, Pour ~ 350 mL of the low stringency wash solution into a Pyrex glass dish

, Write on a 50-mL Falcon centrifuge tube "Name of the hybridization solution

, Carefully, pour the hybridization solution into the labelled 50-mL Falcon centrifuge tube

, Store the hybridization solution in a 50 mL Falcon centrifuge tube in a-20 o C freezer

, Remove the blots from the bag. Immediately, place the blots one-by-one into a Pyrex glass dish containing 350 mL of low stringency wash solution

, Place the Pyrex dish on an orbital shaker and turn the speed dial to ~ 50-75 rpm. Wash the blots at room temp for 15 minutes

, After 15 minutes of washing, use a blunt-end forceps to hold the blots and pour the washing solution into a liquid waste radioactive container behind a plexi-glass shield

, While washing the blots in the low stringency wash solution, prepare another Pyrex dish containing ~ 350 mL of high stringency wash solution. Leave this dish in a 60 o C water bath incubator

, After 15 minutes of the second low stringency wash, transfer the blots into the Pyrex dish containing 350 mL of high stringency wash solution at 60 o C using blunt-end forceps. Wash blots in the high stringency wash at 60 o C for 30 minutes

, Use the Geiger counter to monitor the amount of labeled probes that remained on the dish. Wash the dish with a 7x Detergent solution and rinse it with water until radioactive lable, While washing the blots, pour off the low stringency wash solution into the liquid waste radioactive container

, Repeat the high stringency wash with a fresh 350 mL of high stringency wash solution

, While washing, cut out a piece of 3MM Whatman paper to a size of 8 inch x 10 inch. Wrap the paper with a piece of plastic wrap

, After washing the blots, briefly blot the blots on two or three layers of Kimwipe tissues to remove excess liquid

, In the lab, place the wrapped blots facing an intensifying screen in a vinyl X-ray cassette

, Bring the cassette, 2 pieces of small plexi-glass plates, 4 clamps, and a box of X-ray film to the darkroom on the first floor

, In the darkroom, remove a piece of X-ray film from the box

, Bend an upper right corner of the film to mark the orientation of the film relative to the blots

, Put X-ray film between the blots and the intensifying screen in the cassette

, Close the cassette

, Expose the blot to X-Ray film in a-80 o C freezer from several hours to a few days depending on how hot the blot is

, Developing the Exposed X-ray Film (Autoradiography)

, Remove the cassette from the-80 o C freezer and leave it in the lab until the cassette warms up to room temperature (~ 15-30 minutes)

, Take the cassette to the darkroom

, Develop the exposed X-ray film (autoradiogram) using the Kodak Film Developer

, Align the autoradiogram to the blots. Mark well positions on the blots to the autoradiogram. Write on the autoradiogram positions of the 1-kB ladder

L. Speybroeck, From Epigenesis to Epigenetics, Ann. N. Y. Acad. Sci, vol.981, pp.61-81, 2006.

A. Bird, Perceptions of epigenetics, Nature, vol.447, pp.396-404, 2007.

A. D. Goldberg, C. D. Allis, and E. Bernstein, Epigenetics: A Landscape Takes Shape. Cell, vol.128, pp.635-638, 2007.

A. Groth, W. Rocha, A. Verreault, and G. Almouzni, Chromatin Challenges during DNA Replication and Repair, Cell, vol.128, pp.721-733, 2007.

A. A. Soshnev, S. Z. Josefowicz, and C. D. Allis, Greater Than the Sum of Parts: Complexity of the Dynamic Epigenome, Mol. Cell, vol.62, pp.681-694, 2016.

R. Rill and K. E. Van-holde, Electric dichroism of chromatin, J. Mol. Biol, vol.83, pp.459-471, 1974.

A. P. Wolffe and J. J. Hayes, Chromatin disruption and modification, Nucleic Acids Research, vol.27, pp.711-720, 1999.

C. L. Woodcock and L. L. Frado, Ultrastructure of chromatin subunits during unfolding, histone depletion, and reconstitution, Cold Spring Harb. Symp. Quant. Biol, vol.42, pp.43-55, 1977.

A. L. Olins and D. E. Olins, Spheroid chromatin units (v bodies), Science, vol.183, pp.330-332, 1974.

J. B. Rattner and C. C. Lin, Radial loops and helical coils coexist in metaphase chromosomes, Cell, vol.42, pp.291-296, 1985.

A. S. Belmont and K. Bruce, Visualization of G1 chromosomes: A folded, twisted, supercoiled chromonema model of interphase chromatid structure, J. Cell Biol, vol.127, pp.287-302, 1994.

R. K. Richmond, D. F. Sargent, T. J. Richmond, K. Luger, and A. W. Mader, Crystal structure of the nucleosome resolution core particle at 2. 8 A, Nature, vol.389, pp.251-260, 1997.

B. Pierce, Genetics: A Conceptual Approach, vol.833, 2004.

C. L. Woodcock and R. P. Ghosh, Chromatin higher-order structure and dynamics. Cold Spring Harbor perspectives in biology 2, 2010.

S. I. Grewal and S. Jia, Heterochromatin revisited, Nat. Rev. Genet, vol.8, pp.35-46, 2007.

E. I. Campos and D. Reinberg, Histones: annotating chromatin, Annu. Rev. Genet, vol.43, pp.559-99, 2009.

K. Maeshima, S. Ide, K. Hibino, and M. Sasai, Liquid-like behavior of chromatin, Curr. Opin. Genet. Dev, vol.37, pp.36-45, 2016.

R. T. Kamakaka and S. Biggins, Histone variants: Deviants?, Genes Dev, vol.19, pp.295-310, 2005.

A. R. Cutter and J. J. Hayes, A brief review of nucleosome structure, FEBS Lett, vol.589, pp.2914-2922, 2015.

M. F. Hacques, S. Muller, G. De-murcia, M. H. Van-regenmortel, and C. Marion, Use of an immobilized enzyme and specific antibodies to analyse the accessibility and role of histone tails in chromatin structure, Biochem. Biophys. Res. Commun, vol.168, pp.637-643, 1990.

I. O. Walker, Differential dissociation of histone tails from core chromatin, Biochemistry, vol.23, pp.5622-5628, 1984.

R. M. Smith and R. L. Rill, Mobile histone tails in nucleosomes. Assignments of mobile segments and investigations of their role in chromatin folding, J. Biol. Chem, vol.264, pp.10574-10581, 1989.

J. Ausio, F. Dong, and K. E. Van-holde, Use of selectively

, J. Mol. Biol, vol.206, pp.451-463, 1989.

K. J. Polach, P. T. Lowary, and J. Widom, Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes, J Mol Biol, vol.298, pp.211-223, 2000.

M. Vettese-dadey, P. Walter, H. Chen, L. J. Juan, and J. L. Workman, Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores, Mol Cell Biol, vol.14, pp.970-981, 1994.

J. Allan, N. Harborne, D. C. Rau, and H. Gould, Participation of core histone 'tails' in the stabilization of the chromatin solenoid, J. Cell Biol, vol.93, pp.285-297, 1982.

M. Iizuka and M. M. Smith, Functional consequences of histone modifications, Curr. Opin. Genet. Dev, vol.13, pp.154-160, 2003.

A. Saha, J. Wittmeyer, and B. R. Cairns, Chromatin remodelling: the industrial revolution of DNA around histones, Nat. Rev. Mol. Cell Biol, vol.7, pp.437-447, 2006.

N. Yudkovsky, C. Logie, S. Hahn, and C. L. Peterson, Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators, Genes Dev, vol.13, pp.2369-2374, 1999.

D. F. Corona, C. R. Clapier, P. B. Becker, and J. W. Tamkun, Modulation of ISWI function by site-specific histone acetylation, EMBO Rep, vol.3, pp.242-247, 2002.

N. J. Bowen, N. Fujita, M. Kajita, and P. A. Wade, Mi-2/NuRD: Multiple complexes for many purposes, Biochimica et Biophysica Acta-Gene Structure and Expression, vol.1677, pp.52-57, 2004.

A. Lusser and J. T. Kadonaga, Chromatin remodeling by ATP-dependent molecular machines, BioEssays, vol.25, pp.1192-1200, 2003.

F. Winston and C. D. Allis, The bromodomain: a chromatin-targeting module?, Nat. Struct. Biol, vol.6, pp.601-604, 1999.

A. H. Hassan, Function and selectivity of bromodomains in anchoring chromatinmodifying complexes to promoter nucleosomes, Cell, vol.111, pp.369-379, 2002.

J. A. Martens and F. Winston, Recent advances in understanding chromatin remodeling by Swi/Snf complexes, Current Opinion in Genetics and Development, vol.13, pp.136-142, 2003.

R. Deuring, The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo, Mol. Cell, vol.5, pp.355-365, 2000.

E. Szenker, D. Ray-gallet, and G. Almouzni, The double face of the histone variant H3.3, Cell Res, vol.21, pp.421-434, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00742959

P. Cheung and P. Lau, Epigenetic Regulation by Histone Methylation and Histone Variants, Mol. Endocrinol, vol.19, pp.563-573, 2005.

?. Ausi and J. , Histone variants-The structure behind the function, Briefings Funct. Genomics Proteomics, vol.5, pp.228-243, 2006.

B. Piña and P. Suau, Core histone variants and ubiquitinated histones 2A and 2B of rat cerebral cortex neurons, Biochem. Biophys. Res. Commun, vol.133, pp.505-510, 1985.

D. T. Brown, B. T. Alexander, and D. B. Sittman, Differential effect of H1 variant overexpression on cell cycle progression and gene expression, Nucleic Acids Res, vol.24, pp.486-493, 1996.

R. Alami, Mammalian linker-histone subtypes differentially affect gene expression in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.5920-5925, 2003.

J. D. Jackson, M. A. Gorovsky, and . Histone, Z has a conserved function that is distinct from that of the major H2A sequence variants, Nucleic Acids Res, vol.28, pp.3811-3817, 2000.

J. R. Pehrson and R. N. Fuji, Evolutionary conservation of histone macroH2A subtypes and domains, Nucleic Acids Res, vol.26, pp.2837-2842, 1998.

I. K. Greaves, D. Rangasamy, M. Devoy, J. A. Marshall-graves, and D. J. Tremethick, The X and Y chromosomes assemble into H2A, Mol. Cell. Biol, vol.26, pp.5394-405, 2006.

R. González-romero, C. Rivera-casas, J. Ausió, J. Méndez, and J. M. Eirín-lópez, Birth-and-death long-term evolution promotes histone H2B variant diversification in the male germinal cell line, Mol. Biol. Evol, vol.27, pp.1802-1812, 2010.

A. O. Zalensky, Human testis/sperm-specific histone H2B (hTSH2B): Molecular cloning and characterization, J. Biol. Chem, vol.277, pp.43474-43480, 2002.

I. Maze, K. Noh, A. A. Soshnev, and C. D. Allis, Every amino acid matters: essential contributions of histone variants to mammalian development and disease, Nat. Rev. Genet, vol.15, pp.259-71, 2014.

A. Loyola and G. Almouzni, Marking histone H3 variants: How, when and why?, Trends Biochem. Sci, vol.32, pp.425-433, 2007.

S. M. Wiedemann, Identification and characterization of two novel primatespecific histone H3 variants, H3.X and H3, Y. J. Cell Biol, vol.190, pp.777-791, 2010.

W. F. Marzluff, P. Gongidi, K. R. Woods, J. Jin, and L. J. Maltais, The human and mouse replication-dependent histone genes, Genomics, vol.80, pp.487-498, 2002.

W. F. Marzluff and R. J. Duronio, Histone mRNA expression: Multiple levels of cell cycle regulation and important developmental consequences, Current Opinion in Cell Biology, vol.14, pp.692-699, 2002.

S. E. Polo, D. Roche, and G. Almouzni, New Histone Incorporation Marks Sites of UV Repair in Human Cells, Cell, vol.127, pp.481-493, 2006.

A. S. Akhmanova, Structure and expression of histone H3.3 genes in Drosophila melanogaster and Drosophila hydei, Genome, vol.38, pp.586-600, 1995.

K. M. Bush, Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development, Epigenetics Chromatin, vol.6, p.7, 2013.

D. Frank, D. Doenecke, and W. Albig, Differential expression of human replacement and cell cycle dependent H3 histone genes, Gene, vol.312, pp.135-143, 2003.

P. W. Lewis, S. J. Elsaesser, K. Noh, S. C. Stadler, and C. D. Allis, Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.14075-80, 2010.

D. Brush, J. B. Dodgson, O. R. Choi, P. W. Stevens, and J. D. Engel, Replacement variant histone genes contain intervening sequences, Mol. Cell. Biol, vol.5, pp.1307-1324, 1985.

D. Andrea, R. J. Coles, L. S. Lesnikowski, C. Tabe, L. Wells et al., Chromosomal organization of chicken histone genes: preferred associations and inverted duplications, Mol. Cell. Biol, vol.5, pp.3108-3123, 1985.

S. G. Zeitlin, Double-strand DNA breaks recruit the centromeric histone CENPA, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.15762-15767, 2009.

A. D. Goldberg, Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions, Cell, vol.140, pp.678-691, 2010.

S. B. Hake and C. D. Allis, Histone H3 variants and their potential role in indexing mammalian genomes: the 'H3 barcode hypothesis, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.6428-6435, 2006.

C. Chow, Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division, EMBO Rep, vol.6, pp.354-60, 2005.

C. Jang, Y. Shibata, J. Starmer, D. Yee, and T. Magnuson, Histone H3. 3 maintains genome integrity during mammalian development, Genes Dev, vol.1, pp.1377-1392, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01416860

S. J. Elsässer, K. Noh, N. Diaz, C. D. Allis, and L. A. Banaszynski, Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells, Nature, vol.522, pp.240-244, 2015.

Y. Mito, J. G. Henikoff, and S. Henikoff, Genome-scale profiling of histone H3.3 replacement patterns, Nat. Genet, vol.37, pp.1090-1097, 2005.

A. Sakai, B. E. Schwartz, S. Goldstein, and K. Ahmad, Transcriptional and Developmental Functions of the H3.3 Histone Variant in Drosophila, Curr. Biol, vol.19, pp.1816-1820, 2009.

C. Couldrey, M. B. Carlton, P. M. Nolan, W. H. Colledge, and M. J. Evans, A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice, Hum. Mol. Genet, vol.8, pp.2489-2495, 1999.

A. Inoue and Y. Zhang, Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes, Nat. Struct. Mol. Biol, vol.21, pp.609-625, 2014.

C. Lin, M. Conti, and M. Ramalho-santos, Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development, Development, vol.140, pp.3624-3658, 2013.

G. Wu, Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas, Nat Genet, vol.44, pp.251-253, 2012.

D. A. Khuong-quang, K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas, Acta Neuropathol, vol.124, pp.439-447, 2012.

J. Schwartzentruber, Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma, Nature, vol.482, pp.226-231, 2012.

D. Sturm, Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma, Cancer Cell, vol.22, pp.425-437, 2012.

P. Voigt and D. Reinberg, Putting a halt on PRC2 in pediatric glioblastoma, Nat. Genet, vol.45, pp.587-589, 2013.

T. Kouzarides, Chromatin Modifications and Their Function, Cell, vol.128, pp.693-705, 2007.

S. D. Taverna, H. Li, A. J. Ruthenburg, C. D. Allis, and D. J. Patel, How chromatinbinding modules interpret histone modifications: lessons from professional pocket pickers, Nat. Struct. &, vol.38

, Mol. Biol, vol.14, pp.1025-1040, 2007.

C. A. Musselman, M. E. Lalonde, J. Cote, and T. G. Kutateladze, Perceiving the epigenetic landscape through histone readers, Nat Struct Mol Biol, vol.19, pp.1218-1227, 2012.

A. , V. G. Faulkner, R. Mirsky, and A. E. , Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis, Proc. Natl

Z. Sun and C. D. Allis, Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast, Nature, vol.418, pp.104-108, 2002.

R. J. Wierda, Global histone H3 lysine 27 triple methylation levels are reduced in vessels with advanced atherosclerotic plaques, Life Sci, vol.129, pp.3-9, 2014.

K. J. Falkenberg and R. W. Johnstone, Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders, Nat. Rev. Drug Discov, vol.13, pp.673-91, 2014.

T. R. Hebbes, A. W. Thorne, and C. Crane-robinson, A direct link between core histone acetylation and transcriptionally active chromatin, EMBO J, vol.7, pp.1395-1402, 1988.

J. R. Davie, Covalent modifications of histones: Expression from chromatin templates, Curr. Opin. Genet. Dev, vol.8, pp.173-178, 1998.

B. M. Turner, Histone acetylation and an epigenetic code, BioEssays, vol.22, pp.836-845, 2000.

J. E. Brownell, Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation, Cell, vol.84, pp.843-851, 1996.

A. J. Bannister and T. Kouzarides, The CBP co-activator is a histone acetyltransferase, Nature, vol.384, pp.641-644, 1996.

M. R. Parthun, J. Widom, and D. E. Gottschling, The major cytoplasmic histone acetyltransferase in yeast: Links to chromatin replication and histone metabolism, Cell, vol.87, pp.85-94, 1996.

I. V. Gregoretti, Y. M. Lee, and H. V. Goodson, Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis, J. Mol. Biol, vol.338, pp.17-31, 2004.

J. F. Costello and C. Plass, Methylation matters, J. Med. Genet, vol.38, pp.285-303, 2001.

B. D. Strahl, R. Ohba, R. G. Cook, and C. D. Allis, Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena, Proc. Natl. Acad. Sci, vol.96, pp.14967-14972, 1999.

C. Martin and Y. Zhang, The diverse functions of histone lysine methylation, Nat. Rev. Mol. Cell Biol, vol.6, pp.838-849, 2005.

D. Rizzo, P. A. Trievel, and R. C. , Molecular basis for substrate recognition by lysine methyltransferases and demethylases, Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, vol.1839, pp.1404-1415, 2014.

L. J. Gaydos, W. Wang, and S. Strome, H3K27me and PRC2 transmit a memory of repression across generations and during development, Science, vol.345, pp.1515-1518, 2014.

P. N. Audergon, Restricted epigenetic inheritance of H3K9 methylation, vol.348, pp.132-135, 2015.

A. Corpet and G. Almouzni, A histone code for the DNA damage response in mammalian cells?, EMBO J, vol.28, pp.1828-1830, 2009.

M. S. Cosgrove, J. D. Boeke, and C. Wolberger, Regulated nucleosome mobility and the histone code, Nat. Struct. Mol. Biol, vol.11, pp.1037-1080, 2004.

T. Jenuwein and C. D. Allis, Translating the histone code, Science, vol.293, pp.1074-80, 2001.

P. Kharchenko, Comprehensive analysis of the chromatin landscape in Drosophila melanogaster, Nature, vol.471, pp.480-485, 2011.

S. Gonzalo and M. A. Blasco, Role of Rb family in the epigenetic definition of chromatin, Cell Cycle, vol.4, pp.752-755, 2005.

P. Tessarz and T. Kouzarides, Histone core modifications regulating nucleosome structure and dynamics, Nat. Rev. Mol. Cell Biol, vol.15, pp.703-708, 2014.

P. Tropberger, Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer, Cell, vol.152, pp.859-872, 2013.

D. Cerbo and V. , Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription, Elife, 2014.

R. R. Cocklin and M. Wang, Identification of methylation and acetylation sites on mouse histone H3 using matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry, J. Protein Chem, vol.22, pp.327-334, 2003.

M. A. Freitas, A. R. Sklenar, and M. R. Parthun, Application of mass spectrometry to the identification and quantification of histone post-translational modifications, J. Cell. Biochem, vol.92, pp.691-700, 2004.

, Casey Research. Going Global, pp.1-6, 2013.

L. Bintu, Nucleosomal elements that control the topography of the barrier to transcription, Cell, vol.151, pp.738-749, 2012.

J. Yuan, M. Pu, Z. Zhang, and Z. Lou, Histone H3-K56 acetylation is important for genomic stability in mammals, Cell Cycle, vol.8, pp.1747-1753, 2009.

F. Xu, K. Zhang, and M. Grunstein, Acetylation in histone H3 globular domain regulates gene expression in yeast, Cell, vol.121, pp.375-385, 2005.

H. Masumoto, D. Hawke, R. Kobayashi, and A. Verreault, A role for cell-cycleregulated histone H3 lysine 56 acetylation in the DNA damage response, Nature, vol.436, pp.294-298, 2005.

E. M. Hyland, Insights into the Role of Histone H3 and Histone H4 Core Modifiable Residues in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.25, pp.10060-10070, 2005.

F. Xu, Q. Zhang, K. Zhang, W. Xie, and M. Grunstein, Sir2 Deacetylates Histone H3 Lysine 56 to Regulate Telomeric Heterochromatin Structure in Yeast, Mol. Cell, vol.27, pp.890-900, 2007.

W. Iwasaki, Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains, Biochemistry, vol.50, pp.7822-7832, 2011.

P. Tropberger and R. Schneider, Going global: Novel histone modifications in the globular domain of H3, Epigenetics, vol.5, pp.112-117, 2010.

L. Zhang, E. E. Eugeni, M. R. Parthun, and M. A. Freitas, Identification of novel histone post-translational modifications by peptide mass fingerprinting, Chromosoma, vol.112, pp.77-86, 2003.

M. A. Hall, High-resolution dynamic mapping of histone-DNA interactions in a nucleosome, Nat. Struct. Mol. Biol, vol.16, pp.124-129, 2009.

M. Manohar, Acetylation of histone H3 at the nucleosome dyad alters DNAhistone binding, J. Biol. Chem, vol.284, pp.23312-23321, 2009.

C. M. English, M. W. Adkins, J. J. Carson, M. E. Churchill, and J. K. Tyler, Structural Basis for the Histone Chaperone Activity of Asf1, Cell, vol.127, pp.495-508, 2006.

D. Jackson, Biochemical Method for Inserting New Genetic Information into DNA of, Nature, vol.69, pp.2904-2909, 1972.

J. San-filippo, P. Sung, and H. Klein, Mechanism of eukaryotic homologous recombination, Annu. Rev. Biochem, vol.77, pp.229-257, 2008.

W. Wu, Repair of radiation induced DNA double strand breaks by backup NHEJ is enhanced in G2, DNA Repair (Amst), vol.7, pp.329-338, 2008.

M. L. Maeder and C. A. Gersbach, Genome-editing Technologies for Gene and Cell Therapy, Mol. Ther, vol.24, pp.430-446, 2016.

L. Krejci, V. Altmannova, M. Spirek, and X. Zhao, Homologous recombination and its regulation, Nucleic Acids Research, vol.40, pp.5795-5818, 2012.

T. P. Zwaka and J. A. Thomson, Homologous recombination in human embryonic stem cells, Nat. Biotechnol, vol.21, pp.319-340, 2003.

M. R. Capecchi, Altering the genome by homologous recombination, Science, vol.244, pp.1288-92, 1989.

H. Ma, S. Kunes, P. J. Schatz, and D. Botstein, Plasmid construction by homologous recombination in yeast, Gene, vol.58, pp.201-216, 1987.

P. Windling and M. W. Berchtold, The chicken B cell lind DT40: a novel tool for gene disruption experiments, vol.249, pp.1-16, 2001.

K. Araki, M. Araki, and K. Yamamura, Site-directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites, Nucleic Acids Res, vol.30, p.103, 2002.

L. A. Lyznik, K. V. Rao, and T. K. Hodges, FLP-mediated recombination of FRT sites in the maize genome, Nucleic Acids Res, vol.24, pp.3784-3789, 1996.

J. K. Hye, H. J. Lee, H. Kim, S. W. Cho, and J. S. Kim, Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly, Genome Res, vol.19, pp.1279-1288, 2009.

F. A. Ran, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc, vol.8, pp.2281-308, 2013.

F. A. Ran, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc, vol.8, pp.2281-2308, 2013.

F. A. Ran, Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity, Cell, vol.154, pp.1380-1389, 2013.

M. L. Maeder and C. A. Gersbach, Genome Editing Technologies for Gene and Cell Therapy, Mol. Ther, vol.24, pp.430-446, 2016.

M. Hödl and K. Basler, Transcription in the absence of histone H3.2 and H3K4 methylation, Curr. Biol, vol.22, pp.2253-2257, 2012.

P. Winding and M. W. Berchtold, The chicken B cell line DT40: A novel tool for gene disruption experiments, J. Immunol. Methods, vol.249, pp.1-16, 2001.

Y. Shiao, BMC Biotechnology. BMC Biotechnol, vol.9, p.22, 2009.

A. Frey, T. Listovsky, G. Guilbaud, P. Sarkies, and J. E. Sale, Histone H3.3 is required to maintain replication fork progression after UV damage, Curr. Biol, vol.24, pp.2195-2201, 2014.

J. Molnar, The genome of the chicken DT40 bursal lymphoma cell line. G3 (Bethesda), vol.4, pp.2231-2240, 2014.

P. D. Hsu, E. S. Lander, and F. Zhang, Development and applications of CRISPR-Cas9 for genome engineering, Cell, vol.157, pp.1262-1278, 2014.

F. A. Ran, XOne-step generation of mice carrying reporter and conditional alleles by CRISPR/cas-mediated genome engineering, Cell, vol.154, pp.1370-1379, 2013.

X. Wu, Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells, Nat Biotechnol, vol.32, pp.670-676, 2014.

G. Schratt, Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells, Mol. Cell. Biol, vol.21, p.2933, 2001.

H. Yang, XOne-step generation of mice carrying reporter and conditional alleles by CRISPR/cas-mediated genome engineering, Cell, vol.154, pp.1370-1379, 2013.

P. K. Chatterjee, Mutually exclusive recombination of wild-type and mutant loxP sites in vivo facilitates transposon-mediated deletions from both ends of genomic DNA in PACs, Nucleic Acids Res, vol.32, pp.5668-5676, 2004.

S. W. Cho, Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases, Genome Res, vol.24, pp.132-141, 2014.

X. De-la-cruz, S. Lois, S. Sánchez-molina, and M. A. Martínez-balbás, Do protein motifs read the histone code?, BioEssays, vol.27, pp.164-175, 2005.

H. C. Beck, Quantitative proteomic analysis of post-translational modifications of human histones, Mol Cell Proteomics, vol.5, pp.1314-1325, 2006.

B. D. Strahl and C. D. Allis, The language of covalent histone modifications, Nature, vol.403, pp.41-45, 2000.

J. J. Fischer, Combinatorial effects of four histone modifications in transcription and differentiation, Genomics, vol.91, pp.41-51, 2008.

W. Schaffner, Genes and spacers of cloned sea urchin histone DNA analyzed by sequencing, Cell, vol.14, pp.655-671, 1978.

L. Hereford, K. Fahrner, J. Woolford, M. Rosbash, and D. B. Kaback, Isolation of yeast histone genes H2A and H2B, Cell, vol.18, pp.1261-1271, 1979.

K. Ragunathan, G. Jih, and D. Moazed, Epigenetic inheritance uncoupled from sequence-specific recruitment. Science (80-. ). science, p.1258699, 2014.

X. Bi, Heterochromatin structure: Lessons from the budding yeast, IUBMB Life, vol.66, pp.657-666, 2014.

Y. Takami, S. Takeda, and T. Nakayama, An approximately half set of histone genes is enough for cell proliferation and a lack of several histone variants causes protein pattern changes in the DT40 chicken B cell line, J. Mol. Biol, vol.265, pp.394-408, 1997.

M. C. Canver, Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/cas9 nuclease system in mammalian cells, J. Biol. Chem, vol.289, pp.21312-21324, 2014.

L. Zhang, Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9, PLoS One, vol.10, 2015.

L. Wang, Large genomic fragment deletion and functional gene cassette knock-in via Cas9 protein mediated genome editing in one-cell rodent embryos, Sci. Rep, vol.5, p.17517, 2015.

A. Hendel, E. J. Fine, G. Bao, and M. H. Porteus, Quantifying on-and off-target genome editing, Trends in Biotechnology, vol.33, pp.132-140, 2015.

R. Gabriel, C. Von-kalle, and M. Schmidt, Mapping the precision of genome editing, Nat. Biotechnol, vol.33, pp.150-152, 2015.

U. C. Lange, Dissecting the role of H3K64me3 in mouse pericentromeric heterochromatin, Nat. Commun, vol.4, p.2233, 2013.

A. L. Clayton, C. A. Hazzalin, and L. C. Mahadevan, Enhanced Histone Acetylation and Transcription: A Dynamic Perspective, Molecular Cell, vol.23, pp.289-296, 2006.

Y. Tan, Y. Xue, C. Song, and M. Grunstein, Acetylated histone H3K56 interacts with Oct4 to promote mouse embryonic stem cell pluripotency, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.11493-11501, 2013.

Z. Wang, Combinatorial patterns of histone acetylations and methylations in the human genome, Nat. Genet, vol.40, pp.897-903, 2008.