-. Did, DiD-Cl (1 eq., 8 mg, 0.0081 mmol) and sodium tetrakis

H. Nmr,

. Mhz, H, m) 1.28 (52 H, s) 1.37-1.44 (4 H, m) 1.47-1.53 (4 H, m) 1.74 (12 H, s) 1, vol.87

, H, m) 7.56-7.61 (10 H, m) 8.42 (2 H, t, J=12.97 Hz). 19 F NMR, p.376

. Mhz, F, s). 11 B NMR (128 MHz, acetone-d6) ? ppm5.85 (1 B, s). 13 C NMR (126 MHz, acetone-d6) ? ppm 13.47 (s), 22.45 (s), 26.56 (s), 26.92 (s), 27.23 (s), 29.04 (s), 29.14 (s), 29.19 (s), vol.29, p.47

, 23 (s), 111.08 (s), 119.22 (s), 121.51 (s), 122.33 (s), 122.83 (s), 123.81 (s), 125.06 (s), 125.29 (dd), 126.11 (s), 128.59 (s), vol.29

F. Nmr-;-f,-d and . Hz, 376 MHz, acetonitrile-d3) ? ppm-136, vol.53

B. Nmr,

, HRMS

B. Nmr, 128 MHz, acetonitrile-d3), p.144

;. Hz and D. Hz,

, MS

R. ,

F. Nmr-;-f, 376 MHz, acetonitrile-d3) ? ppm-133.66 (2 F, s),-163, vol.89, p.19

;. Hz and . Hz, , vol.26

B. Nmr, 128 MHz, acetonitrile-d3) ? ppm-16, vol.70

, HRMS

R. ,

F. Nmr, 376 MHz, acetonitrile-d3) ? ppm-63.21 (1 F, s)

B. Nmr, 128 MHz, acetonitrile-d3) ? ppm-6, vol.66

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2006.

D. M. Jameson, Introduction to Fluorescene, 2014.

D. T. Zhai, W. Xu, L. Y. Zhang, and Y. T. Chang, The role of "disaggregation'' in optical probe development, Chemical Society Reviews, vol.43, issue.8, pp.2402-2411, 2014.

H. , A. , and A. , Advances in Colloid and Interface Science, vol.8, issue.4, pp.237-298, 1977.

F. Wuerthner, T. E. Kaiser, and C. R. Saha-moeller, Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials, Angewandte Chemie-International Edition, vol.50, issue.15, pp.3376-3410, 2011.

C. Wurth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-genger, Relative and absolute determination of fluorescence quantum yields of transparent samples, Nature Protocols, vol.8, issue.8, pp.1535-1550, 2013.

E. E. Jelley, Spectral Absorption and Fluorescence of Dyes in the Molecular State, Nature, vol.138, p.1009, 1936.

A. Eisfeld and J. S. Briggs, The J-band of organic dyes: lineshape and coherence length, Chemical Physics, vol.281, issue.1, pp.61-70, 2002.

L. , J. ;. Balter, A. Analysis, O. Spectroscopy-;-v, G. Bünau et al., Birks: Photophysics of Aromatic Molecules, Seiten. Preis: 210s. Berichte der Bunsengesellschaft für physikalische Chemie, vol.16, pp.1294-1295, 1970.

D. Chudakov, M. Matz, S. Lukyanov, and K. Lukyanov, Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues, Physiological Reviews, vol.90, issue.3, pp.1103-1163, 2010.

J. Chen, P. Zhang, X. Yu, X. Li, H. Tao et al., Fabrication of Novel Polymer Nanoparticle-Based Fluorescence Resonance Energy Transfer Systems and their Tunable Fluorescence Properties, Journal of Macromolecular Science Part a-Pure and Applied Chemistry, vol.48, issue.3, pp.219-226, 2011.

M. Frigoli, K. Ouadahi, and C. Larpent, A Cascade FRET-Mediated Ratiometric Sensor for Cu(2+)Ions Based on Dual Fluorescent Ligand-Coated Polymer Nanoparticles, European Journal, vol.15, issue.33, pp.8319-8330, 2009.

K. Ouadahi, K. Sbargoud, E. Allard, and C. Larpent, FRET-mediated pHresponsive dual fluorescent nanoparticles prepared via click chemistry, Nanoscale, vol.2012, issue.3, pp.727-732

K. Sapsford, L. Berti, and I. Medintz, Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations, Angewandte Chemie-International Edition, vol.45, issue.28, pp.4562-4588, 2006.

L. , J. ;. Gryczynski, I. ;. Laczko, G. ;. Wiczk, W. Johnson et al., Protein Science, vol.3, issue.4, pp.628-637, 1994.

A. Mallick, B. Haldar, and N. Chattopadhyay, Spectroscopic investigation on the interaction of ICT probe 3-acetyl-4-oxo-6,7-dihydro-12H indolo-2,3-a quinolizine with serum albumins, Journal of Physical Chemistry B, vol.109, issue.30, pp.14683-14690, 2005.

E. Yeow, K. Ghiggino, J. Reek, M. Crossley, A. Bosman et al.,

E. Meijer, The dynamics of electronic energy transfer in novel multiporphyrin functionalized dendrimers: A time-resolved fluorescence anisotropy, Journal of Physical Chemistry B, vol.104, issue.12, pp.2596-2606, 2000.

M. Berberan-santos, P. Choppinet, A. Fedorov, L. Jullien, and B. Valeur, Multichromophoric cyclodextrins. 6. Investigation of excitation energy hopping by Monte-Carlo simulations and time-resolved fluorescence anisotropy, Journal of the American Chemical Society, vol.121, issue.11, pp.2526-2533, 1999.

V. Devauges, D. Matthews, J. Aluko, J. Nedbal, J. Levitt et al., Steady-State Acceptor Fluorescence Anisotropy Imaging under Evanescent Excitation for Visualisation of FRET at the Plasma Membrane, Plos One, vol.2014, issue.10, p.9

E. , A. Onushchenko, and A. , QUANTUM SIZE EFFECT IN 3DIMENSIONAL MICROSCOPIC SEMICONDUCTOR CRYSTALS, Jetp Letters, vol.34, issue.6, pp.345-349, 1981.

A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science, vol.271, issue.5251, pp.933-937, 1996.
DOI : 10.1126/science.271.5251.933

URL : https://zenodo.org/record/1231064/files/article.pdf

B. and L. , ELECTRONIC WAVE-FUNCTIONS IN SEMICONDUCTOR CLUSTERS-EXPERIMENT AND THEORY, Journal of Physical Chemistry, vol.90, issue.12, pp.2555-2560, 1986.

A. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Abstracts of Papers of the, vol.218, pp.296-296, 1999.

M. Kuno, D. Fromm, H. Hamann, A. Gallagher, and D. Nesbitt, Nonexponential "blinking" kinetics of single CdSe quantum dots: A universal power law behavior, Journal of Chemical Physics, vol.112, issue.7, pp.3117-3120, 2000.

X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose et al., Quantum dots for live cells, in vivo imaging, and diagnostics, Science, vol.307, issue.5709, pp.538-544, 2005.

R. Hardman, A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors, Environmental Health Perspectives, vol.114, issue.2, pp.165-172, 2006.

H. Liu, T. Ye, and C. Mao, Fluorescent carbon nanoparticles derived from candle soot, Angewandte Chemie-International Edition, vol.46, issue.34, pp.6473-6475, 2007.

X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li et al., Highly luminescent carbon nanodots by microwave-assisted pyrolysis, Chemical Communications, vol.48, issue.64, pp.7955-7957, 2012.

Y. Dong, R. Wang, H. Li, J. Shao, Y. Chi et al., Polyaminefunctionalized carbon quantum dots for chemical sensing, Carbon, vol.2012, issue.8, pp.2810-2815

Y. Sun, B. Zhou, Y. Lin, W. Wang, K. Fernando et al.,

B. Harruff, X. Wang, H. Wang, P. Luo, H. Yang et al., Quantum-sized carbon dots for bright and colorful photoluminescence, Journal of the American Chemical Society, vol.128, issue.24, pp.7756-7757, 2006.

S. Lim, W. Shen, and Z. Gao, Carbon quantum dots and their applications, Chemical Society Reviews, vol.44, issue.1, pp.362-381, 2015.

B. Zhou, B. Shi, D. Jin, and X. Liu, Controlling upconversion nanocrystals for emerging applications, Nature Nanotechnology, vol.10, issue.11, pp.924-936, 2015.

G. Chen, H. Qju, P. Prasad, and X. Chen, Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics, Chemical Reviews, vol.114, issue.10, pp.5161-5214, 2014.

S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi et al., Luminescent Silica Nanoparticles: Extending the Frontiers of Brightness, Angewandte Chemie-International Edition, vol.50, issue.18, pp.71-80, 1989.

I. Rio-echevarria, R. Tavano, V. Causin, E. Papini, F. Mancin et al., Water-Soluble Peptide-Coated Nanoparticles: Control of the Helix Structure and Enhanced Differential Binding to Immune Cells, Journal of the American Chemical Society, vol.133, issue.1, pp.8-11, 2011.

M. Montalti, L. Prodi, E. Rampazzo, and N. Zaccheroni, Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine, Chemical Society Reviews, vol.43, issue.12, pp.4243-4268, 2014.

A. Burns, H. Ow, and U. Wiesner, Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle" architectures for nanobiotechnology, Chemical Society Reviews, vol.35, issue.11, pp.1028-1042, 2006.

H. Ow, D. Larson, M. Srivastava, B. Baird, W. Webb et al., Bright and stable core-shell fluorescent silica nanoparticles, Nano Letters, vol.5, issue.1, pp.113-117, 2005.

K. Hormann and A. Zimmer, Drug delivery and drug targeting with parenteral lipid nanoemulsions-A review, Journal of Controlled Release, vol.223, pp.85-98, 2016.

Y. Singh, J. G. Meher, K. Raval, F. A. Khan, M. Chaurasia et al., Nanoemulsion: Concepts, development and applications in drug delivery, Journal of Controlled Release, vol.252, pp.28-49, 2017.

K. Hippalgaonkar, S. Majumdar, and V. Kansara, Injectable Lipid EmulsionsAdvancements, Opportunities and Challenges, Aaps Pharmscitech, vol.11, issue.4, pp.1526-1540, 2010.

T. Delmas, H. Piraux, A. Couffin, I. Texier, F. Vinet et al.,

J. Bibette, How To Prepare and Stabilize Very Small Nanoemulsions, Langmuir, vol.27, issue.5, pp.1683-1692, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00605087

J. Gravier, F. Navarro, T. Delmas, F. Mittler, A. Couffin et al., Lipidots: competitive organic alternative to quantum dots for in vivo fluorescence imaging, Journal of Biomedical Optics, issue.9, p.16, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01057405

K. Ng, J. Lovell, and G. Zheng, Lipoprotein-Inspired Nanoparticles for Cancer Theranostics, Accounts of Chemical Research, vol.44, issue.10, pp.1105-1113, 2011.

D. Cormode, P. Jarzyna, W. Mulder, and Z. Fayad, Modified natural nanoparticles as contrast agents for medical imaging, Advanced Drug Delivery Reviews, vol.62, issue.3, pp.329-338, 2010.

G. Zheng, J. Chen, H. Li, and J. Glickson, Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.17757-17762, 2005.

C. C. Cheng, J. J. Huang, A. A. Muhable, Z. S. Liao, S. Y. Huang et al.,

C. Chiu, C. W. Lee, and D. J. , Supramolecular fluorescent nanoparticles functionalized with controllable physical properties and temperature-responsive release behavior, Polymer Chemistry, vol.8, issue.15, pp.2292-2298, 2017.

I. Shulov, Y. Arntz, Y. Mely, V. Pivovarenko, and A. Klymchenko, Noncoordinating anions assemble cyanine amphiphiles into ultra-small fluorescent nanoparticles, Chemical Communications, vol.52, issue.51, pp.7962-7965, 2016.

X. Zheng, D. Xing, F. Zhou, B. Wu, and W. Chen, Indocyanine Green-Containing Nanostructure as Near Infrared Dual-Functional Targeting Probes for Optical Imaging and Photothermal Therapy, Molecular Pharmaceutics, vol.8, issue.2, pp.447-456, 2011.

A. Kirchherr, A. Briel, and K. Mader, Stabilization of Indocyanine Green by Encapsulation within Micellar Systems, Molecular Pharmaceutics, vol.6, issue.2, pp.480-491, 2009.

S. H. Li, J. Johnson, A. Peck, and Q. Xie, Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles, Journal of Translational Medicine, p.15, 2017.

F. Zhou and B. Li, Exonuclease III-Assisted Target Recycling Amplification Coupled with Liposome-Assisted Amplification: One-Step and Dual-Amplification Strategy for Highly Sensitive Fluorescence Detection of DNA, Analytical Chemistry, vol.87, issue.14, pp.7156-7162, 2015.

D. S. Mahrhauser, G. Reznicek, H. Kotisch, M. Brandstetter, C. Nagelreiter et al., Semi-solid fluorinated-DPPC liposomes: Morphological, rheological and thermic properties as well as examination of the influence of a model drug on their skin permeation, International Journal of Pharmaceutics, vol.486, issue.1-2, pp.350-355, 2015.

V. Deissler, R. Ruger, W. Frank, A. Fahr, W. Kaiser et al., Fluorescent liposomes as contrast agents for in vivo optical imaging of edemas in mice, Small, vol.4, issue.8, pp.1240-1246, 2008.

E. Portnoy, S. Lecht, P. Lazarovici, D. Danino, and S. Magdassi, Cetuximablabeled liposomes containing near-infrared probe for in vivo imaging, NanomedicineNanotechnology Biology and Medicine, vol.7, issue.4, pp.480-488, 2011.

K. Sou, B. Goins, S. Takeoka, E. Tsuchida, and W. Phillips, Selective uptake of surface-modified phospholipid vesicles by bone marrow macrophages in vivo, Biomaterials, vol.28, issue.16, pp.2655-2666, 2007.

B. Sandanaraj, H. Gremlich, R. Kneuer, J. Dawson, and S. Wacha, Fluorescent Nanoprobes as a Biomarker for Increased Vascular Permeability: Implications in Diagnosis and Treatment of Cancer and Inflammation, Bioconjugate Chemistry, vol.21, issue.1, pp.93-101, 2010.

L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv et al., Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications, Chemical Society Reviews, vol.42, issue.16, pp.6620-6633, 2013.

D. Tuncel and H. Demir, Conjugated polymer nanoparticles, Nanoscale, vol.2010, issue.4, pp.484-494

N. Kurokawa, H. Yoshikawa, N. Hirota, K. Hyodo, and H. Masuhara, Sizedependent spectroscopic properties and thermochromic behavior in poly(substituted thiophene) nanoparticles, Chemphyschem, vol.5, issue.10, pp.1609-1615, 2004.

C. Wu, Y. Jin, T. Schneider, D. Burnham, P. Smith et al., Ultrabright and Bioorthogonal Labeling of Cellular Targets Using Semiconducting Polymer Dots and Click Chemistry, Angewandte Chemie-International Edition, issue.49, pp.9436-9440, 2010.

J. Rao and K. Geckeler, Polymer nanoparticles: Preparation techniques and sizecontrol parameters. Progress in Polymer Science, vol.36, pp.887-913, 2011.

Z. Tian, A. D. Shaller, and A. D. Li, Twisted perylene dyes enable highly fluorescent and photostable nanoparticles, Chemical Communications, issue.2, pp.180-182, 2009.

J. Chen, P. Zhang, G. Fang, P. Yi, X. Yu et al., Synthesis and Characterization of Novel Reversible Photoswitchable Fluorescent Polymeric Nanoparticles via One-Step Miniemulsion Polymerization, Journal of Physical Chemistry B, issue.13, pp.3354-3362, 2011.

F. Candau, M. Pabon, and J. Y. Anquetil, Polymerizable microemulsions: some criteria to achieve an optimal formulation, Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging, vol.153, pp.1968-1992, 1999.

C. E. Mora-huertas, H. Fessi, and A. Elaissari, Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods Critical comparison, Advances in Colloid and Interface Science, vol.163, issue.2, pp.90-122, 2011.

J. Geng, K. Li, W. Qin, L. Ma, G. G. Gurzadyan et al., Eccentric Loading of Fluorogen with Aggregation-Induced Emission in PLGA Matrix Increases Nanoparticle Fluorescence Quantum Yield for Targeted Cellular Imaging, Small, vol.2013, issue.11, pp.2012-2019

G. S. Kwon and K. Kataoka, Block copolymer micelles as long-circulating drug vehicles, Advanced Drug Delivery Reviews, vol.64, pp.237-245, 2012.

B. Pegaz, E. Debefve, F. Borle, J. P. Ballini, H. Van-den-bergh et al., Encapsulation of porphyrins and chlorins in biodegradable nanoparticles: The effect of dye lipophilicity on the extravasation and the photothrombic activity. A comparative study, Journal of Photochemistry and Photobiology B-Biology, vol.80, issue.1, pp.19-27, 2005.

H. T. Chen, S. W. Kim, L. Li, S. Y. Wang, K. Park et al., Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.6596-6601, 2008.

A. Wagh, S. Y. Qian, and B. Law, Development of Biocompatible Polymeric Nanoparticles for in Vivo NIR and FRET Imaging, Bioconjugate Chemistry, vol.23, issue.5, pp.981-992, 2012.

A. Salvati, C. Aberg, T. Santos, J. Varela, P. Pinto et al., Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics, NanomedicineNanotechnology Biology and Medicine, vol.7, issue.6, pp.818-826, 2011.

T. Tenuta, M. P. Monopoli, J. Kim, A. Salvati, K. A. Dawson et al., Elution of Labile Fluorescent Dye from Nanoparticles during Biological Use, Plos One, vol.6, issue.10, p.6, 2011.

A. S. Klymchenko, E. Roger, N. Anton, H. Anton, I. Shulov et al., Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets, Rsc Advances, vol.2012, issue.31, pp.11876-11886
URL : https://hal.archives-ouvertes.fr/hal-00783454

G. Bastiat, C. O. Pritz, C. Roider, F. Fouchet, E. Lignieres et al.,

R. Glueckert, M. Ritsch-marte, A. Schrott-fischer, P. Saulnier, and J. P. Benoit, A new tool to ensure the fluorescent dye labeling stability of nanocarriers: A real challenge for fluorescence imaging, Journal of Controlled Release, vol.170, issue.3, pp.334-342, 2013.

C. Simonsson, G. Bastiat, M. Pitorre, A. S. Klymchenko, J. Bejaud et al.,

J. P. Benoit, Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules, European Journal of Pharmaceutics and Biopharmaceutics, vol.98, pp.47-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388767

S. Petersen, A. Fahr, and H. Bunjes, Flow Cytometry as a New Approach To Investigate Drug Transfer between Lipid Particles, Molecular Pharmaceutics, vol.7, issue.2, pp.350-363, 2010.

S. Snipstad, S. Hak, H. Baghirov, E. Sulheim, Ý. Mørch et al., Labeling nanoparticles: Dye leakage and altered cellular uptake, Sletten, E. M.; Swager, T. M., Fluorofluorophores: Fluorescent Fluorous Chemical Tools Spanning the Visible Spectrum, vol.136, pp.13574-13577, 2014.

V. N. Kilin, H. Anton, N. Anton, E. Steed, J. Vermot et al., Counterion-enhanced cyanine dye loading into lipid nanodroplets for single-particle tracking in zebrafish, Biomaterials, vol.35, issue.18, pp.4950-4957, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065070

A. M. Breul, M. D. Hager, and U. S. Schubert, Fluorescent monomers as building blocks for dye labeled polymers: synthesis and application in energy conversion, biolabeling and sensors, Chemical Society Reviews, vol.42, issue.12, pp.5366-5407, 2013.

G. Sun, M. Y. Berezin, J. Fan, H. Lee, J. Ma et al.,

S. Achilefu, Bright fluorescent nanoparticles for developing potential optical imaging contrast agents, Nanoscale, vol.2010, issue.4, pp.548-558

L. A. Errede and S. C. Hanson, POLYMER SWELLING .15. SWELLING AND DESWELLING STUDIES OF POLYSTYRENE LIQUID-SYSTEMS IN BINARYSOLUTIONS, Journal of Applied Polymer Science, vol.54, issue.5, pp.619-647, 1994.

H. G. Zhu and M. J. Mcshane, Loading of hydrophobic materials into polymer particles: Implications for fluorescent nanosensors and drug delivery, Journal of the American Chemical Society, vol.127, issue.39, pp.13448-13449, 2005.

T. Behnke, C. Wuerth, E. Laux, K. Hoffmann, and U. Resch-genger, Simple strategies towards bright polymer particles via one-step staining procedures, Dyes and Pigments, vol.94, issue.2, pp.247-257, 2012.

A. Monguzzi, M. Frigoli, C. Larpent, and F. Meinardi, Laser dye doped nanoparticles for highly photostable optical nanoamplifiers, Rsc Advances, vol.2012, issue.31, pp.11731-11736

V. B. Rodriguez, S. M. Henry, A. S. Hoffman, P. S. Stayton, and X. Li,

H. , Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging, Journal of Biomedical Optics, issue.1, p.13, 2008.

V. Martin, J. Banuelos, E. Enciso, I. Lopez-arbeloa, A. Costela et al., Photophysical and Lasing Properties of Rhodamine 6G Confined in Polymeric Nanoparticles, Squaraine-Doped Functional Nanoprobes: Lipophilically Protected Near-Infrared Fluorescence for Bioimaging, pp.2786-2793, 2010.

C. Grazon, J. Rieger, B. Charleux, G. Clavier, and R. Meallet-renault, Ultrabright BODIPY-Tagged Polystyrene Nanoparticles: Study of Concentration Effect on Photophysical Properties, Journal of Physical Chemistry C, vol.118, issue.25, pp.13945-13952, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01719587

C. Grazon, J. Rieger, R. Meallet-renault, B. Charleux, and G. Clavier, Ultrabright Fluorescent Polymeric Nanoparticles Made from a New Family of BODIPY Monomers, Macromolecules, vol.46, issue.13, pp.5167-5176, 2013.

X. Zhang, Z. Chen, and F. Wuerthner, Morphology control of fluorescent nanoaggregates by co-self-assembly of wedge-and dumbbell-shaped amphiphilic perylene bisimides, Journal of the American Chemical Society, vol.129, issue.16, p.4886, 2007.

Z. Yang, Y. Yuan, R. Jiang, N. Fu, X. Lu et al., Homogeneous near-infrared emissive polymeric nanoparticles based on amphiphilic diblock copolymers with perylene diimide and PEG pendants: selfassembly behavior and cellular imaging application, Polymer Chemistry, vol.5, issue.4, pp.1372-1380, 2014.

R. Meallet-renault, A. Herault, J. J. Vachon, R. B. Pansu, S. Amigoni-gerbier et al., Fluorescent nanoparticles as selective Cu(II) sensors, Photochemical & Photobiological Sciences, vol.5, issue.3, pp.300-310, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00020418

F. Wurthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chemical Communications, issue.14, pp.1564-1579, 2004.

K. A. Colby, J. J. Burdett, R. F. Frisbee, L. Zhu, R. J. Dillon et al., Electronic Energy Migration on Different Time Scales: Concentration Dependence of the Time-Resolved Anisotropy and Fluorescence Quenching of Lumogen Red in Poly(methyl methacrylate), Journal of Physical Chemistry A, vol.2010, issue.10, pp.3471-3482

K. Trofymchuk, A. Reisch, I. Shulov, Y. Mely, and A. S. Klymchenko, Tuning the color and photostability of perylene diimides inside polymer nanoparticles: towards biodegradable substitutes of quantum dots, Nanoscale, vol.6, issue.21, pp.12934-12942, 2014.

X. Zhang, D. Gorl, V. Stepanenko, and F. Wurthner, Hierarchical Growth of Fluorescent Dye Aggregates in Water by Fusion of Segmented Nanostructures

, Angewandte Chemie-International Edition, vol.53, issue.5, pp.1270-1274, 2014.

D. Gorl, X. Zhang, and F. Wurthner, Molecular Assemblies of Perylene Bisimide Dyes in Water, Angewandte Chemie-International Edition, vol.2012, issue.26, pp.6328-6348

J. L. Banal, H. Soleimaninejad, F. M. Jradi, M. Y. Liu, J. M. White et al., Energy Migration in Organic Solar Concentrators with a Molecularly Insulated Perylene Diimide, Journal of Physical Chemistry C, issue.24, pp.12952-12958, 2016.

J. D. Luo, Z. L. Xie, J. W. Lam, L. Cheng, H. Y. Chen et al., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chemical Communications, issue.18, pp.1740-1741, 2001.

Y. Hong, J. W. Lam, and B. Z. Tang, Aggregation-induced emission, Chemical Society Reviews, vol.40, issue.11, pp.5361-5388, 2011.

Z. R. Grabowski, K. Rotkiewicz, and W. Rettig, Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge-transfer states and structures, Chemical Reviews, vol.103, issue.10, pp.3899-4031, 2003.

K. Li and B. Liu, Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging, Chemical Society Reviews, vol.43, issue.18, pp.6570-6597, 2014.

K. Li, W. Qin, D. Ding, N. Tomczak, J. L. Geng et al., Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing, Scientific Reports, issue.3, p.10, 2013.

I. Krossing and I. Raabe, Noncoordinating anions-Fact or fiction? A survey of likely candidates, Angewandte Chemie-International Edition, vol.43, issue.16, pp.2066-2090, 2004.

T. Engesser, M. Lichtenthaler, M. Schleep, and I. Krossing, Reactive p-block cations stabilized by weakly coordinating anions, Chemical Society Reviews, vol.45, issue.4, pp.789-899, 2016.

H. , R. Hersh, W. Coordination, C. Noncoordinating-anions-synthesis, and A. Strength, Inorganic Chemistry, vol.28, issue.14, pp.2869-2886, 1989.

M. Jia and M. Bandini, Counterion Effects in Homogeneous Gold Catalysis, Acs Catalysis, vol.5, issue.3, pp.1638-1652, 2015.

W. Geiger and F. Barriere, Organometallic Electrochemistry Based on Electrolytes Containing Weakly-Coordinating Fluoroarylborate Anions, Accounts of Chemical Research, issue.7, pp.1030-1039, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00510405

M. Aubrey and J. Long, A Dual-Ion Battery Cathode via Oxidative Insertion of Anions in a Metal-Organic Framework, Journal of the American Chemical Society, vol.137, issue.42, pp.13594-13602, 2015.

I. Raabe, K. Wagner, K. Guttsche, M. Wang, M. Gratzel et al., Tetraalkylammonium Salts of Weakly Coordinating Aluminates: Ionic Liquids, Materials for Electrochemical Applications and Useful Compounds for Anion Investigation, vol.15, pp.1966-1976, 2009.

S. Fischer, J. Schmidt, P. Strauch, and A. Thomas, An Anionic Microporous Polymer Network Prepared by the Polymerization of Weakly Coordinating Anions, Angewandte Chemie-International Edition, vol.52, issue.46, pp.12174-12178, 2013.

E. Bakker, P. Buhlmann, and E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chemical Reviews, vol.97, issue.8, pp.3083-3132, 1997.

X. Xie, A. Gutierrez, V. Trofimov, I. Szilagyi, T. Soldati et al., Charged Solvatochromic Dyes as Signal Transducers in pH Independent Fluorescent and Colorimetric Ion Selective Nanosensors, Analytical Chemistry, vol.87, issue.19, pp.9954-9959, 2015.

L. Chen, Y. Tan, X. Liu, and Y. Chen, Counterion induced facile self-doping and tunable interfacial dipoles of small molecular electrolytes for efficient polymer solar cells, Nano Energy, vol.27, pp.492-498, 2016.

D. Ma, C. Zhang, Y. Qiu, and L. Duan, Highly efficient blue-green organic lightemitting diodes achieved by controlling the anionic migration of cationic iridium(III) complexes, Journal of Materials Chemistry C, vol.2016, issue.24, pp.5731-5738

T. , A. Shvedova, L. ;. Derevyanko, N. ;. Ishchenko, A. Kuzmin et al., CATIONIC INDOPOLYCARBOCYANINE DYES IN ION-PAIRS. Chemical Physics Letters, vol.190, issue.3-4, pp.291-297, 1992.

T. , A. Dzhulibekov, K. ;. Shvedova, L. ;. Kuzmin, V. ;. Ishchenko et al., Journal of Physical Chemistry, vol.99, issue.17, pp.6525-6529, 1995.

A. Ishchenko, N. Derevyanko, S. Popov, Y. Slominskii, V. Koval et al., Interaction of chromophores in dissimilar associates of cationic and anionic polymethine dyes in water, Russian Chemical Bulletin, vol.46, issue.5, pp.910-915, 1997.

P. Bouit, C. Aronica, L. Toupet, B. Le-guennic, C. Andraud et al., Continuous Symmetry Breaking Induced by Ion Pairing Effect in Heptamethine Cyanine Dyes: Beyond the Cyanine Limit, Journal of the American Chemical Society, vol.2010, issue.12, pp.4328-4335
URL : https://hal.archives-ouvertes.fr/hal-01073293

A. C. Veron, H. Zhang, A. Linden, F. Nuesch, J. Heier et al., NIR-Absorbing Heptamethine Dyes with Tailor-Made Counterions for Application in Light to Energy Conversion, Organic Letters, vol.16, issue.4, pp.1044-1047, 2014.

K. Funabiki, K. Yagi, M. Ueta, M. Nakajima, M. Horiuchi et al., Rational Molecular Design and Synthesis of Highly Thermo-and Photostable Near-Infrared-Absorbing Heptamethine Cyanine Dyes with the Use of Fluorine Atoms, European Journal, vol.22, issue.35, pp.12282-12285, 2016.

Z. Ou, H. Yao, and K. Kimura, Organic nanoparticles of cyanine dye in aqueous solution, Bulletin of the Chemical Society of Japan, vol.80, issue.2, pp.295-302, 2007.

T. Funada, T. Hirose, N. Tamai, and H. Yao, Organic nanoparticles of malachite green with enhanced far-red emission: size-dependence of particle rigidity, Physical Chemistry Chemical Physics, vol.17, issue.16, pp.11006-11013, 2015.

H. Yao and K. Ashiba, Highly fluorescent organic nanoparticles of thiacyanine dye: A synergetic effect of intermolecular H-aggregation and restricted intramolecular rotation, Rsc Advances, vol.1, pp.834-838, 2011.

D. K. Bwambok, B. El-zahab, S. K. Challa, M. Li, L. Chandler et al., Near-Infrared Fluorescent NanoGUMBOS for Biomedical Imaging, Acs Nano, vol.3, issue.12, pp.3854-3860, 2009.

A. N. Jordan, S. Das, N. Siraj, S. L. De-rooy, M. Li et al., Anion-controlled morphologies and spectral features of cyanine-based nanoGUMBOS-an improved photosensitizer, Nanoscale, vol.2012, issue.16, pp.5031-5038

P. Magut, S. Das, V. Fernand, J. Losso, K. Mcdonough et al., Tunable Cytotoxicity of Rhodamine 6G via Anion Variations, Journal of the American Chemical Society, vol.2013, issue.42, pp.15873-15879
DOI : 10.1021/ja407164w

URL : http://europepmc.org/articles/pmc4197813?pdf=render

M. Soulie, C. Carayon, N. Saffon, S. Blanc, and S. Fery-forgues, A comparative study of nine berberine salts in the solid state: optimization of the photoluminescence and self-association properties through the choice of the anion, Physical Chemistry Chemical Physics, vol.18, issue.43, pp.29999-30008, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02061656

M. Soulie, C. Frongia, V. Lobjois, and S. Fery-forgues, Fluorescent organic ion pairs based on berberine: counter-ion effect on the formation of particles and on the uptake by colon cancer cells, Rsc Advances, vol.5, issue.2, pp.1181-1190, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02062113

A. Reisch, P. Didier, L. Richert, S. Oncul, Y. Arntz et al., Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles, Nature Communications, p.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065081

A. Reisch, A. Runser, Y. Arntz, Y. Mely, and A. S. Klymchenko, ChargeControlled Nanoprecipitation as a Modular Approach to Ultrasmall Polymer Nanocarriers: Making Bright and Stable Nanoparticles, Acs Nano, vol.2015, issue.5, pp.5104-5116
DOI : 10.1021/acsnano.5b00214

URL : https://hal.archives-ouvertes.fr/hal-01186239

I. Shulov, S. Oncul, A. Reisch, Y. Arntz, M. Collot et al., Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting, Nanoscale, vol.7, issue.43, pp.18198-18210, 2015.
DOI : 10.1039/c5nr04955e

URL : https://hal.archives-ouvertes.fr/hal-01280512

, 4A) and an attempt was made to form ion pairs of the corresponding barbiturates with R18 dye. From the first set of tested barbiturates (compounds 1, 2 and BarC6) only BarC6 could form stable ion pairs with R18, most likely due to additional electron-withdrawing effect of pentafluorophenyl ring. Quantum yields tests have shown, that BarC6 can decrease ACQ of R18 inside PLGA nanoparticles (Fig. 4B), but less efficiently than F5-TPB or F9-Al, Therefore, a series of barbiturates was synthesized (Fig

, Therefore, much bulkier barbituric derivative, BarPh2, was synthesized (Fig. 4A), its ion pair with R18 was successfully formed, and the quantum yield of 50 mM-loaded PLGA NPs has reached ~52% (Fig. 4B)

, A) Scheme of synthesis of the target barbiturates. (B) Quantum yield of NPs

C. , D. , and E. ). , Confocal images of HeLa cells

L. D. Lavis and R. T. Raines, Bright Ideas for Chemical Biology, ACS Chemical Biology, vol.3, issue.3, pp.142-155, 2008.
DOI : 10.1021/cb700248m

URL : http://europepmc.org/articles/pmc2802578?pdf=render

D. M. Chudakov, Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues, Towards Single-Particle Laboratories, vol.90, pp.723-726, 2006.
DOI : 10.1152/physrev.00038.2009

A. Reisch and A. S. Klymchenko, Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging, vol.12, pp.1968-1992, 2016.
DOI : 10.1002/smll.201503396

URL : http://europepmc.org/articles/pmc5405874?pdf=render

A. Reisch, Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles, Nature Communications, issue.5, p.4089, 2014.
DOI : 10.1038/ncomms5089

URL : https://hal.archives-ouvertes.fr/hal-01065081

A. Reisch, Charge-Controlled Nanoprecipitation as a Modular Approach to Ultrasmall Polymer Nanocarriers: Making Bright and Stable Nanoparticles, ACS Nano, vol.9, issue.5, pp.5104-5116, 2015.
DOI : 10.1021/acsnano.5b00214

URL : https://hal.archives-ouvertes.fr/hal-01186239

I. Krossing, , vol.15, pp.1966-1976, 2009.

L. D. Lavis and R. T. Raines, Bright Ideas for Chemical Biology, ACS Chemical Biology, vol.3, issue.3, pp.142-155, 2008.
DOI : 10.1021/cb700248m

URL : http://europepmc.org/articles/pmc2802578?pdf=render

D. M. Chudakov, Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues, Physiological Reviews, vol.90, issue.3, pp.1103-1163, 2010.
DOI : 10.1152/physrev.00038.2009

A. Burns, Core/Shell Fluorescent Silica Nanoparticles for Chemical Sensing: Towards Single-Particle Laboratories, Small, vol.2, issue.6, pp.723-726, 2006.
DOI : 10.1002/smll.200600017

A. Reisch and A. S. Klymchenko, Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging, vol.12, pp.1968-1992, 2016.
DOI : 10.1002/smll.201503396

URL : http://europepmc.org/articles/pmc5405874?pdf=render

A. Reisch, Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles, Nature Communications, issue.5, p.4089, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065081

A. Reisch, Charge-Controlled Nanoprecipitation as a Modular Approach to Ultrasmall Polymer Nanocarriers: Making Bright and Stable Nanoparticles, ACS Nano, vol.9, issue.5, pp.5104-5116, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186239

I. Krossing, , vol.15, pp.1966-1976, 2009.

F. Cayre, S. Mura, B. Andreiuk, D. Sobot, S. Gouazou et al., In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squalene-Based Prodrug Nanoparticles

O. Bugera, B. Andreiuk, A. Klymchenko, Y. Mely, G. Vasyl et al., Strong Electrofluorochromic Red Edge Effect of Adenosine 5'Triphosphate Anion on the Fluorescence of New Cationic and Zwitterionic Flavonols in Aqueous Buffer

B. Andreiuk, M. Collot, A. Reisch, Y. Mely, V. Pivovarenko et al., Novel ultra-bright fluorescent nanoparticles based on cationic BODIPY molecules, Journée Campus Illkirch, p.2015

B. Andreiuk, A. Reisch, Y. Mely, and A. S. Klymchenko, Efficient encapsulation of cyanine dyes with minimized self-quenching: bright fluorescent polymer nanoparticles, 14th conference on methods and applications in fluorescence, p.2015

B. Andreiuk, A. Reisch, Y. Mely, and A. S. Klymchenko, Efficient encapsulation of cyanine dyes with minimized self-quenching: bright fluorescent polymer nanoparticles, Journée Campus Illkirch, p.2016

B. Andreiuk, A. Reisch, and A. S. Klymchenko, Enhancing encapsulation and emission of cationic dyes inside biodegradable nanoparticles using hydrophobic counterions, BioNanoMed, p.2017

B. Andreiuk, A. Reisch, M. Lindecker, G. Follain, N. Peyriéras et al., Counterion-enhanced encapsulation and emission of cationic dyes inside nanoparticles for multicolour long-term tracking of living cells, Journée Campus Illkirch, p.2017

. Klymchenko, Counterion-enhanced emission approach to develop ultrabright cyanine-loaded fluorescent polymer nanoparticles for cell barcoding, p.28

, International Conference on Photochemistry, p.2017