, issue.2, pp.210-220, 2006.

X. Shen, An IonStar experimental strategy for MS1 ion current-based quantification using ultrahigh-field orbitrap: reproducible, in-depth, and accurate protein measurement in large cohorts, J Proteome Res, vol.16, issue.7, pp.2445-2456, 2017.

A. J. Kleinnijenhuis, M. Ingola, J. H. Toersche, F. L. Van-holthoon, and W. D. Van-dongen, Quantitative bottom up analysis of infliximab in serum using protein A purification and integrated ?LCelectrospray chip IonKey MS/MS technology, Bioanalysis, vol.8, issue.9, pp.891-904, 2016.

P. M. Ladwig, D. R. Barnidge, and M. Willrich, Quantification of the IgG2/4 kappa monoclonal therapeutic eculizumab from serum using isotype specific affinity purification and microflow LC-ESI-Q-TOF mass spectrometry, J Am Soc Mass Spectrom, vol.28, issue.5, pp.811-817, 2016.

A. Lee, Multiplexed quantification of proglucagon-derived peptides by immunoaffinity enrichment and tandem mass spectrometry after a meal tolerance test, Clin Chem, vol.62, issue.1, pp.227-235, 2016.

L. Anderson and C. L. Hunter, Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins, Mol Cell Proteomics, vol.5, issue.4, pp.573-588, 2006.

G. Liu, A novel and cost effective method of removing excess albumin from plasma/serum samples and its impacts on LC-MS/MS bioanalysis of therapeutic proteins, Anal Chem, issue.16, pp.8336-8343, 2014.

T. Shi, IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomics biomarker discovery, Methods, vol.56, issue.2, pp.246-253, 2012.

K. J. Bronsema, R. Bischoff, M. P. Bouche, K. Mortier, and N. C. Van-de-merbel, High-sensitivity quantitation of a Nanobody® in plasma by single-cartridge multidimensional SPE and ultra-performance LC-MS/MS, Bioanalysis, vol.7, issue.1, pp.53-64, 2015.

C. Mesmin and B. Domon, Improvement of the performance of targeted LC-MS assays through enrichment of histidine-containing peptides, J Proteome Res, vol.13, issue.12, pp.6160-6168, 2014.

T. Shi, Sensitive targeted quantification of ERK phosphorylation dynamics and stoichiometry in human cells without affinity enrichment, Anal Chem, vol.87, issue.2, pp.1103-1110, 2015.

M. M. Kushnir, Measurement of thyroglobulin by liquid chromatography-tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies, Clin Chem, issue.6, pp.982-990, 2013.

H. Neubert, Sequential protein and peptide immunoaffinity capture for mass spectrometry-based quantification of total human ?-nerve growth factor, Anal Chem, vol.85, issue.3, pp.1719-1726, 2012.

D. L. Chappell, An ultrasensitive method for the quantitation of active and inactive GLP-1 in human plasma via immunoaffinity LC-MS/MS, Bioanalysis, vol.6, issue.1, pp.33-42, 2014.

F. Ocana and M. , Clinical pharmacokinetic assessment of an anti-MAdCAM monoclonal antibody therapeutic by LC-MS/MS, Anal Chem, vol.84, issue.14, pp.5959-5967, 2012.

I. Onami, M. Ayabe, N. Murao, and M. Ishigai, A versatile method for protein-based antigen bioanalysis in non-clinical pharmacokinetics studies of a human monoclonal antibody drug by an immunoaffinity liquid chromatography-tandem mass spectrometry, J Chromatogr A, vol.1334, pp.64-71, 2014.

W. Yang, R. Kernstock, N. Simmons, and A. Alak, ELISA microplate: a viable immunocapture platform over magnetic beads for immunoaffinity-LC-MS/MS quantitation of protein therapeutics?, Bioanalysis, vol.7, issue.3, pp.307-318, 2015.

L. Encinas, Encoded library technology as a source of hits for the discovery and lead optimization of a potent and selective class of bactericidal direct inhibitors of mycobacterium tuberculosis InhA, J Med Chem, vol.57, issue.4, pp.1276-1288, 2014.

C. Smith, Striving for purity: advances in protein purification, Nat Methods, vol.2, issue.1, pp.71-77, 2005.

M. Szigeti, Rapid N-glycan release from glycoproteins using immobilized PNGase F microcolumns, J Chromatogr B, vol.1032, pp.139-143, 2016.

P. J. Ippoliti, Automated microchromatography enables multiplexing of immunoaffinity enrichment of peptides to greater than 150 for targeted MS-based assays, Anal Chem, vol.88, issue.15, pp.7548-7555, 2016.

R. Popp, An automated assay for the clinical measurement of plasma renin activity by immuno-MALDI (iMALDI), Biochim Biophys Acta, issue.6, pp.547-558, 2015.

J. E. Ruelcke, D. Loo, and M. M. Hill, Reducing the cost of semi-automated in-gel tryptic digestion and GeLC sample preparation for high-throughput proteomics, J Proteomics, vol.149, pp.3-6, 2016.

B. Krastins, Rapid development of sensitive, high-throughput, quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum, Clin Biochem, vol.46, issue.6, pp.399-410, 2013.

V. Kumar, Quantification of serum 1-84 parathyroid hormone in patients with hyperparathyroidism by immunocapture in situ digestion liquid chromatography-tandem mass spectrometry, Clin Chem, vol.56, issue.2, pp.306-313, 2010.

M. F. Lopez, Proteomic signatures of serum albumin-bound proteins from stroke patients with and without endovascular closure of PFO are significantly different and suggest a novel mechanism for cholesterol efflux, Clin Proteomics, vol.12, issue.1, 2015.

R. Nelson, J. Krone, and A. Bieber, Mass-spectrometric immunoassay, Anal Chem, vol.67, pp.1153-1158, 1995.

A. Prakash, Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies, J Proteome Res, vol.11, issue.8, pp.3986-3995, 2012.

T. Fisher-scientific, Application Notes MSIA 1004-Thermo Scientific MSIA Streptavidin D.A.R.T.'S: Robust immunoenrichment process and reproducibility across multiple labs, 2013.

J. Ouyang, Antibody-drug conjugates, pp.275-283, 2013.

N. M. Green, Avidin and streptavidin, Methods Enzymol, vol.184, pp.51-67, 1990.

P. C. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, Structural origins of high-affinity biotin binding to streptavidin, Science, issue.4887, p.85, 1989.

M. F. Lopez, Selected reaction monitoring-mass spectrometric immunoassay responsive to parathyroid hormone and related variants, Clin Chem, vol.56, issue.2, pp.281-290, 2010.

E. E. Niederkofler, K. A. Tubbs, U. A. Kiernan, D. Nedelkov, and R. W. Nelson, Novel mass spectrometric immunoassays for the rapid structural characterization of plasma apolipoproteins, J Lipid Res, vol.44, issue.3, pp.630-639, 2003.

N. D. Sherma, Mass spectrometric immunoassay for the qualitative and quantitative analysis of the cytokine macrophage migration inhibitory factor (MIF), Proteome Sci, vol.12, issue.1, p.52, 2014.

N. E. Smits, Monolith immuno-affinity enrichment liquid chromatography tandem mass spectrometry for quantitative protein analysis of recombinant bovine somatotropin in serum, Anal Bioanal Chem, issue.20, pp.6041-6050, 2015.

A. Beck, S. Sanglier-cianférani, V. Dorsselaer, and A. Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry, Anal Chem, vol.11, issue.84, pp.4637-4646

S. Fekete, M. W. Dong, T. Zhang, and D. Guillarme, High resolution reversed phase analysis of recombinant monoclonal antibodies by ultra-high pressure liquid chromatography column coupling, J Pharm Biomed Anal, vol.83, pp.273-278, 2013.

R. Gahoual, A. Beck, E. Leize-wagner, and Y. N. François, Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products, J Chromatogr B, vol.1032, pp.61-78, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01981308

J. He, High-resolution accurate-mass mass spectrometry enables in-depth characterization of in vivo biotransformations for intact antibody-drug conjugates, Anal Chem, issue.10, pp.5476-5483, 2017.

M. Wrona, T. Mauriala, K. P. Bateman, R. J. Mortishire-smith, and D. O'connor, All-in-One' analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching, Rapid Commun Mass Spectrom, vol.19, issue.18, pp.2597-2602, 2005.

J. Xing, M. Zang, H. Zhang, and M. Zhu, The application of high-resolution mass spectrometrybased data-mining tools in tandem to metabolite profiling of a triple drug combination in humans, Anal Chim Acta, vol.897, pp.34-44, 2015.

A. Yang, M. Zang, H. Liu, P. Fan, and J. Xing, Metabolite identification of the antimalarial piperaquine in vivo using liquid chromatography-high-resolution mass spectrometry in combination with multiple data-mining tools in tandem, Biomed Chromatogr, vol.30, issue.8, pp.1324-1330, 2016.

K. Mekhssian, J. N. Mess, and F. Garofolo, Application of high-resolution MS in the quantification of a therapeutic monoclonal antibody in human plasma, Bioanalysis, vol.6, issue.13, pp.1767-1779, 2014.

R. M. Sturm, B. R. Jones, D. E. Mulvana, and S. Lowes, HRMS using a Q-Exactive series mass spectrometer for regulated quantitative bioanalysis: how, when, and why to implement, Bioanalysis, vol.8, issue.16, pp.1709-1721, 2016.

L. Dillen, Comparison of triple quadrupole and high-resolution TOF-MS for quantification of peptides, Bioanalysis, vol.4, issue.5, pp.565-579, 2012.

L. P. Morin, J. N. Mess, and F. Garofolo, Large-molecule quantification: sensitivity and selectivity head-to-head comparison of triple quadrupole with Q-TOF, Bioanalysis, issue.5, pp.1181-1193, 2013.

S. Ramagiri and F. Garofolo, Large molecule bioanalysis using Q-TOF without predigestion and its data processing challenges, Bioanalysis, vol.4, issue.5, pp.529-540, 2012.

W. Niessen and D. Falck, Analyzing biomolecular interactions by mass spectrometry 1-54, 2015.

|. References,

E. N. Nikolaev, R. Jertz, A. Grigoryev, and G. Baykut, Fine structure in isotopic peak distributions measured using a dynamically harmonized Fourier transform ion cyclotron resonance cell at 7 T, Anal Chem, vol.84, issue.5, pp.2275-2283, 2012.

M. Scigelova and A. Makarov, Orbitrap mass analyzer-overview and applications in proteomics, Proteomics, vol.6, pp.16-21, 2006.

J. F. Kellie, J. R. Kehler, and M. E. Szapacs, Application of high-resolution MS for development of peptide and large-molecule drug candidates, Bioanalysis, vol.8, issue.3, pp.169-177, 2016.

R. S. Plumb, Comparison of the quantification of a therapeutic protein using nominal and accurate mass MS/MS, Bioanalysis, vol.4, issue.5, pp.605-615, 2012.

J. Jiwan, P. Wallemacq, and M. F. Hérent, HPLC-high resolution mass spectrometry in clinical laboratory?, Clin Biochem, vol.44, issue.1, pp.136-147, 2011.

W. Korfmacher, High-resolution mass spectrometry will dramatically change our drugdiscovery bioanalysis procedures, Bioanalysis, vol.3, issue.11, pp.1169-1171, 2011.

W. Korfmacher, R. Ramanathan, and D. Hrms-in, Bioanalysis, vol.8, issue.16, pp.1635-1637, 2016.

D. M. Ramanathan, Looking beyond the SRM to high-resolution MS paradigm shift for DMPK studies, Bioanalysis, issue.5, pp.1141-1143, 2013.

R. Ramanathan, It is time for a paradigm shift in drug discovery bioanalysis: from SRM to HRMS, J Mass Spectrom, vol.46, issue.6, pp.595-601, 2011.

T. Geib, L. Sleno, R. A. Hall, C. S. Stokes, and D. A. Volmer, Triple quadrupole versus high resolution quadrupole-time-of-flight mass spectrometry for quantitative LC-MS/MS analysis of 25hydroxyvitamin D in human serum, J Am Soc Mass Spectrom, vol.27, issue.8, pp.1404-1410, 2016.

Y. Zheng, Identification and quantitative analysis of physalin D and its metabolites in rat urine and feces by liquid chromatography with triple quadrupole time-of-flight mass spectrometry, J Sep Sci, vol.40, issue.11, pp.2355-2365, 2017.

J. Zhou, Workflow development for targeted lipidomic quantification using parallel reaction monitoring on a quadrupole-time of flight mass spectrometry, Anal Chim Acta, vol.972, pp.62-72, 2017.

E. Ciccimaro, Strategy to improve the quantitative LC-MS analysis of molecular ions resistant to gas-phase collision induced dissociation: application to disulfide-rich cyclic peptides, Anal Chem, issue.23, pp.11523-11527, 2014.

S. Gallien and B. Domon, Advances in high-resolution quantitative proteomics: implications for clinical applications, Expert Rev Proteomics, vol.12, issue.5, pp.489-498, 2015.

K. Murphy, P. K. Bennett, and N. Duczak, High-throughput quantitation of large molecules using multiplexed chromatography and high-resolution/accurate mass LC-MS, Bioanalysis, vol.4, issue.9, pp.1013-1024, 2012.

M. Q. Huang, Z. J. Lin, and N. Weng, Applications of high-resolution MS in bioanalysis, Bioanalysis, issue.5, pp.1269-1276, 2013.

E. N. Fung, Full-scan high resolution accurate mass spectrometry (HRMS) in regulated bioanalysis: LC-HRMS for the quantitation of prednisone and prednisolone in human plasma, J Chromatogr B, vol.879, issue.27, pp.2919-2927, 2011.

D. Tonoli, E. Varesio, and G. Hopfgartner, Quantification of acetaminophen and two of its metabolites in human plasma by ultra-high performance liquid chromatography-low and high resolution tandem mass spectrometry, J Chromatogr B, vol.904, pp.42-50, 2012.

L. Qu, J. Qian, P. Ma, and Z. Yin, Utilizing online-dual-SPE-LC with HRMS for the simultaneous quantification of amphotericin B, fluconazole, and fluorocytosine in human plasma and cerebrospinal fluid, Talanta, vol.165, pp.449-457, 2017.

M. De-sain-van-der-velden, Quantification of metabolites in dried blood spots by direct infusion high resolution mass spectrometry, Anal Chim Acta, vol.979, pp.45-50, 2017.

G. Lawson, E. Cocks, and S. Tanna, Quantitative determination of atenolol in dried blood spot samples by LC-HRMS: A potential method for assessing medication adherence, J Chromatogr B, vol.897, pp.72-79, 2012.

R. V. Oliveira, J. Henion, and E. Wickremsinhe, Fully-automated approach for online dried blood spot extraction and bioanalysis by two-dimensional-liquid chromatography coupled with high-resolution quadrupole time-of-flight mass spectrometry, Anal Chem, vol.86, issue.2, pp.1246-1253, 2014.

A. Thomas, Sensitive determination of prohibited drugs in dried blood spots (DBS) for doping controls by means of a benchtop quadrupole/orbitrap mass spectrometer, Anal Bioanal Chem, issue.5, pp.1279-1289, 2012.

L. Glicksberg, K. Bryand, and S. Kerrigan, Identification and quantification of synthetic cathinones in blood and urine using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry, J Chromatogr B, vol.1035, pp.91-103, 2016.

H. Lu, Optimized ultra performance liquid chromatography tandem high resolution mass spectrometry method for the quantification of paraquat in plasma and urine, J Chromatogr B, vol.1027, pp.96-102, 2016.

W. Yao, F. Z. Zhang, and S. Poly, N-vinylcarbazole-co-divinylbenzene) monolith microextraction coupled to liquid chromatography-high resolution orbitrap mass spectrometry to analyse benzodiazepines in beer and urine, J Chromatogr A, pp.55-62, 1465.

J. M. Cox, Characterization and quantification of oxyntomodulin in human and rat plasma using high-resolution accurate mass LC-MS, Bioanalysis, vol.8, issue.15, pp.1579-1595, 2016.

N. Zheng, Quantitation of a PEGylated protein in monkey serum by UHPLC-HRMS using a surrogate disulfide-containing peptide: a new approach to bioanalysis and in vivo References

, stability evaluation of disulfide-rich protein therapeutics, Anal Chim Acta, vol.916, pp.42-51, 2016.

H. Henry, Comparison between a high-resolution single-stage orbitrap and a triple quadrupole mass spectrometer for quantitative analyses of drugs, Rapid Commun Mass Spectrom, vol.26, issue.5, pp.499-509, 2012.

X. Li, J. J. Cournoyer, C. Lin, O. Connor, and P. B. , Use of 18 O labels to monitor deamidation during protein and peptide sample processing, J Am Soc Mass Spectrom, vol.19, issue.6, pp.855-864, 2008.

A. L. Pace, R. L. Wong, Y. T. Zhang, Y. H. Kao, and Y. J. Wang, Asparagine deamidation dependence on buffer type, pH, and temperature, J Pharm Sci, vol.102, issue.6, pp.1712-1723, 2013.

K. Shimura, Estimation of the deamidation rates of major deamidation sites in a Fab fragment of mouse IgG1-kappa by capillary isoelectric focusing of mutated Fab fragments, Anal Chem, vol.85, issue.3, pp.1705-1710, 2013.

S. Sinha, Effect of protein structure on deamidation rate in the Fc fragment of an IgG1 monoclonal antibody, Protein Sci, vol.18, issue.8, pp.1573-1584, 2009.

Y. Song, R. L. Schowen, R. T. Borchardt, and E. M. Topp, Effect of 'pH' on the rate of asparagine deamidation in polymeric formulations: 'pH'-rate profile, J Pharm Sci, vol.90, issue.2, pp.141-156, 2001.

S. D. Stroop, A modified peptide mapping strategy for quantifying site-specific deamidation by electrospray time-of-flight mass spectrometry, Rapid Commun Mass Spectrom, vol.21, issue.6, pp.830-836, 2007.

P. Bults, R. Bischoff, H. Bakker, J. A. Gietema, and N. C. Van-de-merbel, LC-MS/MS-based monitoring of in vivo protein biotransformation: quantitative determination of trastuzumab and its deamidation products in human plasma, Anal Chem, vol.88, issue.3, pp.1871-1877, 2016.

B. S. Powell, Multiple asparagine deamidation of Bacillus anthracis protective antigen causes charge isoforms whose complexity correlates with reduced biological activity, Proteins, vol.68, issue.2, pp.458-479, 2007.

J. C. Tran, Automated affinity capture and on-tip digestion to accurately quantitate in vivo deamidation of therapeutic antibodies, Anal Chem, vol.88, issue.23, pp.11521-11526, 2016.

J. Vlasak, Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody, Anal Biochem, vol.392, issue.2, pp.145-154, 2009.

B. Yan, Succinimide formation at Asn 55 in the complementarity determining region of a recombinant monoclonal antibody IgG1 heavy chain, J Pharm Sci, vol.98, issue.10, pp.3509-3521, 2009.

H. A. Doyle, R. J. Gee, and M. J. Mamula, A failure to repair self-proteins leads to T cell hyperproliferation and autoantibody production, J Immunol, vol.171, issue.6, pp.2840-2847, 2003.

A. Verma, Use of site-directed mutagenesis to model the effects of spontaneous deamidation on the immunogenicity of bacillus anthracis protective antigen, Infect Immun, vol.81, issue.1, pp.278-284, 2013.

D. Chelius, D. S. Rehder, and P. V. Bondarenko, Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies, Anal Chem, issue.18, pp.6004-6011, 2005.

D. Ren, An improved trypsin digestion method minimizes digestion-induced modifications on proteins, Anal Biochem, vol.392, issue.1, pp.12-21, 2009.

C. Wei, J. E. Grace, T. A. Zvyaga, and D. M. Drexler, Utility of high-resolution accurate MS to eliminate interferences in the bioanalysis of ribavirin and its phosphate metabolites, Bioanalysis, vol.4, issue.15, pp.1895-1905, 2012.

P. Herrero, Comparison of triple quadrupole mass spectrometry and orbitrap highresolution mass spectrometry in ultrahigh performance liquid chromatography for the determination of veterinary drugs in sewage: benefits and drawbacks, J Mass Spectrom, issue.7, pp.585-596, 2014.

M. S. Bereman, B. Maclean, D. M. Tomazela, D. C. Liebler, and M. J. Maccoss, The development of selected reaction monitoring methods for targeted proteomics via empirical refinement, Proteomics, vol.12, issue.8, pp.1134-1141, 2012.

C. M. Shuford, R. R. Sederoff, V. L. Chiang, and D. C. Muddiman, Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS), Mol Cell Proteomics, vol.11, issue.9, pp.814-823, 2012.

I. Van-den-broek and W. D. Van-dongen, LC-MS-based quantification of intact proteins: perspective for clinical and bioanalytical applications, Bioanalysis, vol.7, issue.15, pp.1943-1958, 2015.

. Van-den-broek-i, Quantifying protein measurands by peptide measurements: where do errors arise?, J Proteome Res, vol.14, issue.2, pp.928-942, 2015.

B. Bogdanov and R. D. Smith, Proteomics by FTICR mass spectrometry: top down and bottom up, Mass Spectrom Rev, vol.24, issue.2, pp.168-200, 2005.

L. Kang, Simultaneous catabolite identification and quantitation of large therapeutic protein at the intact level by immunoaffinity capture liquid chromatography-high-resolution mass spectrometry, Anal Chem, issue.11, pp.6065-6075, 2017.

J. F. Kellie, J. R. Kehler, T. J. Mencken, R. J. Snell, and C. S. Hottenstein, A whole-molecule immunocapture LC-MS approach for the in vivo quantitation of biotherapeutics

, Bioanalysis, vol.8, issue.20, pp.2103-2114, 2016.

E. Ezan, Pharmacokinetic studies of protein drugs: past, present and future, Adv Drug Deliv Rev, vol.65, issue.8, pp.1065-1073, 2013.

|. References,

W. Jian, L. Kang, L. Burton, and N. Weng, A workflow for absolute quantitation of large therapeutic proteins in biological samples at intact level using LC-HRMS, Bioanalysis, vol.8, issue.16, pp.1679-1691, 2016.

Q. Ruan, Q. C. Ji, M. E. Arnold, W. G. Humphreys, and M. Zhu, Strategy and its implications of protein bioanalysis utilizing high-resolution mass spectrometric detection of intact protein, Anal Chem, issue.23, pp.8937-8944, 2011.

E. E. Chambers, C. Legido-quigley, N. Smith, and K. J. Fountain, Development of a fast method for direct analysis of intact synthetic insulins in human plasma: the large peptide challenge, Bioanalysis, vol.5, issue.1, pp.65-81, 2013.

S. M. Darby, M. L. Miller, R. O. Allen, and M. Lebeau, A mass spectrometric method for quantitation of intact insulin in blood samples, J Anal Toxicol, vol.25, issue.1, pp.8-14, 2001.

Y. J. Kim, Quantification of SAA1 and SAA2 in lung cancer plasma using the isotypespecific PRM assays, Proteomics, vol.15, issue.18, pp.3116-3125, 2015.

H. Fang, Intact protein quantitation using pseudoisobaric dimethyl labeling, Anal Chem, vol.88, issue.14, pp.7198-7205, 2016.

E. H. Wang, D. K. Appulage, E. A. Mcallister, and K. A. Schug, Investigation of ion transmission effects on intact protein quantification in a triple quadrupole mass spectrometer, J Am Soc Mass Spectrom, vol.28, issue.9, pp.1977-1986, 2017.

E. H. Wang, P. C. Combe, and K. A. Schug, Multiple reaction monitoring for direct quantitation of intact proteins using a triple quadrupole mass spectrometer, J Am Soc Mass Spectrom, vol.27, issue.5, pp.886-896, 2016.

Y. Wang and J. S. Heilig, Differentiation and quantification of endogenous and recombinantmethionyl human leptin in clinical plasma samples by immunocapture/mass spectrometry

, J Pharm Biomed Anal, vol.70, pp.440-446, 2012.

A. C. Gucinski, M. T. Boyne, and I. I. , Evaluation of intact mass spectrometry for the quantitative analysis of protein therapeutics, Anal Chem, vol.84, issue.18, pp.8045-8051, 2012.

A. E. Acosta-martin, Quantitative mass spectrometry analysis of intact hemoglobin A2 by precursor ion isolation and detection, Anal Chem, issue.16, pp.7971-7975, 2013.

F. Becher, A. Pruvost, G. Clement, J. C. Tabet, and E. Ezan, Quantification of small therapeutic proteins in plasma by liquid chromatography-tandem mass spectrometry: application to an elastase inhibitor EPI-hNE4, Anal Chem, issue.7, pp.2306-2313, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00120863

M. Bredehoft, W. Schanzer, and M. Thevis, Quantification of human insulin-like growth factor-1

M. Dubois, F. Becher, A. Herbet, and E. Ezan, Immuno-mass spectrometry assay of EPI-HNE4, a recombinant protein inhibitor of human elastase, Rapid Commun Mass Spectrom, vol.21, issue.3, pp.352-358, 2007.

Q. C. Ji, R. Rodila, E. M. Gage, and T. A. El-shourbagy, A strategy of plasma protein quantitation by selective reaction monitoring of an intact protein, Anal Chem, vol.75, issue.24, pp.7008-7014, 2003.

C. E. Bystrom, S. Sheng, and N. J. Clarke, Narrow mass extraction of time-of-flight data for quantitative analysis of proteins: determination of insulin-like growth factor-1, Anal Chem, issue.23, pp.9005-9010, 2011.

F. Calderón-celis, Elemental mass spectrometry for absolute intact protein quantification without protein-specific standards: application to snake venomics, Anal Chem, vol.88, issue.19, pp.9699-9706, 2016.

W. Jian, R. W. Edom, D. Wang, N. Weng, and S. Zhang, Relative quantitation of glycoisoforms of intact apolipoprotein C3 in human plasma by liquid chromatography-high-resolution mass spectrometry, Anal Chem, issue.5, pp.2867-2874, 2013.

S. Peterman, An automated, high-throughput method for targeted quantification of intact insulin and its therapeutic analogs in human serum or plasma coupling mass spectrometric immunoassay with high resolution and accurate mass detection

. Hr/am, Proteomics, vol.14, issue.12, pp.1445-1456, 2014.

G. T. Roman and J. P. Murphy, Improving sensitivity and linear dynamic range of intact protein analysis using a robust and easy to use microfluidic device, Analyst, vol.142, issue.7, pp.1073-1083, 2017.

B. Bobály, A. Beck, J. Fekete, D. Guillarme, and S. Fekete, Systematic evaluation of mobile phase additives for the LC-MS characterization of therapeutic proteins, Talanta, vol.136, pp.60-67, 2015.

A. Heck, Native mass spectrometry: a bridge between interactomics and structural biology, Nat Meth, vol.5, issue.11, pp.927-933, 2008.

J. P. Savaryn, Targeted analysis of recombinant NF kappa B (RelA/p65) by denaturing and native top down mass spectrometry, J Proteomics, vol.134, pp.76-84, 2016.

J. L. Campbell, L. Blanc, and J. , Targeted ion parking for the quantitation of biotherapeutic proteins: concepts and preliminary data, J Am Soc Mass Spectrom, vol.21, issue.12, pp.2011-2022, 2010.

B. Buscher, J. Toersche, F. Van-holthoon, and A. Kleinnijenhuis, Comparison of triple quadrupole and orbitrap mass spectrometry for quantitative bioanalysis of intact proteins, J Res Anal, vol.1, issue.1, pp.3-10, 2015.

F. D. Macchi, Absolute quantitation of intact recombinant antibody product variants using mass spectrometry, Anal Chem, vol.87, issue.20, pp.10475-10482, 2015.

Y. Yin, Precise quantification of mixtures of bispecific IgG produced in single host cells by liquid chromatography-orbitrap high-resolution mass spectrometry, mAbs, vol.8, issue.8, pp.1467-1476, 2016.

L. Grafmuller, Unconjugated payload quantification and DAR characterization of antibody-drug conjugates using high-resolution MS, Bioanalysis, vol.8, issue.16, pp.1663-1678, 2016.

B. Q. Shen, Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates, Nat Biotech, vol.30, issue.2, pp.184-189, 2012.

D. Su, Custom-designed affinity capture LC-MS F(ab?)2 assay for biotransformation assessment of site-specific antibody drug conjugates, Anal Chem, vol.88, issue.23, pp.11340-11346, 2016.

K. Xu, Characterization of intact antibody-drug conjugates from plasma/serum in vivo by affinity capture capillary liquid chromatography-mass spectrometry, Anal Biochem, vol.412, issue.1, pp.56-66, 2011.

M. Excoffier, A new anti-human Fc method to capture and analyze ADCs for characterization of drug distribution and the drug-to-antibody ratio in serum from preclinical species, J Chromatogr B, vol.1032, pp.149-154, 2016.

S. M. Hengel, Measurement of in vivo drug load distribution of cysteine-linked antibodydrug conjugates using microscale liquid chromatography mass spectrometry, Anal Chem, issue.7, pp.3420-3425, 2014.

A. Liu, Quantitative bioanalysis of antibody-conjugated payload in monkey plasma using a hybrid immuno-capture LC-MS/MS approach: assay development, validation, and a case study, J Chromatogr B, vol.1002, pp.54-62, 2015.

S. Kaur, K. Xu, O. M. Saad, R. C. Dere, and M. Carrasco-triguero, Bioanalytical assay strategies for the development of antibody-drug conjugate biotherapeutics, Bioanalysis, vol.5, issue.2, pp.201-226, 2013.

S. D. Fontaine, R. Reid, L. Robinson, G. W. Ashley, and D. V. Santi, Long-term stabilization of maleimide-thiol conjugates, Bioconjug Chem, vol.26, issue.1, pp.145-152, 2015.

R. P. Lyon, Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates, Nat Biotech, vol.32, issue.10, pp.1059-1062, 2014.

R. Dere, PK assays for antibody-drug conjugates: case study with ado-trastuzumab emtansine, Bioanalysis, vol.5, issue.9, pp.1025-1040, 2013.

K. J. Hamblett, Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate, Clin Cancer Res, vol.10, issue.20, pp.7063-7070, 2004.