Skip to Main content Skip to Navigation
Theses

Ataxies cérébelleuses héréditaires : identification de gènes responsables, description clinique et stratégie diagnostique

Abstract : Hereditary cerebellar ataxias are a group of rare and heterogeneous neurodegenerative diseases. The transmission mode is recessive, dominant or X-linked. Our objectives were to better describe the phenotype of some inherited ataxias, to provide genotype-phenotype correlations and to improve the diagnostic strategies for these rare diseases. We enlarged the clinical, biological, radiological phenotype of Fragile X Tremor Ataxia Syndrome (FXTAS), recessive ataxia due to PEX10 related peroxisomal biogenesis disorders, ataxia with oculomotor apraxia type 1 (AOA1). We showed genotype-phenotype correlations in AOA1 patients: mean age at onset was higher with at least one missense mutation. A ranking algorithm has been created to predicting the molecular diagnoses of recessive cerebellar ataxia in order to guide the diagnosis and facilitate interpretation of next generation sequencing. The establishment of a molecular diagnosis is important in this type of rare pathologies to guide the genetic counseling and to diagnosis the ataxias accessible to a treatment.
Complete list of metadatas

Cited literature [333 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02003418
Contributor : Abes Star :  Contact
Submitted on : Friday, February 1, 2019 - 11:52:41 AM
Last modification on : Friday, October 23, 2020 - 4:58:17 PM
Long-term archiving on: : Thursday, May 2, 2019 - 5:07:51 PM

File

HODILLE-RENAUD_Mathilde_2017_E...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02003418, version 1

Collections

Citation

Mathilde Renaud. Ataxies cérébelleuses héréditaires : identification de gènes responsables, description clinique et stratégie diagnostique. Génomique, Transcriptomique et Protéomique [q-bio.GN]. Université de Strasbourg, 2017. Français. ⟨NNT : 2017STRAJ019⟩. ⟨tel-02003418⟩

Share

Metrics

Record views

159

Files downloads

265